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Summary. A new approach is provided to the super-Brownian motion X with a 
single point-catalyst 8c as branching rate. We start from a superprocess U with 

l -stable subordinator. We constant branching rate and spatial motion given by the 
prove that the occupation density measure A c of  X at the catalyst c is distributed 
as the total occupation time measure of  U. Furthermore, we show that Xt is 
determined from A c by an explicit representation formula. Heuristically, a mass 
A~ of "particles" leaves the catalyst at time s and then evolves according 
to I t r ' s  Brownian excursion measure. As a consequence of  our representation 
formula, the density field x of X satisfies the heat equation outside of  c, with a 
noisy boundary condition at c given by the singularly continuous random measure 
A c. In particular, x is W ~  outside the catalyst. We also provide a new derivation 
of  the singularity of the measure A c. 
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1 Introduction and main results 

1.1 Basic model and motivation 

The (critical continuous) single point catalytic super-Brownian motion Xt, t _> 0 
on the real line R has been introduced by Dawson and Fleischmann [5] (see 
also [4]). Intuitively, the process X describes the evolution of  a large population 
of  small branching particles on the real line, in the case when the branching 
phenomenon occurs only at a fixed point c E R called the catalyst. When particles 
are away from c, they move according to independent linear Brownian motions. 
On the other hand, when the particles arrive at c, they are subject to a critical 
branching mechanism, heuristically with an infinite branching rate (to compensate 
for the smallness of  the "branching area"). In Dynkin's  formulation [8], the local 
time at c of  the Brownian particles governs the branching phenomenon. 
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A rigorous description of X can be given in terms of Laplace functionals. 
To this purpose, we denote by ~//~f the set of all finite measures on R equipped 
with the topology of weak convergence, by ~- (R,R+) the set of all bounded 
nonnegative continuous functions on R, and by ~ ( R ,  R+) the set of all bounded 
nonnegative Borel measurable functions on 'R. Once and for all we fix a constant 

> 0, representing a multiplicative weight of the branching intensity 6c at c. By 
definition, X is the time-homogeneous continuous Markov process on ,//~f such 
that, for every # E .//~y, t > 0 and h E ~(R,R+), 

E [ e x p - < X t , h  > Xo=#] =exP- i#(db)v(O,b) ,  (1) 

where the function v(s,b), s > 0, b E R is the unique nonnegative solution of 
the integral equation 

i v(s,b)+~ drp ( r  - s , c  -b)v2(r ,c )= l{s<t} yp(t - s , y  -b)h(y) .  (2) 

Here p(s, b) denotes the Brownian transition density 

1 b 2 
p(s,b) := ~ exp 2 s '  s > 0 ,  b E R .  (3) 

Formulas (1) and (2) can be extended to get the Laplace functionals associated 
with the finite-dimensional marginals of X. In fact, using the Markov property, 
for 0 < tl < t2 < ... < t~ and hi,..., hn E ~(R,  R+), 

E [ e x p - S < X t l , h i >  I X o = # ] = e x P - i # ( d b ) v ( O , b )  , (4) 
i=1 

where the function v(s, b), s > O, b E R is the unique nonnegative solution of 

i s I d v(s,b)+o drp(r -s ,c -b)v2(r ,c )  = l{s<,~} ap(t i -s ,a-b)hi(a) .  (5) 
�9 I s  i=1 

For this formula, see Lemma 3.1.1 of [5], with a slightly different formulation, 
and Lemma 4.1 in Dynkin [8] (in a much more general setting). 

Let us note some important features of equation (5). For b 4 c, the function 
v(s,b), s > 0 is given by an explicit formula in terms of v(s,c), s >__ 0 (this 
corresponds to the degenerate branching rate Q c5c). Then the function v(s, c), s > 
0 solves an integral equation for which the uniqueness of the nonnegative solution 
follows from an easy extension of the classical Gronwall lemma. 

Let Y denote the occupation time process related to X. That is, Yt for t > 0 
fixed is the random element in ~//~f defined by 

< Yt,h > := ds <Xs,h >, h E ~(R,R+). 

It was proved in [5] that the measure Yt has a density yt(b), b E R where y can be 
chosen to be jointly continuous in (t, b). For every b fixed, yt(b) is a monotone 
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increasing function of t and one can consider the associated measure Ab(dt) 
defined by Ab([u, v)) = yv(b) -  yu(b). Henceforth ,~b is called the occupation 
density measure at b. When b 5/c, the measure ,~b is absolutely continuous with 
respect to Lebesgue measure. On the other hand, it was recently proved in [6] 
that Ac is singular, although its carrying dimension is one ([5]). 

A heuristic explanation can be given as follows. Mass arriving at c by the 
heat flow will "normally" be killed by the infinite branching rate, leading to a 
vanishing "density" dyt(c)/dt at c for Lebesgue almost all t. But again by this 
infinite rate, "occasionally" mass will be created at c. This density of mass at c 
will not occur at a fixed time, but nevertheless on a time set of  "full dimension". 

Our goal in this work is to provide a new approach to the process X. The 
motivation was to get a better understanding of the role of the occupation time 
measure Ac at the catalyst. We will present a self-contained construction of X, 
which makes it clear that )~c is the basic object in the model. Indeed, the process 
X is given in terms of Ac by a deterministic formula. Our construction will allow 
us to rederive several known properties of  X, such as the existence of the density 
field x of X and the singularity of  the measure ,~c. We will also obtain some 
interesting new properties concerning the smoothness of x and the long-time 
behavior of  X. 

1.2 The super-stable subordinator 

A key ingredient of our construction is the (critical continuous) superprocess U 
with constant branching rate p > 0 whose spatial motion is the (one-dimensional) 
stable subordinator with index 1/2. For convenience we call this process U the 
super-stable subordinator. Recall that the stable subordinator with index 1/2 is 
the L6vy process on the real line whose transition probabilities are given by 

S S 2 
q(s,b) := lib>0 } ~  exp 2 b '  s > 0 ,  b E R .  (6) 

Notice that q(s, .) can also be interpreted as the density function of the (first) 
hitting time of the point s by a linear Brownian motion started at the origin. 

The associated superprocess U with constant branching rate Q > 0 is by 
definition the ~//~f-valued time-homogeneous continuous Markov process cha. 
racterized as follows. For u E . / / ~ f  , 0 < tl < ... < tn and hx, ..., hn C ~ ( R ,  R+), 

i=l 

where u(t, b), t >_ O,b ~ R is the unique nonnegative solution to the integral 
equation 

u(s,b)+~ dr a q ( r - s , a - b ) u 2 ( r , a )  (8) 

= ~ l ( , < t l } f d a q ( t i - s , a - b ) h i ( a ) .  
i=l 
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Observe the analogy between equations (5) and (8): The Brownian transition 
density p is replaced by the stable transition density q, and the catalytic point 
measure p6c(a )da  is replaced by the measure coda corresponding to a constant 
branching rate co. Both formulas are special cases of a formula valid for more 
general superprocesses (recall again Lemma 4.1 in Dynkin [8]). 

Consider the total occupation measure V := f ~  ds Us of U. This is a ran- 
dom finite measure on R. The finiteness of V follows from the well-known 
property that U~ = 0 for s sufficiently large, a.s. Moreover, the total mass pro- 
cess Us(R), s > 0 is a critical Feller diffusion (i.e. a zero-dimensional squared 
Bessel process). Hence its integral V(R) is a stable random variable with index 
1/2. 

Later, we will consider the situation when the initial value U0 = u of  U is 
a (deterministic) measure supported on R+. Then V is also supported on R+ and 
we will interpret it as a measure on R+. 

We will need the Laplace functional of  V. Such functionals were first com- 
puted by Dawson [2] and Iscoe [11] in special cases and later generalized; see 
Dynkin [8] or Section 7.4 in Dawson [3]. Here, we may simply start from the 
Laplace functional (7) for the finite-dimensional marginals of U, take t i = i l k ,  

hi = ~/k, and, by a suitable passage to the limit, we arrive at the following 
result. Let 9(b) denote the Green function of the stable subordinator with index 
1/2: 

9(b) := dtq(t,b) = l{b>O} v " 2 ~  " (9) 

Then V has the following Laplace functional: For u E "~f~I and ~ E CE(R,R+) 
with compact support, 

E [ e x p - < V , q o >  Uo=u] = e x p - < u , w >  (10) 

where w(b), b E R is the unique nonnegative solution to the equation 

w(b) + o/da 9(a - b)w2(a) = /da  g(a -b)99(a ). (11) 

The uniqueness of the solution to (1 1) is easily established using arguments simi- 
lar to the classical Gronwall lemma. Formulas (10) and (1 1) can be extended to 
any ~ E J 3 ( R ,  R+) with compact support, via the monotone class theorem, and 
more generally, by a monotonicity argument, to any nonnegative Borel measura- 
ble function ~o with compact support satisfying the following finiteness condition: 

sup I d a  9(a - b) ~(a) < oo. (12) 
bER J 

It is again easy to verify that equation (11) still has a unique nonnegative solution 
under this more general assumption. 
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1.3 Main result 

We keep the notation introduced in the previous subsections. In addition from 
now on we fix a nonzero measure # C ~P~f and assume that Xo = # and Uo = ua , 
where the measure u~, is defined by 

<uu ,~p> := (db) ds q(Ic-bl,s)~(s),  ~ ~(R+,R+), (13) 

with the convention that r o d s  q(O,s)~(s) = ~(0) (that is q(0,-)  = 60). The 
measure u ,  corresponds to the "law" of the hitting time of  c by a Brownian 
motion "distributed" according to #(db) at time 0. In particular, u ,  = 6o if 
# = 6c. 

It was proved in [5] that the point catalytic super-Brownian motion X lives 
on the set of all absolutely continuous measures, i.e. it can a.s. be represented as 

Xt(db) = xt(b) db, t > O. 

Moreover, the density field xt(b) can be chosen to be jointly continuous on the 
set {t >0}  x {bT!c}. 

We finally introduce the transition density p*( t ,a ,b )  of Brownian motion 
killed at c. Obviously, p*( t ,a ,b)  = 0 if (a - c)(b - c) <_ 0, and the reflection 
principle gives 

p * ( t , a , b ) = p ( t , b - a ) - p ( t , b + a - 2 c )  if ( a - c ) ( b - c ) > O .  (14) 

We are now ready to state our main result. 

Theorem 1 (representation formulas) 

(a) (the catalyst 's  occupation density measure AC)The random measures V and 
A c are identically distributed. In particular, the topological support of A t is 
R+ a.s. 

(b) (the mass density field x) With probability one, the density field xt(b ) of X 
can be represented as 

xt(b) = l / z (da )  p*( t ,a ,b )+ f AC(ds) q(  Ib - c ] , t  - s),  (15) 
a J [0,t) 

f o r t  > 0, b ~ c. In particular, xt(b) > O for every t > 0, b 5/0, a.s. 

Part (a) of this theorem is in a sense a superprocess analogue of the classical 
result saying that the local time measure at 0 of  a linear Brownian motion is 
the occupation measure of  a stable subordinator of  index 1/2 (equivalently, the 
inverse local time at 0 of a linear Brownian motion is a stable subordinator of 
index 1/2, see e.g. [16], p. 223). 

Note that the deterministic first term of the right hand side of (15) vanishes 
when # --- 6c (so that u u = 60). Let us briefly explain this representation formula. 
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Clearly, the first term in the right hand side corresponds to the contribution of 
(approximating) particles that have not yet reached the catalyst by time t. In 
other words, it results from the heat flow with absorption at c. To understand the 
second term, notice that, for a fixed s > 0, the function q(]b[,s), b E R is the 
density of the Brownian excursion at time s, under the It6 measure denoted by 
n(de): 

q(Ibl,s) db= n{g(e) > s, e(s) c db} 

where g(e) is the duration of the excursion e, and e(s) its location at time s (see 
e.g. [16], p. 456). This allows us to give the following intuitive interpretation 
for the second term in the representation formula (15). The mass present at time 
s in the vicinity of  the catalyst can be measured by AC(ds). In terms of an 
approximating particle system, particles then move away from c according to 
Brownian excursions (recall that no branching is allowed outside of c). Such an 
excursion gives a contribution to xt(b) if it has not yet returned to the catalyst 
and has position b at time t. 

We can combine both parts of Theorem 1 to get a complete construction 
of the process X. Indeed, starting from the total occupation measure V of  the 
super-stable subordinator U, we define Z0 = # and for every t > 0 

Z t ( d b ) : = ( J # ( d a ) p * ( t , a , b ) + l  V(ds) q ( l b - c [ , t - s ) ) d b .  (16) 
J [0,t) 

By (a) and (b), the measure-valued process Z is then a single point catalytic 
super-Brownian motion started at/~, and the occupation density measure of  Z at 
the catalyst is V. 

1.4 Proof of the main result 

We will prove Theorem 1 by checking that the process Z defined from V via 
formula (16) is a single point catalytic super-Brownian motion, and then that 
the occupation density measure of Z at c is V(ds). Since the density of  the 
random measure Zt, as given in formula (16), is clearly a continuous function 
on {t > 0} • {b --/c}, we will thus obtain that this function coincides with the 
density field of  X, completing the proof of  formula (15). 

We will make use of  the following identities (recall the notations introduced 
in (3,6,9,14)): For 0 < s < t and a,b  E R, 

9 ( t - s )  = p(t - s,O), (17) 

/o p ( t , b - a )  = p*( t ,a ,b )+ d r q ( l c - a l , r ) p ( t - r , b - c ) .  (18) 

The first equality is trivial. Formula (18) is easy to prove by a probabilistic 
argument. Indeed, the function p(t , .  - a), which is the density at time t of a 
linear Brownian motion B started at a, is the sum of two contributions: The first 
one coming from those paths that do not hit c by time t, and the second one 
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from the remaining paths. To obtain the contribution of the latter, notice that 
q(Ic -a[ , - )  is the density function of the hitting time of c by B, and apply the 
strong Markov property at that hitting time. 

Note the special case of (t 8) when b = c : 

~0 t p ( t , c - a )  = d r q ( ] c - a [ , r ) p ( t - r , O ) .  (19) 

We will compute now the Laplace functionals of Z. Let 0 < tl < ... < tn 
and hi, ...,hn E g'#~(R,R+). Then, by the definition (16) of Z, 

<Ztr > = (da) bp*( t i , a ,b )h i (b )+  < V , ~ >  with 
i=1 = 

s c 
~o(s) := ~_. l{o<_s<t,} l d b q ( [ b - c l , t i - s ) h i ( b ) ,  s>_O. (20) 

J i=1 

It is easily checked that ~o satisfies the finiteness condition (12). So we can use 
(lO), (1 l) to calculate the Laplace functional of Z: 

E e x p -  ~-'~ < Zti,hi > (21) 
i=1 

= e x p [ - ~ - ~ j # ( d a ) / d b p * ( t i , a , b ) h i ( b ) -  < u u , w >  ] 
i=l 

where, for s >_ 0, 

f f w(s) + co dr 9(r - s) w 2 ( r )  = dr 9(r - s) ~(r). 

By the definition (20) of ~p and using the identities (17) and (19), we get that w 

satisfies the equation 

f o o  ~ / d  w(s) + 0 drp(r  -- S, 0 ) w 2 ( r )  = l{s<t,} ap(ti  - s ,a  -- c)hi(a). 
a s i=l 

Comparing this with (5) in the special case b = c we obtain w(s) = v(s, c) where 
v is the unique nonnegative solution of (5). We then use this integral equation 
and the definition (13) of u,, to get 

<uu,  w >  = (db) d s q ( I c - b l , s  ) a p ( t i - s , a - c ) h i ( a )  
i=l 

f - co (db) dsq( Ic  - b ] , s )  d rp ( r  - s ,O)v2(r ,c ) .  

Next we exploit (19) to arrive at 
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< u u ,  w >  = (db) d s q ( l c - b [ , s )  a p ( t i - s , a - c ) h i ( a )  
i=1 J J 0  

/.fo - ~ (db) drp(r,c -b)v2(r,c) .  

Finally, using the identity (18) the exponent in the right hand side of (21) becomes 

~-~/#(db) /dap*( t i ,b ,a)hi (a)+ < u . , w >  
i=1 

-- (db) a p(ti,b - a)hi(a) - p (db dr p(r,c - b)v2(r,c). 

But by (5) with s -- 0, this is nothing else than f#(db)v(O, b). Inserting into 
(21) and comparing with (4), we get that Z has the same finite-dimensional 
marginals as X. Hence ([5]), a version Z of  Z must be a (continuous) single 
point catalytic super-Brownian motion. However, it is immediate on the defining 
formula (16) of Z that < Z t , p  > is a.s. continuous whenever p c ~(R,R+) 
has a compact support not containing c. For such functions p we have thus 
< Z t , p . > - - <  Z t , p  > for every t >_ 0 a.s. Moreover, we know from [5] 
that Z t ( (c})  -- 0, for every t > 0, a.s. Since the same property holds for Z by 
definition, we conclude that Z and Z are indistinguishable, so that Z itself is a 
single point catalytic super-Brownian motion, what had to be proved. 

Next we want to calculate the occupation density measures related to Z. Set 

I' I' 9*(t,a,b) := ds p*(s,a,b), F(s) := dr q(1, r). (22) 

Observe that by the definition (16) of  Z, for h E ~(R,R+), 

fotdsfZs(db)h(b) 

fd f. + I d [  [t = bh(b) ( d a ) 9 " ( t , a , b ) _ _ b h ( b ) .  V(ds) d r q ( l b - c l , r - s ) .  
J J[O,t) ,,'s 

Using the scaling property 

K2q(Ks, K2b) -- q(s, b) 

of the stable subordinator and the definition (22) of F ,  we conclude that the 
measure Jo ds Zs has a density given by 

b~--~ f•(da)9*(t,a,b)+)(to V(ds)F(  t-s \ (b_c)2 j , b 4c.  (23) 
,t) 

Since F is a distribution function, by setting F(oc)  = 1 we see that the previous 
formula defines a continuous function of  b C R, which we can therefore identify 
with the (jointly continuous) occupation density field of Z (denoted again by y), 
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taken at time t > 0. Hence A c ([0, t)) : yt(c) : V ([0, t)) a.s., for every fixed 
t. But both functions are left-continuous in t > 0, and we get A c = V a.s., as 
wanted. 

We still have to prove the remaining assertions of Theorem 1. I f  # is not 
concentrated at c, then by the definition (13) of the initial measure v~,, the 
topological support of  v u is R+. On the other hand, # = a 6c implies v~, = a 60. 
In both cases, the topological support of  the total occupation measure V is R+ 
by Theorem 1.5 of  Perkins [14]. In particular, V([0,  e]) > 0 for every e > 0, 
a.s. Then (a) and the representation formula (15) show that xt(b) > 0 for every 
t > 0 ,  b ~C c, a.s. t3 

Remark Let us briefly discuss the relationship between our approach and the 
results of  [5]. Without any reference to [5], the previous proof shows that the 
process Z defined by (16) has the marginal distributions of  the single point 
catalytic super-Brownian motion, as given in (4) and (5). We mainly needed to 
refer to [5] for the almost sure continuity of  Z (a proof not depending on [5] 
would require some information on the local behavior of the random measure 
V). Our construction clearly gives the existence and joint continuity of  the mass 
density field of  Z on {t > 0} x {b 4 c) .  The joint continuity of  the associated 
occupation density field on R+ • R also follows from the explicit formula (23), 
provided we know a priori that the random measure V has no atoms (this fact 
can be easily deduced from the second moment  formulas for V, see (37) and 
(46) below). Finally, we can also remark that the Laplace functionals of the 
density field xt(b) or the occupation density field yt(b) follow immediately from 
the expression of these quantities in terms of A c and the formulas of  w 1.2. 0 

2 Some applications 

In this section, we develop a few simple applications of our main result. 

2.1 Measurability o f  the past with respect to the present 

We will use Theorem 1 (b) to obtain a somewhat surprising measurability property 
of X. We assume that this process is defined on a probability space (Y2, ,~ ' ,  P).  

Corol lary  2 ( " b a c k w a r d "  measurabi l i ty)  Fix t > O. Denote by cr(Xt) the a- 
field generated by Xt , augmented by the ~ ' -measurable  sets o f  P-probability zero. 
The random measure 1Eo,t)(s ) AC(ds) is cr(Xt)-measurable. Thus, (Xs, 0 < s <_ t) 
is ~r(Xt )-measurable. 
P r o o f .  Clearly, the densities xt(b), b ~ c are cr(Xt)-measurable. By the repre- 
sentation Theorem 1 (b), this implies that, for every a > O, 

AC(ds) q(~,  t - s) = AC(ds) c~ exp 
,t) ,t) V/27r (t - s )  3 2(t - s) 
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is measurable with respect to a(Xt). Let ~/(ds) denote the image measure of 
l[o,t)(s)(t - s)-3/2AC(ds) by the mapping s ~ (t - s) - l .  We get that 

,t)rj(dr) exp - r 

is ~(Xt)-measurable for every c~ > 0. It follows that r~, hence 1Eo,t)(s)M(ds ) 
is o-(Xt)-measurable. Finally, if r belongs to [0, t], then by the representation 
formula (15), Xr is a measurable function of 1Eo,t)(s)AC(ds), finishing the proof. 

[] 

2.2 Smoothness of the mass density field 

The next result shows that (outside the catalyst) xt(b) is much smoother than in 
the constant branching rate case (recall that the one-dimensional super-Brownian 
motion density field is commonly believed to have a critical Hrlder  index 1/2, 
with respect to regularity in the space variable; see Reimers [15] for a one-sided 
estimate). This in particular answers a question of Adler [1, p. 14]. 

Corollary 3 (smoothness of the mass density field) With probability one, the 
density field xt(b) is a ~,C~-function of  (t, b) on the set {t > O, b ~ c} and 
satisfies the heat equation: 

Oxt(b) 1 02xt(b) 

Ot 2 Ob 2 ' 
t > O ,  b 4 e .  

P r o o f .  By symmetry,  we may restrict our attention to the domain D := 
{(t ,b);  t > 0, b > c}. We start from the representation formula (15) o f x  and 
first observe that the function b ~-* f # ( d a ) p * ( t ,  a, b) is of class Woo on D and 
solves the heat equation in this domain. Therefore, we only need to consider the 
term 

Zt(b) := f AC(ds) q(b - c, t - s), (t, b) E D.  (24) 
Jr0 ,t) 

Note that, for every choice of integers k, g > 0, the partial derivative 

o~+e 
qk,e(b, t) . -  OtkObe q(b, t) 

can be written as a finite linear combination of terms of the type 

b i t -3 /2 - j  e x p  ( - b2 /2 t )  

where i , j  are nonnegative integers such that i <_ j + 1. However  b i t - 3 / 2 - j  = 

(b2/t)  3/2+j b -3-2j+i where - 3  - 2j + i <_ - 2  - j  < 0. Hence, for k ,g  >_ 0 and 
c > 0 fixed, 

sup Iqk,~(b,t)] < cx~. (25) 
t>O, b>e 
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We can then use this bound to verify by induction that the function ~t(b) defined 
in (24) is Woo in D and that 

Otk Obe~ +g /o  
2t(b) = AC(ds)qk,g(b - c, t - s). (26) 

,t) 

Since q(b,t) satisfies the heat equation in {t > 0, b > 0) ,  it follows readily 
from (26) that -s solves the heat equation in D. [] 

Remark The function xt(b) solves the heat equation in D with the generalized 
boundary conditions #(db) on {t = 0) and AC(dt) on {b = c) .  These conditions 
should be understood as the a.s. statements 

lim idb  ~(b)xt(b)= 

lim i d t  ~b(t)xt(b) = SAc(dt)~b(t), 
b--+c 

for ~ E ~ ( R ,  R§ ~b E ~,d~(R§ R+) (the second convergence follows easily from 
the joint continuity of  the occupation density field yt(b) on R+ x R). 0 

2.3 Asymptotic behavior 

Recall that, for a > 0, F(a) = fo dbq(1,b), and for a,b E R set 

9*(a,b) := 9*(cx~,a,b) = dtp*(t,a,b) 

so that, from (14), 

g*(a,b) = l{(a-c)(b-c)>0} 2 ([a -- c I A [b - cl) .  (27) 

The next result is a refinement of  Theorem 1.3.2 in [5]. (See also Dynkin [9]). 

Corol la ry  4 (total occupat ion density) With probability one, for every b in R, 

yt(b) t - ~  yoo(b) := f#(da)g*(a,b) + At(R+), 

where the random variable At(R+) has a stable distribution with index 1/2. 
Proof. We simply pass to the limit as t --~ (x~ in the formula 

#(da)g*(t,a,b)+ A~(ds)F J<;,,, (<->), 
(recall (23)) using that F(t) T 1 as t --~ oo. In w 1.2 we have already noticed that 
A~(R+) or equivalently V(R+) has a stable distribution of index 1/2. [] 
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Now we want to complement the local extinction Proposition 1.3.1 of [5] 
(where X starts according to the Lebesgue measure) by a total extinction property: 

Corol lary  5 (total mass process) The total mass of  X at time t is 

J . l l l l / o '  J F t . 2 Xt (R)= (da) 1 -  ~ + AC(ds) (28) ~r (t-s) " 

This total mass is (strictly) positive for  every t > 0 a.s. and conCerges to 0 a.s. 

as t --* cxz. 

P r o o f .  To get (28), integrate (15) with respect to db by using the identity (18). 
The positivity of Xt(R) follows from that of xt(b) (recall Theorem 1 (b)). Then, 
by dominated convergence, 

))=O. 
To complete the proof, first notice that 

J0" lim AC(ds) = 0 a.s. 

because the measure A c is finite. To calculate the first moment of the remai- 
ning part of the integral we may replace A c by V and get by the well-known 
superprocess first-moment formula, 

f,_ jo, f . E 1 ~ - - - - s  - u~(dr) ds 9(s - r) l{t-l<-s<t}v/t -- S 

fo' Jr' ds = u , (dr )  - l )vr  x/2~r(t - -s) (s  - r )"  

But this obviously converges to 0 as t ~ e~ by dominated convergence. Hence 
Xt(R) converges to 0 in probability as t ~ oc. However, t ~-~ X~(R) is a con- 
tinuous nonnegative martingale (by the Markov property and the first-moment 
formula of [5], Theorem 1.2.1 for instance). Thus the a.s. convergence follows 
from the martingale convergence theorem. [] 

3 Singularity of the occupation density measure at the catalyst 

3.1 Statement of  the result 

By Theorem 1 (a) the topological support of the measure A c coincides a.s. with 
R+. We also already mentioned that A c is a continuous measure. Nonetheless, in 
the case when X0 = 6c, Dawson, Fleischmann, Li and Mueller [6] have recently 
proved that A c is a.s. singular. We will propose an alternative approach to that 
result, which applies to the case of  a general initial state # C ~/Zgf and also 
provides some additional information. 
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Recall that by Theorem 1 (a) the random measures A c and V are identically 
distributed provided that X and U are started with # and u u , respectively. We 
will now consider the super-stable subordinator U with a general initial state 
u ~ ,//gf, and its total occupation measure V = f ~ d s  U~. 

Set h(e) := e log log i and denote by h-m the associated Hausdorffmeasure. E 

Theorem 6 (singularity of  V) We can find two positive constants C, C' such 
that, with probability one, for the set 

{ } H := b E R; limsup > C 
Elo e loglog(1/e)  - 

we have V ( R \ H )  = 0 and h-re(H) <_ C' V(R) < oe. 

Roughly speaking, the theorem states that for V-almost all b one can find 
a sequence cn = en(b) --* 0 as n ~ cx~ such that V has mass of  order > 
en log log(1/en) in the en-vicinity of  b. In particular, the "upper density" of the 
measure V in these points must be +cx~. 

Note that the bound h-m(H)  <_ C ~ V(R) follows from the well-kn0wn density 
theorems of  Rogers and Taylor [17] so that we only have to check that almost 
surely V is concentrated on H.  

3.2 Canonical measures and Campbell measure formula 

Before proceeding to the proof of Theorem 6, we recall, in the special case o f  
the process U, a few basic facts about canonical measures of superprocesses. We 
refer to Section 4 in E1 Karoui and Roelly [10] (see also Dawson and Perkins 
[7] and Le Gall [12] for related results). 

We assume that the process U is the canonical process on the space (2 := 
~(R+,.//gy) of all continuous functions from R+ into ,//gf. Denote by P,, the 
probability on g2 under which U is a super-stable subordinator (with index 1/2) 
started at v E . / tdf .  We also set o- := sup{s; Us ~ 0} which represents the 
extinction time of U. Then, for every b E R, the limit 

lira l P~,~b =: Qb (29) 
e,LO ~ 

exists in the following "weak" sense. Qb is a o'-finite measure on f? that does 
not charge the zero trajectory and satisfies: 

(i) Qb(o _> t) < oo for every t > 0, 

(ii) for every 0 < tl < ... < tn, for every function qo continuous and bounded 
on ~//~ such that qo(0,..., 0) = 0, 

lira -1 Er w(U, ' .... , Ut,) = Qb W(Utl , . . . ,  Ut,). 
e--+O E 
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The measures Qb are called the canonical measures of the super-stable subordi- 
nator U. 

Conversely, we can recover the laws P~, from the collection Qb in the fol- 
lowing way. If  ~4/'(dco) denotes a Poisson point measure on f2 with intensity 
fu(db) Qb('), then the process 

:= JUY'(dw) Ut(w), t _> ~dt 0 

has distribution P~ (see Th6or~me 17 in [10]). In other words, the measures Qb 
describe the "cluster processes" of the infinitely divisible law E,. Notice that 
~ ' :  = f u Y ' ( d ~ ) V ( w )  is the total occupation m e a s u r e o f  ~ ' .  

We now observe that it is enough to check that the statement of  Theorem 6 
holds a.e. under every measure Qb (by translation invariance it even suffices to 
consider Q0)- Indeed, we can then apply this result to each atom in the (countable) 
support of  Ut/'(dw) and easily conclude that the same property holds for the total 
occupation measure ~ "  of  ~d'. 

We need to derive a few properties of the canonical measures Qb.  Using the 
classical first-moment formula for superprocesses and the connection between 
measures P~ and Qb, one immediately obtains the formula 

Qb < V, ~ > = fda 9(a - b) ~(a) (30) 

for any nonnegative measurable function ~p on R (9 is defined in (9)). 
Another key ingredient is the Campbell measure formula we will now estab- 

lish. On the Skorohod space ~ ([0, t], R+), let P~(df) denote the law of the stable 
subordinator with index 1/2 started at b (and running on the time interval [0, t]). 
Let 69 denote the space of all point measures on R • f2 (precisely, the set of all 
counting measures on R x $2 that are finite on sets of the type [0, t] x {a _> c}) 
and write 0 for the generic element of 69. F o r f  C ~ ( [ 0 ,  t] ,R+),  we let Pf(d0) 
denote the unique probability measure on (9 under which O(ds dw) is a Poisson 
point measure on R x f2 with intensity 

2 p l[0,t](s) ds Qj(s)(dw). (31) 

The announced formula now reads as follows: 

Proposi t ion 7 (Campbel l  measure  fo rmula )  For b C R and every nonnegative 
measurable function q~ on R x Jlgf , 

Qb f V(da)qS(a,V)= io~176 fP~(df)EfqS(f(t),JO(dsdw)V(aJ)). (32) 

Formulas such as (32) are part of the folklore of  the subject (see [7], Section 4, 
and [12] for closely related facts). For the sake of completeness, we will provide a 
short proof. But first let us briefly give a heuristic interpretation of (32). The left- 
hand side describes the "law" of the pair (a, V) where V is the total occupation 
measure f~'~ Ut under the canonical measure Qb, and a is a point "chosen" 
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according to V (da). In the right-hand side one selects "at random" a point t from 
R+, and considers the value f(t) at time t of a stable subordinator with index 
1/2 starting at b. Moreover, at Poissonian time points s along the path f(s), 
one starts "cluster processes" w "distributed" according to Q/co(dw), and then 
one superimposes their total occupation measures V(w) to arrive at the quantity 

fO(ds dw)V(w). The formula (32) states that the .pair (f( /) ,  fO(ds dw)V(w)) 

constructed in this way has the same "law" as the previously defined pair (a, V). 
Proof . It is enough to consider the case~/i(y,V) = ~ ( y ) e x p -  < V,~b > where 
both ~ and ~b are nonnegative continuous functions on R with compact support. 
Using the Poisson exponential formula, the right-hand side of (32) can then be 
written as 

fo~dtfP~(df)~(f( t))exp-2~ofotdsQf(s)(l-exp-<V,~b>) 

/o /o = Eb dt ~(~t) exp - 2 6  ds w(~s) =: K(b) (33) 

where w(a) := Q, (1 - exp - < g ,  ~b > ) and th e process (~s, s > 0) is a stable 
subordinator with index 1/2 that starts at b under the probability measure Pb. 

On the other hand, the left-hand side of (32) is 

u(b) := Q b < V , ~ p >  e x p -  < V , ~ p > .  

For A E [0, 1] and b E R, set 

:= Qb (1 - exp - < V, A(p + ~ > ) .  (34) wA(b) 

Then w`x(b) < Qb < V, A(p + ~ >, and the first-moment formula (30) shows 
that the functions w`x are uniformly bounded over R. Now recall the way the 
measures P, can be reconstructed from the canonical measures Qb. Using the 
exponential formula for Poisson measures and comparing with formulas (10) and 
(11), we immediately get that w`x is the unique nonnegative solution of 

w`x(b)+~/dag(a-b)w2~(a) = fdag(a-b)(A~+~b)(a). (35) 

Moreover, by differentiating (34), 

d 
-~ w`x(b) .x--o+ = Qb < V, ~p > e x p -  < V, 0 > = u(b). 

The justification is easy thanks to the finiteness of first moments (30) and bounded 
convergence. We can then differentiate (35) with respect to A at .k = O+ to get 

u(b)+ 2Q/da g(a - b)u(a)w(a) = Jda g(a - b)~(a). (36) 

The justification is again easy because both the functions w`x and their derivati- 
ves with respect to A E [0, 1] are uniformly bounded and vanish outside some 
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common bounded region. A Gronwall lemma-type argument shows that u is un- 
iquely determined by equation (36) when w and ~ are given. It. is then a simple. 
exercise to check that the function ("Feynman-Kac solution") ~" of  (33) solves 
(36). Hence u = if, which completes the proof. [] 

We shall finally need the second-moment formula for the total occupation 
measure V under Qb" 

Q b < V , ~ >  2 : 20fda~y(a)fda'~(a')fdz9(z-b)9(a-z)9(a'-z) (37) 

for every nonnegative measurable function ~ on R. This formula can for instance 
be obtained by taking ~b(a, V) = ~(a)  < V, ~ > in (32). 

3.3 Proof of the singularity theorem 

As already explained, the proof of  Theorem 6 reduces to finding a constant C > 0 
such that, Qo a.e., V(da)  a.e., 

l imsup V ( [ a - e , a + c ] )  _>C. 
~10 h(e) 

By Proposition 7, we see that this claim is in turn equivalent to checking that dt 
a.e., P~(df) a.s., Pf(d0) a.s., 

1 
f o(~s ~)~(~)(~, ~,I, + 4) >- lira sup - (38) 

clo ~ loglog(1/c)  aL0,0x~ 

where we now write ft : = f ( t )  for convenience. We can in fact even verify the 
existence of a constant C such that (38) holds for all t > 0, P~(df) a.s., Pf(d0) 
a.s. We fix t > 0 and consider the unique integer N such that 2 -N < t < 2 -N+I.  

For every integer n > N,  we consider the following subset of 6~([0,  t], R): 

. .  := {f ~ ~(I0,,1, R), Is ~ [J,-2-2"+',I,-2-~], vs ~ t , -2-o,  t - 2 - o - ' 1 }  

Next introduce the scaling transformation 

T 0e(s), O < s  < t) ~---~ ( 4 [ f ( ~ + ~ ) - f ( ~ ) ] ,  O < s  < t ) .  

Note that T-1Hn = Hn+l and that the law P~ of the stable subordinator with index 
1/2 is invariant with respect to T. We can then apply Birkhoff'  s individual ergodic 
theorem, together with Blumenthal 's  zero-one law for the stable subordinator 
reversed at time t, to obtain P6(df) a.s. 

lira --1 ~ 1H.(f) = CO > 0, (39) 
m ~  m 

n=N 

where co = P~(HN) does not depend on t, again by a scaling argument. 
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We now f i x f  E ~ ' ( [0 ,  t] ,R) such that (39) holds, and we will prove for this 
function f that (38) is true Pf(d0) a.s. for a suitable constant C independent of 

t, f and 0. 
F o r e > 0 a n d 0 < r  < u  < t ,  set 

We[r, u] := ~r,u]xga O(ds dw) V (co)( [ft - e,ft + e] ) . (40) 

Let e > 0 and n > N be such that 2 -2~ > 3e a n d f  E Hn. By the definition of 
the law I f ,  we have 

t _ 2 - n - I  

E f W e [ t - 2 - " , t - 2  -"- ,]  = 2col . d s Q f . V ( ~ - e , f t + e ] )  
at--2 

r t - -2  - n - '  fft+e d r  
= 2Q] . ds 

Jr--2- Jft--e x~ 2rr (r - f~)  

using the first-moment formula (30) together with the explicit expression (9) for 
the Green function 9 and also observing that r - f s  _> 2e > 0 in the range of 
integration, by our assumption f E Hn. More precisely, the bound 2 -2n-I  < 
r --fs  <_ 2-2n+2 for r E [ft - e , f i  +e] leads to the following estimate 

cl e <_ EIWe It - 2 -n, t - 2 -n-~] < C1 e (41) 

where cl := 2-1/27r-1/2p, C1 := 2rr-1/2p. 
Keeping the same assumptions on e,nf ,  we turn to the variance with respect 

to PY: 

t _ 2 - n  1 

varl,sWe[t-2-",t-2-n-l] = 2pf dsQfVZ(~-e,ft+e]). 
J t - - 2 - n  

By the second-moment formula (37) and (9), forfs c [ft--2-2n+1,fi--2-2n], we 
have 

= 2~(2rr)-3/e f 
�9 *E-e, r 

faAa t 
da da' ] dz 

Js, q ( z  - f , ) ( a  - z ) ( a '  - z )  

Ji, ~ + e - z  - x/(f, - e ) v z  - z  

Consider first the part of the integral corresponding to z _> ft - 2e. On this set, 
z - f ,  > 2 -2n-2, and omitting the second square root, we get the upper bound 
2 n+l (3r 2 for this part of the integral. By a linear approximation, the other part 
can be estimated from above by 

c~-2e 
e2 [ dz 

& q z  - L  q ,  - ~ - z )  
A 
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If  z _< ~ +ft - 2e) /2 then fr - e - z >_ (ft - f D / 2  >_ 2 -2n-1, whereas 

f G+f,-ze)/2 < 2 ~ / ~  - f s ) / 2  < 2 -n+l dz 

v -fs - - ' 

resulting in a term e22 ~+2. In the remaining case z > (fs +f t  - 2e) /2  we use 
Z - f s  >_ (ft - f s ) / 2  - e _> 2 - 2 n - 4  , whereas 

y,-2e dz ft - fs 2 -an 
- " l o g  2 e  < l o g  , 

�9 ,' (/,+J} - -2e) /2  f t  - -  g - -  Z - -  e 

2-2n 
giving a term e22 "+2 log -'7"" Putting all these terms together, we get 

2-2n 
Varpy We[t - 2  -n, t - 2  - n - l ]  _ C2 e2 l o g - -  

g 

Combining with the first-moment upper bound in (41) we conclude that 

2 - 2 n  
Efw2[ t  - 2 -n ,  t - 2 - n - l l  _ c3~ 2 l o g - -  (42) 

c 

Clearly, the constants c2 and c3 do not depend o n  tof ,Gn,  under our assumptions 
f C Hn, 2 - 2 n  > 3e. 

Next we use the element.ary inequality 

P { > _ ~  >_ 4E{2 if E { > 6 > 0 .  

Then from the lower bound in (41) and (42) we obtain 

cl Cl 2 2-2n~ -1 
>_ _> 

Now we specialize to e : =  2 - 2 =  where m > n + 1, : n >_ N and let the (measu- 
rable) subset An m of O be defined by 

{ c1 } 
A m := W 2 - 2 ~ [ t - 2 - n , t - 2  -n- ' ]  _ > ~ - 2  -2'n (43) 

Then our inequality gives 

Cl 2 / ,  2 _ 2 n  . ~ - 1  

Pf(An)  >- ~c3 k l~  ---2-~m) = c 4 ( m - n ) - I  (44) 

where ca := c2/(8c3 log2) > 0, Recall that we only considered n such that 
f C H~. Summing up over all these values of n yields 

PI (A m) >_ C4 ~ (m - n) -1 . (45) 

{n;f EHn, N <n<m-1} {n;f Gn,~, N <_n<m--l } 

Now recall that by assumption f satisfies (39). Let c5 be any constant with 
0 < c5 < COC4. An elementary reasoning shows that there must exist a sequence 
mk ]" oc (depending on the fixed function f ) s u c h  that 
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Z pC (Anmk) > c5 log mk 
{n;fCHn, N<_n<m~-l}  

for every k. In fact, if we assume that there exist no such sequence mk, we easily 
arrive at a contradiction with (39) and (45). 

We have in particular 

lim Z pC(amt) = cr 
k----r oo 

{n;fCH~, N<_n<mk--l} 

which implies, using the independence of the events A m (for m fixed), 

l im ~{n;fEHn, N<_n<mk--l} 1m~k 
k---*cx~ E l  Y~{n; fEHn,  N<_n<mt-1}  la".'k = 1 

in Sr By extracting a subsequence converging a.s., we get 

lim sup 1 m_~ 
- -  1 ,,,k > c5 

k~or log mk n=N An --  

P/ a.s. From the definition (43) of  the sets A m and the additivity of  We (recall 
(40)), we conclude 

1 c5 c i  
lim sup 2_2m t log mk W2-2"~ [0, t] > - -  k--,oo - 2 

Pf a.s. Consequently, 

lim sup 1 . /0  (w) ( [ft 2 -2m* + 2-2m~]) C k--+cr 2 -2ink log mk (ds daJ) V - ,ft > 

completing the proof of  (38) and of Theorem 6. [] 

3.4 Remarks 
1. As we already mentioned, the carrying dimension of A c is 1 a.s. This result 
can be easily recovered from the second moment  formula (37), using essentially 
the same argument as in [5]. Formula (37) and some easy calculations imply 
that, f o r 0 < 6 < K  a n d 0 < 7 <  1, 

f6 V(da)V(db) E (46) ,m2 la - bl'~ < cr 

�9 Then, the classical connection between Hausdorff  dimension and capacity shows 
that a.s. for any Borel set H supporting V(da)  we have d imH = 1. 0 

2. Since the measure $c is a.s. singular, 

A c ( [ t -  C,t +e ] )  
!im 7 . . . .  O, dt a.e., a.s. 
e---*0 C 

The representation formula (15) and some easy estimates then give 

lim xt(b) = 0, dt a.e., a.s. (47) 
b-~c " 
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(compare with Theorem 1.2.3 of  [5]). On the other hand, a minor modification 
of the proof of  Theorem 6 gives 

lim sup Ac ~[t - e, t - e /2])  _> C > 0, At(dr) a.e., a.s. 
~-~o e log log(1/e) 

This result combined with the representation (15) shows that 

l imsup x t ( b )  > C '  > 0, AC(dt) a.e., a.s. 
b-~c loglog ( 1 l i b  - c l )  - 

which is in contrast to (47). (Recall also the heuristic explanations given in w 1.1.) 

0 
3. The method of proof of Theorem 6 is inspired from Le Gall and Perkins [13]. 
The function h in Theorem 6 is however certainly not the best possible. 0 
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