Corrigenda

By

L. V. Toralballa, New York, NY, USA

(Received August 11, 1972)

1. Replace in [1] Section C (from page 72 to the 4th paragraph of page 74) by:

Theorem 3.

Under the hypothesis of Theorem 2, the sequence $\left(A_{1}, A_{2}, \ldots\right)$ converges to the Lebesgue area of the surface.
Proof:
Corresponding to the sequence $\left(\Pi_{1}, \Pi_{2}, \ldots\right)$ there is the sequence $\left(F_{1 x y}, F_{2 x y}, \ldots\right)$. We may choose this so that $F_{(n+1) x y}$ is a refinement of $F_{n x y}$. Let the corresponding sequence of the polyhedral areas be ($A_{1 x y}, A_{2 x y}, \ldots$). Since Lebesgue surface area is completely additive, it follows by [1] that this sequence converges to the Lebesgue area of a portion of S.

Similarly, corresponding to the sequence ($F_{1 x z}, F_{2 x z}, \ldots$) the sequence ($A_{1 x z}, A_{2 x z}, \ldots$) converges to the Lebesgue area of a second portion of S.

Similarly, corresponding to the sequence ($F_{1 y z}, F_{2 y z}, \ldots$) the sequence ($A_{1 y z}, A_{2 y z}, \ldots$) converges to the Lebesgue area of a third portion of S.

It is seen that the above three portions of S constitute a decomposition of S, these portions being disjoint except for boundary points. It now follows that the sequence (A_{1}, A_{2}, \ldots) converges to the Lebesgue area of S.
2. Replace the last two lines of the 1st paragraph of page 75 by: Polyhedral areas converges to the Lebesgue area

$$
L_{\varepsilon} \text { of } S=F\left(E_{\varepsilon}\right) .
$$

3. a) From page 75 to the end of the paper replace

$$
\begin{aligned}
& \int_{E_{\varepsilon_{1}}} \sqrt{J_{1}^{2}+J_{2}^{2}+J_{3}^{2}} d(u, v) \text { by } L_{\varepsilon_{1}} ; \int_{E} \sqrt{J_{1}^{2}+J_{2}^{2}+J_{3}^{2}} d(u, v) \text { by } L_{\varepsilon} \\
& \int_{E_{\varepsilon_{2}}} \sqrt{J_{1}^{2}+J_{2}^{2}+J_{3}^{2}} d(u, v) \text { by } L_{\varepsilon_{2}} .
\end{aligned}
$$

b) Omit the last sentence on page 75.

Reference

[1] Toralballa, L. V.: A Geometric Theory of Surface Area. Part II: Triangulable Parametric Surfaces. Monatsh. Math. 76, 66-77 (1972).

Author's address:
Prof. Dr. L. V. Toralballa 205 Tyron Ave.
Englewood, NJ, USA

