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Summary. Let #1 and #2 be Borel probability measures on IRa with finite 
moment generating functions. The main theorem in this paper proves the large 
deviation principle for a random walk whose transition mechanism is governed 
by #2 when the walk is in the left halfspace A 1 = {x c IR ~ : x 1 __< 0} and whose 
transition mechanism is governed by #2 when the walk is in the right halfspace 
A 2 = {x c IR d : x 1 > 0}. When the measures #1 and #2 are equal, the main 
theorem reduces to Cram+r's Theorem. 

1 Introduction 

An extensive theory has been developed for analyzing large deviation 
phenomena of d-dimensional Markov processes having generators ~ with 
components that depend smoothly upon the spatial parameter x E N d. Three 
basic examples are diffusion processes, continuous-time jump Markov processes, 
and Markov chains. In the first case, the generator has the form 

5 e f ( x )  = ~ ai j txJ  ~ T T -  ~ + bi(x  ) , 
i , j = l  = 

in which the diffusion matrix a(x) = {a i j ( x  ) , i, j = 1 . . . . .  n} and the drift 

vector b(x)  = {hi (x) ,  i = 1, . . . ,  n} are smooth functions of x. A typical 
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generator that arises in the second case is 

f 
2el(x) = / [f(x + ~) ~ f ~x~ ~ ~ ~d ~ ~ ~ 

,J 
~,a \{0} 

in which the jump measures {#x} depend smoothly upon x. In the third case, 
the generator has the form 

f 
S f ( x )  = / [f(y) - f(x)]~(x, dy), 

d 

Nd 

in which the transition probability re(x, dy) satisfies the Feller property. 
In a variety of  applications, however, Markov processes arise naturally for 

which the smooth dependence of  the components of  the generator &a upon x 
is violated. In such a case, we speak of  a Markov process with "discontinuous 
statistics." 

One application of  Markov processes with discontinuous statistics is to 
communication channels incorporating a "hard limiter" in a phase-locked loop, 
which is a form of  a suboptimal nonlinear filter [25]. Such a communication 
channel may be modeled by a diffusion process with a smooth diffusion 
matrix a(x) and with a drift vector b(x) that changes discontinuously as 
x crosses a smooth boundary in IR d. The large deviation principle for a 
restricted class of  diffusion processes with discontinuous drifts satisfying a 
certain stability condition is considered by Korostelev and Leonov [22], [23]. 
They use continuous mapping techniques that may be found in the literature. 

A second application of  Markov processes with discontinuous statistics is to 
queueing networks consisting of  d queues or consisting of  a single queue with d 
classes of  customers [27]. Such a network may be modeled by a continuous-time 
jump Markov process {X(t), t > 0} with state space the nonnegative orthant 

of  IR d. For i E {1 . . . . .  d}, the i'th coordinate of X(t) denotes the length 
of the i'th queue at time t or the number  of  customers of  class i awaiting 
service at time t. In general, the queueing network has one set of  statistics 
when all the queues are nonempty or when all the classes of  customers are 
present. However, in many cases the behavior of  the queueing network changes 
abruptly and discontinuously when one or more of  the queues become empty 
or when one or more classes of  customers disappear. We may model such a 
network by stipulating that X(t) have one set of  jump rates and directions in 
the positive orthant of  IR d, but that as X(t) moves to one of  the coordinate 
hyperplanes, the jump rates and directions change discontinuously. Since X(t) 
may trivially be extended to a process with state space all of N d, we see that 
the queueing network may be modeled by a continuous-time jump Markov 
process with jump measures {/~x} that change discontinuously as x crosses one 
of  the coordinate hyperplanes. Large deviation phenomena for a special class 
of queueing networks are studied in the paper by Dupuis et al. [13]. 

A third application of  Markov processes with discontinuous statistics is 
to random motion in discontinuous media. Such motion may be modeled 
by a Markov chain with state space IR d partitioned into finitely many sets 
{A i, i = 1, . . . ,  N}, in each of  which the Markov chain has a different smooth 
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transition mechanism. The transition mechanisms change abruptly and dis- 
continuously when the chain crosses the boundaries separating the sets {Ai}. 
The present paper is devoted to the large deviation analysis of such a Markov 
chain with discontinuous statistics in the simplest case N = 2. It is defined in 
(1.1) below. This Markov chain is a random walk that generalizes a random 
walk based on sums of i.i.d, random vectors, about which there is a voluminous 
literature. 

The large deviation principle for the Markov chain (1.1) suitably normalized 
is proved in our main theorem, Theorem 2.1. This theorem generalizes Cram&'s 
Theorem, which gives the large deviation principle for random walks based 
on sums of i.i.d, random vectors. Cram&'s Theorem is stated in Theorem 1.2 
below. 

We first give a basic definition. 

Definition 1.1 Let {Q, ,  n ~ N} be a sequence of Borel probability measures on 
IR d, some d c N, and let L be an extended real-valued function mapping IRa 
into [0, oo]. We say that {Q,}  satisfies the large deviation principle with rate 
function L if the following three conditions hold. 

(a) Compact  level sets. For each M < oo the set {fi E ]R d :L(fi)  < M} is 
compact. 

(b) Upper large deviation bound. For each closed set F in ~d  

l imsupn -1 log Qn{F} < - inf L(fi) . 
n---, oo f i E F  

(c) Lower  large deviation bound. For each open set G in Nd 

l iminfn  -1 logQn{G } > - inf L(fl) . 
n---~oo f lEG 

The Markov chain that is the subject of the present paper is easy to define. 
Let #1 and #2 be Borel probability measures on IR d such that the cumulant 
generating functions 

Hi(oo "-- log I exp(~, y)# i (dy ) ,  i = 1, 2 ,  
J 

Nd 

are both finite for all c~ E IR d. We consider a Markov chain whose transition 
mechanism is governed by #~ when the walk is in the left halfspace 
A 1 = {x c p d : Xl < 0} and whose transition mechanism is governed by 
#2 when the walk is in the right halfspace A 2 = {x c IR d : x I > 0}. The 

discontinuity occurs across the boundary {x c IR d : x 1 = 0}. Specifically, 
let {X/, n ~ N ,  i = 1, 2} be a set of independent random vectors with 
probability distributions P{Xn / c dx} = #i(dx). We consider the stochastic 
process {Sn, n c N}, where S o = 0 and S n is defined recursively by the formula 

(1.1) Sn+ 1 = S n + I{S. cA~}XI+I + I{SnEAg}X~+ 1 . 

For i--~ 1, 2, 1{S n EL/} denotes the indicator function of the set {S.  c Ai}. 
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Our goal is to prove the large deviation principle for {Sn/n }. It is stated 
in Theorem 2.1 and the rate function is given in formulas (2.1)-(2.4). The 
stochastic process {S~} has an obvious asymmetry in that we have (arbitrarily) 
included the boundary {x E IR d : x 1 = 0} in the halfspace A 1. If the interiors 
of the two halfspaces A 1 and A 2 communicate in a manner that is formalized 
in Hypothesis (H), stated just below, then the definition of the transition 
mechanism on the boundary does not affect the large deviation principle for 

In Theorem 2.1, we impose the following weak hypothesis on the supports, 
supp/~ and supp #2, of the probability measures #1 and p2. The hypothesis is 
needed only in the proof of the lower large deviation bound, not in the proof 
of the upper large deviation bound or in the proof of compact level sets. 

Hypothesis (H). supp/~i C3 int A 3- i ~ 0 for i = 1, 2. 

This hypothesis is natural in that it allows the interiors of the two half-spaces 
A 1 and A 2 to communicate. We emphasize that only under Hypothesis (H) is 
the unique feature of the process {S~} present; namely, the existence of two 
separate transition mechanisms, each of which has a positive probability of 
being activated for arbitrarily large times n. For example, if Hypothesis (H) 
fails for i = 1, then since the random walk starts at the origin, which is a point 
in the halfspace A 1, the random walk will never enter the halfspace A 2 and 
so the transition mechanism corresponding to #2 will never be activated. Even 
when Hypothesis (H) fails, the large deviation principle for {Sn/n } is valid, but 
the rate function is no longer given by formulas (2.1)- (2.4). 

The process {S,, n E N} defined in (1.1) is a Markov chain with state space 

IR d and transition probability 

(1.2) ~(x, dy) = l{xcA~}# I (dy - x )  + l{x~A2}/~2(dy --x) . 

Since /~1 and #2 are arbitrary measures on IR d that have finite cumulant 
generating functions, satisfy Hypothesis (H), but have no imposed relationships 
between them, the transition probability 7c(x, dy) satisfies none of the usual 
absolute continuity, irreducibility, or smoothness conditions assumed in other 
large deviation studies. As a consequence, one is not able to analyze the 
process (1.1) by any of the usual methods. In fact, a number of completely new 
techniques are required. 

The present paper is the second in a series of papers that treat large 
deviation phenomena for Markov processes with discontinuous statistics. The 
first paper by Dupuis et al. [12] proved a process-level upper large deviation 
bound for a general class of Markov processes with generators that contain 
both a diffusion piece and a jump piece. This paper also proved a process-level 
upper large deviation bound for continuous-time Markov process obtained 
by linear interpolation from random walks that model motion in "totally 
discontinuous" media. These random walks include as a special case the 
Markov chain analyzed in the present paper. 

The process-level upper large deviation bounds proved in Dupuis et al. 
[12] apply to a general class of Markov processes with discontinuous statistics. 
However, in order the obtain the full large deviation principle (upper bound and 
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lower bound), some sacrifice in generality is needed. It is our judgment that if 
one hopes to understand large deviation phenomena in the case of continuous- 
time Markov processes with discontinuous statistics, then large deviation 
phenomena for discrete-time Markovian models, such as the one treated in 
the present paper, must be understood first. In future work, we plan to apply 
the insights gained in the present paper to analyze continuous-time Markov 
processes with discontinuous statistics, including diffusion processes that model 
communication channels with a hard limiter in a phase-locked loop and jump 
Markov processes that model queueing networks. The methods of Korostelev 
and Leonov [22], [23], mentioned at the beginning of this introduction, are 
restricted to diffusions for which a certain mapping of processes is continuous. 
In such cases, standard methods involving the contraction principle may be 
used. Our main interest, and the source of much of the difficulty, is to deal with 
the general case, where such continuity does not hold. In the applications both 
to diffusion processes that model communication channels with a hard limiter 
in a phase-lock loop and to jump Markov processes that model queueing 
networks, no such continuous mapping of processes exists. 

Cram+r's Theorem, which treats random walks on IR a based on sums of 
i.i.d, random vectors, is one of the basic results in the theory of large deviations. 
The following theorem is proved, for example, in [15]. In its original form, the 
theorem goes back to Cram~r [3]. 

Theorem 1.2 (Cram~r) Let # be a Borel probability measure on IRd such that 
the cumulant generating function 

H ( e ) -  log / exp(e, y)#(dy) 
J 

Nd 

is finite for all ~ E IRcl. Let {Xj ,  j E N}, be a sequence o f  i.i.d, random vectors 
with probability distribution #. For n E N, define S n = ~,~=I Xj  and let Qn 

denote the probability distribution o f  n - 1 S  n. The following conclusions hold. 

(a) {Qn} satisfies the large deviation principle with rate function L given by 
the Legendre-Fenchel transform of  H: 

(1.3) L(fl) = sup {(e, fi) -- H(e)} for fl E IRa . 

(b) The function L(fl) is lower semicontmuous, superlinear, and essentially 
strictly convex. In addition, L(fl) > L(fl) = 0 for all fl ~ fl, where 
is the mean f y#(dy). I f  the convex hull o f  the support o f  pt is all o f i R  d, 

Nd 

then L(fl) is also real analytic and strictly convex on IRd. 

Many generalizations of Cram~r's Theorem to Markov processes have been 
obtained. A number of authors, including de Acosta [4], Ellis [14], Freidlin 
and Wentzell [18], G~irtner [19], and Iscoe et al. [20], extended the techniques 
used in the proof of Cram~r's Theorem to prove the large deviation principle 
for sequences of random vectors, including partial sums of Markov chains, 
for which a suitably smooth limiting cumulant generating function exists. 
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The extensions found by these authors use methods of convex analysis. In a 
series of papers beginning in 1975, Donsker and Varadhan [8-11] proved the 
large deviation principle for the empirical measure (level 2) and the empirical 
process (level- 3) of Markov processes and Markov chains satisfying certain 
absolute continuity, irreducibility, and smoothness conditions. They obtained 
as a corollary an extension of Cram+r's Theorem to i.i.d, random vectors 
taking values in a Banach space. Results related to the work of Donsker and 
Varadhan and generalizations were found by a number of authors, including 
Bolthausen [2], de Acosta [4-6], Deuschel and Stroock [7], Ellis [16], Ellis 
and Wyner [17], Jain [21], and Stroock [29], some of whom used methods of 
infinite dimensional convex analysis. Another important direction was pursued 
by Azencott and Ruget [1], Freidlin and Wentzell [18], and Wentzell [30-33], 
who proved the process-level large deviation principle for Markov processes 
with continuous statistics. 

Unfortunately, none of the techniques used or the results obtained by any 
of the above authors are applicable to the analysis of the Markov chain (1.1). 

In the next section, we state the main theorem, Theorem 2.1. In Sect. 
3, we interpret the rate function in Theorem 2.1 and give examples of rate 
functions which - in contrast of the real analytic, strictly convex rate functions 
in Cram~r's Theorem and its many generalizations - are not everywhere 
differentiable, are convex but not strictly convex, and are not convex at all. 
In Sect. 4, we collect facts about Legendre-Fenchel transforms needed in the 
rest of the paper and prove that the function L appearing in Theorem 2.1 
has compact level sets. Finally, in Sect. 5, we prove the upper and lower large 
deviation bounds in Theorem 2.1. 

2 Statement of the main theorem 

The Markov chain {S~, n c N} that is the subject of the present paper is 
defined in (1.1). Theorem 2.1 is a new large deviation result for {S~/n}. This 
theorem assumes Hypothesis (H), stated in Sect. 1 and again below. 

Recall that #1 and #2 are Borel probability measures on IR d such that the 
cumulant generating functions 

Hi(co - log f exp<e, y)/~i(dy), 
p.d 

i = 1 , 2 ,  

are both finite for all c~ ~ Nd. Recall also Hypothesis (H) in Sect. 1, which 
states that the supports of #1 and #2 satisfy 

supp #i n i n t  A 3 - i  @ 0 for i = 1 , 2 ,  

where A 1 denotes the closed left halfspace {x E IR d : x 1 < 0} and A 2 denotes 
the open right halfspace {x 6 IR d : x 1 > 0}. 

The rate function in Theorem 2.1 is now defined in several pieces. If  fl ~ 1R d 
lies along the boundary A ~ = {x c IR d : x 1 = 0} (i.e., if the one-component 
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E1 = 0), then we define 

L~ ) = inf{o1Ll(E1 ) + 02L2(/? 2) : 01 > 0, 02 > O, 

(2.1) 0 t -{- 02 = 1, E 1 E ]R d , E 2 E ~x d , 

(E1)l ~ 0, (E2)1 =~0, olE 1 n t-02/? 2 = E}, 

where (Ei)t, i = 1, 2, denotes the one-component of  E i and L i, i = 1, 2, 
denotes the Legendre-Fenchel transform of Hi: 

(2.2) Li(E) = sup {(e,/?} - Hi(~)} for E E ]R d . 
~EN d 

We also define for i = 1 ,2  and E ~ lRd 

~;(/?) =inf{y0~0(E0 ) _{_TiLl(ill ) :y0 >__ 0, 7 i ~ 0, 

(2.3) 7 ~  i = l ,  E ~  e,  /3 i E / R  a, 

(E~ = 0 ,  70/? 0 + TiE i = E} �9 

Finally, we define 

~o(fl)  if/71 = 0 

(2.4) L(/?) = ~ 51(fl) if 131 < 0 

[. ~2(/?) if fll > 0. 

We now state our main theorem. 

Theorem 2.1. Let #2 and #2 be Borel probability measures on IR d that have finite 
cumulant generating functions and that satisfy Hypothesis (H). For n ~ N let 
Qn denote the probability distribution of  Sn/n, where S~ is defined recursively in 
(1.1). The following conclusions hold. 

(a) {Qn} satisfies the large deviation principle with rate function L defined in 
(2.1) - (2.4). 
(b) The function L(/?) is lower semicontinuous and superlinear and is convex on 
each halfspace {fl ~ IR d : ( -  1)ifll > 0}, i = 1,2. However, L(/?) is in general 
not convex on ]R d. 

In Proposition 4.3 in Sect. 4, we prove that the function L has compact level 
sets and that L has the other properties stated in part (b) of  Theorem 2.1. The 
large deviation bounds for {Q~} with rate function L are proved in Sect. 5. 

Although the rate function L in Theorem 2.1 looks complicated, it has a 
natural interpretation in terms of  which vectors the Markov chain "tracks" and 
the asymptotic fractions of  time that the Markov chain spends in the halfspaces 
A 1 and A 2 when the chain is conditioned on a suitable sequence of  events. This 
interpretation is given in Sect. 3. The constraints  (/71)1 ~ 0, (/72)1 ~_ 0 in (2.1) 
appearing in the definition of  the rate function L have natural interpretations 
both in terms of  the upper large deviation bound (identification of  those 
velocities that can be "tracked" with positive probability [Lemma 5.2]) and in 
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terms of the lower large deviation bound (a guarantee that a process arising 
from S n by a certain change of measure is stable [proof of Lemma 5.10]). If 
the constraints were absent from (2.1), then in general the resulting function 
would no longer be the rate function for Sn/n. 

We close this section by pointing out the limitations 
approach to large deviations [4], [14], [18], [19]. We 
cumulant generating function of  {Sn}, which for c( E 
formula 

H(~) -- lim n -1  logE{exp[(ct, Sn)]} . 
~ ----~ GO 

of the convex analysis 
consider the limiting 

IR a is defined by the 

Theorem 2.1 and a result of  Varadhan (see Sect. II.7 of  [15]) imply that 

(2.5) H(c~) = sup {(ct, fi) - L(fi)} . 
/~ eR d 

According to the convex analysis approach, the upper large deviation bound 
holds for the distributions {Q,} of {Sn/n } with the upper rate function 
I(fl) = suppled  {(~, f l ) -  H(~)}, which is automatically convex. On the other 
hand, (2.5) implies that I equals the largest lower semicontinuous, convex 
function majorized by L. We conclude that whenever L is not convex (see 
examples in the next section), the function I cannot be the rate function for 
{Q~} and that for some closed set F in IRd the upper large deviation bound in 
terms of  I cannot be so tight as the upper large deviation bound in terms of  
L. 

Notation. Throughout this paper, except in a small number of  instances, a 
superscript i c {0, 1,2} is used to identify quantities relative to the respective 
sets {fi c IRd :ill  = 0}, the halfspace {fi ~ IRd : fil < 0} (or its interior), and 
the halfspace {fi ~ IRd ://1 > 0} (or its closure). Thus, we have measures pl 

and #2; vectors rio, flI, and f12; and functions ~0,  ~1 and ~2. In the small 
number of  instances where a superscript denotes a power, the quantity raised 
to the power is enclosed in square brackets. Thus, [x] 2 denotes x-squared. 

3 Discussion of the main theorem 

Before examining Theorem 2.1, we first interpret the rate function in Cram6r's 
Theorem, Theorem 1.2. In order to simplify the discussion, we assume that the 
support  of  the measure/1 is all of  IR d, which implies that the Legendre-Fenchel 
transform L(fi) in (1.3) is finite for all fi E IRd [Theorem 1.2 b]. For all fl c IRd 
the large deviation principle gives the limit 

(3.1) lira lim n -1 logP{Sn/n r B(fl, a)} = - L ( p ) .  
8 .--+ 0 /~/ - -*-  oO 

Let fi equal the mean f y#(dy). The law of large numbers implies that for 

each e > 0 P{Sn/n C B(fi, e)} ~ 1 as n ~ oo; i.e., as n ~ oo the random walk 
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tracks fl with probability approaching 1. This, of  course, is consistent with (3.1) 
and the fact that L(fl) -- 0. For all fl 7~ d, we express (3.1) by the formula 

P {Sn/n c B(fl, 8)} ~ exp[ -- nL(fl)] 

and interpret L(fi) as the "positive cost" associated with the atypical event that 
the random walk S~, suitably normalized, tracks ft. 

We now turn to Theorem 2.1, assuming for the rest of  this section that 
the supports of  both measures #1 and #2 are all of  IR d. Then both Legendre- 
Fenchel transforms L 1 and L 2 are finite on all of  N d, as are the functions 
[ 0 ,  ~,1, [ 2 ,  and L in (2.1), (2.3), and (2.4). As in (3.1), the limit 

(3.2) lira lim n -1 logP{S~/n  ~ B(fl, 8)} = --L(fl) 
g ---* 0 r/---~ oo 

is valid for all fl 6 Na.  Let us consider the case where the one-component fll 

of  fl equals 0, so that L(fl) equals ~0(/?). We interpret [0(fl), whenever it is 
positive, as the positive cost associated with the atypical event that the random 
walk Sn, suitably normalized, tracks ft. I f  the infimum in (2.1) is attained at 

~1, ~2, 3 1 , 3 2 ,  then the most likely way for the random walk to track fl is 
for the random walk to track 31 in the left halfspace and 32 in the right 
halfspace; i.e. for i = 1 ,2  

n 

. . X i f l i  1 ~ I{Sy_I EA ~} j --~ in probability as n --* oo. 
~=1 l(sj_l~Ai} j=l 

When the random walk is conditioned to track d, ~1 and ~2 are the asymptotic 
fractions of  time spent in the respective halfspace. The functions [,i defined in 
(2.3) may be interpreted similarly. 

We now consider the calculation of  rate functions L in Theorem 2.1 in the 
case d = 1. When d = 1, formula (2.3) for [ i  takes the form 

(3.3) ~,i(fl) = inf{(1 - 7)[0(0) + 7Li(fl/7) �9 0 < 7 < 1} for i = 1, 2 .  

According to Lemma 3.1 below, the infimum in (3.3) is always attained. If  
it is attained at 7 E (0, 1), then in tracking fi the random walk, with high 
probability, spends at the origin an asymptotically positive fraction (1 -7--) of 
the total time n, paying a cost ( 1 -  7D[~ before entering the halfline where 
fl lies. If  the infimum in (3.3) is attained at V = 1, then in tracking fl the 
random walk, with high probability, spends at the origin an asymptotically 
zero function of  the total time n before entering the halfline where fi lies. 

We give a lemma that is useful in determining where the infimum in (3.3) 
is attained. 

Lemma 3.1 Let d = 1 and assume that the supports o f  both measures #i and #2 
are all o f  JR. The following conclusions hold. 

(a) For i = 1 ,2 ,  and fl E IR satisfying ( -- 1)ifl > O, the function 

(3.4) 2~ (7) = (1 -- 7)[~ + ?Li(fl/7) 
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appearing in (3.3) is a strictly convex funct ion o f  7 E (0, 1]. The infimum in (3.3) 
is always attained. 

(b) For i = 1 , 2  the infimum in (3.3) is attained at a (unique)  point y r (0, 1) i f  
and only i f  for  some point b E IR satisjying ( - 1)ib > 0 

(3.5) - Hi((Li) '(b))  = L~ . 

In this case b = fi /'y. 

Proof. (a) For i = 1, 2, for fi E ]R satisfying ( - 1)ifl > 0, and for 7 E (0, 1), we 
have (L i) " ( f l /?)  > 0. Hence 

(,~) H(])) = ( [ f l ]2 / [ ]213) .  (L i) H (fl l~) > 0 .  

Thus, 2}(7) is a strictly convex function of  7 c (0, 1). Since L i is superlinear 

[Lemma 4.1], 2~(7) ~ oo as 7 ~ 0+ and so )~(7) always attains its min imum 

o n  ( 0 ,  1] .  

(b) Since 2} (Y) is strictly convex and 2~ (7) -* oo as 7 ~ 0 + , either 2~ (7) 

is monotonical ly  decreasing on (0,1) or (2~)' (~ = 0 for some unique point  

~ (0, 1). In the first case, the inf imum in (3.3) is a t tained at 7 = 1. In the 
second case, the inf imum in (3.3) is a t tained at ~. We now use the fact that  for 
a lower semicontinuous,  convex, differentiable function f on IR, 

f ( x )  - x f ' ( x )  = - f* (j" (x)), 

where for v ~ IR f* (v) = sup~c~,{uv - f ( u ) }  is the Legendre-Fenchel  t ransform 
of  f .  According to (2.2) L i = (Hi) *, and so H i = (Li) *. We now calculate 

(3.6) ( , ~ ) ' ( 7 )  = - L ~  + L i ( / ~ h )  - ( ~ h )  (Li)'(~h) 
= _ L O ( o )  - ( L i )  * ( ( L ~ ) ' ( / ~ h ) )  

= _ L O ( o )  - H i ( ( L ~ ) ' ( p h ) ) .  

Thus (2~) '(~ = 0 if and only if - Hi((Li) ' (b))  = L~ where b = f l /y.  This 

completes the proof  of  the lemma. [] 

We now present examples of  rate functions L in Theorem 2.1 in the case 

d = 1. In each example, there exists a number  c < 0 such that  L,~(/~) equals 
L l(fl) for/3 < c and (when c < 0) •1(fl) is an affine function of  fl c [c, 0). For 
i = 1 the inf imum in (3.3) for /~ < c is a t tained at ~ = 1; for fl E [c, 0) the 
inf imum is at tained at 7 -- fl/c. Similar remarks apply to the form of  ~2(fl). 

For  i = 1 , 2  ~i  denotes the mean  f y # i ( d y ) ,  which is the unique min imum 

point and the unique zero of  L i. 
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Examples 3.2 
(a) Stable boundary. We assume that ~1 is positive and ~2 is negative. Thus 

in each open halfline the random walk tends to move toward the origin. Since 

for i = 1, 2, Li(fl i) = 0, (2.1) yields L~ = 0. For i ---- 1, 2 and fl E IR d 
satisfying ( - 1 ) i f i  > 0, the function 2~(~) in (3.4) equals fi times the slope 

of the line connecting the points (0,0) and (fl/7, Li(fl/7)) �9 There exist unique 
points b I < 0 and b 2 > 0 such that 

Ll(bI)/bt  = max(L1/3<o- (fi)/fl} a n d  g2(b2)/b 2 = If ini~{g2(f l) / f l}  . 

It follows from (3.3) that for fl < b 1 ~l(fi)  equals L t(fl); for fl ~ [b 1 , 0) ~l(fi)  
equals the linear function ilL s (b~)/b 1. Similarly, for fl > b 2 L 2 (fl) equals L 2 (fi); 
for fl E (0, b 2] ~2(fl) equals the linear function flL2(b2)/b2. The rate function 
L(fl) given by (2.4) is shown in Fig. 1. It is convex but not strictly convex, has 
a unique minimum point at the origin, and is not differentiable at the origin. 

Fig. 1. Rate function for d = 1: stable boundary 

(b) Unstable boundary. We assume that fll is negative and ~2 is positive. 
Thus in each open halfline the random walk tends to move away from the 

origin. The assumption on and implies that 

inf Ll(fl) = LI(0) > 0 and inf L2(fi) = L2(0) > 0 .  
p__>0 /~<0 

Formula (2.1) yields L~ = min[Lt(0), L2(0)] > 0. 
We first consider the case where L ~ (0) = L2(0). Then L~ = L ~ (0) = L2(0). 

For i = 1, 2 and fl E IR d satisfying ( -  1)/fl > 0, the function 2}(7) in (3.4) 

equals El(O) plus fl times the slope of the line connecting the points (0, Li(O)) 
and (fi/7, Li(fl/7)) �9 For fl negative (resp., positive), this slope is a monotonically 
increasing (resp., decreasing) function of 7 E (0, 1]. It follows from (3.3) that 
for fl < 0 [ l ( f l )  equals Lt(fl) and for fl > 0 ~2(fi) equals L2(fl). The rate 
function L(fi) given by (2.4) is shown in Fig. 2. It is continuous but not convex, 

has minimum points at ~1 and fla, and is not differentiable at the origin. L(fi) 
is real analytic for fi ~ ( -- oe, 0) U (0, oo). 
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/ \  
Fig. 2. Rate function for d = l:  unstable boundary with L 1 (0) = L2(0) 

We now consider the case where L2(0) > LI(0). By (2.1) L~ = LI(0). 
For /3 < 0 the function 2}(7) equals LI(0) plus /3 times the slope of the 

line connecting the points (0, LI(0)) and (/3/7, L1(/3/7)). Since the slope is a 
monotonically increasing function of 7 ~ (0, 1], it follows from (3.3) that  for 
/3 < 0 ~1(/3) equals L~(/3). In order to determine the form of ~2(/3) for/3 > 0, 
we use part (b) of Lemma 3.1. We claim that  there exists a unique point b > 0 
in (0, ~2) such that 

(3.7) --H2((L2)'(b)) = L,~ = L 1 (0) . 

Indeed, for/3 > ~ 2  (L2),(fl) > 0. Since H2(ct) > 0 for ~ > 0, (3.7) cannot  be 

satisfied for any b > ~2. On the other hand, since H2(e) attains its min imum 
value of - L2(0) at the unique point  c~ = (L2)I(0) < 0, H2(e) is a monotonically 
increasing function for ~ 6 ((L2)I(0),  0);  its range is the interval ( - L 2 ( 0 ) ,  0). 
Since L2(0) > LI(0) > 0, we conclude that (3.7) has a unique solution lying in 

the interval (0, ~2). For/3 > b L2(/3) equals L2(/3); for/3 c (0, b] •2(/3) equals 
to the affine function L 1 (0) +/3 [L 2 (b) - L  1 (0)] /b .  The rate function L(/3) given 
by (2.4) is shown in Fig. 3. It is continuous but not  convex, has min imum 

points at ~1 and ~2, and is not  differentiable at the origin. L(/3) is real analytic 
for/3 E ( -- oo, 0) and is @ but not  ~6 ~2 for  /3 E (0, O0). 

/ \  
Fig. 3. Rate function for d = 1: unstable boundary with L2(0) > L 1 (0) 
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(c) One-sided unstable boundary. We assume that ~1 equals 0 a n d  ~2 is 
positive. Thus L I (0) = 0 < L2(0) and 

L~ = min{L 1 (0), L2(0)} = L t (0) = 0 .  

As in the previous example, it follows from (3.3) that for/3 < 0 ~l(fl)  equals 
Ll(fi). In order to determine the form of L,2(fi) for/~ > 0, we use part (b) of  

Lemma 3.1. Since b = f12 is the unique (positive) point satisfying 

- H 2 ( ( L 2 ) ' ( b ) )  : E ~  = 0 ,  

it follows that for fi > ~2 L2(fl ) equals L2(fi) and for fi 6 (0, ~2] Lz(fi ) equals 
0. The rate function L(fl) given by (2.4) is shown in Fig. 4. It is differentiable 
and convex but not strictly convex, and it attains its minimum at all points in 

the interval [0, ~2]. 

Fig. 4. Rate function for d = 1: one-sided unstable boundary 

This completes our discussion of  Theorem 2.1 and our presentation of  
examples. The next section presents facts in convex analysis needed in the 
proof  of  Theorem 2.1. 

4 Convex analysis 

The main result in this section is Proposition 4.3, which proves facts about  the 
function L appearing in Theorem 2.1. We follow Rockafellar [28] except that 
we use the term "convex function" where he uses the term "proper convex 
function." The Legendre-Fenchel transform f* of  a lower semicontinuous, 
convex function f on IRa is defined by the formula 

f*(y) = sup {(x,  y) - - f ( x ) }  
x E N  d 

for y c IR d . 

Let f be a lower semicontinuous, convex function on IR d. We say that f is 
superlinear if inf{x E IRa : Ifxtl = c} f ( x ) / c  ~ oo a s  c ---, oo. The elementary 
proof  of  the following lemma is omitted. 

Lemma 4.1 Let f be a lower semicontinuous, convex function on ~d.  Then f is 
superIinear i f  and only ~ f* (y) is finite for  every y E Ra. 
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In part (a) of  the next proposition, for A a subset of IRa, a(ylA) denotes 
the function that is 0 for y 6 A and is + oc for y ~ ira \ A. 

Proposition 4.2 Let f l  and f2 be finite convex functions on IRa (thus automatically 
lower semicontinuous). We denote by goi, i = 1, 2, the respective Legendre- 
Fenchel transforms o f  f~, i = l ,  2. Let A 1 and A 2 be nonempty closed convex 
cones in IRd. We define for y E iRa 

(4.1) 

go(y) = inf{oiqbl(y 1) -}- 02go2(y 2) "01 ~ O, 02 ~ O, 

0 1 + 0 2 = 1 ,  yl E A I ,  y2 E A 2  ' 

o l y  I +~02y 2 = y }  �9 

Then the following conclusions hold. 

(a) For y E IRd go(y) may be represented as the Legendre-Fenchel transform 

(4.2) go(y) = sup {{x, y) - max[f~(x),  f2(x)]} , 
xEN d 

where for i = 1 ,2  and x E IR a f i (x)  = (goi(.) + 6(.iAi))*(x). 
(b) The function q6 is lower semicontinuous, convex, and superlinear, and its 
Legendre-Fenchel transform 4)* is lower semicontinuous, convex, and finite 
on IRa. 

Proof (a) For i = 1, 2 we define ~i(.) to be the lower semicontinuous, convex 
function goi(.) + 6(.IA i) and ~i to be its Legendre-Fenchel transform. Note that 

~i > go i. Then for y E IRd 

(4.3) 
go(y) = inf{ol~Z(y z) _1_ O2~2(y2) .Q1 ~ O, ~2 ~ O, 

01 -}- 02 = 1, oly 1 -I- 02y 2 = y} .  

Since ~i = (~i). < (goi). = f i ,  which is finite on iRa, Theorem 16.5 in 
Rockafellar [28] shows that 

(4.4) go(y) = sup {(x, y} - max[ f l (x ) ,  f2(x)]} . 
x E ~_ d 

This proves part (a). 
(b) For i = 1, 2 the assumptions on f i  imply that the function x ~-~ 

max[ f l (x ) ,  f2(x)] is lower semicontinuous, convex, and finite on IRd. Since 
4) is the Legendre-Fenchel transform of this function, which in turn is the 
Legendre-Fenchel of go [see (4.2)], part (b) is a consequence of  Lemma 4.1. This 
completes the proof  of  Proposition 4.2. [] 

We now use part (b) of  Proposition 4.2 in order to prove that the function 
L(fi) appearing in Theorem 2.1 has compact level sets. We also obtain the other 
properties of  this function that are mentioned in part (b) of Theorem 2.1. 
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Proposition 4.3 For fl c ~d  the function L(fl) defined in (2.1)-(2.4) is lower 
semicontinuous and superlinear and therefore has compact level sets. In addition 
L(fl) is convex on each o f  the halfspaces {fl E ]RJ : ( - 1)ifll __> 0}, i = 1,2. 

Proof. The function ~0(fl) has been defined in (2.1) for fl E N d  satisfying 
fll = 0. However, the right side of  (2.1) is well-defined for all fl E ]R d. We 

used the same notation ~0(fl) to denote the corresponding function on IR d. 
For i = 1 ,2  the function ~i(fl) has been defined in (2.3) for all fl E IRd. 

The function ~0 may be represented as in (4.1) with q~i = L i = (Hi). for 
i = 1, 2. Since each H i is a finite convex function on IR d, part (b) of  Proposition 
4.2 implies that ~0 is lower semicontinuous, convex, and superlinear and that 
its Legendre-Fenchel transform (~0)* is lower semicontinuous, convex, and 
finite on ~d .  

We claim that for i = 1 ,2  and fl E IR a satisfying fll  = 0, ~i(fl) equals L 0 (fl). 

Indeed, for such fl we have from the definition (2.3) that f0(f l)  > f~ i(fl). On the 
other hand, for such fl we have from the definition (2.1) that ~0(fl) < Li(fl). 
Since in the constraints appearing in (2.3) ~ i ( f l i ) l  ~ f l l  - -  ~;0(fl0)l  ~ 0, we obtain 

a lower bound on ~,i(fl) by replacing Li(fl i) in (2.3) by ~,o(fli). The convexity 
~0 implies that 

~~176176 + ~iL~ >__ L ~  . 

We conclude that L~ > ~,i(fl) > L0(fl) and so the functions must be equal. 
It follows that the definition (2.4) of  L(fl) may be replaced by the equivalent 

definition 

g l ( f l )  if fll = 0 
(4.5) L(fl) = L2(fl ) if fll -->---0. 

For i = 1 ,2  the function ~i  may be represented as in (4.1) with q5 i = L i = (Hi) * 
and q~3-i = ~0 = ((L0)*)*. Since H i and (~0)* are finite convex functions on 

N d, part (b) of  Proposition 4.2 implies that ~, i is lower semicontinuous, convex, 
and superlinear. It now follows from (4.5) that L is lower semicontinuous and 
superlinear. Since a lower semic0ntinuous, superlinear function has compact 
level sets, the first assertion in the proposition is proved. That L(fi) is convex 
on each of  the halfspaces {fl E IR d : ( -- 1)ifil ~ 0}, i = 1,2,  also follows from 
(4.5). [] 

We end this subsection by presenting a consequence of  Hypothesis (H) 
concerning the sets r i (domL 1) and ri(domL2), the relative interiors of  the 
effective domains of  the functions L 1 and L 2. This lemma will be used several 
times in the sequel. 

Lemma 4.4 Let #t and #2 be Borel probability measures on IR a that have finite 
cumulant generating functions and that satisfy Hypothesis (H).  Then for  i = 1, 2 

ri(dom L i) C3 int A 3 - i @ 0 �9 
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Proo f  Hypothes is  (H) states that  for i = 1, 2 

supp #i N int A 3 - i :/= 0 �9 

According to Theorems  VII I .4 .3 -VII I .4 .4  in [15] (see also [1]), for  i = 1 , 2  the 
relative interior  o f  the effective domain  o f  the funct ion L i equals the relative 
inter ior  of  the convex hull o f  the suppor t  o f  the measure  #i; in symbols,  

r i (dom L i) = ri(conv(supp/2i)) . 

Hence  by Hypothes is  (H) we have for i = 1 , 2  

r i ( d o m L  i) C] in tA  3 - i  = r i (conv(supp #i)) A int A 3 - i  5~ 0 ,  

as claimed. []  

This completes  the convex analysis section of  the paper.  In the next  section, 
we prove the large deviat ion bounds  in Theo rem 2.1. 

5 Proofs of the large deviation bounds 

In this section we prove the large deviat ion bounds  in T heo rem 2.1. The  proofs  
are divided into the following five parts. For /3  c IRa and e > 0, B (/3, ~) denotes  

the open  ball {y E IRa "IlY -/311 < e}. 

(a) Upper bound for/3a = 0. For  all [3 ~ IR d satisfying/31 = 0, 

l i m s u p l i m s u p n  -1  l o g P { S J n  c B(f l ,  e)} < - -L~  . 
~ 0  n - + o O  

(b) Lower bound for/31 = 0. For  all/3 E IR a satisfying/71 = 0, 

l i m i n f l i m i n f n  - I  l o g P { S , / n  E B(/3, e)} > - ~ 0 ( f l )  . 
8-- -*0  /'t ---~ oo 

(c) Upper bound for  fll @ 0. For  i = 1 , 2  and all /? E IR a satisfying 

( -  1)i/?1 > 0, 

lim sup lira sup n -  ~ log P {S n/n e B (fl, e) } < -- L, i(/3) . 
8 - - + 0  /~ ----~ OO 

(d) Lower bound for  /~1 ~ 0. For  i = 1 , 2  and all fl ~ IRa satisfying 

( - 1)~/71 > 0, 

l i m i n f l i m i n f n  -1  l o g P { S n / n  E B(/3, ~)} > --~i( /3)  . 
8, --~ 0 n ---> oO 

(e) Exponential tightness. For  each M < ov there exists a compac t  set K in 

IRa such that  

l i m s u p n  - l l o g P { S n / n  q~ K }  <_< -- m . 
n ---> OO 



Large deviations for Markov processes with discounting statistics, lI  169 

Parts (a) - (d) are proved in Subsections 5 a -  5d, respectively. The exponential 
tightness is an immediate consequence of part (a) of Lemma 5.1. The upper 
bounds (a) and (c) together with the exponential tightness in (e) yield the upper 
large deviation bound 

l imsupn - l l o g P { S J n  E F }  < --  in f  L(fl) 
n ~ c~ f i eF  

for each closed set F in IR d [7]. The lower bounds (b) and (d) yield the lower 
large deviation bound 

l i m i n f  n - 1 1 o g P { S J n  c G} > - inf  L ( 9 )  
n--,ao ,6eG 

for each open set G in IRa. 

5a Upper bound f o r  91 = 0 

Fix 9 E ]R d satisfying 91 = 0 and ~o(fl) < + oe. In this subsection, we prove 
that 

(5.1) lim sup lim sup n -  1 log P {Sn/n �9 B(f l ,  a)} < - L0(fl) . 
g ---+ 0 n ---+ oO 

We omit the routine modifications needed to handle 
Z~ = + oo. 

For n �9 N and i = 1,2, we define the normalized sums 

the case when 

(5.2) ' ' •  ' ' 2  
rn n l{sj_ IeAi) and v n n l{sj -~eAqX} 

j=l j=l 

The quantity r~ represents the fraction of  time between 0 and n -  1 that 
1 2 = 1 and the random walk spends in the half space A i. Note that r n + r n 

1 2 Fix ? r (0, 1) and let T E (0, 1/2) be a number to be specified Sn/n = v n + vn. 
below. For any e > 0, we write 

{Sn/n e B(f l ,  a)} = Anl (g, T) U A2(g ,  ~) U A3(g ,  "c) , 

where 
i < z } ,  i = 1 , 2  A~(e, z) = {Sn/n r B ( 9 ,  g), r n = 

and 
1 2 v} A~(~, "0 = {Sn/n  e B ( 9 ,  ~), rn > ~, rn > �9 

We prove (5.1) by showing that for all sufficiently small s > 0 and sufficiently 
small ~ ~ (0, 1/2) 

(5.3) lim sup n - 1 log P {A / (s, z) } < -- L 0 (9) + Y, i = 1, 2 ,  
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and 

(5.4) lim sup n - ~ log 3 P{An(e ' ~)} <_ _ ~0(fl) + 7-  

We prove (5.4), then (5.3). 
i This is given in part The first step is to obtain an exponential bound on v n. 

(a) of the next lemma. This yields the exponential tightness of  {Sn/n }, stated 
in part (b). 

Lemma 5.1 (a) For any number M > O, there exist positive numbers C and 2 
such that for  i = 1, 2 and all n E N 

P{llv~ll > 2} < Ce -Mn . 

(b) The random vectors {Sn/n,  n E N} are exponentially tight. 

Proof. (a) For i = 1 ,2  and n c N, IIv~LI < n -1 Y,~=I Nx~ II. Since for all numbers 

> 0 g{exp(allX}l l)}  < 0% part (a) follows from Cram6r's Theorem. 
(b) This is an immediate consequence of part (a). [] 

The second step is to deduce a restriction on the set of  vectors that 
the random walk tracks in the two halfspaces. We call the next lemma the 
"tracking" lemma. 

1 > e and Lemma 5.2 For any n E N and any e > O, i f  Sn/n C B(f i ,  e), then v, = - 
2 < ~ .  Idg 

Proof  We use the function f ( x )  = [Xl[ as a Lyapunov function. If  Sn/n E 
B(fl, e), then by considering separately the cases (Sj)~ > 0 and (Sj) 1 < 0, we 
obtain 

n--1 

e > I(S,) i /nl  = Y'~ (] (S j+lh/n[  - I ( S j ) i / n l )  
j=0 

n- - I  

= 1 Z ( -  I{sj~A1}(X) )1 + I{Sj~A2} (X2)1) 
n 

j=0 

n--1 

-~- ~ Z (I{SjEA1}[(SJ H- Xj )1 V 0 ] -  ]{SjEA2}[(Sj H- Xj2")I A0]) 
j=0  

____> - -  (vnl)i Jr- ( / ) 2 ) 1  . 

By assumption, I(vnI)l + (v2)11 < e. Therefore 

2 2(vl)1 = ((vl)1 -- (V2)l) + ((vnl)1 + (Vn)l) _~ - -  2~; 

and 
2(Vn)12 = tt'(v2)n 1 - -  (v l )1)  ~- ((/)2)2 -]- (Vnl)l) = < 2 ~ .  

This completes the proof. [] 
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We now proceed with the proof of (5.4). For any numbers e > 0 and 2 > 0, 
the tracking lemma, Lemma 5.2, implies that there exists a finite collection of 
pairs of vectors {(fi), fl~) 6 N d x IR d, j = 1 ,2 ,  . . . ,  F} satisfying fl) + fi2 = fl, 

(fl))~ > 0, (/72)1 < 0, and 

S n } F 
- -  C B(fi, e), Ilvenll < 2 for i = 1 ,2  c U{v  / E B(fl}, 2e) for i =  1, 2}. 
n j = l  

Choosing N = N(v) to be the integer that satisfies v -  1 _ 2 < N < ~-  1 _ 1, we 
have 

N 

2 ,~} {g < rn __= {rln > T, r n > = 1 < 1 --V} c U{rn  1 E [kv (k-l- 1)v]} c (0, 1). 
k=l 

Given M > 0 and picking C > 0 and 2 > 0 in accordance with Lemma 5.1(a), 
we have 

(5.5) 

< p {  Sn 
= - -  ~ B ( / ~ ,  e ) ,  I[v~ll 5- ,~ 

2 

+ e{rl i, JI > 
i=1 

F N 

<= Z Z P{ vin E B(flS, me) 
j = l  k=l 

+ 2Ce-  M~ . 

~ < l - - v }  for i = l , 2 ; z < r n =  

1 for i = 1 ,2 ;  r n E [kr, (k + 1)~]} 

In order to estimate the probabilities on the last line of (5.5), we introduce 
a sequence of changes of measure. Let (f~, ~-,  P) denote the probability space 
on which the random variables {X}, j ~ N ,  i = 1, 2} are defined. Denote by 
Pn the probability measure on (f~, ~ )  induced by the marginal distribution 
of {X}, j = 1, . . . ,  n, i = 1, 2} with respect to P. Given cd E IR d, ~2 c N d, 

and n ~ N, we define the new measure P~l,~2(dco) on ( f~ ,~ )  with the 
Radon-Nikodym derivative 

(5.6) dPn~l'~2 ( 2 2 ) 
dp  n (co)=exp n ~-" (ct~, V~n(OO)) - n Z r'n(co)H~(e ~) . 

\ i=1 i=1 

A straightforward argument involving conditioning shows that pff t ,  ~2 is a 
probability measure. 
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and 

R D u p u i s  a n d  R.S.  Ell is  

For  i = 1, 2, R > 0, ? C IR d, fll E ]R d, and fi2 G IR d, we define the functions 

L/R(7) = sup {(~, ?) -- Hi(c0},  
{~ ~lRd :11~11 <R} 

ga( f i l  f12) = inf  tL 1 + (1 - t)L 2 ~ , 
' 0 < t < l  

LR(f  )=in f {LR( f l l , f l2 )  . i l l  E I R  d, f12 E IR  d, 

fl~ + fi2 = fi, (fl~)l >= o, (fi2 h G 0} 

The following lemma relating LR(fl) and ~0(fl) will be proved later in this 
section. 

L e m m a  5.3 limsupR__,~c LR(fi) > ~0(fl).  

The  next  l emma shows how to bound  each of  the probabili t ies on the last 
line o f  (5.5). 

L e m m a  5.4 Let fll and fi2 be vectors in Nd satisfying flI + f12 = fl, (fii)1 > 0, 

(fi2)1 G 0, and define for any R > 0 the finite number 

c(R) = sup{IHl(c~)[ "c~ E IR d [Ic~[I < R} 

Then there exists R > 0 such that for any k E { 1 , 2  . . . .  , N} 

I p{v incB( f i  i,2e) for i = 1 , 2 ,  ; r n E [ k z , ( k + l ) r ] }  

< exp( - nL,~ + n7/2 + 4n~R + nrc(R)) . 

Proof We prove the lemma under  the assumpt ion  that  LR(fi) < oo for all 
R > 0, omit t ing the rout ine modif icat ions needed if this assumpt ion  is not  true. 
Given k c {1, 2 . . . .  N}, we set xl = k~ and ~c 2 = 1 - kz. For  any R > 0 and 

any vectors ~1 and ~2 satisfying I1 ~1 I] < e and 1[~211 < R, 

, I P{vI, EB(f l '  25) for 1 , 2 ;  r n c [ k r , ( k + l ) r ] }  

= Ln ' e x p  - -  nZ[(c~i ,  v i) --riHi(ai)] l{vi~B(fli,2e) ' i=l,2)l{rlC[kz, (k+ l )~ ]}  

i=1 

< exp( - n[(~ 1 , ill} _ (k + 1) r i l l  (c~1)] -- n[(~ 2 , fi2) _ (1 - kz)H2(e2)] + 4neR) 

( -- nZ[(c~i , [3 i) - ~ciHi(~i)] + 4neR + n'clul(c~l)l < exp m 

\ i = i  

According  to L e m m a  5.3, there exists R > 0 such that  LR(fl) > ~o( f l )_  ?/2. 
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With this value of R, it follows that 

1 P{vin E B(fi i, 2~) for i = 1 ,2  ; r n E [kz, (k + 1)z]} 

2 

~ exp ( - n E t r  sup [(o~i,fli/tci}--Hi(o:i)]4-4neR4-n"cc(R)) 
i=1 {cd @~d :lie d II <R} 

<= exp( -- nLR(fl 1 , [3 2) 4- 4heR 4- nzc(R)) 

=_< exp( -- nLR([3 ) 4- 4heR 4- n'cc(R)) 

< exp( - nL,~ 4- n7/2 4- 4neR 4- nzc(R)) . 

This completes the proof. [] 

We now conclude the proof of  (5.4). Choosing R > 0 in accordance with 
Lemma 5.4, we define 

(5.7) e 1 = 7 / 1 6 R  and z 1 = [ 7 / 4 c ( R ) ] A 1 / 2 ;  

whenever e E (0, el) and r E (0, zl), then 4eR + zc(R) < 7/2. We now use 
Lemma 5.4 to bound each of the summands in (5.5). For all j c {1,2,  . . . ,  F}, 
k E {1,2 . . . . .  N}, e E (0, el), and z c (0, Zl), we have 

1 P{v/EB(f l} ,2e)  for i = 1 , 2 ;  r n c [kz, (k 4-1)z]}__<exp(-nL~ 4-nT),  

and so by (5.5), 

p{A3n(e ,  ~)} < FNexp(  -- nL~ + nT) + 2 C e  - M n  �9 

Choosing M to exceed ~0([3), we conclude that the upper bound (5.4) holds. 
In order to prove Lemma 5.3, the following auxiliary result is useful. 

Lemma 5.5 (a) I f  (~ ~ ~ E IR a, then for  i =  1 ,2  l i m i n f ~ _ ~  L~((~) >__ Li(~). 
(b) For any sequence o f  positive real numbers {7n, n E N} that converge to oe, 

for  i = 1,2,  and for  any c5 > 0 

lim 7n -1 inf{Li(() "~ E IRd, II~[I > ~ }  = oc. 
n ---roo 

Proof  (a) For any c~ E IRa satisfying IIc~ll < n, 

ci~(~.) >= (~, ~n) -Hi(~). 

The right side converges to (c~, ~) - Hi(cr as n --~ oo. Therefore, for all e E IRa, 

l irrl~f  Lin(~) > (~, : ) -  Hi(co, 

from which part (a) follows. 
(b) Take k c N,  n ~ N satisfying n __> k, ~ any vector in N d satisfying 

IICll > ~ ,  and e = k(/ll~ll, Then 

Zi(()  => (c~, () -- Hi(() >= kl[(ll - ce(k) >= k(~7~ - ci(k) , 



174 R Dupuis and R.S. Ellis 

where c i (k ) - - sup{Hi(~)  : o: E ]R d, II~ll ~ k}. Part (b) is an immediate 
consequence of  these inequalities. [] 

We now turn to the proof  of  Lemma 5.3. 

Proo f  o f  Lemma 5.3. Given 5 > 0, we choose sequences {tn, n E N} 
(0, 1), { b l , n  ~ N} = IR d, and {b2 ,n  E N} ~ IR d satisfying for each n ~ N 
(bl)~ > 0, (b2)1 < 0, bl~ + b ] = 8, and 

(5.8) +(1-tn)L2,( bT t, ) 

If Ln(fl) equals oo for infinitely many n or if ~-limsup,_~oo~O(n ) equals 0o, 
then the lemma is obvious. Let us therefore assume that neither of  these two 
possibilities occurs. 

By passing to subsequences, we may assume without loss of generality that 
the quantities {t~, n ~ N} converge to a limit t* E [0, 1]. If  t* lies in the open 
interval (0, 1), then by part (b) of  Lemma 5.5 and the fact that ~ < Go, it follows 
that the quantities {4lb�88 ]l,n E N} and {lib2 II,n E N} remain bounded. Hence, 
there exists a sequence of positive integers {n ~} converging to oo such that both 
subsequences {bl n, } and {b 2, } converge. In this case, the lemma follows from 
part (a) of  Lemma 5.5 and (5.8). 

We now consider the case where t* = 0; the case where t* = 1 is handled 
similarly. Since ~ < o% part (b) of  Lemma 5.5 excludes the possibility that 
l imsup,~oo Ilb~ll > 0. Therefore, limn_.~ Ilbnlll = 0. Using again part (b) of  
Lemma 5.5 and the fact that ~ < 0% we may choose a subsequence { @ }  

converging to 8. It follows from part (a) of  Lemma 5.5 that 

lim sup 0(n)n- ,oo > lim sup(ln,_~oo -- tn')L2n' \ 1  - t n, / > L2(8) > L ~  " 

The lemma is a consequence of  the last display and the inequality in (5.8). This 
completes the proof  of the lemma. [] 

The upper bound (5.4) has been proved for all e ~ (0, el) and all -c E (0, Zl). 
In order to complete the proof  of  the upper large deviation bound (5.1), we 
must still prove the upper bound (5.3) for all sufficiently small e 6 (0, el) and 

2 = 1 and Sn/n 1 2 z E (0, Zl). Since rn 1 + r n = v n + Vn, we may write 

(5.9) i 

i <1:} --P{S,,/n B(fl , 8), r,, = 
i < "C, HVin II < ~} = P { S J n  c B(  8 ,  e), r n = 

+ P { S , / n  E B ( 8 ,  e), r n = , = 
3 - - i  - -  <=P{r3n-i>__l--Z,  Vn c B ( f i , 2 0 } + p { r i , < r , [ F v ~ , [ [ > _ _ e } ,  

where B denotes the closed ball. The two probabilities on the last line of this 
display will be handled in the next two lemmas. 



Large deviations for Markov processes with discounting statistics, II  175 

Lemma 5.6 For i = 1, 2, there exists g 2 C (0 ,  e l )  and ~2 C (0 ,  "Ca) such that 
whenever e E (0, e2) and z E (0, z2) 

3--i  l imsupn  -a  l o g P { r  3 - i  >_>_ * -- z, v n E-B(fl ,  2e)} =< --L3-i(f i )  + Y 
n --+ O0 

< _ L o ( ~ )  + , / .  

Proof. We carry out the proof under the assumption that Ll( f l )  and L2(fi) 
are finite, omitting the routine modifications needed when either of these 
quantities equals + Go. We also assume that both L 1 (fi) and L 2 (fi) are positive. 
If  either of these quantities equals zero, then the corresponding upper bound 
is automatic. For i = 1, 2 and any subset A of  IR d, we write Li(A) for the 
quantity inf/~ ~ A U(fl) .  

Let i = 2, so that 3 - i = 1. As in the proof of the upper bound in Cram&'s 
theorem (see, e.g., Sect. VII.4 of  [15]), for any e > 0, the compactness of the 
closed ball B(fi ,  2e) guarantees that there exist finitely many nonzero vectors 
{cd, k = 1, . . . ,  p} such that 

1 P {r~ >_> 1 -- z, v n E-B(fi ,  2e)} 

P 

=< y ,  e {r~ __>, - ~, <~, ~1> __> L1 (~(/~, 2~)) + H a (~1t - ~ /3}  
k=l  

P a~,0 

=< Z E'~ { exp(- 
k=a 

a a a 
+ nrnH (%))1{rl >1-~}1{(c~, v~)_->Ll(~(/~,2~))+H~(c,~)-~/3} } 

P 

=< Z exp( -- nLl(-B(fl ,  2e)) + nzlHa(al)l + n7/3) . 
k=l 

The same proof shows that there exist finitely many nonzero vectors 
c~ 2 { ~, # = 1, . . . ,  q} such that 

2 P{r~ _>_ 1 -- z, v n E B(fl, 2e)} 
q 

=< Z exp( -- nL2(-B(fi, 2e)) + nzlH2(~)[ q- n7/3) �9 
#=1 

Since for i = 1 ,2  l i m ~ o +  Li(B( f i ,  2e)) = Li(fi), there exists e 2 6 (0, q )  such 
that whenever e c (0, e2) 

Li(B(f i ,  2e)) => Li(fi) -- 7 / 3 .  

Given e c (0, e2), we pick z2 ~ (0, Za) so that 

% x max {lHi(c~)l, 1H2(c~2)1} < ~,/3. 
k = a ,  ..., p ;t~=a ..... q 
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For e E (0, e2) and z E (0, z2), we have for all n c N 

and 
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1 , 2 e ) }  < P{r l > l - z , v  n EB(fi =pexp(--nLl( f i )+nT) 

2 P {r2n >= 1--  ~, v n E -B(~, 2a)} < q e x p ( - -  nLZ(fl) + n T ) .  

The lemma follows from these two inequalities and the fact that for i = 1, 2 

Li(fi) >= L ~ [] 

The last lemma in this subsection shows how to bound the second 
probability on the last line of  (5.9). 

Lemma 5.7 Given e E (0, e2), there exists z 3 C (0, z2) such that whenever 
"C E ( 0 ,  "C3) 

l i m s u p n - l l o g P { r i  n <=z, IIvinll >_e} =< - L ~  i =  1 , 2 .  
n ----> O0 

Proof  We assume that ~0(fi) > 0. If  ~0(fi) = 0, then the lemma is automatic. 
Let {u r, r = 1 ,2 ,  . . . ,  d} denote the unit coordinate vectors in N d and let 

N be a positive number to be specified below. Whenever ]lv~ll > ~, then for 
some r c {1, 2, . . . ,  d} either (u r , v~) > e/d 1/2 or - (u ~ , v,i~) > e/d 1/2. Hence, 
using estimates similar to those used repeatedly throughout  this subsection, we 
have for any ~ c (0, r2) 

d 

P{rin <= z, I[vin[] >= ~} <= Z exp(nvlHi(Nur)l - nNe /d  1/2) 
r= I  

d 

+ Z exp(n'clHi( -- gur)[ -- nge /d l /2 )  " 
r = l  

We pick N E (0, oo) so that N x e/d I/2 = 2L~ We then pick z 3 c (0, "E2) SO 

that 
z 3 x max {IHi(Nur)l,  [Hi(--  Nur)l} < L~ �9 

i = 1 , 2 ,  r = l  .... , d 

For this choice of N and for ~ E (0, "C3) , w e  have for all n E N 

P{rin < ~, Ilv~ll > ~) < 2 d e x p [ - n L ~  . 

The lemma follows from this inequality. [] 

The proof  of the upper large deviation bound (5.1) is now complete. We 
next turn to the proof  of the lower large deviation bound for balls centered at 

points fi c Nd satisfying fil = 0. 
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5b L o w e r  bound f o r  fil = 0 

Fix fl E ]R d satisfying fll ~--- 0. In this subsection, we prove that 

(5.10) l imin f l imin f  n -1 l o g P { S n / n  c B( f l ,  0} > -- ~,o(fl) . 
8 ---> 0 gt ---> OO 

We assume that L~ < m because otherwise (5.10) is automatic. Several 
lemmas that are needed are proved at the end of the subsection. 

Let ~ > 0 and 7 > 0 is given. By the definition of ~0, Hypothesis (H), and 
a continuity property of L i, i = 1,2, there exist [Lemma 5.8(a)] real numbers 
Q1 and 02 and vectors/31 , f12, and fi satisfying 

(5.11) 
E 1 > O, ~0 2 > O, 01 -[-0 2 = 1, ( f l l ) l  > O, (f12)l < O, 

f l l  = O, o l f l  1 -t-~02fi 2 = f l ,  [ l f l - - f l [ [  < 8, 

and 

(5.12) ~ l L l ( f l l  ) q_ Q2L2(f12 ) __< •0(fl)  q_ 7 �9 

In order to prove (5.10), it suffices to show that 

(5.13) l iminfn  - l l o g P { S n / n  E B( f l ,  e)} >= - L ~  
n ---+ O0 

The key to the proof is again the sequence of changes of measure introduced 
in the last subsection. The differentiability of H i , i = 1, 2, on IR d and results in 
convex analysis [Lemma 5.8(b)] guarantee that for i -- 1, 2 there exist points 
C( i E Nd satisfying 

(5 .14)  VHi(c~i) = fii and Li ( f l i )  = (o;i, f l i)  __ Hi(c~i) . 

Let (~, ~ ,  P) denote the probability space on which the random variables 
{X}, j ~ N ,  i = 1, 2} are defined. Denote by Pn the probability measure on 

(~, Y)  induced by the marginal distribution of {X}, j = 1, . . . ,  n, i = 1,2} 
1,~2 

with respect to P. Recall that for each n c N Pff (de)) is the probability 
measure on (f~, ~-) with the Radon-Nikodym derivative 

(5.15) 
dPff  1, ~2 2 2 

i=1 i=1 

i and i 1 + v 2 and The quantities v n r n are defined in (5.2). Since Sn /n  = v n 
~olfl 1 q-~O2fl 2 = fl, there exists q = q(e) > 0 such that for all n ~ N 

(5.16) [' l  [{fin --  r i f t  i E B(O, el)} • {rin E B(O i, el)}] c {Sn /n  E B(-fi, 0}-  
i=1,2 
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For j ~ N, we denote by Y j  the a-field generated by the random vectors 

{X~,d = 1 ,2 ,  . . . ,  j, i = 1,2}. The measures {Pn ~1~2,n E N} have the 
following properties for i = 1, 2: 

(5.17) For j =  1, . . . ,  n, EPZl '~2{ l{s j_  I ~ A i } X } l . ~ j _ l } =  l{s j I~A~} fii" 

i i i c~l ~2  (5.18) As n ~ oo, v, - r,[3 --+ 0 in probability with respect to P~ ' 

i i (5.19) As n ~ oo, r~ -+ ~o in probability with respect to pffl ,2 

The equality in (5.17) follows from the choice of  ~i and is elementary to prove. 
The limit in (5.18) follows from (5.17) and Chebyshev's inequality [Lemma 
5.9]. The limit in (5.19) is a consequence of  the facts that (fll)~ > 0, (/~2)~ < 0, 

(fil)10a + (fi2)102 = (fi)l = 0 [Lemma 5.10]. 
We now derive the lower bound (5.13). According to (5.15), the measure P,, is 

absolutely continuous with respect to p ~ l ,  ~2. For suitably small e I = e 1 (e) > 0, 
(5.16) implies that 

= Pn{Sn/n e B(fl ,  e)} 

dp  n . = ,~, ~2 (~~ ' ~2(de) )  
dPn ' 

{s./~ e B(~, 0 

> / dPn (co)p:1, ~2 (dco) . 
= dp~1,  ~2 

( ' l i= l ,  2 [{v/, --  r~nfl i G U(O, ~ 1)}C3{r/n E B(o~i,~ 1)}1 

Now n l l o g ( d P n / d P :  1' ~2) is given by - ~/2= 1 [(cd, v i) - -  r inHi(c~i)] ,  which we 
rewrite as 

(5.20) 
2 

+ i ,  - - Z { < .  i ,  , ,  - > 

i = I  

Combining this with (5.12), (5.14), (5.18), (5.19), and the fact that el > 0 may 
be chosen arbitrarily small, we obtain 

2 

lim_)nf n -~ l o g P { S n / n  e B(fi ,  ~)} > -- Z ~i[(ai' fli) - Hi(a/)] 
i=1  

= - -  L o l n I ( f i  1)  -J- Q 2 L 2 ( f i 2 ) ]  

__> - L ~  

This gives the lower bound (5.13) and thus (5.10). 
We complete the proof  in a series of  three lemmas. The first lemma concerns 

the quantities appearing in (5.11), (5.12), and (5.14). 
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Lemma 5.8 (a) Let ~ > 0 7 > O, and fi ~ IR d satisfying fil = 0 be given. Then 
under Hypothesis (II) ,  there exist real numbers 01 and 0 2 and vectors i l l ,  fi2 

and fi in IR d satisfying 

01 > O, 02 > O, 01 -]- 02 = 1, 

fll  = 0 ,  01fi 1-[-02fi 2 = f l ,  

and 

(fll)l > O, (f12)l < O, 

II/~ - -  ~11 < ~, 

o1Ll(fl l) "-J-02L2(fi 2) ~ gO(fl) + 7 - 

(b) Under Hypothesis (H) ,  there exists for i = 1,2, a point cd E IR d satisfying 

VHi(oj)  = fii and Li(fli) = (o~i, fli} __ Hi(ogi) , 

where fii ~ 1R a has the properties given in part (a). 

Proof (a) By the definition of  ~0, there exist real numbers 31 and 3 2 and 
vectors/~1 and ~2 in N a satisfying 

and 

~1 ~ 0 ,  02 ~ 0 ,  ~ 1 + ~ 2 = 1 ,  

(fll)l  ~ 0 ,  (f12)l ~_~0, 31fll-[-O2f12 = f l ,  

Ll(f l  1) < o0, L2(fl 2) < o0, 

3 i L l ( ~ l )  _+.32L2(~2) ~ ~0(/~) q_ 7 / 2 .  

Suppose first that (fll)1 > 0 and (fi2)l < O. Then, since the equations 

~1 ._}_-~2 = 1 

have the unique solution 

and 01(~1)1 q-~2(f12)l = fll = 0 

//1 = b 1 and f12(O ) = ~2 _]_ O(b 2 _ ~2) . 

part (a) of  the lemma holds with 01---~01, 02~'3 2, fll "__~1, f12 '__~2 and fl--fl. 

The case where (fil)1 = 0 and/or  (fl2)1 = 0 can be divided into subcases: 
31 = 0; 3 2 = 0; ~1 > 0 and 3 2 > 0. We will only consider the case 31 = 0 and 
note that the arguments for the other cases are similar. 

We assume that ~1 = 0, so that 3 2 = 1. Then ~2 = ft. For i = 1, 2, let b i 
be a point in the nonempty convex set ri(dom L i) A int A 3-  i [Lemma 4.4]. For 
any number 0 c (0, 1), define 

3 1 -- -- (f12)l > 0 and ~2 = (fll)l  > O, 
(ill) 1 - ( ~ 2 ) 1  (fl 1) I - ( f 1 2 ) l  
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The point//2(0) lies in r i (domL 2) (~ intA 1, and since L 2 is convex and lower 
semicontinuous, l imo~o+ L2(//2(0)) = L2(f12). We define real numbers 01(0) 
and 02(0) as the unique solutions of  the equations 

~)l(o) + 0 2 ( 0 )  = 1 and 01(0)(//1)1 + 0 2 ( 0 ) ( / / 2 ( 0 ) ) 1  = 0 ; 

i.e., 

01(0) = -- (f12(O))l > O, ~02(0) = (//1)1 
( f l l ) l  - -  ( / / 2 ( 0 ) )  1 ( / / 1 )  1 - -  ( f12(O))  1 

We also define 
~(0) = 01(0)//1 q- 02(0) / /2(0) ,  

which for any 0 c (0, 1) satisfies 

> 0 .  

(fl(O)) I = 01(0)(//1)1 -]-02(0)(//2(0))1 = O .  

Since limo_,o+ 01(0) = 0 = 71, l imo~o+ 02(0) = 1 = 7 2, and limo_,o+ //2(0) = 

~2 ~___ //, there exists 0 c (0, 1) sufficiently small such that the quantities 
~ - 0 1 ( 0 ) ,  ~2-02(0), //1, and //2-//2(0) satisfy the claims of  part (a) of the 
lemma. 

(b) For i = 1, 2, the point //i specified in part (a) of  the lemma lies in 
ri(dom Li). Since the function H i is differentiable on all of  IR d, there exists a 
point ~i E IR a satisfying V H i ( e  i) = / / i  [Corollary 26.4.1 in Rockafellar [28]]. 
That gi(/ / i)  -= (oJ, / / i )  _ Hi(~xi) follows from the definition of  L i as a Legendre- 
Fenchel transform [Theorem 23.5 in Rockafellar [28]]. [] 

The limit in (5.18) is proved in the next lemma. 

Lemma 5.9 (a) For n c N and i = 1, 2, 

gpf f l , e2{[ [ [v i  _ r i f l i [ [ ]2}  ~_~ 1 ~ 0 2 H  ' 

k=l 

(b) For i = l ,  2 

Vni __ rinfii ___, 0 in probability with respect to Pn ~1 ' c~2 as n ~ o9 . 

P r o o f  To prove part (a), we define the random vectors 

�9 . X i Yj = l{s j_  1 cA,} j -- l{s~_/~ai}fl ' 

g i  and denote by ( j)k, k = 1, 2, . . . ,  d, the k'th component of  Y/ .  Since for 
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' i i 1 ~ j @ d ~ n  E P~I ~2{(yj )k(Y])k} 

c~l e2 [n]2EPn ' {[ [ [v /_r in f l i [ [ ]  2} 

-- 0, we have the expansion 

12} = Z e p :  ' (rj)  
k=l ' - j= l  

d ~ c~ 1 c~ 2 
= E ' {I(Yj)f} 

k = l j = l  

d ~1 a2 
<_~ 71 Z EPn ' {[(X~)k - -  (fli)k]2} 

k=l 

But for i = 1, 2 and k E { 1 , 2 ,  . . . ,  d} 

Thus, 

c~ 1 c~ 2 
~P" ' { [ ( x i ) k  - (fl%12} ( f xke<~,xld(dx). 1 

= ~ f e(~'x)#i(dx) 
~.d ~_d 

c32H i 

_ a["k] 2 ( . i ) .  

EP ff 1, ~ 2  { [ l l v ~ -  ri/3il[] 2} = < nl k 0[~k]2 (cd)'~q2Hi " 
k=l 

as claimed. Part (b) follows from part (a) via Chebyshev's inequality. 

The limit in (5.19) is proved in the next lemma. 

Lemma 5.10 For i = 1 , 2  

i ~i c~l ~2 
r n --o in probabi l i ty  with respect  to as n oo P~ ' ~ . 

[] 

�9 X i P r o o f  According to (5.17), the increments of  the random walk  {I{sj_ 1 6A ~} j, 

j E N ,  i = l ,  2} satisfy 

and 

E p ff l , c~2 
{I{Sj_  1 E A 1 } ( X ) ) I I ~ - j _ I }  = I{S j_  1 ~A1}(f l l ) l  > 0 

E p f f l ,  ~2 
{ l { s j_~  ~ A 2 } ( X ~ ) l l g j _ I }  = l { s ;_  I ~a2}(f12)l  < 0.  

Thus, the random walk in each halfspace has a tendency to move toward the 
boundary. Let V ( x l )  ---- Ix 11. The last two displays imply that V(') can be used 
as a Lyapunov function to prove the stability of  the one-dimensional process 
{(Sj) 1 , j c N} .  More precisely, there exist numbers c > 0 and 2 < oo such that 

~ ~ 2 2 g ( ( s j  1 ) l ) l S j _ l }  EP" ' {V( (S j -1  -1- I{Sj_  1 cA1} X )  -1- I{Sj_  1 eA 2} j ) l )  - -  - 

=<--c 
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whenever I(Sj_ 1)11 > 2. A standard result from the stability theory of Markov 
processes (see, e.g., Sect. 8.4 of [24]), implies that the random variables 

{ ( S j ) I , j  E N} are tight with respect to pff~,~2. Define rn(. ) to be the 
normalized occupation measures corresponding to the processes {(Sj)I, j ~ N}: 
for any Borel set B c IR, 

& 1 
rn(B ) = _ ) 1  n l{(sj_l)l EB} " 

j= l  

Since the tightness of the set of random variables {(Sj)I, j E N} implies the 

tightness of the sequence of random measures {rn(.), n E N} (Theorem 1.6.1 
in [26]), for any given 6 > 0 there exists 7 = 7(6) < oo such that 

(5.21) Pn ~1' ~a{rn{y "]Yl ~ ~} ~ 6} ~ 6 .  

Given j E N and f be a bounded continuous function mapping IRa to IR, 
we define 

al ~2 
5 ~ I ( S j _ I )  = EPJ ' { f ( S j ) - f ( S j _ I ) [ S j _ I }  . 

For 0 > 0, let fo (x )  = (x 1 A 0) V ( -  0). Since fo (x )  has a Lipschitz constant 
that is independent of 0, there exists B < oo such that 

(5.22) [ ~ f o ( x )  - (1al (x)(~1)1 -t- 1A2 (x)(fi2)l)[ ~ B 

for all 0 > 0 and x ~ IR a. By (5.17), given any 6 > 0 and 7 < ~ there exists 
0 = 0(c5,7) > 0 such that 

(5.23) I~fo(x) - (1A1 (X)(fll)l -]- 1A2(X)(fl2)l)] ~ 6 

for all x c IRd satisfying IXl[ < 7. Now let ~ > 0 be given and choose 7 < oo 
according to (5.21) and 0 > 0 according to (5.23). Temporarily fixing 7 and 0, 
we consider the quantity 
(5.24) 

1 
D 

1 
1 ' 7  

j=l j=l 

For j =  1, . . . ,  n, define 

zkj = f o(Sj) - f o(Sj_  1) - ~ f o (S j -1 )  �9 

c~l ~2 
Since E en ' { A j [ S j _ I }  = 0 and 

pc~l,-x 2 
]Ajl -- Ifo(Sj) - E J { fo(S j ) lS j -~} l  < 2llf0lloo, 
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we may bound the second moment  of  the quantity on the left side of  (5.24) as 
follows" 

Er" (fo(Sn) _ fo (So ) )_  1 ~_2 , fo(Sj_ l  ) 2 
n j = l  

_ 1 Ep ~ , /~j 
[n] 2 

-- [n]2 EPJ ' {[/kj]2} 
j=l  

=< 4-[llf 0 [Ioo] 2 . 
n 

Since n-  1 (fo (S~) - fo (So)) ~ O, Chebyshev's inequality gives 

(5.25) 1 ~ ~fo(Sj  -1) ~ 0 in probability with respect to pffl ~2 
n j=l  

We can write 

n 
rn(fll 1)1 -~-rn(fl2 2)1 = ~1 Z(1AI(Sj-1)(flI)I+IA2(Sj-I)(fl2)I) 

j= l  

= / (l{xl <O}(fil)l + l{xl>o}(fl2)l)rn(dXl) �9 

Using (5.21), (5.22), and (5.23), we conclude that 

1,•2{ / >o}(fl2)l)rn(dxl) Pff (l{x~ __<0} (fil)1 + l{x i 
R 

j=l  

Using (5.25) and the fact that 6 > 0 is arbitrary, we have 

2 2 rnl(~l)t +rn(~ )i ~ 0 

in probability with respect to Pff~, ~2 
1 and r~ satisfy Thus for all n c N,  the quantities r n 

1 + rn2 1 and rn (fl 1) 1 r n ~ 
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where % tends to zero in probability with respect to p,~l, ~2. Since (/71)1 > 0 
and (/72)1 < 0, the equations in the last display have the unique solutions 

1 - -  (/72)1 ~- O'n __ Q1 q_ O-n , 
r n  - -  ( t i r O l  2 _  (/72)1 (/?1)1 __ (/72)1 

2 (/?1)1 - -  O'n __ 02 O'n 
r n - -  (/71)1 - -  (f12)l  ( i l l )  1 - -  (f12)l  

We conclude that for i = 1 ,2  

i ~i ~1 ~2 
r n --+ in probability with respect to Pn ' as n --+ oo . 

This completes the proof of the lemma. [] 

The proof of the lower large deviation bound (5.10) is now complete. We 
next turn to the proof of the upper large deviation bound for balls centered at 
points fl �9 IRd satisfying fil :fi 0. 

5c Upper bound for fll @ 0 

Fix/3 E N d satisfying/?1 =fi 0 and L(/?) < ~ .  In this subsection, we prove that 

(5.26) l imsupl imsup n -1 logP{Sn/n E B(/?, 0} < --L(fi) �9 
Z-+0 n--+ oO 

We omit the routine modifications needed to handle the case when L(/?) = oo. 
By symmetry, it is enough to treat vectors/? e IR e satisfying/71 > 0, in which 

case L(/?) = L2(fl) < oo. 
Fix ? > 0. We will make use of parameters, e, t/, and r satisfying 

e c (0, ill), q E (0,/71 - 0, and r 6 (0, 1). These parameters will be further 
adjusted in the course of the proof. 

For z E (0, 1) such that ~-1 is an integer and for t/ c (0 , /71 -  a), we 
consider the following decomposition of the event {Sn/n ~ B(/?, 5)} : 

~.--1 
{S./n B(/?, O} = 

where for i e {0, 1, . . . ,  z - 1} 

En, i = {(S[niq)l/n <= rl, (S[nj~])l/n >-->- rl for all j E {i + 1 . . . . .  r - l } ,  

(5.27) (Sk)l/n > 0 for all k c {[n/z], . . . ,  n}, Sn/n c U(fi, e)} 

and 
.C--1 

En = {&/n  c S(/?, 0} \ ,) 

In (5.27), the square brackets denote the integer part. This decomposition 
will allow us to bound the probability P { S J n  �9 B(fl, a)} by probabilities 
involving the finite collection of random vectors {S[nj~], j = 0, 1 . . . . .  ~-1}. 
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In particular, we will see that once t / ~  (0, fiI - e) has been fixed, it is possible 
to choose z ~ (0, 1) in such a way that the event E~ has negligible probability. 

Given n E N and ~ E (0, oo), we define the set 

E,  = { sup []SJnl] ~ ~} . 
~E{0,I ..... n} 

For n c N and i E {0, 1 . . . . .  "c -1 - 1}, we also define the sets 

Since 

it follows that 

(5.28) 

En, i = En, i (3 E c . 

) {sun = i u E .  u 

\ i=0 

lim sup n -  1 log P {S n/n E B (fl, e) } 
n ---> OO 

m ~ m a x {  m a x  ( l i r a  s u p  n - 1 l o g  e {E~,/, i } )  , 
i E { 0 , I , . . . , z - - I - - I }  \ n - - - ~  

lim sup n -1 log P{E,~}, lim sup n - t  log P{E~}~ . 
t~ ---~ OO tt ---~ OO ) 

We now derive an upper bound for each of  the limits superior in this display. 
The last limit superior in (5.28) is easily bounded using the following 

process-level exponential tightness result, Lemma 5.11. For later use, it will be 
stated in a more general form than is needed here. Lemma 5.11 implies that 
there exists ~ E (0, oo) such that 

(5.29) lim sup n -  a log P {E, } < - L 2 (fi) + 7 .  
n --+ O0 

Given N E (0, oo), we define the compact hypercubc 

K ( N )  = {x E IR d " Jxi[ <= N ,  i =  l ,  . . . ,  d} . 

For x E IR d , Px denotes probability conditioned on S o = x. 

Lemma 5.11 For each M < co, there exists a number 2 = 2(M) E (0, ~ )  such 
that for  all combinations o f  z E (0, 1] and N E (0, co) satisfying N / z  > 2 

(5.30) lim supn-1  l ~  ,je{0,~sup ..... [ ~ n ] } ( S j - - x ) / n g K ( N ) }  < - - M ,  

where ['on] denotes the integer part o f  vn. The inequality (5.30) holds uniformly 
over x E ]R d. 

The standard proof follows easily from the fact that for any c~ ~ I t  d, the 
random vectors 

exp[(a, Sk) -- (kr~HI(ce) + kr~H2(a))], k = 1 , 2  . . . . .  n ,  
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fo rm a P - m a r t i n g a l e  with m e a n  1. We omi t  the details. See L e m m a  2.5 in [12] 
for a con t inuous - t ime  analogue.  

We now b o u n d  the middle  limit super ior  in (5.28). The  inclusion 
c (0, i l l - e )  implies tha t  for co ~ {Sn/n c B(fi ,  e)} there exists an 

i E {0, 1, . . . ,  z - 1  _ l} such tha t  

(S [n i z ] ) l / n~r t ,  (S[njz])l/ta~17 f o r a l l  j E  { i + 1  . . . . .  r i}, S n / n E B ( f i , e ) .  

Thus,  if  co E En, then for  some k E {[n/z], .. , n} we mus t  have  (Sk)~/n < O. 
Therefore ,  it mus t  be true tha t  

I((S[nzv]) 1 - (S~)l) /n I > t/ 

for  some  ~ and  lc satisfying 

[ n 0 -  1)t  __< ~ =< [m~] . 

L e m m a  5.11 implies we m a y  choose z o = z0(~/) ~ (0, 1) so tha t  for  e ~ (0, ill) 
and  z E (0, z0) 

(5.31) l im sup n 1 log P{En} <= -- ~2(fi) § 7 �9 
n - - - 4 0 D  

The p r o o f  of  the uppe r  b o u n d  (5.26) thus reduces to proving tha t  for each 
t E (0, z0), for each i ff {0, 1 . . . .  , z - I -  1}, and  for  all sufficiently small  

@ (0, il l)  

(5.32) lira sup n 1 log P{En,  i}  ~-~ - -  ~2(f l )  § y . 
g / ~ O 0  

We need the following lemma.  

L e m m a  5.12 For each t c (0, Zo), there exist numbers e 0 = r ~/) E (0, [fill) 
and c = c([fil [, 7) E (0, 1/2), both independent o f  t, such that 

lim sup n - 1  l ~  i} < -- L(fl) + 7 
r / - - ->  o o  

whenever e E (0, eo) and whenever iz < c or it > 1 - c. 

Proof. We will give the p r o o f  assuming  tha t  fil > 0, L(fi) < o% and L2(fi) < oo. 

The  a rguments  are easily modif ied  if fil < 0, L(fi) = oo, or La(fi) = c~. Since 

fll > 0, we have  L(fi) = ~2(fl).  

Case I. iz < c. Choose  ~ > 0 so tha t  

(5.33) inf  L2(fl ') > L2(fi) -- 7 / 2 .  
fl' EB(fl,~) 

We m a y  then choose c 1 E (0, 1/2) so tha t  for all s E (0, q )  

( f i  c--1 ) ~ B(fi ,  (5) and c1L2(fl) < 7/2 . (5.34) B 1 - - s '  1 s 
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Define e 0 = m i n { c l / 2  , i l l /2} .  By L e m m a  5.11 we m a y  choose c 2 E (0, Cl) SO 
tha t  

l i m s u p n - I  l o g P ~  sup ] l S k / n l l > q / 2 }  < - L ( f i )  + 7 . 
n ---~ oo k kE{0,1 ..... [2nc 21 } 

I f  e c (0, e0) and  ir < c 2, then the definit ion of  En, i and the M a r k o v  p rope r ty  
imply  tha t  

l im sup n -  1 log P {E~, i} < min{[  - L(fi)  + 7], l im sup n -  1 log G } ,  
n - - ~  OO /'1 ----~ OO 

(5.35) 

where  

qn = P X 2 E B( f i ,  cl) 
j=[ni'c] + 1 

i1 = P  n ( 1 - i ~ )  X 2 C B  - -  . 
j=[nir] + 1 1 -- i~ ' 1 -- i'c 

C r a m & ' s  Theorem,  (5.33), and  (5.34) yield 

{ ( 1~ C1 ) }  
l i m s u p n - l l o g q , <  - ( 1 - i r )  x i n f  L2(fl ' ) ' f i ' E B  1 i t '  l ~ i r  

t / - - +  O0 

=-~ - -  L 2 ( f l )  Jr- 7 

< - L ( f l )  + 7 ,  

The  last  d isplay and  (5.35) conclude the p r o o f  o f  Case 1. 

Case 2. i~ > 1 - c. I f  e E (0, ill), then the definit ion o f  the sets En, i implies 

tha t  the process  { S j n }  moves  a dis tance at least/31 - e > 0 in [n(1 - i~)] units 
o f  time. By L e m m a  5.11, there exists c 3 E (0, 1/2) such tha t  

l i m s u p  n - 1  l ~  i} <= -- L(f l)  + 7 
gl --+ O0 

whenever  ir > 1 - c 3. In  order  to conclude the l emma,  we take c = min{c2,  c2}. 
[] 

Since each set En, i is a subset  o f  En, i, L e m m a  5.12 shows tha t  there exist 

n u m b e r s  go = e0(fll, 7) E (0, ill) and  c = c(fi t , 7) c (0, 1/2), bo th  independen t  
o f  -c, such tha t  (5.32) is true whenever  e E (0, g0) and  whenever  i~ < c or  
iz > 1 - c .  Fix such a c E (0, 1/2). We are left to prove  (5.32) in the cases 
where  i satisfies c _< iz _< 1 - c. 

Our  work  in Subsect ion 5a shows tha t  for  every fl in the c o m p a c t  set 

{fl E IN d "i l l  = 0, [[fll[ ~ K / c } ,  there exists a = a(fi) > 0 such tha t  

l im sup n -  1 log P {Sn /n  ~ B( f l ,  ~)} < -- ~0(fl)  + 2 �9 
n - -+  OO 

Fix 2 > 0. A n  open  covering a r g u m e n t  appl ied to the c o m p a c t  set {fl c IR d �9 

fi l  --  0, Ilflll < K/c} produces  a finite collect ion o f  vectors  {fl~, v = 1, . . . ,  s} 
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and a associated collection o f  positive scalars {c~ v, v = 1, . . . ,  s} such that  
the following hold:  for  all v E {1, . . . ,  s} (flv)l --- 0 and 0 < 6v < 2; for all 
r e { l ,  . . . ,  s} 

(5.36) l imsup  n -1  logP{S~/n E B(fl~, fir) } < _ L0(fl~) + 7  ; 
n --+ OO 

there exists t/ c (0, 1) such that  

s 

(5.37) {fi c IR d l f l i I  < (2t//c),  Ilfill < g/c}  c t,.J B(flv, 6~). 
v = l  

With this choice of  r/, choose v 0 E (0, 1) so that  (5.31) holds for all z E (0, To). 
Now fix a value o f  i satisfying c < iT < 1 - c. Let  V = {v~, f = 1 . . . . .  t} 

be a finite collection o f  vectors satisfying (re) 1 = 0 for f E {1, , . . ,  t} and 
having the p roper ty  that  

{fi EIRd : iflll < t / ,  Ilfill < K }  
t 

(5.38) = LJ B(v~, 2t/) M {fi E IR d �9 Ilflll < K} 
( = 1  

c {fl E IR d " Iflll < 2~, Ilflll < g } .  

For  n c N and f ~ {1, . . . ,  t}, we define the sets 

F, ,  i, e = {SE,i~J/n ~ B(ve ,  2~)} 

and 

F~,i={(S[,~j~])I  > t /  for  all j E { i + l  . . . . .  z I}, 

(Sk)l/n > 0 for all k ~ {[niT] . . . . .  n}, S~/n c B(fi, e)},  

where the square brackets  denote  the integer part.  The  first inclusion in (5.38) 
implies that  

t 

"En, i c U Fn, i, eff'lFn, i �9 
t = l  

According to (5.37), since iT > c, a subcollect ion of  the balls {B(fl~, ~ ) }  
(say v = v 1 . . . . .  v,) cover B(ve/i'c, 2tl/C) for each ~ c {1, . . . ,  t}. Using (5.36), 
we derive the upper  bounds  

(5.39) lim sup n -  1 log P {Fn, i, ~) 
n --~ o o  

< lim sup n-  1p{s[ni~]/n c B(v~, 2t/)} 
/~ --+ OO 

< lim sup n -  1 log P {S[n i,] ~nit E B(ve/iz, 2t//c)} 
n ---* OO 

< - - i z x  [ min f~O(flv~ ) - 7 ]  
= r = l ,  ..., u 

_-< -- iT • [ inf{L~ ~ " rio c B(ve/iz, (2n/c) + 2), (fi~ 1 = 0} -- 7] - 
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In addition, since e E (0,//1) and iv < 1 - c, we have the upper bounds 

(5.40) limsupn-l logP{Fn, i[Fn, i,~} 
/'/---* O0 

= < l i m s u p n - l l ~  k XZEB(//--v~ '~+D1)} 
n--+o~ j=[ni'c] + l 

=< --(1--iv) xinf{ L2(//2) "fl2EB( fl~v~l-i'c' ~_qf_2r/~}l_iv} 

--< --(1--iv) xinf{ L2(//2) "//2EB(-fl-1 --v!-iv' e q ~ 2 r / ) } .  

The first inequality is a consequence of  the Markov property and the fact that 
for co in the set Fn, i, e the random walk remains in the right half space, in 
which it is spatially homogeneous. The second inequality is a consequence of  
Cram&'s Theorem. 

For any value o f i  satisfying c < iv < 1 - c and any ~ E {1 . . . . .  t}, displays 
(5.39) and (5.40) imply that a upper bound for each term of the form 

lim sup n - 1 log P {Fn, i, e f') Fn, i} 
7/---+00 

is 

, - + ;~ ( / /~  h = o - i v •  inf / o ( f l o ) . f i O E B \ z  v 

+(1--iv) x (inf{L2(fl2) ://2 EB(~ -v-I e + 2 ~ / ) } ) ]  + 7  
- -ZT  C 

The latter, in turn, is bounded above by 

The upper bound (5.26) now follows by sending first ~ / ~  0, then e --+ 0, then 
2 --+ 0, and finally 7 --+ 0, and by making use of  the lower semicontinuity 
of  ~,2. 

To summarize, we p i c k / / E  IR d satisfying//1 > 0, 7 E (0, 1), and 2 6 (0, 1). 
We then make the following choices: 

(a) ~ = ~(//, 7) �9 (0, co) so that (5.29) holds. 
(b) c = c(//1,7) ~ (0, 1/2) and e = e(//1,7) �9 (0,/ / t)  so that (5.32) holds. 
(c) A finite collection of  vectors {//,, v = 1 . . . .  , s}, where s = s(2, ~, c), so 

that (5.36) and (5.37) hold. 
(d) q = r/(//1, •, ~,  C, e) �9 (0,  //i - -  e) SO that (5.37) holds. 
(e) v 0 = %(~/) E (0, 1) so that (5.31) holds. 
(f) A finite collection of vectors {vg, E = 1, . . . ,  t}, where t = t(~l, ~), so that 

(5.38) holds. 

The proof  of  the upper large deviation bound (5.26) is now complete. We next 
turn to the proof  of  the corresponding lower bound. 
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5d Lower bound for 31 =/= 0 

Fix 3 c IR d satisfying 31 ~ 0. In this subsection, we prove the lower bound 

(5.41) l iminf l iminfn  -1  logP{Sn/n E B(3, e)} > -- L(3 ) , 

We assume that L(3 ) < oo because otherwise (5.41) is automatic. By symmetry, 
it is enough to treat vectors 3 E IR d satisfying 31 > 0, in which case 

L(3) = L2(3)  < 

Fix e > 0 and 7 > 0. By the definition o f / , 2  (3), there exist real numbers 70 
and 72 and vectors 3 ~ and 32 in ]R d satisfying 

7o_>0,  ?2_>0,  7 ~  

(fl0)l = 0,  ,y0fl0 + ,)~232 = 3 ,  

and 

(5.42) 70LO(flO) + 72L2(32) ~ •2(fl) + 7 / 2 .  

Since fil > 0, we must have (32)1 > 0, ?0 < 1, and 72 > 0. The last inequality 

and the finiteness of  L(3) = L2(3) imply that L2(32) < oo. 
For the purposes of  a lower bound to be derived below (see (5.45) and 

Lemma 5.13), we must produce for both i = 1 and i = 2 a vector ~i that lies 
in the set ri(domLi),  the relative interior of  the effective domain of  L i, and 

that satisfies (~i)l > 0. The existence of  such a vector ~1 is guaranteed by 
Hypothesis (H) and is proved in Lemma 4.4. The vector 32 in the previous 

paragraph satisfies L2(3 2) < 0(3 and (32)1 > 0. Hence there exists a vector ~2 

that lies in the set r i (domL 2) and that satisfies (~2)1 > 0. Define real numbers 

M = max{Ll (~ l ) ,  L2(~2)} < oo and ~ = min{(~l) l ,  (~2)1} > 0 

and let A be the convex hull of  the set ---{fl 1 , ---f12}. 
We will use the lower bound 

(5.43) P{Sn/n E B(3, e)} _>- P{E1, ~ N E2, 

where 

tiE3, n} , 

El,  n = {S[nT~ C B(?03 O, ~il) } , 

E2,n = {S[n(,o+,)]/n e ~.J B ( Y ~ 1 7 6  
Uc/ l  

E3, = {Sn/n e B(3,  e ) }  �9 

In these definitions, c~ 1 > 0, c] 2 > 0 and z E (0, 1 - ? 0 )  will be chosen below; 
the square brackets denote the integer part. By conditioning, the lower bound 
(5.43) may be rewritten in the form 

P{Sn/n E B(fl, e)} => Pl ,n  "P2, n "P3,n,  
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where 

P I , ~ = P { E I , n }  and P i , , = P { E i , ~ l E i - i , n }  for i = 2 , 3 .  

We now obtain lower bounds on the limits inferior of  n -  1 log P1, ~, n - 1 log P2, ,, 

and n - 1 log P3, n" 
For any 31 > 0 our work in Subsection 5b implies that 

(5.44) l im in fn -11ogp1  ' > _ ?0~0(fl0) 
Y / - ~  O0 Y/ ~ " 

If 31 is small compared to 32, then the occurrence of  E2, ~ given El, ~ is implied 

by S n "tracking" ~1 while in the halfspace A t and "tracking" ~2 while in the 

halfspace A 2. Since M - -max{Ll ( f l l ) ,  L2(f12)} < o0, this tracking should be 
possible at a cost that is less than M times the interval of  time over which 
the tracking occurs. In fact, whenever 32 > 51, we have the following estimate 
proved in the next lemma: 

(5.45) lim inf n -  1 log P2, ,t ->-- - z M .  
n - -+  o o  

Lemma 5.13 For any g) > 0 and any x E IR a, 

l iminfn  - t  l o g P x { ( S , - x ) / n c  U B ( f l ' ,  3)} > - max{Ll( f l ' ) ,  L2(fi2)}, 
f i / c a  

where Px denotes  probabil i ty  condi t ioned on S O = x. 

P r o o f  The proof  uses the same ideas as those of  Subsection 5b, but in a much 
simpler way. Hence, the proof  will only be sketched. Since for i = 1 ,2  the 

vectors ~i lie in the sets ri(dom Li),  there exist vectors el and e2 in IRa (see the 
proof  of  Lemma 5.8(b)) satisfying the equalities 

VHi(o~i) = ~ i  and Li( f l  i) = {o: i, ~ i}  _ Hi(o~i ) . 

For x E IRd and n E N, we then define probability measures P~, ,  and PZt, , 0:2 

analogously to the probability measures P~ and P~*, 0:2 in Subsection 5b. For 
i and i in Eq. (5.2). Then, as in i = 1 ,2  and n E N, we also define quantities v n r n 

Lemma 5.9(b), we have for i = 1 ,2  

i _ rin-fii__+ 0 in probability with respect to Px~ln ' ~2 ~n , a s  n---+ oo . 

P~{(S, x)/nc U B(/~',3)} >Px,,(ll~ / i-' - = - r n / ~  II < 6 / 2 ,  i = 1, 2} 
f l ' c A  

dPx rt 0:i 0:2 
= c~l' 0:2 dPx  n 

d P x , /  " 
ni=1,2 {llv~ -r~,~ll _<a/N, i=1,2} 

Since 
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d ~l ~2 and since log( P~, ~/dP~; ,; ) has the form indicated in (5.20), we have the 
lower bound 

l i m i n f n - l l ~  U B(f l ' , f i )}  
/V~A 

> -- max{Ll(f l i ) ,  L2(fi2)} -- 7(6), 

where 7(6) ~ 0 as 3 -+ 0. This yields the lemma. [] 

In order to complete the proof of the lower bound (5.41), we are left 
with estimating lira infn ~ co n - l l o g / ' 3 ,  ~. In order to do this, we will use the 
following well-known process-level result for sums of i.i.d, random vectors. 
This result can be derived as a special case of Theorems 6 . 1 ' - 6 . U  in A.D. 
Wentzell [31]. 

Lemma 5.14 Let {Xi, i E N} be a sequence of i.i.d, random vectors with a 
distribution given either by #1 or #2. Fix T > 0 and take the function I to 
be either L 1 and L 2 depending on whether the Xi's have distribution #1 or #2, 
respectively. Then for any fl E IRd and any 3 > 0 

k 

l iminfn  - l l o g P {  sup ~ Z X i - ~ f l  <= 6}  >= -- TI(fl) , 
n---~ oo ke{1 ..... [Tn]} i=I 

where the square brackets denote the integer part. 

For co in the conditioning set E2, n we have that 

S[n(~o +~)l/n ~ [..J B(70~ ~ + ~ ' ,  a2) �9 
~'~A 

If  62 6 (0, @z/2), then the set UB,6AB(~/~ 0 +'eft t, c~2) is at least a distance 

~z/2 > 0 away from the boundary {x c IR a " x 1 = 0}. Defining the quantity 

{ 1 k ( k  -- [(T O + z)n] ) 
Pn = P sup - Z X 2 _ f12 

kE {[(70 +~)n] + 1 ..... n} n n i=[(~ 0 +~)n] + I 

r  

we have for ~_z c (0, e/4) the lower bound 

(5.46) P3, n > Pn - 

The latter is a consequence of the Markov property and the fact that for co in 
the set E2, n O E3, n the random walk remains in the right halfspace, in which 
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it is spatially homogeneous. Using Lemma 5.14, we have 

(5.47) lira inf n - 1 log P3, n => lim inf n - 1 log Pn 
B ~ O O  /'t ----~ OO 

= --  ( 1 - -  70 - "c)L2(fl 2) 

_ ~2L2 (f12) . 

Combining (5.44), (5.45), and (5.47), we obtain 

(5.48) l iminfn - l l o g P { S . / n  ~ B( f i ,  e)} > -7~176 ~  2) . 
/'/----~ OO 

Given e > 0 and 7 > 0, we assume that the following choices have been made: 

(a) z E (0, rain{1 - 7 ~ e/4~, 7/2M}) so that (5.46) and (5.47) hold. 
(b) 62 C (0, ~T/2) so that (5.46) and (5.47) hold. 
(c) 61 c (0, 62) so that (5.45) holds. 

For these choices, (5.42) and (5.48) imply that 

l iminf  n -~ l o g P { S J n  E B( f l ,  5)} > - g Z ( f l )  - 7 = - L(fi)  - -  y . 
n - - +  O0 

This yields the lower bound (5.41) since e > 0 and 7 > 0 are arbitrary. 
The proofs of  the large deviation bounds in Theorem 2.1 are now complete. 
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