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Summary.  We prove that the optimal convergence speed exponent for parallel 
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has only one global minimum. Our proofs will be based on large deviation 
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1 Introduction 

Let E be a finite set and consider a family of Markov kernels (QT")r>0 satisfying 
for any ( i , j )  E E 2 the inequalities 

1 , j )e_V(i j ) /T (1) - q ( i  <_ Q r ( i , j )  <_ t~q(i,j)e -v~iJ)/T 

where q is an irreducible Markov kernel on E called the communication kernel, 
_> 1 and V " E x E --+ R+ U {+cx~} is a non negative real valued function called 

the communication cost, and satisfying V ( i , j )  = + ~  iff q ( i , j )  = 0. Assume that 
the family (Qr)r>0 satisfies the additionnal weak condition (8). Now, considering 
a non increasing sequence (Tn)ncr~ of positive real valued numbers called the 
cooling schedule, the theory of generalized simulated annealing is concerned 
with the behaviour of the Markov chain (Xn)ncr~ on E defined by the one-step 
transitions P(  Xn+ 1 = j I Xn = i ) = QT,,~(i,j). 

Many stochastic optimization algorithms can be properly described as gener- 
alized simulated annealing. For instance, for sequential simulated annealing, we 
restrict ourself to symmetrical communication kernel q and to communication 
costs V given by V ( i , j )  = (U( j )  - U(i))  + if q ( i , j )  > 0 (and V ( i , j )  -- + ~  oth- 
erwise) where U is the function to be minimized. Moreover, many parallelized 
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versions of sequential annealing fall into the scope of generalized simulated an- 
nealing. In the general framework, (Xn)ncr~ concentrates, for sufficiently slowly 
decreasing cooling schedules, on the minima of the virtual energy W defined 
on E by W(i) = limr--,0 T ln(#r(i)) where # r  is the unique invariant probabil- 
ity measure of Qr (note that min W = 0). The rate of convergence towards the 
minima of W has been studied by C.R Hwang and S.J. Sheu in [11] and more 
recently by the author in [13, 14, 15] (see also T.S Chiang and Y. Chow [7], L. 
Miclo [12], and J. D. Deuschel and C. Mazza [8] for the continuous time set- 
ting). This rate of convergence is characterized by two critical constants H~ and 
c~ which depend on the decomposition of the state space E in cycles according to 
the large deviation approach developed by Wentzell and Freidlin. In particular, 
there exist two strictly positive constants K1 and/(2 such that (see [6, 14]) 

KI K2. 
(2) N c~ < sup inf P(W(XN)  > 0 ] Xo = i ) < NTg. 

i E E  To>-'">--T~ 

In order to speed up the convergence towards the minima of W, one can use 
a multi-processors computer to parallelize the previous algorithm. Many efforts 
have been made in this direction with notable success for precise applications 
[1, 2, 3]. Among these algorithms, we will be interested more particularly in the 
multiple searches algorithms. Assume that p processors (Pk)l<_k<p are available. 
Then consider the multidimensional Markov chain (Xn)ncr~ on E p defined by the 
probability transitions 

P 

(3) P(Xn+l = j  [ Xn = i) = HOr, .~( ik , j  k) ; i , j  C E p. 
k=l 

The variable X~ is a random vector denoting the value at time n o fp  independent 
generalized annealing algorithms under the same cooling schedule. Now, let 

S ( X , ) =  inf W(X~). 
l<k<_p 

We deduce immediately that 

(4) K[ < sup inf P ( S ( X N ) > O I X o = i ) <  K~ . 
N P a  - iEEP To>-'">-T~v - -  N p c "  

so that the rate of convergence is improved by a factor of p. This scheme will 
be called parallel annealing based on non interacting multiple searches. It has 
been argued by E. Aarts and P. van Laarhoven that interactions between pro- 
cessors should increase the convergence rate of the algorithm. Obviously, many 
interactions are possible and in [4] R. Azencott and C. Graffigne formalized a 
simplification of an interacting scheme used by E. Aarts and P. van Laarh0ven 
without mathematical study. It is a natural extension of the previous scheme 
which is the parallel annealing based on interacting multiple searches. Instead 
of performing independent searches, we can fix an integer r > 1 that will be the 
time period between interactions. Now, consider the Markov chain (Zn)~_>o on 
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E p defined through the following algorithmic description. At each time step, each 
processor Pk performs r usual search-steps from its current configuration Z~ at 
temperature T~+I. We denote Yk+l the result of these r consecutive search-steps. 

k The new configuration Z,+ 1 is recursively defined by Z~+ 1 = Y~+I and for k >_ 2 

(5) 

k--1 k - I  Z~+~ if W(Y~+~) > W(Z~+~ ) 
Zkn+l : 

k Yn+l otherwise. 

As previously, we defined S(Zn) = infl_<k_<p W(Z~) = W(ZP). The main result of 
this paper will be that under the condition that W has only one global minimum, 
there exists a strictly positive constant K such that 

K 
(6) N~i------ ~ < sup inf 

iEEP To>-'">-TN 
P(S (ZN)  > 0 [ Zo = i ) with aint <<_ p a .  

If we compare (4) and (6) we deduced that, surprisingly, the interaction between 
the different processors does not increase the convergence speed towards the 
global minima of W. Moreover, one can easily exhibit situations where aint = a. 
This result has been conjectured by R. Azencott and C. Graffigne [4] through a 
mathematical study of particular configuration spaces E of small size for p = 2 
and confirms the intuition given by experimental studies performed in [10]. 

The effective computation of critical constants is in many cases a very deli- 
cate task. In many concrete situation, even in the sequential annealing framework 
with a given energy function U, the value of the critical exponent is unknown and 
its computation is a very hard combinatorial problem. Apparently our problem is 
simpler since we need here only a comparison between two exponents. However, 
even if we assume that the critical exponent of an annealing process is known, 
under a slight modification of the dynamic, the evolution of the critical exponent 
is often unpredictable and the modification of the energy landscape involved can 
be very intricate from the combinatorial point of view. For instance, for the non 
interacting multiple searches algorithm defined by (3), the communication cost 
function V is defined by V(i,j) = ~-'~f=l V(ik,Jk)" If we try to use the combina- 
torial definition of the virtual energy W associated with V as given by Wentzell 
and Freidlin in [9], we will not be able to prove that W(i) = ~-f-1 WOk) even 
if this equality is straightforward from a probabilistic point of view. We will 
encounter a more difficult problem if we try to say something about the cycle 
decomposition of the product space for W since this decomposition is related 
with the computation of the communication altitude which is until now very 
badly understood even in such a simple case. Now if we consider the problem 
of periodically interacting generalized annealing processes, we add a difficulty 
coming from the interactions between the processes. In this case, there is no sim- 
ple relation between the virtual energy of the interacting processes and the initial 
virtual energy W. A strictly combinatorial approach for the computation of the 
critical exponent of the interacting processes seems to be an unreachable issue. 
As for the case of independent processes, our point of view will be to guess from 
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the observation of the behaviour of the interacting processes in precise situations 
some of the main elements of the underlying cycle decomposition. Hence, in 
Sect. 2 we recall briefly the essentials of the theory of simulated annealing and in 
Sect. 3 we establish some kind of inverse theorems describing how the observa- 
tion of a generalized simulated annealing process for different constant cooling 
schedules can give important information on the cycle decomposition. Finally, 
in the last section, we prove the main result. 

2 Some basic results about generalized simulated annealing 

In this section we want to recall some basic results about the generalized sim- 
ulated annealing which will be extensively used in the following. All of  them 
are proved in [14] so that we do not mention the proofs. Since we will have tO 
consider different generalized simulated annealing algorithms on different con- 
figuration spaces, we will consider for the statement of  the basic results a generic 
configuration space ~ on which a family (~r ) r>0  of Markov kernels is defined, 
satisfying for any i , j  E 

1 (7) -q ( i , j ) e  -~(id)/T <_ ~r( i i j )  <_ ~q(i,j)e -~(id)/T 

where, as in the introduction, q is an irreducible Markov kernel on ~ called 
the communication kernel, t~ _> 1 and ~ "  �9 E • E ---* R+ U {+oo} is the com- 
munication cost satisfying ~/'(i , j)  = +ooiff q(i , j )  = 0. We define the virtual 
energy ~/P on ~ by ~2U(i) = limT~oTln(IzT(i)) where #T is the unique in- 
variant probability measure of ~ r  (see [9]) (note that in our definition we have 
minion' ~P ' ( i )  = 0). Furthermore, we will assume that for any i , j  c ~ there 
exists a finite family (a~, b~, c~, d~J)~61, of  elements in ]R 4 such that 

(8) ~r( i , j )  = ( Z  ak] exp(b~/T)) / (  Z c~ exp(d; j /T) ) ,  
k Clt k Elk 

ij 
where ~kct~ c~ exp(d k / T )  4 0  for any T > 0. 

2.1 Critical exponent 

We start with some notations (for an extended presentation see [14, 15]). 

Notation 1. Let B C ~.  Let any finite family 9 = (gk)o<_k<n~ of elements of B 
such that 9o = i and 9~ = J be called a path in B from i to j .  The integer na 
(depending on 9) is called the length of the path g. Let PthB(i,j) denote the set 
of all paths in B from i to j.  

Definition 1. - We define the communication altitude from i to j by 

{ infgePth~(id ) SUPo<_k<%(~/J(gk) + ~f(gk,gk+l)) i f i  5g j ,  
�9 J~s (i , j )  = 7/#(i) if i = j .  
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~//g.(B) 

F(B)  

He(B) 

Definition 2. 
i ~ F(H) .  

- We say that a non empty subset 17 C ~ is a cycle i f  H is a singleton or H 

satisfies sup ~,'~s(i,j) < inf ~Tg~s(i,j). We note ~ (  ,~) the set o f  all the 
i j C F I  iCH,iE17" 

cycles. 
- For any cycle H, H,, (/-/) = sup (~ ~s  (i, j )  - ~7/"(i)) will be called the mixing 

idCI1 

height of  H and H~(H) = sup inf (~ ~, .( i , j )  - ~ Y ( i ) )  its exit height. 
i E H J E H  c 

- For any B C ~ ,  we define 

= { H E ~ ( ~ )  [ H C B and maximal for  inclusion } 

= { H E U ' ( ~ )  [ H C B,  H 4 B  and maximal for  inclusion } 

= inf{ ~zY(i)  ] i E B } (potential o f  B), 

= { i E B [ ~/P(i)  = ~/P(B)  } (bottom o f  B), 

= sup{ He(H)  [ H E ~C'(~), H C B } (exit height o f  B). 

- For any i E U, let Hi denote the largest cycle H such that 

- Finally, we define the critical exponent by a = infigF(E) ~/F( i ) /He(Hi) .  

Definition 3. Let (.~,~)ncr~ be the coordinate process on ~ .  For any cooling 
schedule ,~7" = (.~;~"),E~ (i.e for  any non negative sequence) we denote by P .7  the 
unique probability measure on ~ with its natural product sigma-algebra such 
that ( , ~ ) , E ~  is a Markov chain satisfying: 

- P ~ (  ,~n+l = j  ] .~25,~ = i) = CPr,+,(i,j), 
- P.y'( . ~  = i) = uo(i) where uo is a f ixed initial probability on ~ whose 

support is ~ .  

For constant cooling schedules .~7~n = T, n E I~, we will write PT instead o f  P3". 

Theorem 1. [14, 15] Let ~ be the critical exponent corresponding to the cost 
function ~ and assume that ~ < +cx~. Then there exist two strictly positive 
constants Kt > 0 and K2 > 0 such that 

K2 
KI < sup inf P.~-( . ~ r  • F ( ~ )  I ~ o  = i ) < N '~ 

N a - iEWTo>.. .>Tu 

K1 < sup inf P y - ( , ~  E H I S ~ 0 = i ) ,  and Nat------ ~ _ To>_... >_Tu 

for  any 17 E ~f~(E) such that 17 n F (E)  = 0, where c~ri = ~TY(H) /He(H) .  

2.2 Main large deviation estimates 

In this section, we recall some of the large deviation estimates on exit time and 
exit point for a generalized annealing algorithm established in [14] and [15]. We 
consider only the simple case when there is no annealing, thus assuming that the 
temperature is kept constant. 
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Definition 4. Let B C ~ .  We define for  i , j  E 

CB( i , j )  = 

c;~ (~ , j  ) = 

A. Trouv~ 

(~l:(i) + _~'(i , j)  - inf . :gs(i ,  k))li~,  kCB~u(j} 

inf{ Z C~(gk,9k+l) I 9 C P th~( i , j ) ;  9~ C B fo rO  < k < ng }. 
k<n u 

For i and j in B, C~( i , j )  can be interpreted as the communication cost to go 
from i to j without escaping from B. 

Definition 5. 1. Let B C ~ .  We define T(B, m) = inf{ n > m, ~ ~ B }. For 
m = O, ~-(B) will denote the stopping time 7-(B, 0). 
2. Let B �9 ~ ,  G C ~ .  For i , j  E ~ and m , n  E I~ we define 

M(B,G~,I',nm = P S r ( T ( B , m )  > n ,  . ~ - I  ~ G, .5~ = j  [ ~ m  = i  )lm<n, jE~ 

L(B,G~Inm = P : (  r ( B , m )  > n, ~ n  = j  I ~ = i ) lm<n,  jE G 

Theorem 2. Let T > O and assume that ~nn = T, n > O. There exist a > O, 
b >_ O, c > O, d > O, K1 > 0 and K2 > 0 depending only on g~, q and ~ such 
that: 

(i) For any B C ~ ,  B ~ 0, any j E B c and any n E I~ 

Kle -C;(id)/T 1 - (1 + b ) e x p ( - a n e  -H~(B)/r) _< M(B, ,Bc~'m+!:i,m ;i E B 

l=O 

Z M ( B ,  Bc~'m+l:i,m <- K2 e-c;( id) /T ; i C ~ .  

l>_O 

(ii) For any B C ~ ,  any n E I~ and any i E B 

PT("r(B) > n [ o,~:~ = i ) _< (1 +b)exp( - -ane-m(s ) /T ) .  

(iii) For any 17 E ~ ( f~ ) ,  any n E I~ and any i E H 

Pr(  3-(17) > n [ "o~o = i ) >_ c e x p ( - - a n e - U ' ( n ) / T ) l e - H , : : < j .  

(iv) For any 17 E ~:(~. ), a n y f  C F ( H )  and a n y j  E H 

~-~ L(/- / \  F( /7) , /7  \ F(/7)~;~m +t < K2e -("T/:q)-"7~(n))/r. 

t>o 

Proof This is an obvious corollary for constant cooling schedule of theorem 4.1 
and 4.7 in [15] or theorem 1.43 and 1.46 in [14]. [] 
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3 From energy landscape shape to G.S.A's behaviour...and back 

In this section, we will put the emphasis on the relation between generalized 
simulated annealing at low temperature and the shape of the energy landscape 
given by ~7/,- and ~'~s. On the one hand, the computation of  the communication 
altitude and of the cycle decomposition is the key to establish the convergence 
speed of  the G.S.A. On the other hand, in many cases, this computation is 
intractable from a combinatorial point of view. Therefore, we have to play a more 
delicate game. We have to deduce from partial information on the behaviour 
in some particular situations of the G.S.A., some information on the energy 

�9 landscape involved, which in turn gives some new information on the behaviour 
of  the G.S.A. Hence, we need several new results, which are more or less direct 
consequences of theorem 2. Fortunately, we will need only to study the behaviour 
at constant temperature so that throughout this section we ~tssume that Tn = T 
for all n C N. 

Since the proofs of  the following lemmas are often technical, the reader is 
invited to skip the proofs at first reading. 

3.1 Cumulated mass through a state before escaping from a cycle 

We give below an estimation of  the mean value of  the number of time the 
process reaches a given state j in a cycle H before the exit from H and during 
a time of  order e H/r for H >_ Hm(H). Intuitively, the process reaches a thermal 
equilibrium in the cycle H within a time of order e H''(n)/r so that the probability 
to be in the state j is about e -(~//q)-~//(n))/r and the estimation should be of 
order e (H+~T//(n)- ~-q))/r. However since the process goes out of  the cycle H in a 
time of  order e He(n)/r, the above estimation should be restricted to H <_ He(H). 

L e m m a  1. Let H C ~c~(~). For any j E H and any R > O there exists K > 0 
such that for any H > Hm(H) we have 

sup Z L(H, H)~; o <_ K(e H"(n>/r A eH/7)e (~162 
i C 17 O<n <IRe n / r  ] 

where [x] denote the integer part of x. 

Proof We will prove the result by induction on IHI. Assume that H = {i}. 
Since L(H, H)II o = P r ( r ( H )  > n I 2~o -- i ), we get from theorem 2 (ii) that 
there exists K > 0 such that for any H > 0 

[Relt / r  ] _  1 

Z L(H'H)I:o <- (1 + b )  
n=O 

1 - e -aRe(N-neCrt))/T 

1 - -  e - a e - n e ( r ~ ) / r  
<_ K(e H/r A eHe(n)/r). 

Assume now that IH[ = n + 1. I f j  E F(H)  then L(H,H)~'o is upper bounded 
by P r ( r ( H )  > n I ~ = i ), and the result follows as for IUl = 1. Otherwise 



130 A. Trouv6 

(j ~ F(H)),  let H '  be the unique cycle in ,//g.(H \ F(H)) such that H '  ~ j .  We 
have for q E 1~ 

q 

L 17,1  :o 
n = O  

q( ) / I I "~11 = Z L(II"l-i'~io +(M(17 \ F ( H ) , H ) L ( 1 - I , I - I  )~,o 
n=O 

7Fr + E L(17, 11g,o L(II \ F(II), II \ r(II)~; n . 
O<m<_n<q, f G F ( H )  

From the induction hypothesis we get f o r j '  c H ~ and m'  > 0 

Ht~,n Ke(~TC/(H')+HAH')-~7~"(j))/T. Z L(H', i j j , , m ,  
n ~ m  t 

From theorem 2 (iv) we get that for any fixed m > 0 

E (L(17 \ F(17), II \ F(17)~',~ < Ke -(~7~q)-~7//(n))/r. 
n>_m 

,m < Pr( 9-(1-I) > m I ~ = i ) we deduce as for the case 1171 = 1 Since L(17, H~, o _ 
that ~-]0<m<Em~/q L(II, I I ~  o < K(e I4e(n)/r A ell/r) .  This ends the proof. [] 

Lemma 2. Let 17 be in ~ (~ ) .  For any 0 < H <_ He(17), any f E F(H) and 
any R > O, there exist To > 0 and K > 0 such that for any 0 < T < To we have 

Z Z L(H, 17)~:~ > Ke tt/r. 
i GF(FI) O<l <_Re ~t/r 

Proof If He(H) = 0 then the result is trivial. Therefore, He(H) > 0 is assumed 
now. Since f o r f  E F(H), L(H, H))',o = (L(H, F(II))L(H \ F(H), H \ F(H)))f,  o, 
using the trivial upper bound L(H, F(H)) _< 1 and theorem 2 (iv), we get 

E E L(17, 17)~:~ < Ke (n-6)/r, 
i E H \ F ( H )  O<k ~Re H/r 

where d5 = inf{ ~ Y ( i ) -  ~Y(17) [ i E 17 \ F(1-I) } > 0. However, from theorem 
2 (iii) we deduce that there exists K > 0 such that for small T > 0 we have 

E L(17'17)5', gO >- E c exp(-kae -ne(rI)/T) >_ Ke HIT. 
O<k<ReH/r  iEl-I O<k<ReH/r  

The lemma follows immediately. [] 
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3.2 Ergodic behaviour within a cycle before exit 

It is well known (see [9]) that the exit time of a cycle H is of order e He~n~/T. We 
examine in the following lemma the probability of the deviation (7-(/7) <_ Re ~1/~) 
for H smaller than He(~~). 

Lemma 3. Let 1-i E U- ( ~).  For any Hm( /7 ) <_ H <_ He( l I)  and any R > 0 there 
exists K > 0 such that for any T > 0 we have for any i E 17 

PT( 7-(H) <_ Re I4/T [ ~ = i ) <_ Ke <H-He(Iz))/T. 

Moreover, if i E F(H),  the result still holds for 0 < H < Hm(//). 

Proof L e t f  C F(/7). Note that fo rp  E l~, PT(~-(H) < p  I ~ = i ) is equal to 

Z ( Z L ( H ' / / ~ o M ( I I \  ~},//c)~,,~ + Z M( I I . \  {f},//C~:ol/gf). 
j C H  c O<m<n<p O<n<p 

We get from theorem 2 (i) that 

j G H  c, 0<n 

since C~\~t}(i , j)  >_ He(H) - Hm(//) f o r j  6 //c. Since C~z\{y}(f,j) >_ He(H) 

we deduce that for m fixed ~n>m M ( H  \ {f} ,  Hc)Jf',~ <_ Ke -H"<rI~/T. Hence, 
using the trivial upper bound L(/I, H)  _< 1 we get the result. [] 

Before escaping from a cycle H, the annealing process visits all the configurations 
of the cycle in a time of order e ~/'<n~/~. This is proved by the following lemma. 

Lemma 4. Let.II be a cycle such that He(H) > O. For any i , j  E II  and any 
e > O, there exist R > 0 and To > 0 such that for any 0 < T < To we have 

PT( 7-( / / \  {j}) < 7-(//) ARe m'(n)/T [ ~ = i ) >_ 1 -- e. 

Proof From theorem 2 (ii), since H e ( / / \  {j}) _< Hm(H)), we deduce that there 
exists R > 0 such that for any i , j  C 17 

PT( 7-( / / \  {j}) > Re M'(n)/r I ~ : i ) <_ (1 + b)exp(-aR) <_ e/2. 

Moreover, since He(~7) > 0, we have He(//) > Hm(H) and we get from lemma 
3 that there exists To > 0 such that for any 0 < T < To 

PT( ~'(/7) > R eHm(n)/r I Xo = i) >_ 1 - el2 

so that the iemma is proved. [] 

The next result precise the probability to join two distinct configurations in a time 
of order e H/r with H smaller than the mixing height Hm(//) without escaping 
from a cycle/7.  
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Lemma 5. Let 17 be a cycle such that 1171 > 1. Then for any H > 0 such that 
supf~F<lT) He(17 \ {f}) <_ H < Hm(H) and for any j E 17, there exist To > O, 
R > 0 and K > 0 such that for any 0 < T < To we have 

inf PT( -r( H \ {j}) < T( H) A Re H /~ ] ~ = i ) >_ Ke -<H~<u)-n)/r. 
i E l l  

Proof Let f E F(17). Since we have He(17 \ { f , j } )  _< He(II \ {f}) _< H ,  
C~r �9 . �9 n \ ( f j } ( f , j )  _< Hm(II) and Cn\~t) ( t , f )  = 0 for any i E /7 \ {f}, we deduce 
from theorem 2 (i) and lemma 2 that there exist R > 0 and K > 0 such that for 
any i E H \ { f }  

Z M ( 1 7 \ { f } , { f } ~ f f > K ,  ~ M ( 1 7 \ { f , j } , { j } ~ , o > _ K e  -~l'(n)/T 
l <Re~t / r  l <Ren / r  

Moreover E L(//, {f})Sf: / is greater than 
O<l <2Re;'t / r  

f l  
sup{ E L(17'{f}~: to' E ( L ( H ' F ( 1 7 ) \ { f } ) M ( H \ { f } ' { f } ) ) f ' , o } '  

O<_l <ReH / r  l <2ReH / r  

and L(17, F(II)) = L(17, {f}) + L(17, F(17) \ {f}) so that we get from lemma 2 

that Z L(17,{f}~:to > - Ke tt/r for a new constant K > 0 .  
O<l <2ReH / r  

Now, since PT( "c(17 \ {j}) < T(17) A 4Re t4/r I "J~'6 = i ) is greater than 

E ( ( l (17 \ { f } )M(17 \ { f } ,  {f})+l({f}))L(17, { f } ) M( 1 7 \ { f , j } ,  {j }))~:t 0 
O<I <4ReH / r  

b,n la--b,m=n,aEA) we deduce easily the result. [3 (where l (A)a,m = 

3.3 Returns to a state 

In the following proposition, we study the returns to i of a process starting from i. 
We show that there exists with arbitrary hight probability a passage through i in a 
time of order e HTT for any H < He(Hi). Moreover, if He(H) < H < He(H)+~I 
for an adequate strictly positive ~7, then the probability that there exits a passage 
through i in a time of order e 'q/T tends to 0 with the temperature. 

Proposi t ion 1. Let i be in ~ .  

(i) Let 17 be a cycle such that F(17) ~ i. For any H >_ 0 such that H < He(17), 
any c > 0 and any Ro > O, there exist R1 > O, K > 0 and To > 0 such that 
for any 0 < T <_ To we have 

P r ( 3 n  E I~, Ro <_ ne -H/r <_ R], ~ = i, n <_ ~-(17) [ ~ = i ) >- 1 -  ~. 
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(ii) Assume that i ~ F(k~). There exists 71 > 0 such that for any H > 0 
satisfying He(Hi) < H < He(Hi) + 71 and for any 0 < Ro < R1 we have 

l imPr(  3n E N, Ro <_ ne-14 /r < R1, ~ = i I .J-Zr6 = i ) = O. 
T---+O 

Proof(i). We assume that He(H) > 0 and we prove this last result by induction 
on the size IUl of H.  If [HI = 1, it is sufficient to notice that for H < He(H), 
lemma 3 says that for any R > 0, P r ( T ( H )  > Re H/r I ~ 6  = i ) <_ e for small T. 
Assume now that IUl = n + 1. If  H < Hm(H), consider H' C J/~..(H) such that 
F (H t) ~ i and H < He(H ~) = Hm(H). The result follows then immediately from 
the induction hypothesis. We assume now that H >_ Hm(H). From the lemma 
4 there exist R > 0 and To > 0 such that we have the inequality P r (  T(H \ 
{i}) < ~-(U) A Re n''(n)/r I ~ = J ) >- 1 - e/2 for j E H and sufficiently 
small T > 0. Now, from the Markov property we get for a fixed R0 > 0 that 
Pr( 3n r N, Ro <_ ne -H/r  <_ Ro + R, ~ = i, n < "c(H) I "~o = i ) is greater 
than 

Pr("c(H) > Roe H/r I ~ = i ) inf Pr( ~-(H\{i}) < T(H)ARe H'(n)/r [ ~  =j  ). 
j c l-1 

Since P r ( T ( H )  > Roe H/r I ~176 = i ) > 1 - e /2 for sufficiently small T > 0 we 
get the result. [] 

Proof(ii). Let H be the smallest cycle strictly containing Hi. Let A be the 
union of  all the sub-cycles H' c J / g , (H)  such that He(H') > He(Hi). From the 
definition of A, there exists r / >  0 such that for H > 0, He(Hi) < H < He(Hi)+~ 
and for any H t E J /g(A) we have He(H ~) > H. We have He(H \ A )  < H < 
He(H) so that we deduce from theorem 2 (ii) and lemma 3 that 

l imPr(  "r(H \ A )  < Roe H/T A T(H) I ~ 6  = i ) = 1. 
T----,O 

Moreover, since He(H') > H for any H ~ E ,//g(A) we have f o r j  E A 

lim i n f P r ( T ( A )  > Rle H/T I ~ o  =J ) = 1 
T--~OjCA 

and the result follows easily. [] 

3.4 Retrieving communication altitude and exit height 

In this part we want to show how to deduce critical quantities of  the energy 
landscape from observation of the annealing process at low temperature. Our 
first result is deduced from the previous proposition and says that if the process 
starting from i comes back to i in a time of  order e n / r  for any H < H0 then i 
belongs to the bottom of a cycle whose exit height is larger than or equal to Ho. 
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Proposition 2. Let i E ~ ,  Ho > 0 and assume that for any 0 < H < Ho there 
exist Ro > O, RI > 0 To > 0 and K > 0 such that for any 0 < T < To we have 

(9) PT( ~n E l~ Ro <_ ne -H/T <_ R l , ~  = i [ ~ o  = i ) >_ K. 

Then we have He(Hi) > 11o. 

Proof This proposition is a direct consequence of proposition 1 (ii). [] 

Our second result gives an upper bound for the communication altitude from any 
f in the bottom of ~ to any other configuration j .  

Proposition 3. Let f  E F ( ~ )  andj c ~ \  {f  }. We assume that there exist To > O, 
K > O, H1 >_ O, R > 0 and 112 >_ 0 such that for any 0 < T < To:" 

PT( ~-(~ \ {j}) --< ReH'/T I ~3(/~ = f  ) > Ke -I42/T. 

Then we have ~'~s(f , j )  <- H1 + 112. 

Proof Assume that ~ s ( f , j )  > HI +//2. Then there exists a cycle 17 containing 
f and not containing j such that He(H) > H1 + 1-12. With iemma 3 we get 

PT( 7-(eT \ {j}) _< Re H~/T [ ~ = f  ) <_ PT( 7-(11) < Re "l/T I "~0 = f  ) 
< Ke(n~-n~(n))/T 

so that we get the result since H e ( H )  - H I  > 112. [ ]  

4 Periodically interacting multiple searches 

We will set rigorously in this part our main result on the comparison of the con- 
vergence speed exponent of interacting and non interacting parallel generalized 
annealing processes. Coming back to the notation of the introduction, (QT)T>O 
denotes a family of Markov kernel defining a generalized annealing dynamic on 
a finite configuration space E with communication cost V and virtual energy 
W. We call (Z~)nE~ the coordinate process on (Ep)~ where p is the number of 
processors considered. For clarity, the elements of E p will be written with bold 
letters. For any cooling schedule ~ = (T~)nCr~, P ~  is defined as the unique 
probability measure (for the natural filtration ~r( Zn ] n > 0)) such that ( Z ~ ) , ~  
is under P.~ a Markov chain satisfying 

- P=~( Zn+ 1 = j  ] Z~ = i )=  RT,.~(i,j), where RT(i,j) is equal to 

(10) Q~-(il,jl) • 

-k H Q~(ik'J )l[wo~)<w(J~-~)] + Z r -k ", QT(! ,J )![jk=j ~-'] 
k=2 wq,)>_wo k-~) 

r - - ]  

(11) where a~( i , j )=  Z H QT(ik,ik+l). 
i=io,i] ,"',ir=j k=0 
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- P~,( Zo = i ) = u0(i) where u0 is an initial probability measure whose support 
is the whole space E p. 

Notation 2. We will often omit the superscript p and say P3" instead o f  P ~ .  
Moreover, when Tn = T for  any n > O, Pr  will denote P3r. 

Notat ion 3. For any A C E, any u C { 1,- �9 - ,p  } and any m E I~, we define the 
stopping time 7-u(A, m) = inf{ n > m , Zn u ~ A }. For m = O, we will often write 
"c, (A) instead of  "ru (A, 0). 

The kernel Rr is not irreducible on E p . However, iffo is a global minimum of W, 
then writing f0 = (fo,""" ,fo), for any i E Ep there exists a path g = (gk)0<_k<_ng in 
Pthep (i, fo) such that Rr(gk, gk+l ) > 0 for any 0 < k < n g  and T > 0. Therefore, 
we can introduce the following notation. 

Notat ion 4. For any T > O, Rr has one and only one irreducible component 
called f2. This component contains fo and is independent o f  T. The restriction to 

of  the Markov kernel family (Rr)r>0 defines a generalized simulated annealing 
algorithm as introduced in (7) (here ~ = [2 and r = Rr). We will call W the 
associated virtual energy, As the communication altitude function and C ( f))  the 
set o f  all the cycles of  S2. 

4.1 Main result 

Notation 5. Let so  be the critical exponent corresponding to the communication 
cost V as defined by definition 2. 

Our main result is stated as follow. 

Theorem 3. Assume the virtual energy W has only one global minimum. Then 
for  any time period between interactions r, there exist K > 0 and c~int >_ 0 such 
that C~o < o:i,u .<_ P~o and 

K 
< sup inf P 3 " ( w ( z P u ) > O I Z o = i ) .  

N~ - -  iCEP To>-"'>-T~r 

Remark 1. Since the exponent pc~o can be reached if we consider p independent 
generalized simulated annealing algorithms under the same cooling schedule and 
if we consider at each time the configuration with lowest virtual energy value, 
the theorem says that the periodic interactions between processors underlying the 
process (Zn)ncr~ do not increase the convergence speed exponent. Moreover, we 
will see in a small example that one can have OLin t = 0r O. 

Remark 2. The theorem can be extended to various situations where IF(E)I > 1. 
For instance, letfo E F(E)  and b C E \ F (E)  be such that the critical exponent 
C~o satisfies c~0 = W(b) /He(Hb) .  Then its is not difficult to adapt our proof in 
order to show that if He(b) > supf4f,CF(E)As(f,f  t) -- woe) ,  the results hold. 
Moreover, despite many efforts, we have not been able to find a counterexample 



136 A. Trouv6 

with F(E) > 1. Hence, we suspect that the condition that IF(E)I = 1 could be 
relaxed completely. However, we have not yet a proof of the theorem in this 
more general situation. 

We will start our proof with the case r = 1 and the case r _> 2 will be 
reduced to this one. Our proof for the case r = 1 will be conceptually simple. 
The lower bound C~o _< ai,t is straightforward if we notice that the process 

1 (Z , ) ,c~  is a generalized simulated annealing algorithm with dynamic (Qr)r>0. 
Hence, the interesting part is the upper bound c~int <_ polo. Let us fisrt intruduce 
the following definition. 

Definition 6. For any i E E, we define the configuration d(i) on the diagonal of 
J2 by d(i) = ( i , . . . ,  i). Moreover, for all H C W(E) we note d(H)  the subset of 
(2 defined by d(H)  = H e N Q. 

Let b C E \ F ( E )  such that So = W(b)/He(lIb). We assume that C~o < +cx~ other- 
wise the result is trivial. We will prove that if b = d(b) and arlb = W(b) /He(IIb)  
then we have artb --< pao SO that we will deduce from theorem 1 that 

K 
Narr---- ~ < sup inf P~-( ZN C U b  [ Z0 = i ). 

iEEV To>-- "''>-T~ 

Moreover, we will prove that H b  C d(lIb) so that Zn E H b implies that 
W(Zn p) > 0. Hence the result will be proved. The inequality ~rlb -< pc~o will be 
established through the two following steps where we will prove first that 

(12) He(l'l"b ) = He(Hb ) 

and then that 
(13) W(b) _< pW(b).  

4 .2Proof(r  = l)-Stepl 

In this first step we will prove the inequality (12). A strictly combinatorial ap- 
proach seems to us intractable. We prefer to analyze from a probabilistic point 
of view the behaviour of parallel annealing at constant but low temperature and 
to deduce 'a posteriori' from this behaviour the shape of  the virtual energy as 
well as the different communication altitudes between configurations. 

P r o p o s i t i o n  4. Let f be in E \ F(E) and f = df f )  Then 

He(IIf) = He(Hf) and H f  C d(Hf) .  

Proof Since f E F(Hy),  for any H < He(IIf), any e > 0, we deduce from 
proposition 1 (i) that there exist R0 > 0, R1 > 0 and To > 0 such that for any 
0 < T _ < T 0 w e h a v e  

(14) Pr( 3n E • Ro < ne -u/7- < R,, zln = f  I Z~ = f  ) > 1 - ~. 
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Moreover, from lemma 6 which is established below we deduce easily using the 
Markov property the existence of K > 0, To > 0 such that for any 0 < T < To 
we have 

(15) P r ( "c (d (Hf ) )  >_ e He(ns)/r I Zo = f ) _> K. 

Since Z~ = f  and Z,  E d(Hf) imply that Z ,  = f, it follows from (14) and (15) 
with e < K /2  that P r (  3n E N Ro <_ ne -t4/r <_ Rl, Zn = f I Zlo = f  ) >- K/2 .  
Hence from proposition 2,  we deduce that He(Fir) >_ H~(Hf). Moreover,  using 
proposition 1 (ii), we deduce that there exists ~) > 0 such that for any H > 0 
satisfying H~(Hf) < H < H~(Hf)+rl and for any 0 < Ro < R1 we have  
l imr-- .oPr(  ~n E N, Ro <_ ne -H/r  _< R1, Zn 1 = f  I Zo = f )  so that 

lim P r (  3n C N, Ro <_ ne -H/r  _< Rt, Zn = f I Zo -- f ) 
T---~0 

and H~(FIf) _< He(Hf). This ends the proof of the equality. 
Now assume that Fit ~ d(II f )  c =/0 then t/-/rl > 1 and H~( / / f )  > 0. Hence, 

using lemma 4, we deduce that for any e > 0 there exist R > 0 and To > 0 such 
that for any 0 < T < To we have 

P r ( T ( d ( H f ) )  < Re rl''(rtf)/r I Zo = f ) _> 1 - e. 

Since nm(Hf) < H e ( / ' / f )  = He(Hf), we get a contradiction with (15). [] 

L e m m a  6. Let H E ~(E) .  For any R > 0 there exists K > 0 such that for any 
T > 0 we have 

sup P r (~ - (d (H) )  <_ Re H"(u)/r [ Zo = i) _< Ke tc-(n)-ue(n))/r. 
iCd(//) 

Proof Let Mk(K) = Pr( ~-,(H) > K Vu <_ k - 1, rk(II) <_ K I Zo = i ). We have 
P r ( r ( d ( H ) )  <<_ Re n'(n)/r  I Zo = i ) = ~'~P=I Mt(RerI-(m/r) for any i E d(H).  
However  

Mk K) <_ E Z 
t<~ w(?)>_-..>_wq~) 

Pr(7-,(H) > l, Z~' = j u  Vu < k I Zo = i  ) 

xPr(  7-k(II, l )= 1 I Z~ =ju for 1 < u < k ). 

Since Pr( r , (H) > 1, Z~ = ju Vu < k [ Zo = i ) is bounded from above by 
Pr( "q(II) > l, Z~ = j l  f Zo = i ), and Pr( re(H) = 1 ! Z~ = j"  Vu <_ k ) by 
K exp(-(He(H) + W(II )  - w( j l ) ) /T ) ,  we get 

Mk(Ret4m(n)/r)<-Z Z KL(II'H~:~ e-(He(n)+w(n)-wq))/z" 
j E H  I<Re",n(t~)/r 

Since lemma 1 says tha t  El<Re",,CrI)/r L(H, H~'to <_ Ke (tt"(n)+w(nl-wq))/r 
have proved the result. [] 

w e  
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4.3 Proof (r = 1)-Step2 

Proposi t ion 5. Assume that there is a unique global minimum fo o f  W on E and 
that O~o < +oc. Select any b E E \ {fo} such that C~o = W (b ) /He( Hb ). Let b = d(b ) 
and fo = d(fo). Then we have 

(i) As(fo, b) <_As(fo, b ) + ( p  - 1)W(b). 
(ii) W(b) _< pW(p) .  

Proof(Proposition 5). First, we deduce (ii) from (i). From the definition of b 
we get He(Hb) = As(fo, b) - W(b).  Hence from proposition 4 we deduce that 
AsOeo, b ) -  W(b)  = He(Fib) <_ A s ( f o , b ) -  W(b). Hence, using (i) we deduce 
A,(fo,b)  - W ( b ) +  W(b) < As(fo,b)+ (p - 1)W(b) so that we get (ii). 

We start now the proof of  (i). Let H be the smallest cycle in ~-~(E) containing 
fo and b. We have Fib E ~///~.(H). Assume that we have proved that there exist 
T o > 0 ,  R > 0 ,  K > 0 s u c h t h a t f o r a n y 0 < T < T o ,  

(16) Pr('r( ~ \ {b}) _< Re n~(m)/r I Zo = fo ) >_ Ke -p(n ' (n)-n ' (m)) /T .  

Then, it follows from proposition 3 that 

As(fO, b) _ Hm(H) + (p - 1)(Hm(H) - He([Zb)) = As (fo, b) + (p - 1)W(b), 

so that part (i) of the proposition can be deduced f rom inequality (16). To prove 
(16), let us define for any 0 _< t _< p the sets Bt and Bt by 

Bt = { i c d ( / / ) I V l  < k  < t  ik = b  }, Bt = { i c  ~ IVl  < k  < t  ik = b  ). 

Since Bo = d ( H )  and Bp = {b} it will be sufficient to prove that there exist 
To > 0, R > 0, K > 0 such that for any 0 < T <_ To and any n >_ Re ne(nb)/r, 

inf P T ( 7 ( Q \ B t + l )  <_ n [ Zo = i  ) > Ke -(H''(n) He(nb))/r. 
iEBt 

Assume for a while that both of  the following lemmas are proved. 

L e m m a  7. Let i be in B ,  There exist R > O, K > O, To > 0 such that for  any 
n >>_ Re n~(no)/r and any 0 < T < To we have, 

PT( "rt+l(H \ Hb) < ~n<_f'ru(Hb) AT-t+l(1-l)An I Zo = i  ) > Ke -(H"(H)-He(Hb))/T. 

L e m m a  8. Let i be in ~ such that i u E lib for  any u < t + 1. There exist To > O, 
R > 0 and K > 0 such that for  any 0 < T <_ To we have 

PT( "r(f2 \ Bt+l) <_ ReH'~(nb)/T t Z0 = i ) > 1/2. 
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From lemma 7 and lemma 8 we get that for any i E Bt there exist To > 0, R > 0 
and K > 0 such that for any 0 < T < To we have 

P r (  T(Q \ Bt+l) -< Re H~(m)/r I Z0 = i) _> Ke -(~l"(n)-n'(m))/r. 

However, from the definition of b and H ,  we have W(i) >_ W(b) for i ~ H 
(notice here that the uniqueness of the global minimum is essential) so that 

Pr( "r(Y2 \ Bt+l) ='r(Y2 \ Bt+l) l Zo = i ) =  1. 

Hence, the proof of  proposition 5 is ended. [] 

Proof(Lemma 7). Let 7-1 = inf{ n > 0, W(Ztn +l) _> W(Ztn) } be the crossing time 
between Z t+l and Z t, and let . ~ ' =  (,q~.)~e~ be the filtration defined by 

--  (zM I k < n, u < t + 1 ) V cr(Z u [ u <_ t) V a(lw(z,§ 

As usual ff~-j = { ,sg- C V ~ r  IV.-, ~ N ~T~ n (~-, - , . , )  ~ ~ }. Now, let 

f i t  = P~- |  p - t  where P~ is the joint distribution of the t first coordinates. From 

the definition of f i r  we get that for any A in ~q'~j we have 

Pr(a I Zo = j  ) : P r ( A  I Zo = j  ). 

We want to prove now that ifAo = ('rt+l(/-/\/-/b) < inf,_<t ~-~(lIb)AT-t+l(lI)An), 
then 
(17) fir(Ao I Zo =i ) < Pr(Ao [ Zo = i  ) for i E Bt. 

Assume for a while that (17) has been proved. Then we have 

PT(Ao I Zo = i ) _> 
PT( %+l(H \ Hb) < "rt+l(H) A n, inf'r~(Hb) > n [ Zo = i ) > 

u<_t 
PT( 7-t+l(H \ lib) < 7-t+l(H) A n I Zo = i ) P r ( i n f % ( H b )  > n I Zo = i ). 

u<_t 

since the sigma fields ,,-t+l atL~ I n _> 0) and a(Z~ I n >_ 0, u _< t) are independent 
under PT. Since Pr( %+1(H \ Hb) < "ct+l(H) A n [ Z t+l = i t+l ) is equal to 
Pr(Tl(H\Hb) < T1(H)An ] Zlo = i t+l) and since i t+l E H ,  we deduce from lemma 
5 that there exist R~ > 0, K~ > 0 and T1 > 0 such that for any n > R1 eH`(Hb)/r 
and any 0 < T _< T1 we have 

fir(  %+1(H \ Hb) < %+l(H)  A n ] Z t ;  1 : i t+l ) _> Kle -(H''(ll)-14,(IIb))/r. 

Moreover, P r (  inf,<_t ~-~(Hb) > n I z0 = i ) = PT( inf~_<t ~-~(Hb) > n I Z0 = i ) 
where i k E Hb for k _< t. Using the Markov property, we deduce from lemma 6 
that there exist K2 > 0 and T2 > 0 such that for any 0 < T _< T2 we have 

PT(inf%(Hb) > R1 eH~(Hb)/T [ Zo : i ) _>/(2. 
u<t 

Hence, considering T3 = T1 A T2 we get that there exists K > 0 such that for any 
0 < T _< T3, PT( %+1(H \ Fib) < %+I(H)A inf,<_, 7-~(Hb)A n ] Z t+1 = i/+l ) is 
greater than 
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Ke(H~(nb)--H,~(~))/T. 

This last inequality shows that is sufficient to prove inequality (17) to get the 
lemma. To prove (17) we introduce the stopping time rl .  We have 

fir  ( rt+l (/7 \ /Tt , )  < inf % (/Tb) A Tt+ 1 ( /7 )  /'x R1 e u'(nb)/r } Zo = i ) = Mr + M2 
u<_t 

MI = PT( rt <_ "r t+l ( / / \ /Tb)  < inf%(/Tb) A n I Zo = i ), 
u<t  

with M2 = P r ( r t + v ( H \ I I b )  < inf%(IIb) Ar~+~(/7)Arl An  I Z o = i  ). 
u<t  

Since (rt+l(/7 \ /Tb)  < inf,_<r %(/7b)A rt+l(Fi)A "el A n) E -~-,, we deduce that 

M2 = P T (  7-t+1(/7 \/7b) < inf r~(/Tb) A rt+l(H) Arf  A n l Zo = i ). 
u<_t 

Furthermore, M1 <_ fir( "rt <_ "rt+l(H \ lIb), ri < infu<_t%('IIb) An  ] Zo = i ) 
and ('rt <_ rt+l(ll \//b), r, < inf.<t %(/-/b) A n) E "~i so that 

Mt < eT(r t  <rt+l(/7\/Tb),  rZ <infru(/Tb) An ] Z o = i )  

= Pr ( r ,  ='rt+l(H\I-Ib)< inf%(/Tb) An [ Z o = i )  
u<t  

Since Pr( rz+l( I I  \/Tb) < inf,<t %(/7b) A r t§  A n i Zo = i ) is equal to 

Pr( r, =rt+l(I I \  /7b) < inf %(Hb) An I Zo = i  ) 
u ( t  

+P.T( "rt+l(IT \ lTb) < inf r,(17o) A rt+l(II) A rl An [ Zo = i  ) 
u<_t 

the inequality (17) is proved. [] 

Proof(Lemma 8). From lemma 4, there exist R > 0, To > 0 such that for any 
0 < T <_ To we have Pr( rl(/Tb \ {b}) < r~(/Tb) ARe m'~m)/r [ Zo = i ) > 3/4.  
Furthermore, from lemma 6, there exist Tl > 0 and K > 0 such that for any 
0 < T _ < T 1  we have 

Pr( inf %(Hb) <_ Rle H"(n~ ] Zo = i ) < Ke -(n'(n~)-u~(n~))/~. 
u<t+l 

Since He(/Tb) > 0 (otherwise c~0 = + ~ ) ,  we have H~(Hb) -Hm(/Tb) > 0 so that 
for a 7"2 _< Tj A To satisfying Ke -~14"~no~-H"~nb~/r < 1/4, we get 

Pr( rl(Hb \ {b}) < inf %(Hb) A Re t~''~ub)/r I Zo = i ) > 3 /4  - 1/4 = 1/2. 
u<t~l 

Now, since i" ~ /Yb for u < t + 1 we get that (r(~2 \Bt+~) <- R em'~r~h)/r, Zo = i) 
contains (7-t (/Tb \ {b} )  < inf,<_t+~ %(17b)ARe u''~m)/7~, Zo = i) so that the lemma 
is proved. [] 
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4.4 Proof (r > 2) 

We assume now that r > 2 and we will show that the result can be deduced from 
the case r = 1. Let f0 be the unique global minimum of W. Since Qr(fo,fo) > 0 
for any T > 0 (otherwise we should have another global minimum), Qr is 
aperiodic. Hence Q~. is irreducible for any T > 0 and .satisfies (7) and (8) for 
the new cost 

Vr( i , j )  = inf V(9);i 5r E E. 
o ~ P t h  (i j);ng :r  

Furthermore, the aperiodicity of Qr implies also that the virtual energy W r 
associated with V r is just the virtual energy W associated with V. Hence our 
algorithm with r > 2 can be considered as parallel annealing based on interacting 
multiple searches with period between interactions 1 for the new family of kernels 

! (Q(r)r>o. Applying theorem 3 in the case r = 1, we get that aint _< pa~ where a o 
is the critical exponent associated with V r. Finally, since a Markov chain with 
transition matrices in the family (Q~)r>o can be considered as the restriction 
to times multiple of  r of  a Markov chain with transition matrices in the family 
(Qr)r>0, we deduce easily from theorem 1 that a~ < ao. Hence the theorem is 
proved. 

4.5 A small size example 

We show here on a small size example that one may have ai, t = a0 in theorem 3. 
Assume that E = {a, A, B } and that the communication cost function is defined 
by the following matrix V( i , j )  

V( i , j )  a A B 
a 0 0 +o0 
A 2 0 4 
B +oo 3 0 

From the values V(i , j ) ,  one can compute the value of the virtual energy and the 
cycle decomposition with a combinatorial method given in [14] which will not be 
reported here..However, in this small size example, the cycle decomposition can 
easily be achieved "by hand" from the definition of  cycles given above. We get 
W(A) = O, W(B) = 1 and W(a) = 2 so thatA is the unique global minimum of W. 
Concerning the cycle decomposition, we obtain the very simple diagram below 
(fig. 1) where the horizontal lines represent cycles placed at height He(H)+W(H) 
along a vertical axis. The value of  the critical exponent ao for reaching the 
bottom of E is easily deduced: a0 = 1/3. If we consider now the associated 
parallel annealing on two processors with a time period between interactions 
reduced to 1 (p = 2, r = 1), one have ~ = {aa, aA, AA, aB, BA, BB} 
and the cycle decomposition given in figure 2. Therefore, in this case, we have 
(As(f0, b) - W(b) ) /W(b)  = 3 for fo = AA and b = BB so that t~in t = Ol 0 : 1/3. 
This example could be extended to the case r > 2. 
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5 C o n c l u s i o n  

Coming back to efficiency of the parallel scheme with periodic interactions, 
we have obtained that the periodic interactions lowered the value of  the best 
convergence speed exponent. In some cases, this exponent is not better than the 
exponent obtained with a single process. However,  from a practical point of  view, 

this is not sufficient to reject definitively this parallel scheme, since we cannot 
forget the impact of the multiplicative constants appearing in the convergence 
speed, especially for finite cooling schedules. In our approach, very little is known 

about these constants and their evaluation still remains an important issue. 

We should mention here an other parallel scheme with periodic interactions 
proposed by Aarts and Laarhoven in [2] and studied experimentally by C. Graf- 
figne in [10] where the processors work at different temperatures. The first pro- 

�9 cessors works with the highest temperature and acts as a rough (or large scale) 
exploration of the configuration space. The last one uses the lowest temperature 
and performs an intensive exploration of bottoms of  cycles. In this case, the 
Markov chain is homogeneous in time and in [5], O. Catoni give an estimate 
of the speed of  convergence. According to the experimental study performed 
in [10], the interactions between processors allow in this modified scheme an 

interesting acceleration of the sequential convergence speed. 
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