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1 Introduction 

Let us consider a regular bounded open subset G of RN and the self-adjoint 
operator on LZ(G) defined by A = ( - A )  s, where A denotes the Laplacian with 
Dirichlet boundary conditions, and s is greater than N / 2 .  Let Xt be a ~00(G)- 
valued process formally defined by the following stochastic differential equation: 

dXt = ~(t) c~(., dt ) - AXt dt - ~ / '  (X, )dt , (1.1) 

where c~ is a space-time white noise, and _~" is a real function on R with bounded 
derivatives of any order.  We are interested in a simulated annealing problem: 
what is the asymptotic behaviour of the law of Xt as t ~ ~ ,  if e(t) is a function 
slowly vanishing at infinity? As a matter of fact, this problem is not solved in the 
present article, although we give an approximate answer. We obtain a preliminary 
result that we will now describe. Let ~ be the infinitesimal generator of the 
homogeneous process defined b'~ the previous equation, when e(t) is frozen at a 
constant value c. More precisely, we have for smooth functionals F: 

E 2 
L~g(w)  = - f  A__F(w) - ( w , a [ V r ( w ) ] )  - ( V F ( w ) ,  ~ V ( w ) ) ,  (1.2) 
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where V and __~ are respectively the Ggtteaux's gradient and the infinite dimen- 
sional Laplacian with respect to the L2(G) scalar product (., .) . As in [HKS], 
we investigate the asymptotics of the constant in the log-Sobolev inequality as- 
sociated with L__ e as e tends to 0. This extends the work of  the first author [Ja2] to 
more natural generators and to dimension N. In the same way and with the help 
of infinite dimensional processes we give an approximate simulated annealing 
method. Given d, it allows us to calculate exactly in a suitable wavelet basis the 
first d coordinates of the ground states of the following energy function: 

f c l  2 S(*O = ~ [ ( -Ay / 2w(x ) ]  + ~ ' ( ~ , ( x ) ) a x ,  (1.3) 

This energy has some physical meaning at least for N = 2 and s = 2, when it can 
be considered as the energy of  an elastic clamped plate with an extra interaction 
potential ~ ' .  

A great part of the present work is devoted to the case of  a constant e. We 
establish a stabilization (strong ergodicity) result for the process (1.1) and we 
study the rate of stabilization as c --+ 0 . For N = 1 and s = 1, this ergodicity 
was proved by a different method, apparently for the first time, in [Ja3] . 

2 Preliminaries 

Wavelets 

It appears that the wavelet basis in L2(G) built by Jaffard and Meyer [JM] is 
suitable for an extension of  the estimates of [Ja2], but we shall rather use the 
orthonormal basis o f -5~ ,  supplied by Benassi et al., to go a little farther. These 
constructions require some regularity condition. We assume like in [JM] that G 
satisfies an uniform external ball condition. 

Let m be a positive integer. We set A = Ujc~j>jo ~ '  where the elements 

of Fj are the points of the lattice 2 - J z  N which are at a distance greater than 
(m + 2)2 - j  from II~ 'v \ G with respect to the norm Ix I = sup Ix;I, i <_ N,  and 
j0 = inf{j I Fj ~ 0} �9 Note that, for any A, there is a unique scale parameter j 
determined by A c Aj, where Aj = Fj+I \ Fj, and A and j are assumed to be 
coupled according to this rule in formulae. The wavelets of Jaffard and Meyer 
are the elements of an orthonormal basis if' = {~b,~, A C A} of  LZ(G) with the 
following properties: 

1. The wavelets are functions of class .~2m, vanishing outside G. 
2. There exist positive constants C and % such that 

IO,,~;,(x)l _< c2Jlo'D2Nj/2exp(-'Y2Jlx -/kl) /k c Aj, I~1 -< 2m.  

3. By a scaling of the wavelets, namely if we consider ~7;~ = 2-#~b,x, )~ E A, we 
get a Riesz basis of . -~.  
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Recall that a family f-, i E I of  vectors constitute a Riesz basis of  a Hilbert space 
H,  if the space of  finite linear c o m b i n a t i o n s  ~iEF ~ is dense in H and there 
exists a constant k such that for any such linear combination we have: 

iCF 2 
k - '  <_ < . 

iCF iEF 
(2.1)  

In the sequel, we will keep the integer m fixed and such that 2m > s. One define 
the wavelet coefficients of  a distribution w on G as w,x = (w, ~.x), provided w is 
regular enough to be tested on ~2m functions. We shall mainly use the following 
fundamental result, which extends the property 3 above: 

Theorem 2.1 For any real ~r, - 2 m  < ~r < 2m, there exist some constants C1, 
C2 such that: 

) C2 4~rJw I Cl 4~Jw2A _< Ilwll.0 ~ _< 
AEA AEA 

The wavelets of Benassi, Jaffard and Roux are defined by 0,x = A-1/2~A and 
they thus are in H 2m§ C Ho ~. Their collection forms an orthonormal basis 6) of 
o~76 ~ and, using the fact that A 1/2 is an isomorphism of L 2 onto H - S  = H o  s, and 
Theorem 2.1, we get : 

Proposit ion 2.2 The functions ~;~ = 2JsoA yield a Riesz basis ~ of L2(G). 

We need these wavelets for the basic convexity argument in Lemma 3.9, and 
apparently the eigenfunctions of A cannot serve that purpose (moreover, they 
are not well known in general). 

Boltzmann-Gibbs measures 

For a given e we shall call free measure the centered Gaussian measure/-/~ on 
1 _ 2 A - 1  � 8 9  . L2(G), associated with the nuclear covariance operator ~e rt = 

J~-O (w'gg)2dHe(w) = l~2(gg'A-lg~) ' g~ E ~ r ( G ) .  (2.2) 
(G) 

We remark that Theorem 2.1 readily implies that A -1 is nuclear, as required. 
Moreover, an expansion of  the corresponding random field with respect to the 
wavelet basis ~ shows that the free measure is supported by the space ~00(G) 
of  continuous functions on G, which tend to 0 at its boundary: using estimates 
similar to those of  [B JR], this expansion can be shown to converge, almost surely 
and uniformly. 

Let - ~  be the Sobolev space H~(G). We may define the topology o f , - ~  with 
the help of the scalar product (.,-) = (A., .). The measure He is the transform of 
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I1" 1 under an c-dilation and its reproducing kernel Hilbert space is ~ ,  endowed 
with the scalar product (., .)~ = 2r ., .). 

In our context, the Boltzmann measure #~ is the probability on ~5~0(G) with 
the density with respect to H~ equal to: 

(1/Ze) exp(-2c-2V), (2.3) 

V(w)= L 7"'(w(x)dx, Z~=fexp(-c-2V)dH~. (2.4) 

The parameter c2/2 is called temperature. 

Gdteaux's derivatives 

A functional F on W = .~ (G)  is said to have a G~teaux's derivative at a point 
Wo: if O~F(w) = lim h -1 (F(wo + h9-) - F(wo)) exists for any function 9- in 

h--~0 
W and it is a linear continuous function of 9- with respect to the LZ(G) norm. 
One denotes this limit by (VF(wo), 9-) and V is called the Gfiteaux's gradient. 
For example S admits a gradient at every smooth point w0, and we may usefully 
understand the equation (1.1) at an even more formal level, if we do not pay 
attention to this smoothness: 

dXt = c( t )a( . ,  dr) - VS(Xt)dt  . 

Consider the so-called class .9 ~ of cylindrical smooth functionals, i.e. the class 
of functions F of the configuration w, which may be written under the form 

F(w) = f ( (w,  991),... ,  (w, 9),)) 

for some f 6 ~~176 and 9~l , . - - ,Pn 6 ~ ( G ) .  The gradient V F  of such a 
functional is an element of L2(W, L2(G)). Taking the deri'vative of this vectorial 
function we define at any point w a Hessian operator of finite rank acting on 
LZ(G) by h i , OhVF. It is thus possible to define the Laplacian ~ F  for 
functions in S as the trace of the Hessian: z~F = ~(Oe, V V , e , ) ,  if (e,) is an 

n 

orthonormal basis of LZ(G), and to define _LeF as a functional in LZ(w). One can 
check, for example by using a quasi-invariance property, that L~ is a symmetric 
operator on the domain ~ C Lz(#e) in the sense that 

c2 
L_L_~F G d l ~  = F L~Gd#e : - ~ -  ~t,~(F, G ) ,  

where ~ denotes the Dirichlet form 

N~,~ (F, F)  = L (VF ,  VF)L2(a)d#~ . (2.5) 
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Since the positive quadratic form ~,~ (F, F)  is generated by a symmetric operator, 
it is closable, and we shall denote by II?(#~) the domain of its closure, which will 
be still denoted by ~"~. 

3 Small noise behaviour in the logarithmic Sobolev inequality 

Due to the strong assumptions that we impose, it will be quickly seen, by com- 
parison to the Gaussian case, that a logarithmic Sobolev inequality of the form 

SwFZlog ( IF] "~ < d/ze c(e)~u~ (F , F) (3.1) 
k, HFH2 ] - 

does hold. But in order to study the stabilization rate of our processes when e is 
small, we will estimate the best constant c(#~) in this inequality (Theorem 3.4 
below). Let us precise the meaning of this kind of inequalities: the norm 11 �9 I12 is 
always the LZ-norm of the measure appearing in the left side (here #~). Moreover 
it has to be true for any F in L 2 if we allow the value oc for its both sides: for 
the left-hand integral if it doesn't converge and for the right-hand side if F is 
not in the domain of the quadratic form ~ .  

The Gaussian case 

We start from the following Bakry and Emery's result which will be also useful 
in the sequel: 

Theorem 3.1 Let S be a function of class ,~2 on ~d such that S"(x)  >_ C I 
uniformly in x and define u(dx) = exp(-S(x) )dx .  Then we have: 

d 
I+l 

t, l l V ' l l 2 )  - c ~=~ 

Let 3' be the lower bound of the operator A on L2(G). 

Theorem 3.2 For any F in 113s7~ 

Sw ( IF] ~ < 1 2 3" FZlog k,i[FH2j d H ~ ( w ) _  ~e ~ n ~ ( r , F ) .  

It is sufficient to prove this theorem, when F E S ~ and this leads directly to the 
study of a finite-dimensional Gaussian law. The constant C in Theorem 3.1 is 
bounded from below by 2~-23'. To go from the Gaussian case to the non-linear 
one, we may use the following general result: 

1 
Lemma 3.3 Let P and Q be probability measures, such that Q = ~ exp ( -V)P  

for a bounded function V. A logarithmic Sobolev inequality 
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iF21og ( ]FI "~ dP < C F ~ p ( F , F )  G D(P) 
\ l t F I h )  - 

for  P implies an analogous one for  Q, with a new constant C exp(sup(V) - 
inf(V)). 

This result, proved for example in [S], is valid for .any logarithmic Sobolev 
inequality, provided that the inequality between measures P <_ kQ implies ~e <_ 
k~Q on a domain ID(P) C ]D(Q). In our particular case it implies the rough 
estimate c(#~) _~ (2")') - I  r exp(2 v(G)Ms-2) ,  where M is a majorant of ~ ' ,  and 
v(G) is the volume of G. 

Hajek's constant 

Generally speaking, let S be a map defined on a set W, taking its values in 
[a,+c~] for some finite a, and let . ~  = {S < c~} . We denote by F s ( ~ , ~ )  the 
set of all paths: 3' : [0, 1] , , . ~  joining two elements ~ and ~b of  - ,~ ,  such 
that S o 3, is finite and continuous. We also put: 

h('),) = sup S("/(t)) 
O < t < l  

ms = sup inf (h(7) - SOp) - S(~b) +inf(S))  (3.2) 
~,~ 7~r(~,~) 

We apply this definition to the functional S defined by (1.3) (1.5), which is set 
by convention to equal +cx~ outside ,~-~. Our aim is to prove the following : 

Theorem 3.4 We have lim(eZlog(c(#~)) = 2ms, as e -~ O, where c(#s)  stands 
for  the best constant in the the logarithmic Sobolev inequality (3.1). 

We will rely on a finite dimensional result, proven in [Jal], extending to Nd a 
work of R.Holley et al. ([HKS]). Let v be a W 2 function on Na, which satisfies 
the following growth condition: 

{ Ivvl(x)--~ oo and v(x)  ~ +oc, when Ix[ --~ oc 
Ivvl 2 - A v  is bounded from below (3.3) 
there exist constants k, k' ,  such that v <_ k i w i  2 + k'  

We consider the measure: 

ue(dx) = Zs - I  exp( -2e-2v(x) )dx  (3.4) 

where the factor Zc is determined by the requirement that u~(N a) = 1. This 
probability is called the Boltzmann measure associated with v at temperature 
c2/2. The symmetric operator of L2(ue), defined by 

L ~  = ~-A~b - v ~ .  v v  (3.5) 
z 
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is under these hypothesis essentially self-adjoint on _~(~d), and the domain 
of the closure of the quadratic form . ~  = - 2 e - 2 ( .  ,Le.)LZ(u~ ) is the space 

Hl(ue) of all functions in L2(ue) whose gradients in the distributional sense 
are again in L2(ue) (see [DSi], Proposition 4.4). On this domain: ~,e(~b, ~) = 
f Zi~=l 0,~7 2 due. 

Theorem 3.5 There exists a constant c so that 

f @2log { due < c ~ ( @ ,  ~b) (3.6) Ir r c nl(~e) 
t . l l r  - 

and for the best possible constant c(v~) in this inequality we have: 

lim(~ 2 log(c(u~)) = 2my 
e---*0 

Proof The main step in the proof is accomplished in [Jal]. More precisely, it is 
shown that a result similar to that we want is valid for the best constant c'(ue) 
in the Poincar6 inequality, which is the inequality that we get when we replace 
the left member of (3.5) by var~,~ (@). On the other hand, as an application of 
a method by Carmona [C] that we will now describe, we can prove that ue 
satisfies a logarithmic Sobolev inequality in some wider sense (see also [R2]). 
The symmetric operator -e -2Le  on L2(ue) is transformed into 

' �89 He = - ~ A  + Qe with Qe ----" ~'--4[V'UI 2 - -  e - 2 A u )  

by the Hilbert space isomorphism @ ~ > ~pexp(-e-2v) on L2(dx). If we take 
care of the constants, Proposition 5.3 in [C] says that there exists a constant a, 
which depends only on the dimension d, such that the dominations - b  < Q and 
v < b~H + b" with respect to the order of operators in L2(dx) imply: 

f { I~1 "] d~,< 1 ~21~ \H--~2/ _ -~(a +b')~u +(b"+ab)]l~Jl2z(,) 

In addition, there is a way to mix such an inequality and the Poincar6 inequality 
like it is done in Deuschel and Stroock [DS], Exercise 6.1.31, using 

t . 1 1 r  - \ 1 1 ~ 1 1 , . /  

where ~ = @ - f~pdu. By making use of Carmona's result, we leave aside the 
operator - A ,  since it is positive in L2(dx), and we have to check inequalities of 
the following form: 

e'-2V < bte(c-41v'oi2 ) + b'j Qe >_ -be  �9 

We may take b~' = e -z, b~' = b"e -2 and be = e-2b " for e small enough. So if we 
apply first the Deuschel and Stroock inequality and then Carmona's inequality 
to ~ = @ we obtain the logarithmic Sobolev inequality 
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j/, ( 1,1 < 
2 log \ 11'112] 

C(~) = ( l  + (b" + a'b')e-z)z(u,) + ~(a + ~-2). 

We thus find lim(c 2 log(c(u~)) <_ l imc 2 log(Z(u~)) = 2mv. 
~-~'0 E---~O 

The lower bound reduces to the analogous result for Poincar~ inequality, 
since this inequality is implied by the logarithmic Sobolev inequality, with the 
same constant(see for example IS] 2.6). [-1 

We will split W into the finite dimensional subspace Wj of W generated by the 
wavelets 0,x for A E F~ and its complementary closed subspace W~* spanned 
by 0h for A E -P \ Fj.  Since the 2Jsox, X E A form a Riesz-basis of L2(G), 
we have a sequence of continuous projections Ej from L2(G) on Wj which 
converges pointwise to the identity map when J tends to infinity. We denote by 
mj the Hajek's constant associated with the restriction Sj of S to Wj; we shall 
omit the proof of the following result, which is strictly parallel to that used in 
[Ja2]: 

Lemma 3.6 When J ~ ec, mj  converges to ms. 

We need an estimate to bound the probability of large fluctuations of wj along 
the wavelets of high resolution . Let us denote by wj and w~ the orthogonal 
projection in ~ of w on Wj and Wj* respectively. 

Lemma 3.7 Let us choose s ~ such that N < 2s' < 2s. Then there exists a 
constant C so that for  any ~ and J:  

H1(IIW~IIL2(G) > ~5) < C e x p ( - C  2(2s'-N)J~2) . (3.7) 

Proof. We have a Wiener's expansion of the free measure Hl(dw) .  It is identical 
to the law of the stochastic field defined by: w = 2 - I /2  ~ x E A X A O x ,  where Xx 
are mutually independent standard gaussian variables. We write the tail field as: 

w~ = ~ r s  2-#-�89 and we use the fact that O is a Riesz basis of L2(G) 
to get the estimate 

(II YlIL2< )) 2 <_ C 1 ~ 2 -2)s ( X ) , )  2 . 

Since c = ~ 2 -2j(s-s') is finite, we have for any J" 
J ~ ' J0  

For a standard gaussian variable X we have ~(e (l/4d)X2) (1 (1 /4d))  ~1/2, ---- - -  S O  

for a X 2 distributed variable Y with d degrees of freedom E[exp((1/4d)Y)]  is 
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bounded independently of d. Thus, by Markov inequality, 
H1QYI > h) <_ C2 exp ( - (1 /4d )h ) .  

We note that the number of points in Aj is less than v(G)2 Nj and we thus get: 

(( ')  ) f/l (llw;llc-~a) > •) < C2 ~ exp - ~vc 2(2/ N)J62 " 
j~r l  

It is easy to see that the ratio between two consecutive terms of this series is 
bounded by a constant which is less than one. The remainder is thus bounded 
from above by a constant multiple of its first term and this gives precisely the 
wanted result. [3 

We shall identify Wj and ~d where d = # ~  using the basis 0"~, A E Fj. Let 
#e.j and IIe.j be the projections on Wj of #e and He respectively. Later, we 
shall consider the conditional law #~#(dw ] v) of w under the condition thai its 
projection on Wj is equal to v. We note that by orthogonality in the reproducing 
kernel Hilbert space, the conditional free measure Hi# (dw ] v) does not depend 
on v, and it equals the law of the tail w~j. From the preceding lemma, taking 
into account the Lipschitz property of ~",  it is easily seen that the Boltzmann 
measure pc# (with temperature c2/2) associated with S on the finite-dimensional 
space Wj, endowed with the Lebesgue measure |  is not far from #ej  : 

Lemma 3.8 
1 There exists a constant C, such that for  any c and j :  

1 exp(_Ce_2) < d#e j  < C exp(Ce -2) (3.8) 
C - due# - 

2 For an3' r l > O, one can f ind J and c, co > O, so that: 

exp(-r/e -2) < d#~d < exp(r/r 0 < r < e0, J _<j . (3.9) 
- d u e o  - 

We will prove the most important for applications half of Theorem 3.4, the 
upper bound: limr(c2 log(c(#e)) < 2ms. The lower bound can be checked as in 

0 
the original work of R.Holley et al. with the help of suitable functions of a finite 
number of coordinates and not depending on s (see [Ja2]). 

It is convenient to work with the space ~gb~0 of functions F depending on a 
finite number of coordinates with respect to the basis ~ :  F(w)  =f(w), l ,  - - �9 w~,) 

where w;~ = 4-sJ(w,a'oA) and f E ~~176 Since the functions a0";~ are in 
L2(G), all elements of ~ belong to D and they possess a G~teaux's gradient 
which satisfies.s (2.5). We shall shorten into &, the notation of the derivative in 
the direction 0h. 

Theorem 3.9 One can find J and C such that, uniformly in v, for  any ~, and any 
F C..~o, 
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\l}V]12j d#s, j( ,  t v) <_ CE 2 (O~F)2 d#~,j( . I v ) .  

Proof. We choose a resolution jr ,  j t  > j ,  such that F depends only on the coor- 
dinates indexed by Fs,. We observe that the estimate we want will be established 
if we prove its analog for twice conditionned measures #~d(dw I v , z ) ,  where 
z fixes the projection of w on the high resolution space Wf,, provided that the 

�9 constant does not depend on J~ nor z. So we have to deal with a Boltzmann 
measure on a finite dimensional space It~ ~ where D = (Fj, \ Fj), whose energy 

is easy to compute using the coordinates xx in the basis 0h, A E D: 

1 ( _) 
AED AED 

We have U(x) = Ul(x) + U2(x) where, 

1 
= 22SJxl 

XED 

, ( ) V 2 ( x ) = ~ 2 2 ' J x 1 + V  v + z + Z xxOx 
A~D ,XED 

Obviously, the lower bound on the Hessian U[ ~ >_ 22sjo- 1 1 is valid. We want 
to show that, for J large enough and any j r ,  Uz is convex: that will finish the 
proof by application of the the Bakry and Emery theorem quoted before, since 
the inequality needed to apply it will be strenghtened by the term U2. While 
doing that, it is equivalent but more convenient to work with the coordinates y;~ 
in the basis 0;~, i.e. to study the convexity of 

~d (y ) = -~ y ;~ + V v + z + y ~, O )~ . 
AED ,kGD 

We can write: ~d," = �89 + T with 

T.x,=~'(u(a)+z(~r)+ZypOp(cr))O.~(~r)Ou(cr)da. 
pED 

so to obtain the convexity we may prove that for A ~ Fj Z tTx" I < -'1 The 
- 4  

function K u = ~_~"(v + z + ~ yoOp) O, is bounded in L2(G) independently of 
pED 

everything since ~ "  is bounded and 0~ is the image by the bounded operator 
A -1/2 of the unitary vector ~u" So A-1/2Ku stay in a ball of ,-~'5 of radius r. 
We remark that Txu, A E A are the wavelet coefficients (A-1/2X.,~a)L2 of 

A-1/ZK~ thus, according to Theorem 2.1, 
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Z 22'J(T:~u)2 <- C~r2" 
AEA 

We thus have by Schwarz inequality 

E 'TAI~' ~ (AEcFja2sJ(TA#)2)I/2 ( Z  2-Z~J)'1/2 

IZ~,[ _< rf2v(a) ~ 2 j<g-2s> = C3 2 J<g-2s> 
tz~Vj j>J 

[3 
By integrating the inequality given by the preceding theorem with respect to 
#~,j, we find: 

f F21~ CG2 f E  (O'\F)2d#E 
A~tvj 

+ Jwj (F2(v))21~ ' (3.10) 

where we have set 

(j F](v) = F2(w)d#~,j(dw ] v) (3.11) 

Lemma 3.10 
1 For F in ~ ,  F] is a bounded ~1 function on Wj and we have for A E Fj: 

O~FT(v)=(F*'-1(fFO~Fd#*j(.j, , v)--c-2cov(OAV, F2 I v ) )  (3.12) 

where coy (.,. [ v) stands for the covartance with respect to #~,j(. I v). 
2 For any positive 71, we can find a J and Go, so that for e <_ Go and ga E 

H 1 (#<j), 

J~p21og (]~bl "~d#~,j <exp((2ms+rDG-e) f ~ O~*,b2d#e.j. (3.13) 
\llvS[f2J - ),~Fj 

Proof The first assertion just comes from the derivation under the integral sign, 
(see [Z]). For the second, we remark that we can apply the Theorem (3.5) to the 
measure u<j. The corresponding Hajek's constant is just no which differs from 
ms by less than (7?/6) for J large enough. Besides, Lemmas 3.8 and 3.3 permit 
us, by comparison, to obtain a logarithmic Sobolev inequality for #~.j with the 
constant multiplied again by exp((r//3)G -2) for J chosen large. Thus we get a 
log-Sobolev constant less than exp(e-2(2m +'q)) for c small enough. [-] 
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Proof of Theorem 3.4 We have the uniform bound var(0;~V I v) <_ M '2, since ~;~" 

is bounded, so Icov (O~,V,F 2 I v)l <_ M'(var(F2]v))1/2 <_ 
M'(2var(F I ~))URlIfll2 = M'(Zvar(F t v))l/2f;(v). Moreover, we can apply 
the Poincar6 inequality in the space W~j as a byproduct of the log-Sobolev 
inequality stated in Theorem 3.9 and we get: 

\ 1/2 

We now apply the Schwarz inequality to the first term in (3.12) and the inequality 
just obtained: 

(/  )1/2 
VA E Fj IO~Ff('v)l < (O~,F)2 d#*,j(.!v) 

+ x / ~ M  'r (O,xF)2 (3.14) 

Taking into account (3.10) and (3.13) for ~b = F] ,  we may write: 

f F2 \ Ilfll2J log 

+2exp((2ms + r~)~ -2) f ~ (O~F)2+(#Fj)2CM'2~ -2 Z (0)'F)2] d#e (3.15) 
~cFj x'r 

As this inequality implies for e small that 

( {FI "~ d#~ < exp((2ms + 2r/)g -2) f ~ '  (0,xF) 2 d#~, (3.16) f F21~ \ l l r l l 2 J  - X ~ A  

we have proved the upper bound in Theorem 3.4. Indeed, due to the Riesz 
basis property of 6), it is easy to show that for a constant k, ~ (0:~F) 2 _< AcA 
k IWFII~2<a). D 

4 Ergodicity at fixed temperature 

Let us recall a result by Miclo on simulated annealing in a finite dimensional 
setting, under a form which will be also used in the next section [Mil]. We denote 
by/3t the standard brownian motion with values in R e (with identity covariance 
matrix), by c(t) a positive ~1 function on ~+, by 0  ̀a symetric positive definite 
matrix on Nd, by v a function on N x R d, and we look at the stochastic differential 
equation: 

dxt = e(t)0`d/3t - 0 ` 2  VU(t, Xt) dt . (4.1) 
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We have to impose to v some suitable conditions of regularity and growth at 
infinity. We choose a very strong hypothesis which is appropriate for the present 
article: v is the sum of two functions/21,/22 in .~_~1(1~ X R d) such that : 

for every fixed t, vl( t ,  .) is a positive quadratic form 

v2(t, .) has spatial derivatives O~v2(t, .) of any order c~ (4.2) 

for any T > 0, sup sup [Oc~v2(t,x)] < oo 
O<_t<T xE]~d 

We denote by Us the Boltzmann probability on Rd at temperature e2(s)/2, as- 
sociated with the energy v together with its density function (Eq.(3.4)). This 
probability is the reversible probability of the time homogeneous process 

dxt = e Er d /3t - E rE v z)(xt ) d t  (4.3) 

with e = e(s) v(x)  = v ( s , x )  (see, for example, [RID. The probability law ~ x t  
is absolutely continuous with respect to Lebesgue's measure with a density dif- 
ferentiable any number of times with respect to space or time variables and we 
set: ~ ( x t )  =ft ut. 

Let us denote by I(P I Q) the relative entropy of a probability P with 
respect to another one, Q (see for example [DS]). We set l ( t )  = l ( ~ ( x t )  ] ut). 
The hypothesis (4.2) allows us to use [KS] Corollary 3.9 examples (3.14) to get: 

sup sup ~ut (x ) )  < cx~, T > 0 ,  (4.4) 
T - l < t < T x C ~ d  

so by the same proof as in Proposition 3 of [Mi2] we have: 

Proposition 4.1 Suppose that the initial law ~r has finite moments of  any 
order." E(Ixo[P) < oc. Then l ( t )  is absolutely continuous with respect to time t, 
and 

dl( t )  - 2 e e ( t ) L d  ]Ervoctl/2)12 dtJt + 2 / ~  [e-2(t)v(t)] ( 1 - f t ) d t / t ,  

almost surely. 

Preliminaries on Langevin equation 

Up to the end of this section e will be constant and we will study the long time 
stabilization of the process governed by 

dXc,, = c c~(., dt) - AXe,t dt - ~"(X~,t)dt  . (4.5) 

One gives a precise sense to (4.5) under an integrated form using the general 
setting and results of [Da] and [Fu]. We denote by (Y2,,Tii~P,Bt) a cylindrical 
brownian motion, based on L2(G). For further use, we will establish an existence 
result for an equation of a little more general form than (4.5), namely : 
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dXt =edBt  - A X t d t  - .~t(Xt)dt with n~llX011 < ~ (4.6) 

where t ~-+ ~ is a measurable map with values in the space of lipschitzian 
transformations of LZ(G) (we drop temporarly the reference to e). We assume 
that for any T >_ 0, sup (ll~,,llup) < oo. We set ~Ttt= exp(-tA) t _> 0 . 

0 < t < T  

Since A -1 is a nuclear operator, Theorem 5.1 in [Da] gives: 

Theorem 4.2 Let Xo be a L2(G)-valued, ~ -measurab le  random variable. Then 
there exists a unique adapted process X which is almost surely in c~(R+, L2(G)) 
and which satifies 

/o t /o' Xt = ~Xo +e  ~_~dBs  - o~t_, .~(Xs)ds.  (4.7) 

I f  in addition ~ [[IXolIL~] exists, 

sup ~[IIX, IIL~(C~] < oo, r > 0 .  
0<t<T  

Approximation by finite-dimensional processes 

Let us recall that Eh is a continuous (non-orthogonal) projection of L2(G) on its 
finite dimensional subspace Wh. We set Bh,t = EhBt, Ah = EhAEh and ~hh,t = 
exp(--tAh). Let -~,s be a family of lipschitzian transformation of W, with range 
Wh such that for any T > O: 

{ --~hh,s converges pointwise to -~s when h ~ oo 

sup sup tl~,,llL2(c) < oo  
h>~0 0< t <T  

sup sup II-%,,IILIP < o ~ .  
h>_JoO(t<T 

(4.8) 

We also suppose given a sequence of .~-measurable random variables Xh,o such 
that Xh o C Wh and lim E(IIXh o -  X011L2~C>)= o. Then one can define Wh- 

valued processes Uh,t and Xh,t by: 

Uh, 0 = Xh,  0 

Uh,t = "~hh,t Uh ,0 + e ,3"s 

Xh,t = ~, tXh,o  + e ,~,(t-,~ dBh,s 

The differential equation of Xh, t is: 

/o' .~hh,(t - s ) "Ys,h ( Xh ,s ) ds . 

dXh,t = edBh,t  - AhXh,t  dt - . ~ s , h ( X h , t ) d t  (4.9) 
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The following result appears to be sufficient for our purposes. The situation is 
close to the one considered by Funaki in [Fu] and probably stronger results might 
be proved. 

Theorem 4,3 For any fixed T, there exists a sequence hn ~ cx~, such that 

]~[f0T ]lXt--Xhn,tNL2(G)dt]--+0. 

This theorem will follow from several consequent lemmas. It is convenient to 
remark that, if we restrict the domain of A, we get a positive self-adjoint operator 
in ~ (we do not introduce a special notation for it) and Ah = EhAEh is a positive 
self-adjoint operator on o% ~. 

Lemma  4.4 The operator A is the limit o f  A h when h --+ c~ in the sense of  the 
strong resolvent convergence of self-adjoint operators on ~ : 

1 F o r g i n ~ 6 ~ a n d c  >0 ,  ( A h + c l d ) - l ( g ) - - + ( A + c l d ) - l ( 9 ) i n t h e t o p o l -  
ogy of  . ~  topology. 

2 The bounded self-adjoint operators on ~ 6  ~, ~h,t converge strongly to 
3 There exists a constant k such that, uniformly in h, 

k 
II~h,tgll-~ ~ ~llgllL=, 

Vt  
gEWh. 

4 There exists a constant k ~ such that for t > 1 uniformly in h, 

II~h,tgllL2 ~ k' exp(-k't)llgllL2, g E Wh 

Proof. We observe that the operators (Ah + c Id)-x are uniformly bounded in 
and that UjEA Wj is dense in ~ . Thus it is sufficient to take 9 lying in some 
space Wj and to take h > j .  Now, in order to work in a familiar environment 
(Galerkin method) we replace the first assertion by an equivalent one in L 2, using 
the isometric map 

AI/2) L2(G) . 

At the operators level this isometry transforms A, A on ~ 6  ~, into its counterpart, 
the original A on L 2, and Eh with the orthogonal projection Fh on the space Vh = 
span(~A, A E Fh) andAh into B h = FhAFh . So we replace 9 by r =A1/29 E Vj. 
Since ~y is in L2(G), the solutionf of (A+c Id) f  = r is an element of the Sobolev 
space ,~5~ = Hd. We consider on - ~  the equivalent scalar product: 

( u , v ) '=  ((A + c l d ) u , v ) L  z . 

Let fh be the projection with respect to the (., .)' scalar product o f f  on Vh. 
Let us check that (B h + c I d ) f  h = ~ for h > j .  Since both members are in Vh we 
have only to check that they have the same (., .)r2 scalar product with any vector 
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v E Vh. As Fh is symmetric with respect to the scalar product of L 2, we can 
write 

(% (Bh + c Id)fh)LZ = (% (A + c Id) fh) ,  

and by projection 

= I v # h / =  Iv , f} '  = (v, (A +.I) : )L2 = (v,:)L2. 

we write f as a combination of wavelets: f = E ax~bx. According Now to 
A 

Theorem 2.1, 

/ \ 1/2 ILrtl~=ltAliVlls-.,d<_C2t~4SSa~ ) _< C~ltril.~ �9 

Since fh is the closest element of Vh from f ,  for another constant C~, 

(~1~ F )1/2 Ibr - fhl] '<< - C~ 4SJaZx . 
r  

So fh tends to f in ~ and this prove a stronger statement than the first wanted 
one, since (Ah + c l d ) - ! 9  is the image offh by the bounded operator A -1/2. 

The second statement is a consequence of the first one and of Stone- 
Weierstrag theorem (the proof is similar to that of Theorem 8.20, p.286 in [RS]). 

To prove the third assertion, we remark that thanks to the spectral decomposition 
of the self-adjoint operator Ah in .~r 

1 1 l II~--~h,,fll~ _< t-ill(A, + 7- ) -  (9)11~ 

since e -xt < (xt + 1) -1 for x >_ O. Like in the proof of the first assertion, we 
solve the equation 

1 
(Bh +c ld) fh  = ~ ,  c = -  ~p=All2g 

t 

by the variational method. The variational equation 

{v , f )  ' =  (v, ~) = (v, a U2 g) = ( v , A - l l 2  g) .~  

leads to the inequality (we t a k e f  = v and we use I[fH' > ][fH.~) 

IVII' -< IIA-'12gll.~ = IlgllL~ 

thus by projection, uniformly in h: I~h II' -< 11911L2. It is clear from the definition 
that t1" IlL 2 --< "v/7 I1" I1 '-Consequently,  

II.~,,f II.~' < t - ' l l ( &  + ~ / ) - l (g) l l .~ , - - - t - '  fish IlL2 _<--~t IID, N' _< -~t~t tl911c-" - 
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To complete the proof, we start from.the semi-group property .~h,t = ,~h,h,t-l~h,h,1, 

and we use the inequality just proven for t = 1 in conjunction with II~s~ll~ -< 
e-~S II~ll~ where 3' is the lower bound of the spectrum of the self-adjoint op- 
erator A in ~ (the restriction of A h to W h is bounded from below by the same 
constant). I-1 

Lemma 4.5 Let Dh,t = E (llUh,t - UIIIL=). For any t > O, Dh,t ~ 0 and for  any 

/o T > 0 Dh,t dt --+ 0 when h ~ oc. 

Proof. Since 6) is a Riesz basis of L2(G), the LZ-norm of a vector ~p is equivalent 

to the new norm ]]g)]]" = (~;~4-sJlO;~,~)2) '/2, and we will estimate D~1t = 

12 (11Uh,t - Ut 11"). By Lemma 4.4, we easily get the convergence of O~h,h,t Uh,o to 
~-U0 in the required sense, so we will now study 

(Jo 2 "3 O2t(h,t) = ]F, ~h,( t -s)  dBh,s - ~t(t-s) dBs �9 

Let Qr be an adapted family of operators. The adjoints * with respect to (., .) and 
�9 with respect to the L 2 scalar product (., -) are related as follows: Q2A = AQ*. 

So we get: 

[ f o  t ,,2] ~ [(A fo t )2] E Qr dBr = 4 -sj E OA, Qr dBr 
A 

= ~ ' s  Q2AO,x ,dn~ = 4 -sj (llQ2ZO;~llL2)2dr. 

A A 

E Q r d B r  ] = Z 4  -sj (AQ*O,x ,O*O,x)Te 'dr .  (4.10) 

We shall take advantage of the fact that the operators T,, Ej or Tj,, are symmetric 
with respect to the scalar product (.,-) of ~ .  For Qr = ~ -  ~h,h,rEh, Q* = 
C~rr -- Eho~h,h,r we obtain 

/0 /0' D;)h, 0 = Z 4  -sj ah(A,t -- u)du = Z 4  -sj ah(A , r )dr  , (4.11) 
A X 

where the term ah(A, r) = (AQ*O,x, Q*Oa, } .~ expands as follows: 

ah(~ ,  r)  = (A( .~rr -  Eh~Yh,h,r)OA, (O~rr - Eho~,h,r)OA} = b()~, r )  - 2Ch()~, r )  + dh(/~, r) ,  

b(A, r) = (~'~O,,,A~OA}, ch(A, r) = {Eh.~h,~OAA~rrO,X), 

dh(A, r) = (Eh.~h,h,rOA,AEh.~h,h,rOA). 

It is useful to remark that we can also write: 
dh(A,  r)  = {,~h,rOA,Ah,~h,h,rOA} = (OA,Ah exp(- -2rAh)OA) ,  since the projection Eh 
is self-adjoint in .-~. Under this form we integrate explicitly 
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dh(A, r)dr = (0,x, 2(1 - exp(-2tAh))O;~) - . 
- 2  

Thanks to Lemma 4.4, we see that this term converge to 

Jo' (0x, 7(1 1 - exp(-2tA))Ox) = b(A, r) dr . 

As it is less than �89 and since ~ 4- ' J  is finite, we have 
AEA 

4-sJ fo dh(A, r ) d r  > ~ 4 . 4  f~ b(A, r)dr. Moreover, a similar convergence 
J ] 

takes place if we integrate one more time with respect to t on (0, T). 
To complete the proof we will show that ~ 4  - s j f o  ch(A, r)dr converges to 

x 
the same limit. The Lemma 4.4 gives the pointwise convergence of ch to b 
for fixed A and r. The term c;~,r is uniformly bounded since it can be written 
as Ch(A, r) = (Eh~Th,rO;~,~(AO;~)) and the semigroups are contracting in ,-~'Y . 
Therefore, by the dominated convergence on [0, t] we have: 

/o' /o' Ch(A,r)dr ---+ c(A,r)dr .  

Let us do some manipulations again: 

ICh (A, r) I = 1(,4 l/2gh.~h,rO~, A 1/257[0;~)1 < IIA 1/2gh.C~h,rO Al[ IIA1/2,~;;TO~ II 
IIA L /2Eh~h,rO~l l  2 -- (A I /2 Eh.~h,rOA,A I /2Eh.~ ) = (AEh.C~h,rO)~, Eh.~h,rOA) 

= (Ah~,h,rOA,,Th,rOa) = (Ah.Th,zrO;~, 0,~) 

By the Schwarz inequality 

fot Ch(A, r)dr <_ (~ot(Ah.Th,2rO,~, O~,) dr)  '/2 (~o'IA~O~,O,~) dr)  '/2 

1 1 
= ~((1  -- exp(--2tAh))O~, 0~){(1 -- exp(-ZtA))O~, Oh) <_ 

and by the dominated convergence on A the proof is completed. [-1 

Taking into account the two preceeding lemmas, direct estimations of pertur- 
bation in the equation of the processe Xt lead to Theorem 4.3. 

Now we will see how to approximate the equation (4.5) by Langevin equa- 
tions in finite dimension like (4.3). The covariance matrix ~r is easily found and 
the estimation (4.12) below is again a consequence of Theorem 2.1. Let us iden- 
tify the space Wh with ~a ,  d = (#Fh) with the help of the basis 0";~, A E F~. We 
put: 

: Z + v 
AEFh ,x'~ 

qO A = 2-dAl/21~A and ~ = (~y>,, ~p~,) 
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Let Crh be the symmetric positive matrix defined by: (crh2)x u = Cr z,~., A, # C/ 'h .  

Let -q~,h = -~  be defined for w E W as 

Lemrna  4.6 
1 The process xh of coordinates of Xh is identical in law to the process defined 

by the equation (4.3) with cr = cr h . 
2 There exists a number k such that independently of the dimension, 

1 
-k ldh < ~rh < k ldh . (4.12) 

3 The drift ~ satifies the hypothesis (4.8) and converges to 57/" whenj  ~ oo. 

Because our hypothesis on W" is very strong, the law of the solution X~,t can 
be compared to the law of the corresponding gaussian process U~,t = ~X~,o + 

e fo ~'t-s dBs via the Girsanov theorem. A standard application of Fernique and 
Feldman-Hajek theorem to these processes yields: 

Lemrna  4.7 Let Xo be a deterministic starting point, not depending on e in L2(G). 
For any t > O, the law ~(X~, t )  is absolutely continuous with respect to #~ at 
time t, and for any finite p there exists a constant C such that its density Fe,t 
satifes: 

l[F~,,ll~(.~ _< c exp(Cc -2)  ~ > 0 .  (4.13) 

Moreover, for a sufficiently small constant ~, E[exp(c~r [[~2(~)] is finite. 

We are now ready to prove our ergodicity result. 

Theo rem 4.8 If  Xo is a fixed point in L2(G), then for any e > 0 there exist 
constants C and 7(e) such that 

for t > 1 I ( ~ X e , t  ]#~) < C exp(Ce -2 - ' & t )  

l i m e  2 log('y~) = - 2  ms 
~ ----~0 

where ms is the Hajek's constant associated with the functional S. 

Proof. We take 1 as the new origin of  the time and we change the notations 
accordingly. Now X0,~ is a variable such that E [expc~(l[x~,oll2)] is finite and: 
S(X~,o)  = F~,o #~ with F~,o in some Le, p > 1. We make a finite-dimensional 
approximation like in Lemma 4.6. We choose Xh,~,o = EhX~,o. The process x~,h 
defined as the coordinates of  X~,h is of  the form (4.3). Its invariant measure 
is u~,h, already considered in Lemma 3.8 and it corresponds to the Boltzmann 
measure at temperature c2/2. Taking into account Proposition 4.1 w e  get: 

~ l (~Xe,h,t ] lie,h) = --2e 2 f [~rh V(fh,t)l/2] 2 dl.'e,h 
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r and in view so applying the logarithmic Sobolev inequality to the function Jh,t 
of the boundeness of ~rh (see (4.12)), we find C1 not depending on h, e, t, such 
that: 

d 
~l((~SSe,h,t I tie,h) ~ - f i e  2 (C(Ue,h))-ll(~Xe,h,t l Ue,h) 

I(~X~,h, t  lUg,h)<_ l(SX~,h,o l U~,O)exp(--Cle2 c-l(u~,h)t) . (4.14) 

Let r />  0 be given. We employ the log-Sobolev inequality under the form (3.i6) 

f F 2 log ( IF[ ~ d#e < exp((2ms + 2rl)~ -2) [ ~  (O,xF) 2 dt~e 

which implies a standard iog-Sobolev inequality with the same constant for the 
projection #~,h on Wh ~ Nd for any h, thus Lemmas 3.3 and 3.8 give for e 
smaller than an e(r/) and h large: 

( 191 "~ duh,~ < exp((ams +4 , )e  2)/~(o,9)~d~,~,~ 9 2 log 

c(ue,h) <_ exp ((2ms + 4r/)e -2) (4.15) 

On the other hand, by Lemma 3.8 

--/logG,0)d (~x~,h,0) _< ~-2 I(~Xe,h,O L lie,h) 

J" log\(0~X~'h'~ J + 

and in the same way 

The Radon-Nikodym derivatives O ( ~ X ,  h,O) ' o Xe,h,o define a martingale in h 
0#~,~ 

which, according to Lemma 4.7, converges in some U', thus we also have �9 

lim I (ff'ffX~,h,o [ #~,h) = 1 (~X~,0 I#~) (4.16) 
h--*oc 

This relation, together with (4.15) gives, since r/is arbitrary 

lim I (~XGh,O l l./e,h) --~ [ (~VAc 0 #e) " (4.17) 
h.__+o ~ 

Now we use the lower semi-continuity dependence of the entropy I(P I Q) on 
the two measures P and Q with respect to the weak convergence of measures 
on L2(G) (see [DS], 3.2.12). The weak convergence of u~,h to #~ is easy to 
get using Lemma 3.8. On the other hand, it follows from Theorem 4.3 that one 
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can find a sequence h, and a negligible set N such that when n ~ ~ ,  t ~ N 

[Ix, -Xh~ ~ 0 Therefore Xh,,t converges in law in L2(G) to Xt and 

for t ~ N l ( ~ X ~ , ,  I #~) _< lim I ( ~  x~,h,t ] U~,h) �9 
h ~ o  

Letting h tend to infinity in (4.14) and taking into account (4.15), we get for any 
r/, if e is small enough and t outside N : 

l ( ~ X e , t  [#e)  _< I(5~:'Xe,o l # e , o ) e x p ( - C 1  e2 e-(2ms+4n)e-2t) . 

Due to the semi-continuity of  the entropy, the same inequality is valid for every 
t since the path continuity of Xe,t implies the weak continuity of ~X~, t  with 
respect to time. We observe in addition that for any e, we have a similar inequality 
(see the first assertion in 3.8): 

I I#e) _< I (5(Xe,o Ira,0)exp(-C2 e2 e-C2e-2t) . 

So we got the existence of  7e as well as its asymptotic behaviour. To complete 
the proof, we use Lemma 4.7: 

I(o~r Xe,o [ #e,o) -< C2[[Fe,t[lp 5 C C 2 e x p ( C E - 2 )  �9 

D 

5 Towards the simulated annealing 

The functional S is lower semi-continuous on W or Le(G) and it appears as the 
large deviations functional of the measures #~ when e ~ 0. So these measures are 
more and more concentrated on, say, nearly minimal sets {w E W ] 3w'  IIw - 
w ' l ]~  < 6 and S(w') = inf(S)} where 6 is an arbitrary positive number .  Having 
proved for fixed e the convergence of ~(X~,t)  to #~, it is natural to conjecture 
that if we let e decrease slowly in time, the process Xt solution of  (1.1) will finally 
belong to any nearly minimal set with a large probability (simulated annealing), 
in other words Xt converges in probability in W to ,~/g = {S = inf(S)}. We 
shall only be able to construct for any J a process Y/ with values in L2(G) 
whose finite-dimensional projection Ej YJ converges to the compact set E~J//~. 
Nevertheless this solve in some sense the problem of computing the ground state 
of  S (see our final remark). 

The idea is to let diminish in time the influence of the component of  the 
process in the direction Wj* defined by the high-resolution wavelets. Let us set 
wj = Ej(w) and w~ = E f w  with E~ = Id - Ej. We define Y/ as a solution of 
the following equation: 

a f t  J = •(t)dB t - g2 (t)A Yt J - ~ (Yt J ) d t  (5.1) 

where: ~ ( w )  = e ( t )~" (w ,  +e(t)w~) 

+ (1 - e-2(t))Aw~ + (1 - e( t ) )AEjA- l~ / ' (wj  + e(t)w~) (5.2) 
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which comes from the more formal equation 

d Y /  = e(t)ct(., dt) - vs~(,~(Y/)at SJ(w) = s(wj  + ew?,) (5.3) 

Associated with S~ there is a Boltzmann measure #~ at temperature e2/2. Put: 

= / 1 if # E Fj  and define pJ(t) as a self-adjoint operator in ~-~J r J ( t )  
e(t) i f # 6 A \ F j  

J Then #~ is just which is diagonal in the basis O and admits the 'eigenvalues r u. 
the image of #e u n d ~  pJ(t) - I .  Let us identify the space Wh with Nd, where 
d = #h, via the basis O. We consider the energy function ~u h on  W h defined by 

V~h,,(w)=S(EjW+e(t)[w -- E j ( w ) ] ) ,  w e Wh 

Let a process y~ on II~ d be defined by the equation (4.1) with a matrix crh still as 
in Lemma 4.6, and consider the corresponding process Y/ in Wh C L 2 starting 
from Eh(Yo), where Y0 is fixed, Y0 E LZ(G). We may perform, like in [CHS], 
a time change in order to transform YJ into an homogeneous diffusion process 
( with e constant) so the following result may be viewed as a consequence of 
Theorem 4.3. 

Lemma 5.1 goranyT>_O,  jor[IV/ ( t ) - rJ( t ) [[L2dt  ,O, whenh---~cxD. 

To simplify the estimates, we will only look at the case of temperature given 
by �89 c log(t-~ for t _> 2, which are still decreasing and o f  the class ~t5 #~1 on 

JR+. 

L e m m a  5.2 For any c~ > O, there exists a constant C and to such that for 
arbitrary h and t, t > to, E[II YJ 2 1 < Ct ~. 

- -  h , t  L2(G)J -- 

Proof. For h _> J the process Yh J is a solution of 

dYe(t)  = c(t)dBh,t - [EhAEj + e2(t)EhZ(Eh - Ej )] Y~ (t)dt  -,~hh,'tay~(t)'dt 

= cr,xuru(t) 0"u, !7/"(wj + 

~Fh  

At the first step, we will study the centered Gaussian process Uh J that we get 
when ~.~J,z = 0 and Uff, 0 = 0. We remark that the operator pJ(t) introduced 

above together with its inverse are bounded in L 2, as well as in ~6 ' ,  by constants 
of less than logarithmic growth when t ~ oo, so it is equivalent to prove the 
estimate we want for Z~(t) = pJ(t)U~(t) instead of UJh(t). The gain is that Z~ 
is governed by a self-adjoint drift operator 

~ ' ( t ) , _  
(5.4) .D~ (t) = y (t)Ah p(t) + - ~  ~t~h -- Ej ) 

dZ/  (i ) = e(t)p(t)dBh,t - D~ ( t)Z/  (t) dt 
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It can be expressed as a stochastic integral. We make use of the norm I[ �9 II" and 
in view of formula (4.10) we can write: 

E [llz/,,l["] = ~ 4 -'j C2(S)(,~hJstOA j J J = , psAhps .~h,stO,x) ds 
~6 rh 

where the operators ~ t ' a r e  defined by: 

( f ' )  ,ff(~ = exp D~(u)du (5.5) h ,st -- " 

By (5.4): 

(5.6) ~[I[Us J - Z J ' '*'12< C2(t)4-SJ fot(~hJ, stOx'DJ(s)~hJtOx}ds 
)~ C rh 

fOt + Id(s)le(s)<~,o~, ~ , o ~ )  as 

Suppose that 0 < a < 1. By (5.4), since A is bounded from below 

e , (U) .E  
D~(s) > "y~(u) + 7 ( 7 J  h 

d(u) - a  
and since "TeE(u) + ~ is greater than (1 - o0u for large u 

Eh,~hJs, <_ C1 e x p ( - t  1-~ + sl -~)Eh (5.7) 

For t large enough we have [e'(s)le(s ) < 2(1 - a ) s - %  so that 

I' I' (oc~h~tO), , S~h,~,O;~ ) ds <_ C 2 e x p ( - 2 t  1-~) 2(1 - a ) s  - ~  exp(2s I - ~ ) d s  

= C~(1 - e x p ( - 2 t ' - a ) )  < C12 . 

We can bound the other terms in (5.6) as follows: 

/0' I 2 s (.~h,stO,~, D~ (s).~h.JstOx) ds = - d j j , ~ ( ~ . . , , o ~ , , ~ i , , o ~ , ) d s  

= 1 - I I ~ , O x l l  2 _< 1 

The summation with respect to A gives sup E[[IZhJt[[ "2] < oo. The second step 
t 

consists of finding a bound Uh J when Uh J (0) does not vanish. We have to add a 
deterministic term ,~h,stEhXo where ~ is defined by 

d j 
�9 ~?~,~s =Id - ~ h , s t  = - A [ E ,  +E2(t)(Eh , -  Ej)]~/~J,s t .  

We remark that: 
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m 2 d [II.~,..wlIL=<G>] = -2][EJJgah,stW]l~ - 2e2(t)ll(Eh - EJ)'JYgJh,s, w l l ~  
dt 

< -2e2(t)l[,J.CgJh,,.twl[2~ ~ 

< -2"re=(t)ll,~Jh,s, Wll2= 

which gives as in the equation (5.7) above for any 0 < o~ < 1 

~J C2 e x p ( - t  1-'~ + s t-,~) (5.8) II '~ ~h,~,llL~--,L2 --< 

and the second step is accomplished. 
To complete the proof we go back to the general process and we form ~ -- 

Xh J -- Uh J which satisfies: 

/o' {hi(t) = ,~A~h,stT/'t(U~(s)+{~h(s))ds 

/o' i' bt~(t)ll <_ M I[.~,,,llds <_MC2exp(- t  ' -~ )  e x p ( s ' - ~ ) d s  

/ot <_ MC2 t ~ exp - ( t  1-~) s -~  exp ( s l -~ )ds  <_ MC2 t ~ , 

Theorem 5.3 l f  c > ms, then for any J, the distance in L2(G) between EjY~( t )  
and the projection Ej . / /~ of the set of  global minima of  S vanishes in probability 
as t ---> oo. 

Proof. We will show that the relative entropy I ( . ~ ( E j Y / )  I #J,~O) converges 
to 0 where #j,~ Ej#~.  We remark that Ej(#~O ) J = = Es(#~O), and since the 
entropy diminishes under mapping, it will be sufficient to bound from above 
I J ( t )= l ( ,~YJ ( t )  I #Je(t))" 

It is apparent that the arguments based upon the limit of  finite dimensional 
entropy in the proof of Theorem 4.8 are still valid, so it is sufficient to bound 
IJ(t)  = I ( .~Y~,  t ] u~,s) uniformly in h where u~,.~ is the Boltzmann measure 

associated with the energy v~, t via Eq.(3.4). Our tool is the formula in Proposition 
4.1, and we will first bound its last term: 

2 / " ' d  R ( t ) =  j - ~  ('c-2(t)v~ (t))(fgJt - 1)du~,t . 

We have for w E Wh = ~a 

v~(t, w)= ~ ( H E j w ] I ~  + c2(t)ll(w - gj(w))][.~) + V [gj (w)+ c(/)E; (//3)] 

[e_a(t)v~,, ] = e'(t) (~" ' [E j (w)  + e(t)E](w)],  Ej(w))L2(c ) 
cz(t) " 

e ' ( t )  
~(t)  [IIE~(~)II~ + 2v / (~) ]  



Ergodicity of stochastic plates 43 

We remark that the ~ norm of Ej w is bounded up to a constant by its L 2 n o r m .  

Since the dimension of Wj is finite, we bound e and V and we find a C1 such 
that f o r t  >_2 

/ ( t ) l ,  . . . .  l) < clo 1) 2;d [ _2(t)v~,,(w)] <_ Cl c_U(i~UiWlfL2(a) § _ q T _ ( l t w l l L 2 ( C )  § 

and by Lemma 5.2 for any/3, such that 0 < / 3  < 1, we have a bound independent 
of  h 

127 Ifh,, d4,, _- E[127 I ] _< C2 t-~ 

It is easy to complete this argument with the fact that any moment  of  the L 2 
norm with respect to u J is bounded uniformly in h and s, thus R(t) < C3t -~. h,s 

To find a logarithmic Sobolev inequality for u J we just have to transform h~t 

(4.15) under the action of the restriction of pJ to Wh and we get for t greater 
than some t(r/) and any h _> J" 

( [91 "~ duJ,t < exp[(2ms +4r/)e-2(t)]  f z  (0A9)2 ~ d 92 log \ ~ /  ~c/)-  

+ 8-2(t)  E (OAg)2dVJh 
,~e rh \ rj 

< exp[(2ms + 5)qe-2(t)]  f E  (0"x9)2 duJt, h 
~CFh 

By the bound (4.12) 

-2e2( t )  fw~ I~V0~h'J2)12 d"J' '  -< - e x p [ ( 2 m s  +6~7)e-2(t)]l(C~'Y~t ] uJ,t) 

Finally, Proposition 4.1 gives that for any ~/>  0 and for t greater than some to: 

d j 
~-(Is (t)) < - exp [(2ms + 6r/)e-2(t)] I~(t) + C3 t-13 

ms+3rl . 
<_ t----e-- l~ (t) + C3t -p (5.9) 

Since c > ms, we can find r / such that ms+3rl % 1 and then 13 such that ms+3n < 
C C 

< 1. The differential inequality (5.9) gives then easily lira Ih(t) = 0 provided 
t ~ C X 3  

Ih(t) is finite. And this can be established with the help of a Girsanov formula 
and of Gaussian estimates (see Lemma 4.7). [7 

Remark 5.4 Obviously, in order to perform numerical computations, we have to 
consider simulated annealing in finite dimension, that is to work with a limited 
resolution. In fact, the computation time grows quickly with the resolution. In 
view of the present results we may suggest the following procedure: we choose 
a J ,  according to the proof of  Theorem 3.9, such that S (w) is a convex fonction 
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of wy. Then if we know the projection Ejwo of some global minima w0, it is 

easy to calculate the other components of w0 with a gradient algorithm. But to 
know E~ w0 with a better accuracy, it seems appropriate to put a relatively large 

noise intensity on some extra coordinates, in other words to use the process YJ h,t 
considered above, for large h . 
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