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Summary. Let n random intervals I1,...,In be chosen by selecting end- 
points independently from the uniform distribution on [0,1]. A packing is a 
pairwise disjoint subset of  the intervals; its wasted space is the Lebesgue 
measure of  the points of  [0,1] not covered by the packing. In any set o f  
intervals the packing with least wasted space is computationally easy to find; 
but its expected wasted space in the random case is not obvious. We show 
that with high probability for large n, this "best" packing has wasted space 

O(l~ It turns out that i f  the endpoints 0 and 1 are identified, so that the 
" n 

problem is now one of  packing random arcs in a unit-circumference circle, then 
optimal wasted space is reduced to O(1/n). Interestingly, there is a striking 
difference between the sizes of  the best packings: about log n intervals in the 
unit interval case, but usually only one or two arcs in the circle case. 

Mathematics Subject Classification." 60D05, 05B40, 52A22 

1 Introduction 

Let {//} be a set of  n intervals in [0,1], Ii c_ [0, 1], 1 < i < n. A nonempty, 
pairwise disjoint subset o f  {Ii} is called a packing; its length is the sum of  the 
lengths of  its intervals, and its wasted space (in [0,1]) is one minus its length. 
The problem of  finding packings with minimum wasted space, a problem with 
important applications to be mentioned later, can be solved in polynomial time. 
A simple way to see this is to convert the problem to a well-known "easy" 
problem on graphs. Let the vertices of  a graph G be the intervals Ii together 
with I0 = [ - c ~ , 0 ]  and In+l = [1,oo]; i f l j  lies to the left of lk  then an edge 
is directed from Ij to Ik of  length equal to the distance from Ij to Ik. Then 
finding a packing in {//} with minimum wasted space is equivalent to finding 
a shortest path in G from I0 to In+l. 
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This paper studies the typical or average-case behavior of the wasted space 
for an optimal packing taken from a set of n random intervals. A standard 
model of random intervals is adopted: the endpoints of the Is are independent 
Uniform random draws X1 . . . .  ,X2n from [0,1]. A convenient specific choice 
takes I i  = [X2i-1 /~ ~'~r2i,X2i-1 VX2i], 1 < i < n. An easy calculation shows 
that interval lengths have the triangular density on [0,1]. 

Because of the difficulty of obtaining exact results, the analysis turns to 
large-n asymptotics. The results in the next two sections show that, for large n, 
minimum wasted space is typically within a constant factor of log 2 n/n.  Section 
2 shows specifically that, if  Wn denotes the wasted space of a maximum length 

packing, then for any e > 0, the inequality Wn > (�89 - e) l~ n = ~ holds with high 
probability, i.e., with a probability that tends to 1 as n ~ oc. In Sect. 3, anal- 
ysis of the second moment is employed to show that for sufficiently large n, 

Pr(W,, < c .~ > l - 2 8 / c .  The analysis also yields E[W~] : O ( @ )  
n = 

Finally, in Sect. 4 we contrast the previous problem with the problem of es- 
timating the minimum wasted space when the unit interval is replaced by a 
unit-circumference circle. 

A closely related problem, estimating the number N, of intervals in a 
maximum card inaI i t y  packing, has been studied by Justicz, Scheine~rnann, 
and Winkler [3]. Within this same probability model, they show that, as 
n --+ oo, N n / , ~  ~ 2/v/~ in probability. The same result holds for any contin- 
uous endpoint distribution F on [0,1 ], since the relevant intersection properties 
of F depend only on the order of the points Xb...,X2~. The proof relies on 
the fact that a maximum-cardinality packing can be found not only easily but 
greedi ly ,  e.g. from left to right. Note that maximum cardinality packings are 
quite different from maximum length packings; the former typically have on 
the order of x/~ intervals, whereas, as shown in Sect. 2 the latter typically have 
only O(log n) intervals. 

An online, or sequential selection, version of the minimum-wasted-space 
problem has also been studied. According to the online greedy rule, the in- 
tervals are scanned in the (random) sequence /1,.. .  ,In. Interval I1 is always 
selected to be an interval of the packing. Thereafter, interval/~ is selected, i.e., 
added to the current partial packing, if and only if it is disjoint from the in- 
tervals already selected from the sequence I1 . . . . .  I i -1 .  Coffman, Mallows, and 

Poonen [2] proved that E[Nn] = cn ~ - 1 + o ( 1 )  as n ~ o% where ~ - v57-3 
4 

and where c ~ 1.84 is obtained from an explicit, though complicated, formula. 
They also give precise asymptotics for the distribution of the gap lengths be- 
tween selected intervals. 

Lipton and Tomkins [4] have examined combinatorial problems of on- 
line interval packing; their competitive analysis computes worst-case bounds 
on the performance of online algorithms relative to an optimal offline al- 
gorithm. In addition to problems on graphs and partial orders, there are a 
number of other cognate problems relative to interval packing; these include 
problems of covering, parking, partitioning, and splitting. The connections are 
briefly discussed by Coffman, Mallows, and Poonen (1994), who give many 
references. They also discuss the application of interval packing problems to 
one-dimensional communication networks, an application extended by Lipton 
and Tomkins (1994) to continuous media (see also Long and Thakur [5]). In 
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general terms, the intervals Ii in such applications are time intervals during 
which a resource is requested by some "customer"; the packing objective is to 
maximize the number of  requests satisfied, or to pack requests that maximize 
resource utilization, under the constraint that satisfied requests be disjoint in 
time. 

2 Lower bound on the minimum wasted space 

Our model for this and the next section is a set {I1 . . . . .  In} of  n random inter- 
vals formed as above, with endpoints chosen independently from the uniform 
distribution on [0,1]. It will be useful to regard a packing henceforth as a 
sequence of  intervals from {I1 . . . . .  ln} which are disjoint and ordered left to 
right in [0,1 ]. 

Fix s > 0, and let X be the random variable that counts the number 
of  such packings with wasted space at most s. By definition of  Wn, we 
have 

(1) Pr(Wn < s) = Pr(X => 1) _<_ E X ,  

so a lower bound for Wn that holds with high probability can be obtained by 
choosing an s for which EX can be shown to approach zero. 

Theorem 1. For any e > 0, / f s  = (~ - e)log 2 n/n, then EX approaches zero 
as n tends to infinity. 

Combining the theorem with (1) yields 

Corollary 1. As n -~ oc, 

Pr (Wn > ( 1 -  e) log2n/n) ---~ l 

In this section and the next, all real variables will be non-negative, and we 
write 

f "" f f(xl , . . . ,xn) 
x 1 + ' "  +Xn-- 1 

for 

f ' " f  f(xl . . . . .  X n - - l , 1  - - X l  . . . . .  X n - 1 ) d x 1  . . . d x n _  1 . 
X lW. . . - - xn_  1 <=l,xi>=O 

We will repeatedly need the value of  the integral in the lemma below, which 
is proved easily by induction. 
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Lemma 1. I f  a l , . . . , an  are non-negative integers, n >= 2, then 

a~!a2! ""an!  
f . . . f  a, a2. X 1 X 2 . .  xan  

x~+...+x,,-1 (al q-a2 + ' "  +an q- n - 1)! 

Proo f  o f  Theorem 1. Let Xk denote the random variable which counts the 
number of  packings using k intervals, with wasted space at most s, so 

(2) X = ~ X k .  
k > l  

Let Pk be the probability that a sequence of  k random intervals, chosen without 
replacement from {11 . . . . .  In}, forms a packing with wasted space at most s. 
Then 

(3) EXk = n ( n -  1 ) - - . ( n -  k + 1)pk �9 

Next we compute Pk. The probability that the chosen intervals are disjoint and 
in left to right order is 2k/(2k)!, the factor of  2 k arising from the fact that 
the endpoints of  each single interval are automatically ordered correctly. (See 
Fig. 1.) 

Suppose now that the chosen intervals are disjoint and in the correct order. 
Then their lengths bl . . . . .  bk and gaps al . . . .  ,ak+l are the coordinates of  a 
random vector chosen uniformly from the simplex 

k + l  k 

(4) + = 1, < , h i  ____ 0 ,  
i=I  j = l  

packing 

I -  b 1 ~ - -  b2 " - -~  b 3 

a 1 a 2 a 3 a 4 

wasted space 

Fig. 1. A 3-interval packing with lengths and gaps labelled 
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since the ai and bj depend linearly on the endpoints o f  the intervals. This 
simplex is the union of  the product of  simplexes 

k + l  k 

~ a i = x ,  a i > O ,  and ~ b ; = l - x ,  bj > 0 ,  
i=1 j = l  

with x E [0, 1], whose volumes are proportional to x k and (1 - x )  k- l ,  respec- 
tively. The packings with wasted space at most s correspond to the part of  the 
simplex (4) with 0 -< x < s, and the volume of  this part, as a fraction of  the 
volume of  the entire simplex, is 

fo  Xk(1 -- x ) k - l d x  

f l  xk(1 _ x )k_ ld  x 
Thus 

(5) 
2 k foxk(1 -- x ) k - l d x  

Pk = (2k)! f l x k ( 1  _ x ) k - l d x  

Combining (2), (3), and (5) yields 

E X =  
,, 2 k 

~-]~n(n-- 1 ) . . - ( n - k +  1 ) .  - -  
k=l (2k)! 

f o X k ( 1 - x )  k ldx 

f01 xk(1 - x)k-ldx 
2k s k f~x dx 

< ~ n  k .  - -  ( b y L e m m a  1) 
~>~ (2k)! k!(k- 1)!/(2k)! 

2krlksk+l 

~k~(k 1)~(k + 1) k_>l - -  

<= s ~ (2ns)k 
k>l k!2 

=< s ~ (2k)[ since =< 2 2k 
k > I  

<= s �9 exp((8ns)l /2) .  

When s = (�89 - e) log 2 n/n, this becomes 

EX < 11 e_o,~ 2 n 

- 8 n 
- - -  �9 exp ((1 - 8e)l/21ogn) 

1 (n -~ ' log2n)  < g  

for 0 < ~/ < 1 - (1 - 8e) 1/2. Since this tends to zero as n ---+ ec, the theorem 
is proved. [] 
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3 Upper bound on the minimum wasted space 

Fix t > 0. We shall say that subintervals J1 . . . .  ,Jk of  [0,1] form a 9ood packing 
of  an interval [~,/3] C [0, 1] if they are disjoint subintervals of  [e,/~], they are 
in left to right order, the gaps between the intervals are of  size between t/2 
and t, and the distance from c~ to the first interval and the distance from the 
last interval to /~ are both less than or equal to t. A good packing has wasted 
space at most (k + 1)t. The reason for the rather contrived definition is that it 
will be easier to prove the existence of  good packings (in Theorem 2 below) 
than the existence of  arbitrary packings with wasted space at most (k + 1 )t. 

Now suppose I~ . . . . .  In are random subintervals o f  [0,1]. Fix an integer 
k > 1 (which may depend on n). Let Y be the random variable that counts 
the number of  k-tuples of  intervals chosen from these n which define a good 
packing of  [0,1 ]. We will show that EY---* oc as n ---+ ec for t = c log n/n and 
appropriate k. However, this is not enough to conclude that Pr(Y = 0) ~ 0. 

One normally expects the second moment method (see e.g. [1]) to come 
to the rescue in this sort o f  situation. From Chebyshev's  inequality, we have 

a2(u 
Pr(Y = o) =< (Ey) 2 

and therefore if we could show that the variance of  Y vanishes relative to 
(EY) 2, we would have the desired result, giving an upper bound complementary 
to the lower bound of  Corollary 1. It turns out, however, that o-2(Y)/(EY) 2 is 
bounded away from 0 for fixed c. Hence we are forced to conduct a more 
thorough analysis of  the second moment, estimating its dependence on c, in 
order to prove that EWn = O(log 2 n/n). 

Let Qm(x) denote the probability that a random m-tuple o f  subintervals 
of  [0,1] defines a good packing of  a pre-specified interval of  length x. The 
following lemma will be used in the estimation of  Qm(x). 

Lemma 2. L e t  (xl ,x2 . . . . .  Xa, Y l ,Y2  . . . . .  Yb) be a po in t  chosen randomly and 
uni formly  f r o m  the (a + b - 1 )-dimensional s implex  where xi, y j  > 0 and 

xl + x2 q- �9 " " + Xa q- Yl + Y2 + " " " + Yb = 1 . 

Le t  Pa,b(r) denote the probabi l i ty  that, f o r  such a point ,  
(1) xl ,xa  < r, 
(2) r/2 < xi <=r f o r  all i, 2 <<_ i <- a - l ,  and 
(3) y j  > r f o r  all j .  

Then 

Pa,b(r) < 2 ~ ar"(a + b -  1 ) ! / ( b -  1)! ,  

with equality up to a f a c t o r  o f  1 + O((a + b)er). 

P r o o f  For fixed b, the ( b -  1)-dimensional volume of  the simplex zl + 
z2 + . . .  + z b  = e, zj >= O, is proportional to c b 1. For fixed (xl . . . .  ,xa) the 
y j ' s  must satisfy yl + "'" + Yb = 1 - (Xl + - . .  +Xa),  but the space measured 
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by P~,b(r) consists o f  y j ' s  where yj  = r + zj ,  z j  > 0, and zl + . . .  + Zb = 1 -- 
(xl + ' "  + x~ + br) ,  so 

Pa,b(r) 

(6) 

f " fxl+.. .+~<l,x>..~ l>=~/2,xi<=r [1 - (xl + " "  + Xa + br ) ]b - ldx l  " .dx~ 
<= 

f " "  fxl+..+xa<=l[1 - (xl + " "  + X a ) ] b - l d x l  " ' "  dxa 

f "" "fx2,...#,-i >r/2, xi<r 1 

(7) <= f ' ' "  fxl+. +~,<l [l -- (X~ + - ' -  +xa)]b- ldx~ ' ' ' d x a  

r e . (r/2) a-2 
(8)  = (by Lemma 1) 

(b - 1)! /(a + b - 1)! 

(9) = 22-%~(a + b -  1 ) ! / ( b -  1)! .  

Moreover, i f  (a + b ) r  < 1, we may drop the restriction xl + - �9 �9 + x~ < 1 from 
the range of  integration in the numerator o f  (6), and substitute 

[1 -- (Xl + ' "  + Xa + br)] b-I  = 1 - O((a + b)2r) , 

since xt . . . . .  x~ < r. Then we get equality up to a factor of  1 + O((a + b)2r). 
[]  

Lemma 3. For m > 1, and O < x <= 1, 

Qm(x) ~ 2 tm+lxm--1 / (m-  1)! .  

When x = 1, equali ty holds up to a f a c t o r  o f  1 + O(m2t). 

P r o o f  The probability that the m random subintervals of  [0,1] lie inside the 
prespecified interval I of  length x is the probability that 2m independent random 
numbers in [0,1] (the interval endpoints) lie in I ,  which is x 2m. The probability 
that the 2m numbers are in order, and hence define a collection of  m disjoint 
intervals in order, is 2m/(2m)!  as in Sect. 2 above. The probability that m 
random subintervals o f  [Off] define a good packing of  I ,  given that they lie 
in I ,  are disjoint, and are in order, is exactly Pm+l,, ,(t /x),  since the distribution 
o f  the lengths of  the intervals divided by x (which we call Yl . . . . .  y , , )  and the 
lengths of  the gaps divided by x (which we call xi . . . . .  xm+l) are distributed 
exactly as in the definition o f  P. To see ~his, note that a linear transformation 
takes the space o f  possible (xl . . . . .  Xm+l,y~ . . . . .  Ym) to the space o f  possible 
endpoints of  intervals, and P gives the probability that such a (2m + 1)-tuple 
will correspond to a good packing. Thus 

Q,,(x)  = 2m/(2m)! �9 X 2m �9 Pm+t,,~(t/x) 

=< 2m/(2m)! �9 x 2~ �9 2 - m + l ( t / x ) m + l ( 2 m ) ! / ( m -  1)! 

= 2t~+~x .... ~ / ( m -  I ) ! ,  
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with equality up to a factor of  I + O((m + (m + 1))2(t/x)) = 1 + O(mZt), when 
x = l .  [] 

Corollary 2. 

EY = [1 + O(k2t + k2/n)] �9 2nktk+l / (k  -- 1)! .  

Proo f  The number of  k-tuples of  distinct intervals from the n randomly chosen 
ones is 

n ( n -  1 ) . - . ( n  - k + 1) = [1 - O(k/n)]kn ~ = [1 - O(k2/n)]n k , 

and each k-tuple is a good packing with probability Qk(1), so by Lemma 3, 

EY = [1 - O(k2/n)] n k .  I1 + O(k2t)] �9 2 t k + ~ / ( k -  1)! 

= [1 + O(k2t +kZ/n)]  �9 2nktk+l/(k--  1)!.  [] 

Corollary 3. I f  k = [log n J, and t = c log n/n, f o r  some constant e > 1, then 
E Y - +  oo as n ~ ~ .  

Proo f  From the previous corollary, we get 

log EY = k log(nt) + log t - (k log k - k)  + O(1 ) 

> k log(ck )  - logn - k l o g k  + k + O(1) 

= k l o g c + O ( 1 )  

- -*oo.  [] 

Theorem 2. The probability that amon9 11 . . . . .  In there exist k = Llog nJ inter- 
vals that f o r m  a 9ood packin9 with max imum allowed 9ap size t = c log n/n 

fo r  some constant c > O, is at least 1 - 2 8 / c  for  sufficiently large n. 

Corollary 4. I f  c is any positive constant, 

Pr(Wn < clog2n/n) > 1 - 2 8 / c  

f o r  sufficiently large n. 

Proo f  Indeed, the theorem guarantees with probability at least 1 28/c the 
existence of  a packing with Llog nJ + 1 gaps each of  size at most c log n, 
and such a packing has total wasted space at most e(log2n + logn)/n.  This is 
slightly weaker than what is needed, but it can be checked that the proof of  
the theorem goes through with 28 replaced by 27.999 and this strengthening 
is enough to imply the result. Alternatively, it can be checked that the proof  
o f  the theorem still goes through if the number o f  intervals to be used in the 
packing is one less. [] 
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P r o o f  o f  Theorem 2. In order to bound Pr(Y = 0), we need to compute E(Y 2) 
and compare it to (EY) 2. Now E(Y 2) counts ordered pairs of  k-interval good 
packings ( ~ 1 , ~ 2 )  taken from the same random n subintervals of  [0,1]. We 
will classify such pairs according to the pattern of  intervals they share. 

First there are the pairs in which the two packings share no intervals. The 
expected number of  these is the number of  (2k)-tuples of  intervals chosen from 
the n intervals, times the probability that the first k intervals and the last k 
intervals o f  a (2k)-tuple each form a good packing, which is 

(10) 

n ( n -  1 ) . . . ( n - 2 k +  1) �9 Qk(1) e _-< [ n ( n -  1 ) . . . ( n - k +  1) �9 Q~(1)] z 

= (EY) 2 , 

by the proof  of  Corollary 2. 

For the other pairs o f  packings, there will be alternating regions of  shared and 
unshared intervals, as in Fig. 2, for example. Let u be the number of  regions 
of  shared intervals, and v the number of  unshared regions, for a particular 
configuration. (Then ] u -  v] < 1). Let ai denote the number of  intervals used 
in the i-th shared region, and let bj, cj denote the number of  intervals used 
in the j - th  unshared region by ~ i  and ~2,  respectively. Let E = al + . . .  + au 
denote the total number of  shared intervals. Then 

(11) bl + " "  + b y  = cl + " "  + c~ = k - f ,  

and the total number of  intervals used in both packings is 2k - f .  
Now fix the order of  shared and unshared regions, u, v, and all the ai, b j ,  and 

cj (hence f as well). We call this a configuration. Let p be the probability that 
a (2k - Y)-tuple of  random subintervals of  [0,1] forms a pair o f  good packings 
in this configuration, with the first k intervals in order forming N1, and the 
last k - Y in order being the remaining intervals (counted by the cj 's) .  

In order to bound p,  consider the probability P that when 2 k -  ~ ran- 
dom subintervals o f  [0,1] and u + v -  1 random numbers ~l , . . . ,~u+~-i  in [0,1] 

shared regions 

4 _1_ unshared region _ I_ I 

ol II II II I I I I  I 1  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t 

I II II II I I I I I 
Fig. 2. A pair of packings, with u = 2, v = 1 
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are chosen, that the intervals in order form a pair of packings as above, and 
that the c~i in order demarcate the shared and unshared regions. Given that 
the intervals form a pair of packings as above, the conditional probability that 
cq . . . . .  C~u+~-i demarcate the u + v regions is at least (t/2) "+~-1, since the gap 
between the last interval of a region and the first interval of the next region (in 
either packing) is at least t/2 (by definition of a good packing), giving each 
c~i a range of length at least t/2 in which it may lie. These ranges are disjoint 
(and in order), since each region has length at least t (because the definition 
of good packing requires that any interval in the region has length at least t). 
Hence 

(12) P ~ p .  ( (2 )  u+~-~ . 

On the other hand, for fixed o~l,...,o~u+v_l, the probability that 2 k -  E ran- 
dom intervals form a pair of good packings of the specified configuration with 
regions demarcated by the ~i is at most the probability that the intervals of 
each packing with each region form a good packing (with the right number of 
intervals), which is the product of all Qai(Xi) and Qbj(yj)Qcj(yj)  where X i is 
the difference of cCs giving the length of the i-th shared region, and where yj 
is similarly the length of the j-th unshared region. Hence P is bounded by a 
multiple integral over the c~'s of a product of Q functions in their differences, 
which after a change of variables to the xi and yj becomes 

(13) 
u u 

p < f . . . f  I]Q~i(x~)~IQbj(y/)Qcj(s 
xl + '"+Xu+Yl + ' " + y v = l  i=1 j = l  

2tbJ+l_.b/-lyj_ c.+1 cj-1 u 2tai+lx~i -1 & �9 2 t :  yj 
<= f . .  f rI . . . .  

X l + . . . + x u + y l + . . . + y v = l  i=1 ./=1 (Cj -- 1)! 

(by Lemma 3) 

2 " + 2 " t ~ ( a i + l ) + ~ - ~ (  j + c / + 2 )  f ' " f  l lXi I l Y j  
i=1 j = l  ~ x i + ~ j ~ j = l  i=1 j = i  

u /2 

H ( a i -  1)! ]~(bj - 1)!(cj - 1)! 
i=1 j = l  

tt 1) 

2u+2vt2k-~+u+2v[I(ai - 1)! I~ (bj + cj - 2)! 
i=1 j=�94 

u v v b 
H ( a g - 1 ) I l V i ( b : -  l ) ! ( c j - 1 ) !  �9 a , +  ~ (  7 + c j - 1 ) -  I ! 
i=1 j = l  j = l  

(by Lemma 1) 

=2"+2vtak-e+u+2v~I b j + c j - 2  / ( 2 k - ~ - v - 1 ) !  
j=l bj - 1 
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2u+2vt2k-E+u+2v h ( bj -}- cj - -  

- j = l  \ b j - 1  

since 

2)  . (2k)t+~_l/(2k _ 2 ) ! ,  

( 2 k - 2 ) ! = ( 2 k - 2 ) ( 2 k - 3 ) - - - ( 2 k - d - v ) - ( 2 k - d - v -  1)! 

< (2k) ~+v-1 �9 ( 2 k -  d -  v -  1)! . 
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Combining (12) and (13) yields 

(14) 

p . (t/2) u+v-1 <= 2u+avt2k-l+u+2vh ( by + cj -- 2 ) . (2k)'+v-1/(2k- 2), 
;=1 b ; -  1 

p G22u+3v-ItSk-t+v+lI-~ ( b j + c y - 2 )  .(2k)'+v-1/(2k-2)[ 
/=1 b; - 1 

Now the number of  (2k - d)-tuples is n(n - 1)... (n - (2k - d) + 1) __< n2k-d; 
combining this with the bound for p in (14), the expected number of  pairs 
o f  packings of  the specified configuration coming from all ( 2 k -  d)-tuples of  
intervals chosen from {1i . . . . .  /~} is at most 

(15) 22~+3~-In2k-Q2k-'+~+IFI ( b j + c j -  2 ) . (2k)'+~-I/(ak- 2)! 
:=1 b ; -  1 

and this divided by (EY) 2 is, by Corollary 2, at most 

(16) [ 1 +  O( k2t+ ka/n)] " 22u+3v-3(nt) - Q v - l h  ( b j + c / -  2 )  
j=l by-  1 

�9 (2k)f+v-1/(2kk:2 ) . 

Let Nv denote the expected number of  pairs of  packings of  any configuration 
in which the number of  unshared regions is v, so 

O<3 

(17) E(Y 2) = ~ N v .  
v = 0  

First of  all, No counts the number of  pairs of  identical packings, so 

(18) No = E Y .  

The configurations in which v = I are those with al shared intervals on the left 
and a2 shared intervals on the right, and with each packing having bl = cl = 
k - (al + a2) intervals in the middle unshared region, or those which are simi- 
lar except that one or both of  the shared regions is empty. The expected number 
of  pairings with v = 1, d = 0 is at most (EY) 2 by (10). For d ~ 1, the number 
of  such configurations with d intervals shared is d + 1 (the number of  ways 
to write d as al + aa with aa,a2 > 0), and from (16), the expected number 
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o f  pairs of  good packings in a particular configuration, divided by (EY) 2, is at 
most 

[ l+O(k2t§  "22U(nt)- t (  bl+cl-2bl-1 ) " ( 2 k ) ~ / ( 2 k - - 2 )  

= [1 + O(k2t + kZ/n)] �9 (8k / , , t / ,  

since u < g' and bl,cl < k implies 

SO 

( b l + c l - 2 )  < ( 2 k _ - 2 )  
bl - 1 = 

oo 

(19) N1/(EY) 2 =< 1 + ~ ( {  § 1) �9 [I + O(k2t -}- k 2 / n ) ]  �9 (8k/nt) ~ 
~=1 

= l + [ l + O ( k Z t + k 2 / n ) ]  �9 [ ( 1 - S k / n t )  - 2 - 1 ]  , 

provided we assume 

(20) 8k/nt < 1 . 

(Later we will specify more precise values for k and t.) 
Now for fixed v > 2, there are 4 ways in which the regions at the ends of  a 

configuration can be shared or unshared, and at most k possibilities for each of  
ai, bi and ci; hence the number of  configurations is at most 4kU+2L Moreover 
u < v + 1, so the number of  configurations for fixed v is at most 4k 3~+1. From 
(16), the expected number of  pairs of  good packings in a particular one of  
these configurations, divided by (EY) 2, is at most 

[1 + O(k2t + kZ/n)] �9 22u+3~-3(nt)-Q ~-1 f l  {'bj + cj - 2 )  j=1\ bj-I 

[1 + O(k2t + k2/n)] �9 22(~+~)+3~-3k~-l(2k/nt)Q~-I f l  2bJ+~J -2 �9 2 c+v-1 
j = l  < 

= 22k-2/k 

(since 22mj m + as is easi,y proved by induction) 

-< [1 + O(ket § k2/n)] �9 25~-lkV-lt~-1 �9 2 ek-e~-ev �9 2 f+v-I �9 2e-zkk 

(by (11) and (20)) 

= [1 + O(k2t + kZ/n)] �9 2 l+4'~kVtV-1 

< [1 + O(kZt + kZ/n)] �9 24VkVt v-1 . 
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Thus 

(21) 

Nv/ (EY)  2 = < 

< 

Z N d ( E u  2 --< 
v>2 

z 

Substituting (18), (19) 

4 k  3v+l �9 [1 d- O(k2l ~- k 2 / n ) ]  �9 24~k~tV-1 

I1 -I- O(k2t ~- k2/r / ) ]  �9 24V+2k4V+lt v-1 , 

[1 "+- O(k2t + k2 /n ) ]  �9 21~  - 2 4 k 4 t )  

[1 + O(k2l ~- k2// ' /)] �9 O(k9t). 

and (21) into (17) yields 

(22) E (y2) / (EY)  2 = 1/EY + 1 + [1 + O(k2t -~- k2// ' t)] 

[(1 - 8k/nt) -2 - 1 + O(k9t)] . 

When we set k = Llog nj and t = c log n/n for some constant c > 28 (the 
theorem is trivial for c < 28), and use Corollary 3, this becomes 

E(y2) / (EY)  2 = (l  + o(1))  �9 (1 - 2/c)  -2 

as n ---+ oo. An easy calculation shows that 

(1 - 8/c) -2 < 1 + 2 8 / c  

f o r e  > 28, so 
E(Y2)/(EY) 2 < 1 + 2 8 / c  

provided n is sufficiently large. We now apply Chebyshev 's  inequality to get 

rr2(Y) (EY 2) -- ( E y )  2 
Pr(Y = 0) < ( E y )  2 -- ( E y )  2 < 28/c 

and therefore 
Pr(Y > 0) > 1 - 2 8 / c  

for sufficiently large n. [] 

The bound 1 - 2 8 / c  of  the theorem was chosen to simplify the presentation. 
A more judicious choice of  k leads to a tighter probability bound of  the form 

( ) ( 1 ) i n i t s  c~176 �9 This im- 1 - O  ~ in the theorem, and 1 - O  

provement  is used in the proof  of  the following. 

Theorem 3. As  n - +  cx~, E[W,] = O ( ~ ) .  

Proo f  Corollary 1 implies that E[Wn] = ~2 (l~ 2 ) .  We will use 

1 

(23) E[W,] = f Pr(W, > s ) d s  
0 

to get an upper bound. We divide the range of  integration into three regions, 
where co > 0 is a constant to be chosen later: 
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0 --< s < --,c~176 __c~176 < s <_ n -3/5, and n -3/5 <_ s <_ 1. 
n n 

In the first region we simply use 

(24) Pr(Wn > s) < 1, 

which is enough to get 

c O log 2 n/n 
(25) f Pr(Wn > s) ds = O(log 2 n/n) . 

0 

For the second region, we borrow results from the proof of Theorem 2. The 
method there (in particular, (22) and Chebyshev's inequality) implies that 

(26) Pr(Wn > (k 4-l)t) 

< Pr(Y = O) 

l I ( ~ / 1  [ ( -  x] -14-O(k9t)]  < - - 4 -  14-O kZ t 4- 1 8k -2 
= EY nt / 

= 1Ey + [ l + O ( k 2 t + ~ ) ]  [ o ( k )  +O(k9t)] 

provided k/nt is sufficiently small. Take 

13 log n I log =./n 
k =  [_ logc / '  t = c  k + l  

for some c, co < c < n2/5/log 2 n. If co is sufficiently large, then for c in this 
range 

k O (  1 ) 
nt c log 2 c 

is sufficiently small, O(ket) and O(k2/n) are O(1), and O(k9t) is at most 
O(clog 1~ n/n). Moreover, by Corollary 2, for c sufficiently large, 

logEY = klog(nt) + l o g t -  ( k l o g k -  k) + O(1) 
>= klog(nt/k) - logn + k + O(1) 

=> k l o g c - l o g n + O ( 1 )  

>= (21ogn/ logc) logc-  logn + O(1) 

> logn + O(1). 

Thus 1/EY = O(1/n) and (26) becomes 

(27) Pr(Wn > c l o g 2 n / n ) = O (  1 + m ] 4-c1og 10n ) 
C log 2 C 
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Hence 

(28) 
n-3/5 

f Pr( W, > s)  ds  
s=c 0 log  2 n/n 

= f 0 + - -  + - d (c  log 2 n/n)  
c=co c log 2 c n 

; 9  
= O \ log2n  + 1 + \ l o g 2 n j  n 

For the third region, we show that there exists a/? > 0 such that 

(29) Pr(W~ __> n - 3 / 5 )  = O(e -/~1/5) . 

In fact, we show that there exists a packing of two intervals with wasted space 
less than n -3/5 with high probability (that is, with probability one minus a 
quantity exponentially small in nl/5). In what follows we make tacit use of 
standard Chernoff bounds (or easy extensions of  such bounds) on sums of 
Bernoulli random variables; see e.g. Appendix A of Alon and Spencer [1], in 
particular Corollary A. 14, p. 239. 

Set t = ln-3/5. Each of the first ~n/2J intervals has left endpoint in [0, t] 
and right endpoint in [1/3,2/3] with probability 2t/3, and these events are 
independent, so there will be at least nt/6 such intervals with high probability. 

Take the first Ndef[nt/6J of them, and associate to each the interval of length 
t to the right of its right endpoint. Since Nt  = O(n -1/~) < 1/6, each of the 
associated intervals is disjoint from all the previous ones with probability at 
least 1/2. Hence at least N/4  of them are disjoint, with high probability, and 
their union S is of total length at least (N/4)t .  Each of the remaining In/2] 
original intervals has its left endpoint in S and its right endpoint in [1 - t ,  1] 
with probability at least (N /4 ) t  �9 t = 0 (n -4 /5 ) ,  so there will be f2(n ~/5) of them, 
with high probability. Any of these intervals /2, together with the interval Ii 
whose associated interval contains the left endpoint of/2,  forms a packing with 
wasted space at most 3t = n -3/5, proving (29). 

Finally (29) implies that 

1 

f Pr(W~ > s ) d s  = O(e -Pn l / s ) .  
n 3/5 

/ ,  2 \ 
Combining this with (23), (25), and (28) shows that E[Wn] = O { ! ~ ) ,  a s  

\ / 

desired. [] 
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4 The circle case 

For contras t -both in ease and in resul t s -we consider the effect of  replacing 
the unit interval by a unit-circumference circle, say by identifying 0 with 1 in 
[0,1 ]. Then we define arcs I1, . . . , In instead o f  intervals, let t ing//  be directed 
left to right from X2i-1 to X2i. It rams out that the arc packings behave better 
than the interval packings with respect to independence, and thus a more pre- 
cise quantitative analysis is possible; we content ourselves below with a rough 
statement of  the behavior o f  optimal arc packings. 

Again we choose randomly a sequence of  k arcs from among 11 . . . . .  In; here 
we obtain a packing (disjoint arcs in increasing order, rood 1) with probability 
2k/(2k)! since the X / s  must be in circular order. In that case there are k lengths 
bl . . . .  ,bk but only k gaps al . . . . .  ak, letting al = X1 -X2n  (mod 1); the wasted 
space is ~ ai. We have: 

Theorem 4. Let  n random arcs be chosen in a circle, their endpoints taken 
independently and uniformly. Then for  any e > 0 there are reals e and fl and 
an integer m such that for  all n, with probability at least 1 - ~, the number 
o f  arcs in the optimal packing will be less than m and its wasted space W, 
will satisfy e/n < Wn < fl/n. 

Proof  Let Xk be the number o f  packings of  k arcs with wasted space less 
n 

than a/n, and let X = ~-~k=l Xk" 

Proceeding as in Sect. 2, we have 

E X k = n ( n - 1 ) . . . ( n - k + l ) .  - -  
U/"  xk-l(1 _ x ) k - l d x  2k ao 

(2k)! fd xk_l( 1 _ x)k_ ld  x 

<_ nk . 2k f~ x k - l d x  (by Lemma 1) 
- (2k)! (k - 1)!2/(2k)! 

e k 

k ( k  - ~)!2 

and thus in particular 

n 

EX = EXk < Y'~e k < e / ( 1 -  e ) .  
k = l  k = l  

Taking e = (e/3)/(1 + (e/3)) ensures that Pr(W, < a/n) < e/3. 

On the other hand, the wasted space of  a single random arc is uniform on 
[0,1]; hence taking k = 1 we already have 

(W n ~) ( _~)n Pr < > 1 -  1 -  > l - e  p 

so that, taking fl = - l og (e /3 ) ,  we obtain Pr(W~ > fl/n) < e/3 as well. 
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Final ly  we choose m so that 

G & 
< ~/3 L k(k --- 1)! 2 

k =/'r 

guaranteeing that with probabi l i ty  at least e/3 no packing of  m or more  arcs 
will have wasted space less than fl/n. [] 
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