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1 Presentation of the results 

Let M be a compact Riemannian manifold with constant curvature - 1  and 
the space of harmonic 1-forms on M. Let F be the unit tangent bundle of M 
and p the projection of F onto M. 

We denote by rn the Liouville measure on F and by f = p(m) the volume 
element on M. We also consider the law lPx of the Brownian motion on M 
starting at x, and the geodesic flow on F,  denoted Or. Given an arc of  curve 
7 in M, and co in S let us denote co(7) the integral of co along this arc 7- (It 
is invariant under homotopic deformation.) 
We show that the free energies of  the Brownian and geodesic homology 
respectively denoted 2 and ~z can be defined as positive analytic functions 
on ~ by the formulas 

2(co) = l i m t - l l o g ( f  exp((co(~s, 0 <-- s <-- t))P~(d~)) (1) 
t'rc~ 

with P~ = f Y(dx)Px. 

n(co) = lira t -1 log ( f  exp(co (p(Osx), 0 <- s <- t)) m(dx)) .  (2) 
tToo 

2(co) can also be defined as the principal eigenvalue of the operator 

L ~ = A/2 + (co, d) + Iico112/2. 



58 Y. Le Jan 

We show that ~z and 2 are related by the formulas 

2 2 = ( d  - 1)~ + g2 2g = ~/(d -- 1) 2 + 8X + 1 - d. (3) 

The existence of 2 and rr are already known in a broader context, cf. [D-S, 
Ki, B-D, M, T]. To be self-contained, we provide for 2 an argument which 
yields the analyticity easily and works also in variable curvature. For ~z, the 
existence follows by an easy argument which does not rely upon coding theory. 

The differentiability of 2 and ~z implies that the related entropy functionals 
are strictly convex and that a large deviation principle holds (cf. [E, Chap. 
VII]). 

The method should apply in the finite volume case also. More general func- 
tionals should also be treated by using the Brownian motion on the leaves as 
in [L2]. The method might also be adapted to non constant negative curvature 
using the harmonic invariant measure for the geodesic flow (cf. [Led]). 

2 The Brownian free energy 

Define A(t)  = E~(exp co(~s, 0 _< s < t)). By Girsanov and Feynman-Kac for- 
mulas, it is clear that 

A(t)  = f Q~O 1 (x)d(dx) ,  (4) 

where Q~ is the semigroup of generator L% Q~) is a semigroup of compact 
positive operators on C(M)  which map non negative functions into positive 
functions. By the Krein-Rutman theorem, cf. [Kr, Chap. 2], there is a positive 
function h in C(M),  a projector 7~ of C(M)  into hiP, and a real number 2(co) 
such that 

- Qth = e~th, 

- Qdz = rcQt 

and 

1 
-- lim -" log II Q t ( l  - re) II < 2 .  

tToo t 

The analyticity in co of 2(co) follows from standard perturbation theory. One 
checks very easily that the generators of Qt form a holomorphic family of 
sectorial operators of type B0 is Kato's terminology (cf. [Ka, VII-4]). 

We have to show that limtToo ( I / t ) l o g  f Qt ldd  = 2. 
The majoration by 2 follows from the fact that e xt is the spectral radius 

of Qt: for every t, (nt) -1 log f Qntldd < (nt) 1 log IIQ~II which converges 
towards 2. 

We get the minoration from the existence of c > 0 such that 1 > oh. 
Finally, we give a lower bound for 2 which ensures the finiteness of the entropy 
functional: 

;~(co) _>_ 2ftco, co)dd. (S) 

Note first that since the generator of Qt is elliptic, h is C ~176 h can be normalized 
in order to have f h 2 d d =  l. 
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We have 
22 = fE-I ldhl l  2 + 2<co, dh)h + [Icoll2h 2] d~ 

= Zh(h,h), 

where Zh is the symmetric bilinear form defined on CI(M) as follows " 

Z h ( f , f )  = f [ - l l d f l l  2 + 2(c0, ~ ) f 2  + ][co][2f2] dE. 

It is easy to check that Zh takes its maximal value on { f  E CI(M), f f2  

dE = 1~ for f = h. Therefore 22 > Zh(1, 1) = f ][co]]2 dE. 
) 

Remark 
- The constant negative curvature assumption was not used in this section. 
- This argument can be generalized to yield large deviation principles in 

various cases. 

3 E x i s t e n c e  o f  ~r 

We shall use the same representation as in our note [L1] on windings in cusps. 
(We can also refer to this note for the central limit theorem in the present 
situation. ) 
We define a stopping time zt by inf (s, d(~0, ~s) = t) where ~ can be any lift 
of the Brownian motion ~ into the hyperbolic space (i.e. the universal covering 
of M). 

Set Ct = f exp (co(p(O~x), 0 <- s <- t)) m(dx). 
Then Ct = E t  (exp(co(~s,0 -< s _< zt))). 

By the Girsanov theorem we have immediately 

where Ex ~ is the law of the diffusion with generator A/2 + (co, d) starting at x. 
By definition of zt we have 

vt+s > vt o 0~s + %. (6) 

1 "Ct 
Set Ct = in f  x~M E~ (exp~ fo ]lcoII2(~s)ds) �9 Then Ct+s > CtCs by (6) and 

the strong Markov property. Besides Ct is obviously bounded by exp ([[coll~ot) 
as Ct is by definition and larger than 1. Hence ( l / t )  log Ct converges as t 1" oo 
towards a constant C => 0 and we have lira inf t -1 log Ct > C. 
Let R be the diameter of M, and y a point such that 
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From (6) we obtain easily the inequality 

((  )) Ct+ R ~_~ l fduE~ exp �89 Ilcoll2(~s)ds 
7Jtt 

=fv(dx)E~(exP( �89176 

R 

with v(.)= (1 /R) f  duP~(X~, E .). 
0 

Since the diffusion of law P~ is elliptic, v dominates e# for some e > 0, 

and therefore Ct+e dominates eCt. 
Hence lira t - 1  log Ct = C = n(co) (by definition). 

4 T h e  relat ion between ~, and r~ 

I f  rt is the distance to the origin of  the hyperbolic Brownian motion, we have 

At = E(Crt). (7) 

There is a 1-dimensional Wiener process Wt such that 

t 

r t = W t + @ f c o t h ( r s ) d s  > Wt+(d2 ~)t. 
o 

For every e > 0, there is R~ such that when r > R~, Ir - l l o g C r  - CI < e. 
Hence 

which for t > 2R~ is larger than 

E(e(C-e)[wt+t(cl-l)/2]lw,>O)=~e((C-e)(cl-1)/2+(C-e)2/2) t. 

On the other hand, since coth r _< 1 + 1/r for every r > 0, by a comparison 
theorem (cf. [I-W, Chap. VI])  rt is always smaller than Pt where Pt solves 

P t = W t + d ~ - - - - ! ~ [ i ' v ; d s + t l "  

I f  ut solves the equation 

t 1 
u, = wt + @ f -  as, 

0 Us 

we have also by comparison Pt > ut and therefore 

Pt <= Wt + ( ~  2 ~ ds + t < ut + (-~D-t. 
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ut is a Bessel diffusion. Its density at time t is Ndrd--lt-d/2e -r2/2t dr, 
By (7) 

At < Ca~ +E(e(C+~)rt) < CR~ +E(e  (c+~)((d-')tl2+u')) 

o o  2 

= CR~ + e(C+c)t(a-1)/2Ndt-d/2fe(C+e);'rd-~e - ' /2 t  dr 
o 

o o  2 

CR ~ q_ 8(C+c)t(d-1)/2+(C+e)2tl2 f Ndt-d/2rd-le-(r-(C+E)t) /2t dr. 
- - 0 0  

The last integral is a rational function of  t. Hence 

sup tl-log At < (C + c)(d - I )/2 + (C + lim E)2/2. 

Letting r ,L 0 we get that 

or equivalently 

(d - 1 )n(oo) + 7r2((.0) = 22(eo) 

1( ) 
G((,O) = ~ r  q- ( d  - 1)2 __ d q- 1 . 
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