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asymptotic homology of Brownian paths and geodesics are proved and a simple
relation is found between them.
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1 Presentation of the results

Let M be a compact Riemannian manifold with constant curvature —1 and J#
the space of harmonic 1-forms on M. Let F be the unit tangent bundle of A/
and p the projection of F onto M.

We denote by m the Liouville measure on F and by £ = p(m) the volume
element on M. We also consider the law IP, of the Brownian motion on M
starting at x, and the geodesic flow on F, denoted 8,. Given an arc of curve
y in M, and w in 5 let us denote w(y) the integral of w along this arc y. (It
is invariant under homotopic deformation.)

We show that the free energies of the Brownian and geodesic homology
respectively denoted A and n can be defined as positive analytic functions
on # by the formulas

Mw) = }%mt‘llog(f exp((w(&s, 0 =5 < 1)) Pp(dl)) (1)
with P; = [ £(dx)P,.
W) = tl%{)not“l log ([ exp(w (p(bsx), 0 < 5 < 1)) m(dx)). ()

/() can also be defined as the principal eigenvalue of the operator

L = 4/2 + {w,d) + |o?/2.
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We show that = and / are related by the formulas

2= —-Dn+7r*, 2n=+(d-12+81+1—4d. 3)

The existence of 1 and 7 are already known in a broader context, cf. [D-S,
Ki, B-D, M, T]. To be self-contained, we provide for 4 an argument which
yields the analyticity easily and works also in variable curvature. For 7, the
existence follows by an easy argument which does not rely upon coding theory.

The differentiability of 4 and n implies that the related entropy functionals
are strictly convex and that a large deviation principle holds (cf. [E, Chap.
VII).

The method should apply in the finite volume case also. More general func-
tionals should also be treated by using the Brownian motion on the leaves as
in [L2]. The method might also be adapted to non constant negative curvature
using the harmonic invariant measure for the geodesic flow (cf. [Led]).

2 The Brownian free energy

Define A(t) = E¢(exp w(&, 0 £ s £ t)). By Girsanov and Feynman-Kac for-
mulas, it is clear that

A(t) = JQ1(x) (dx), “4)

where Qf is the semigroup of generator L”. O is a semigroup of compact
positive operators on C(M) which map non negative functions into positive
functions. By the Krein—Rutman theorem, cf. [Kr, Chap. 2], there is a positive
function % in C(M), a projector © of C(M) into AR and a real number A(w)
such that

— Q= ehh,

— O =n0,

and
- 1%m ;10g | o —m) |l < 2.
tTeo

The analyticity in « of A(w) follows from standard perturbation theory. One
checks very easily that the generators of O, form a holomorphic family of
sectorial operators of type By is Kato’s terminology (cf. [Ka, VII-4}).

We have to show that lim/je (1/8)log [ Qi1d4 = A.

The majoration by A follows from the fact that e’ is the spectral radius
of Qy: for every t, (nt)"'log [ Quld¢ < (nt)~! log || Q7| which converges
towards A.

We get the minoration from the existence of € > 0 such that 1 = eA.
Finally, we give a lower bound for A which ensures the finiteness of the entropy
functional:

M) 2 5 [{o,w)dl. )

Note first that since the generator of Q; is elliptic, # is C*. h can be normalized
in order to have [#?d/ = 1.



Free energy for Brownian and geodesic homology 59

We have
23, = [[-||ldh|* + 2w, dh)h + ||w|*H*1ds
= Zy(h, h),

where Z, is the symmetric bilinear form defined on C'(M) as follows :

Zi(f 1) = [TI=ldf 1P + 2w, ) 2 + ol 41 ds.
It is easy to check that Z; takes its maximal value on { fecimy, [r?

dt = 1} for f = h. Therefore 24 = Z,(1,1) = [ ||ow|* d¢.

Remark
— The constant negative curvature assumption was not used in this section.
— This argument can be generalized to yield large deviation principles in
various cases.

3 Existence of ©

We shall use the same representation as in our note [L1] on windings in cusps.
(We can also refer to this note for the central limit theorem in the present
situation.)
We define a stopping time 7, by inf (s, d(fo, fs) =t) where ¢ can be any lift
of the Brownian motion ¢ into the hyperbolic space (i.e. the universal covering
of M).

Set C; = [exp (w(p(6sx), 0 < 5 < 1)) m(dx).

Then C; = E; (exp(w(&,0 £ 5 < 14))).
By the Girsanov theorem we have immediately

7
Ci=E} ( exp (%f!lwﬂz(&) dS>>,
0

where £2 is the law of the diffusion with generator A/2 + (w,d) starting at x.
By definition of ¢, we have

Tips = Ty 0 O + 15 : 6)

Set Cy = inf yepy EZ (exp2 [y llo]*(&)ds). Then Crpy = C,Cs by (6) and
the strong Markov property. Besides C; is obviously bounded by exp (||efloof)

as C, is by definition and larger than 1. Hence (1/¢) log C; converges as ¢ T co
towards a constant C = 0 and we have lim inf 17! log C, = C.
Let R be the diameter of M, and y a point such that

Cron =23 (a0 (1 [0z as) ).

0
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From (6) we obtain easily the inequality

R 7100 +1y
%{duE;J(exp(-;- i i|w||2<5s>ds)>

Tu

= [W(dx)E? (exp <0f lolP(E) ds))

1\%

Crir

with v(-) = (I/R)fduP;’(XT“ €.
0

Since the diffusion of law P;’ is elliptic, v dominates e/ for some & > 0,
and therefore C’,+R dominates £C;.

Hence lim¢~!log C, = C = n(w) (by definition).
4 The relation between A and =

If 7, is the distance to the origin of the hyperbolic Brownian motion, we have
4 = E(Cy). (7)

There is a 1-dimensional Wiener process W, such that
t
re = W, +451 [ coth (ry) ds = W,+5.
0

For every ¢ > 0, there is R. such that when » > R., |r~!logC, — C| < &.
Hence

4, = E(e(C—e)rt l{r,>R5}> > E(e(CgE)(WZ-H(d_I)/Z)1{W;+t(d—1)/2>R5}) ,
which for ¢ > 2R, is larger than

E(e(C—e)[W,Jrz(d_l)/z]lW > 0) _ le((C—e)(d—l)/2+(c_5)2/2)t
f 2 .

On the other hand, since coth » < 1+ 1/r for every » > 0, by a comparison
theorem (cf. [I-W, Chap. VI]) 7, is always smaller than p, where p; solves

t
Pr = Wt+d—zl|:f7}?dS+[}
0
If u, solves the equation

L1
Mt:m+d%Lf_dS,
Ou

5

we have also by comparison p; = u, and therefore

t
o = Wt—l—(d—zﬂ<f%ds+t> < up + @50y
0
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u; is a Bessel diffusion. Its density at time ¢ is Nyp?~1¢=4/ 20=712t gy
By (7)

At < CR— +E<e(c+€)r;) < CR +E<e(c+£)((d-l)t/2+u[)>

— Cp +e(C+5)t(d—l)/2th—d/2 Te(C+€)rrd—le—r2/21 dr
€
0

< Cg. + CHNd—1)/2H(C+e)’ 12 ofo NAp—d/2,d-1 o (r—(CHey 1 dr.

—Oo0

The last integral is a rational function of ¢. Hence

1
lim sup ;log A S (CHeXd —1)2+(C +¢€))2.
Letting € | 0 we get that

(d — D(w) + m*(0) = 24(w)
or equivalently

n(w):l(\/8/1+(d—l)2—d+l>.

2
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