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Summary. We study properties of Brownian bridges on a complete 
Riemannian manifold M. Let Qt,y be the law of Brownian bridge from x to 
y with lifetime t. Q~,y is a probabil i ty measure on the space ~2~,y of  continuous 
paths co with co(O) = x and coO) = Y- We prove that Q~,y possesses the large 
deviation property with the rate function 

o 

We show that if M and its metric are analytic then for any x, y on M there exists 
a probabil i ty measure /~x,y which is supported by a subset of the space of 
minimizing geodesics joining x and y such that  Q~,y ~ ~tx, y weakly in Q~,y as 
t --, O. We also give a complete characterization of the exact support  of ~ , ~ ,  

w 1. Introduction 

Let M be a complete Riemannian manifold of  dimension m. The minimal heat 
kernel on M is denoted by p(t, x ,  y). Let f~x denote the space of cont inuous paths 
co: [0, 1] --* M such that  co(0) = x and let ~x,y denote the space of paths such that 
co(0) = x and c0(1) = y. ~?x and ~x,y are metric spaces under uniform convergence. 
The set of minimizing geodesics from x to y with uniform speed p(x ,  y)  (p  is the 
Riemannian distance on M) is denoted by F~,y. It is clear that F~,y c (2x, y and since 
we assume M is complete, Fx.y is never empty. 

Let ~X ~'y = {tXpY, 0 < s _< t} be the Brownian bridge process from x to y with 
lifetime t. We set Xx'Y;~= {X x,y;t ~ x,y _ _ = Xst , 0 < s < 1}. We regard X x'y;t as map 
from the underlying probabil i ty space to the path space f2x, y. Let Q~,y be the law of 
X x'y;' in f2x , /namely  Q~,y -- P o (x~ 'y ; ' )  - 1. Q~.y is closely related to the asymptot ic  
behavior  of  the heat kernel p(t, x,  y). The purpose of  this paper  is to study the 
behavior of Q~,y as t ~. 0 for generally posit ioned x, y. 

* Research supported in part by the grant NSF-DMS-86-00233. Current address: Department of Math. 
Northwestern University 
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' 0} is To start with, we prove (Lemma 2.4) that the set of measures {Q~,y, r > 
sequentially compact on (~x,y as t ~ 0. This means that any sequence t, $ 0 has 
a subsequence t,~ such that Q~,k converges weakly to a probability measure # X~y 

ask--* oo. 
The second result we will prove (Theorem 2.2) is that Qt,y possesses the large 

deviation property with the rate function 

1 
It follows that any limiting measure # must be supported by the set of paths co with 
the property Jx, y(co) = 0, i.e., by the set f~,y of minimizing geodesics joining x , y .  

Now the obvious question is: does Qty  have a unique limiting measure? or does 
the Brownian bridge converge (in law) to a limiting Browniann bridge? Such 
limiting Brownian bridge will simply consist in picking a minimizing geodesic 
according to a probability measure # and then travelling along this geodesic with 
constant speed p(x ,  y). We prove (Theorem 4.2) that the limiting measure is unique 
for any x, y if M and its metric are analytic. We also prove (Theorem 3.4) the 
uniqueness for a special case where the analyticity is not assumed. 

In general the exact support of a limiting measure # can be strictly smaller than 
F~,y. We give a complete characterization of supp # in the analytic case (Theorem 
4.1). In this case, it turns out that with every 7~F~,y we can associate a function 
D(7; t) of the form t-~(log(1/t)) p (c~ is a rational number and m/2  <_ ~ <_ m - 1/2, 
and ~ is a non-negative integer). The contribution of ? to the heat kernel can be 
intuitively taken as D(?; t) exp { - p(x ,  y)Z/2t} .  The order of D(y; t) going to infinity 
as r ~ 0 is a measure of the degeneracy of the action functional 

1 i I d)(s)12ds 
= o 

near the path 7. Our result (Theorem 4.1) amounts to saying that the support of/~ is 
exactly equal to the set of 7's in Fx, y with the highest degeneracy. 

We will use frequently various estimates on the heat kernel in the collection of 
papers [2-1. This collection is an significant extension of the original work of 
Molchanov [-5]. 

w Large Deviation of Brownian Bridge 

Let X x = {X~, s > 0} be the Riemannian Brownian motion starting at point x. 
The Brownian bridge from x to y with lifetime t is obtained by conditioning X ~ to 
hit y at time t. We make the time change s ~ st and denote the law of the resulting 
process XX'Y;t in the path space ~2~,y by Q~,y. Let X x'' = { X 2  ~ = Xs], 0 <_ s <<_ 1} be 
the Brownian motion with the same time change and let Q~ be its law on the path 
space f2~. Then we have 

d t Qx, y = p(t(1 - s), co(s),y)  0 < s < 1 . (2.1) 
: ,  p ( t ,  x ,  y )  ' = 
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Here { Ys, 0 < s < 1} is the s tandard filtration of cr-fields on s (or on s and 
p(s, z, y) is the minimal heat kernel on M. (2.1) can be taken as a formal definition of 
the Brownian bridge X x'y; ~. The Brownian bridge is a nonhomogeneous  diffusion 
process on M whose infinitesimal generator  is 

t A L J ( z )  = ~ f ( z )  + t V~ log p(t(1 - s), z, y) .  V f ( z ) .  (2.2) 

(A is the Laplace-Beltrami opera tor  and V~ is the gradient in the z variables.) 

Remark  2.1. The transition density function of X ~'y;t is 

p(t(s 2 - Sl) , z l ,  z2)p(t(1 - sz),z2, Y) 

p(t(1 - s l ) ,Z l ,  y).  

By the symmetry of p(s, z, y) in z, y variables, we find that the processes s~--~ X~ ''y;t 
and s ~ X{'X;~ ~ have the identical transition density function. Therefore they have 
the same law t Q X ,  y " 

In this section, we prove the following large deviation proper ty  for the set of 
' '  0}. probabil i ty measures {Qx, y, t > 

Theorem 2.2. For any open set G c (2x, y, 

l i m i n f t  log Q~,y(G) > - inf Jx, y(co) (2.3) 
t--+O eo~G 

For any closed set F ~ f2~,y, 

t F l imsup t log  Qx, y( ) < - inf Jx, y(co) (2.4) 
t--+O r  

where 

Jx, y(co) = ~ I o) (s) I 2 ds - p.(x, y)2 
0 

/fld)(S) [GL2[0, 1], otherwise Jx, y(co) = oo. In other words, {Q~,y,t > O) obeys the 
large deviation principle with rate function J~.y. 

Remark  2.3. Riemannian Brownian mot ion  Q~ possesses the large deviation 
1 

proper ty  with rate function I(co) = (1/2) ~ lob (s)lZds (see [1], p. 149 and [4], p. 155). 
0 

A rough calculation shows that Theorem 2.2 is a consequence of the large deviation 
principle of Q~ and the well-known asymptotic  relation 

1 
lim t logp( t ,  x, y) = - ~ p(x, y)Z . (2.5) 
t--* O 

However,  there are a few technical difficulties to overcome, 
Let us start the proof  of Theorem 2,2 with a preliminary result. 

Lemma 2.4. For any N > O, there exists a compact subset C u ~ f2x, y such that 

lim sup t log Q'~,y (C~) __< - N .  
t ~ 0  

(C~ denotes the complement o f  Cu). 
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Proof: First, we show that 

limsup tlog Qtx.y[p(co, x) > K] < 
t~0  

1 2 - -~K + 2p(x, y)2. (2.6) 

(Notation: p(co, x)  = s u p  p(co(s), x).) Indeed, by Remark 2.1 we have 
O_<s~<l 

Q~,y [p(oJ, x) > K] < Qtx, y I s u p  p(co(s),x) > K 1 
O_<s<l/2 

+ Q~,x I sup p(~o(s),y)> K -  p (x , y ) ] .  (2.7) 
LO_<s_<l/2 

The two terms on the right-hand side can be treated in the same way. By (2.1), we 
write 

Q~,, s u p  D((.0(S), X) ~ K = [*:~x ' ~ 7  0<s-<_1[2 
L 0--S <: 1/2 

C t -N~ 
< _ _  Q~/2 [p(co, x) > / r  
= p(t, x, y) = 

Here we have used the following global estimate of the heat kernel ([2"], p. 143): if 
M is complete, then for fixed y e M, there are constants c > 0, N O > 0 such that for 
all z e M ,  

p(t, z, y) < ct-N~ (2.8) 

Now using (2.5) and the large deviation principle for Q~ (Remark 2.3), we obtain 

] 1 2 * 
limsup t l o g Q ~ y ~ o o  ' LO_<s_<I/2SUp p(co(s),x)>K = < ~ p ( x , y ) -  ~E&inf of I&(s)12ds 

p(o), x) > K 

1 x 2 K 2 = ~ P ( , Y )  - . 

It follows from (2.7) and the above inequality that 

lira sup t log Q~,y [p(o), x) > K]  
t~O 

= - ~ p(x,  y) - , (  - p(x,  y)) ~p (x ,  y)2 

<= 1K2 + 2p(x,y)2 . 
2 

(2.6) is proved. 
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We continue our proof of Lemma 2.4. Take any c~ e (0, 1/2) and let K, n be large 
positive numbers to be determined later. We have 

where 

Q~,y sup > K  < sup 
O<--Sl <S2 <-2/3 ~ 2  ~ Sl [ ~ ~- = 71 __ __ 0_<s<2/3 

S 2 - s  1 <-- 1/n 

I P(f~176 > K] < n{I 1 + I i + 13} . 
Qt,y sup I s 2 -  s ~ l  = = = 

L s<sl <s2_-<s+2/n 
(2.9) 

t (D =_ I i = Q x ,  yEp( , x ) > K ]  

12---- sup Q~"I  sup p(CO(S),CO(S 1))>= a 1 
O_<s_< 2]3 Ls<_sl<_s+2/n 

I P ( c ~ 1 7 6  > K ;  A(s'n'6'K) 1 " 
1 3  = sup Q~,y sup [s2 _ si[~ = 

0<s_<2/3 I s<=sl <=s2 <=s+ 2/n 

Here to simplify notation, we have let 

A(s,n, 6, K)= I sup p(CO(S),(D(S1))<6, p(CO(S),x)<K } . 
k s<=si <-s+-2/n 

We choose 6 to be smaller than the injectivity radii at point z for all z such that 
p(x, z) < K. 

We have from (2.6), 

l imsup t l og I  i < - I K 2  + 2p(x,y)2 . 
t ~ O  

Z.  

By (2.1), (2.8) and the Markov property, we have 

I 2 - - <  - sup Q~xlP(t(l-s-2/n)'c~ sup p(co(s),oo(sl))>= 61 
0<s_<2/3 p(t, x, y) s<sl <_s+ 2/n 

C t -No 
< - -  sup Qzt/n [-p((.o, z) > 6 ]  . 
= p(t, x, y) ~n,,(x) 

(BK(x) = {zem:p(z,x) < K}.) We have, as t ~ 0 ,  

Q~Ep(oo, z) > 6] ~ 2Q~Ep(co(1),z) > 6] ~ ct-(m-Z)/2 e -~2/2~ (2.10) 

uniformly on the set {z:p(z ,x)<K} ([23, Proposition 5.8 on p. 185 and 
Proposition 5.6 on p. 183). It follows that 

1 n 6  2 
limsup t l og I  2 < p(x,y)2 _ _ _  

~ o  = 2  4 

We now estimate 1 3  . To simplify notation let 

B(I, 6, K)= {e~" sup P(~~176 >= K; sup p(~o(s),co(O)) < 6}. 
O~sl<s2<=l [S2 - -  Sl[  ~t O<<_s<l 
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We have by (2.1), (2.8) and the Markov  property 

13 = sup Q 4 [  p(t(1 - s - 2/n) ,co(s  + 2 / n ) , y ) .  B (2 /n ,  ~, K ) o O ~ , p ( c o ( s ) , x )  < K J  
0 <s_<2/3 p(t ,  x ,  y) ' = 

c t - N o  
< -  sup Q 2 ' / " [ B ( 1 , 6 , ( 2 / n ) ~ K ) ] .  (2.11) 
= p(t ,  x ,  y )  0s<2/3 

z ~ BK(x ) 

Let X t = {Xt~, 0 < u <- 1} be the process whose law is Q~. Let 

Fi' = {~o: p(~o, z) < ~5 } .  

We need only to consider the process X t on ~2'. Since 6 is less than the injectivity 
radius at X~ = z, we can choose local coordinates centered at z so that X '  is the 
solution of the stochastic differential equation: 

d X ~  = ~ t a ( z ;  X t . ) r i B ,  + tb(z;  X L ) d s  , Xto = z . 

We may assume that the there is a constant  C = C ( K ,  6) such that 

Let 

sup 
w:p (w, z) < 6 

zeB r (x) 

max{ Ila(z; w)ll, Ib(z; w)l} < C .  (2.12) 

(M J , . . . ,  M y )  = f 6(z; X,')dB u . 
0 

Each M i is a s tandard Brownian mot ion up to a time change. Thus there are 
m Brownian motions  W i such that M~ = W i. ,~. It is clear from (2.12) that there is 
a constant  c I > 0 such that z i i < _ s l[ Fit ~z - vs~ = cl Is2 on for all i. We now have 
from the stochastic differential equat ion of X t 

x '  x '  x t _ - c 2 , ~  IW~ W ~ , l + c l t l s 2 - s ~ l  p(  ~ ,  ~)  <= c~lX's~ - s~l < ~ . 

i=1  

Therefore on fY we have 

~ , X  t X t ~ 1,, ~ ~ + c3t[s2 sup p t  ~__, s ~ l < c 3 x ~  sup . . . .  s II ~ - ' .  
o ~ < ~  I s ~ -  s , l  ~ = o=~,<~_~ ~=, Is~ - s~l" 

It follows that 

< = c , , p F  l sup [W,__~ - Ws , [>  c 5  n , / 2 _ ~ K  ~ Q f f t / " [ B ( 1 , 6 , ( 2 / n ) ~ K ) ]  
.o~.,<,,~, r ~ -  s,l" = . f  J 

C6 e - c t n t  2~KZ/t . 

(W stands for a one-dimensional Brownian motion.) In the last step we have used 
Fernique's theorem on the tail probabili ty of a Gaussian system (I-3], p. 159 p. 162). 
F rom the above inequality and (2.11), we have 

p ( x ,  y)2 
lim sup t log 13 < - c r K  2nl - 2~ + _ _  

~ o  2 
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Putting the estimates for 1~, I2, and 13 in (2.9) and using Remark 2.3, we have 

lim sup t log Q~,y I sup P(C~ c~ K 1 
t~O O<sz - s ,< l / n  1S2 - -  $1 [  a = 

s l ,  s2E[O, 1] 

= < - m i n  z K Z - - 2 p ( x , y ) Z , - ~ n ~ 2 - ~ p ( x , y )  2, - . 

Choose K so that K2/2 - 2p(x, y)2 > N. Fix 6 as required in the proof. Then 
choose n so large that n 8 2 / 4 -  p(x, y)2/2 > N and cTKZn ~ -a~-  p(x, y)2/2 > N. 
Now the right-hand side of the above inequality is less than - N. Therefore the 
compact set 

( P(O(S1)'c'O(S2)) } 
C N = sup ]~ < K, (o(0) = x 

~O<s2--sl<_l/n [S2 - -  S 1 
s l  ,s2~[O, 1] 

satisfies the requirement of the lemma. [] 

In the following for two paths ~o~, ~o 2 we set 

p(o~l, o~2) = sup p(o~(s), o~2(s)). 
O_<s_<l 

We now turn to the 

Proof of Theorem 2.2. The proof is naturally divided into two parts. 
i) Lower bound. Let G c f2x, y be open. It is enough to show that for any c~* s G 

such that J(r < 0% we have 

' G l iminf t  log Qx, y( ) ~ - Jx,y(o9.) (2.13) 
t--*O 

Let 

O~ = {r f2x,,: sup p(oo(s),co*(s))<6} 
O < s _ < l - s  

F~ = { 03~Qx'y: 1 -s_<s_<Sup, P(~ c~ > 6 t  

Since G is open and co*e G, there exists 6 > 0 such that 

{~ :p (~ ,  ~o*) < 8} = G .  

This implies O] c G w F~. Now we can write 

t e t Q'~,y(G) => Qx, y(O~) - Qx, y( r ] )  (2.14) 

The two terms on the right hand side will be estimated separately. Let m* E Q~ be 
defined by 

~ o * ( s )  = o : ( ( 1  - ~ ) s )  . 

Let 
G~ = { ~  ~2x: p(o~, ~* )  < 8} . 
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Noticing that 

Q k ,  [03(1 - ~) e dz] = 

we have by the Markov property,  

p(t(1 - e), x, z)p(te, z, Y ) d z ,  
p(t, x, y) 

t t: Qx, y ( 0 6 )  =. ~ t ( 1 - t : )  e t Q~,~ [G6]Qx, y[03(1 - e )edz]  
M 

max p(te, z, y)  

> ~B~(y) ~ r~t(1-~) r~t:l z )d z  - -  k 3 x ,  z LU6j p(t(1 - e), x, 
- p ( t ,  x ,  y )  ~ ( y )  

> c I (te)-m/2 e-Z2/z~t 
Q~(1-t:) [G~ c~ {03(1) ~ B~(y)}] . (2.15) 

- p ( t ,  x ,  y)  

Here we have used the asymptotic  expression 

p(t, z, y) ,.~ \ ~ t / l  H(z,  y ) e  -p(z'y)2/2' 

uniformly and H(z, y) > c o for all z ~ B~(y) with sufficiently small 2 (see [2], p, 1 73). 
Let 

C~,~. = G~ c~ {03(1)6B~(y)} . 

C~,, is open. Clearly 03e*~ O~. We also have 

p ( 0 3 * ( 1 ) , y ) = p ( 0 3 * ( 1 - e ) , y ) <  ~ Io'~*(s)lds=< ~ I I ~ * ( s ) ? d s .  
1 - e  1 m~ 

Choose 

, / '  = 2(~) = 2 ~ y I'~ *(s)l z ds .  
' r  l - t :  

We see that  p(03*(1) ,y)< 2(~); hence 03"~C~,~(~). Now by the large deviation 
principle for Q~ (Remark 2.3), we have from (2.15) 

liminftlogQ~,y(O~)~o >= L 1 - e + 2 ~  2 " 

Now 
1 - g  

I(~o*)  = (1 ~) 
0 

From the assumption J(03") < oe, we have 

It follows that 

[6b *(s)l 2 d s .  

1(o37)--.1(oo*) and - - ~ 0 .  
8 

t 8 lim lim inf t log Qx, y (0~) > - Jx, y (03 *) �9 (2.1 6) 
g--*0 t ~ O  
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We now have to show that the second term Q~,y(F~) in (2.14) is negligible, 
namely, 

lim sup lim sup t log t , (2.17) Q~,y( Fa) = - o o  . 

~--*0 t~O 
Set 

H,~ = {co~2y,~:o_<~_<~sup p(y ,  c o ( s ) ) > b / 2 } .  

1 

For  5 sufficiently small, we have ~ [cb*(s)lds < 6/2. Using this fact, by time- 
1 - - e  

reversal (Remark 2.1) we have for small g 

' ~ = Q, ,~( / -h)  Q~,y(V~) ' 

m] 
= Q; L p(t, y, x) ' 

< Cl  t - N  t e 

= p(t, x, y) Qy(U~).  

Without  loss of generality, we may assume that 6 is less than the injectivity radius 
at y. We then have (see (2.10)) 

t g Q, (H0) ~ 2Q~ ~ [ p (co(l), y) > 6/2] ~ c (te) - r - 2)/2 e - ~/st~. 

It follows that p(x, y)2 b2 
lira sup t log Q t y ( F ~ )  < - -  . 

,~0 = 2 25 

(2.17) follows immediately by letting 5 -+ 0. 
Combining  (2.14), (2.16) and (2.17) we obtain (2.13). The lower bound  (2.3) is 

proved. 
ii) Upper bound. Let us first prove the upper  bound  for a compact  set C e O~,,y. 

Let 
C ~ = {co~f2x, y : 3 & e C  such that co(s) = co~ for 0_< s_< 1 - 5} 

and 
C~, = {coet2x'~co~ such that  co(s) = co~ - 5)s) for 0 _< s _< 1} . 

C ~ is closed both in f2~ and g2~,y and C c Cfi By the Markov  property,  we have 

t C ~_ t gx,,( ) < Qx,/c ) 

=< j" ,, , ,zn"l-'~:~ ~ [ c o ( I , - , ,  - ~)edz] 
M 

It follows that 

<= 
maxp(te ,  z, y) 

Qx,~ (C,)p( t (1  - 5), x, z)dz . 
p(t, x, y) m 

' C c(te)-N Qx t(1 -e) 
Ox, , (  ) < - -  ( c ~ ) .  

p(t, x, y) 
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Clearly C~ is closed in f2~. We have by the large deviation principle for Qt ,  

fl(X, y)2 1 
lira sup t log Q~, y(C) < - -  inf I ( o ) .  (2.18) 

t-~o 2 1 - -  ~ ,oe c ;  

Let 
l = l imsup inf I(co). 

e~O o~ C~ 

We claim that 1 => inf 1(~o). To prove this claim we note that there exists a sequence 
oaf fC 

e . $ 0  and co .eC . -  such that l =  l imI(co.) .  Let eJ.~ be such that 
n o ~  

oJ~,((1 - e.)s) = o . (s ) ,  0 < s < 1. Since C is compact,  so is (co2, n > 1}. Hence we 
can assume that co. ~ co* for an co* e C. Because t is lower semicontinuous on ~ . ,  
we have 

I =  lira I ( c % ) > 1 ( o 3 * ) >  inf I(co) . 
n ~ o o  r  

This proves our claim. The upper bound  for C now follows from (2.18) by letting 
e ~ 0 .  

Finally, we prove the upper bound  for a closed set F. Let Cs be as in Lemma 
2.2. We have 

t F C N  ) ~_ t r: Q~,~(Cu) Q~x,y(F) < Q~,y( ca 

Since F ca C s is compact,  by the upper bound  for compact  sets, we have 

l imsupt logQ~,y(  ) < - m i n  inf J ( o o ) , N  . 
t~O k co~FnC N 

Letting N ~ ~ ,  we obtain the upper bound  (2.4). Theorem 2.2 is proved. % 

w Weak C o n v e r g e n c e  o f  Qtx,y 

Lemma 2.4 shows that the measures {Q~,y; t > 0} is sequentially compact  as t ~ 0, 
Let # be a limiting measure. Recall that Fx,y is the set of minimizing geodesics 
joining x, y. A little geometry shows that 

Vx, y = { ~ 2 x , ~ :  Jx , , (o )  = 0} . 

" 0} as t ~ O .  Then # is Lemma 3.1. L e t  # be a limiting measure  o f  { Q.~,y, t > 

concentrated  on the set  F~,y; i.e., #(F~,y) = 1. 

P r o o f  Fix ~ > 0. Let 
G = {~o: p(~o, Fx,~) > e } .  

We have to show #(G) = 0. Let 

e o = inf Jx, y(O) . 
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We claim that  eG > 0. Suppose e G = 0. Then there exists a sequence co, �9 G such 
that  J~,y(0),) ~ 0. Since {Jx, y(O,), n > 1} is bounded,  by extracting a subsequence if 
necessary, we can assume that  0),--*0) for some 0 ) � 9  But J~,y is lower 
semicont inuous  we have therefore J~,y(0))= 0, or co�9 a contradiction.  It  
follows that  e G > 0. 

N o w  by the upper  bound,  we have 

#(G) __< lim inf Qtx-y(G) = 0 .  
n ~ o o  

The l emma is proved.  [] 

In this section we prove the uniqueness of the limiting measure  for a special 
case. In the next section we prove  the uniqueness for analytic manifolds. 

Let S = F~,y(1/2) be the middle cross-section of Fx, y. Consider  the probabi l i ty  
measure  pt on M defined by 

= t l 

If Q~,y ~ # weakly in ~2x, y as t --, 0 through a sequence, then clearly through the 
same sequence we have #t ~ #o weakly on M where ~t~ = #[0)(1/2) �9  A]. F r o m  
L e m m a  3.1 we know that  kt~ = 1. N o w  we prove  

L e m m a  3.2. Q~,y-, g weakly on f2x,y if and only #'-~ go weakly on M. 

Proof We have just  p roved  "only if" part.  For  the "if"  part ,  suppose #t__. #o 
weakly on M. Define # on f2x, y by p(O)=/~~ [O(1/2) is the middle 
cross-section of O], We want  to show Q~,, --,/~ weakly on f2x, y. 

Let 
o~ = {o:  p(~o, rx,,) < ~}.  

Since Fx, y(1/2) = S intersects the cut-locus of neither x nor  y, and the cut-locus of 
a point  is closed and S is compact ,  there is an e o > 0 such that  O~o(1/2 ) intersects the 
cut-locus of neither x nor  y. Fo r  each z e O~o(1/2 ) we define the pa th  

J '?x,z(2s) ,  0 -< s -< 1/2 
: :(s)  

[Tz, y ( 2 s - l ) ,  1 / 2 < s < 1  

where 7x,~ is the unique minimizing geodesic with uniform speed p(x, z) joining x, z. 
The m a p  z ~ 2 z from Qo(1/2) to f2~,~ is continuous.  For  0) �9 O,o, we set 0)* = 2 ~ 
We claim: 

V e > 0 ,  Q~,y[0)�9 as t - - . 0 .  (3.1) 

Indeed, we have 

Q~,,[0)�9 p(cn, 0)*) > s] < Q~,,[O~] + Q~,,,[p( , co*) > e , m � 9  . (3.2) 

By a simple geometr ic  a rgument  we know there exists a 6 > 0 such that  if 0)1 �9 F~,y 
and p(0)a(1/2),z) < 3 then P(0)1, 2z) < e/2. We may  assume that  26 < s ^ t o. N o w  
if 0)eO~, then there exists o)1 eF~,y such that  p(0), 0)1) < 3. This implies by the 
above  observa t ion  P(0)1, co*) < e/2 and therefore p(0), co*) < 3 + .e/2 < e. This 
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means  that  the set in the last term of (3.2) is empty.  The first term on the r ight-hand 
side of (3.2) tends to zero by L e m m a  3.1. This proves (3.1). 

N o w  let F:t~x,y ~ R be bounded,  cont inuous and positive. We have from (3.1) 
and L e m m a  3.1 

F(o2)Q~,y(dco) = ~ F(co*)Qt, y(do2) + o(1) 
~d ,y O~o 

= S v(~9#'(dz) + o(1) 
0~o(1/2) 

~ F (U)#  ~ (dz) 
S 

= ~ F(co)#(do) .  

~x, y 
t This means  Qx, y ~ # weakly. The l emma is proved.  [] 

L e m m a  3.3. Let x, y be arbitrary two points on M. Then for any neighborhood 0 of 
the compact set Fx, y(1/2 ) and any F ~ M, we have as t ~ 0, 

p p dz.  #t(F) p(t, x, y) ~ o 

In particular 

p ( t , x , y ) ' , ~ ! p  , x , z  p , z , y  dz .  

Proof. It  is enough to show that  # '(O c) ~ 0 as t ~ 0. But #t(OC) = t Qx, y(~o), where 

The  l emma follows immediately f rom L e m m a  3.1. [] 

As ment ioned earlier, the set S = F~,y(1/2) intersects the cut-locus of neither 
x nor  y. An e-neighborhood of S with a sufficiently small e will have the same 
property.  Let O be such a neighborhood.  We have uniformly for zEO: 

p(2 ,x , z )  ( 1 ~  m/2 \ntt] H(x, z)e -p(x'~)2/' 

where H(x, z ) =  det[dexPx(~,~(O))] -1/2. Similar assertion holds for p(t/2, z, y) 
([2], p. 173). Let 

e(z) = 2[p(x, z) ~ + p(z, y ) ~ ]  - p(x, y)~ 

It follows from L e m m a  3.3 that  for any F c M 

" ~ H(x, z)H(z, y)e-e(~)/2tdz (3.3) p(t, x, y )  ~ e -~ -~ o 

and 
e-'(x,y)2/2'(1) m 

# ' ( r )  p( t ,x ,y)  ~t S H(x,z)H(z ,Y)  e-e(~)/2'dz" (3.4) 
FnO 
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Theorem 3.4. Suppose that F~,y is a smooth manifold of  dimension k and each 
geodesic in F~,y have exactly multiplicity k (this means that the dimension of  the space 
of  Jacobi fields which vanish at both x and y is equal to k). Then Q~,y converges 
weakly to a probability measure # as t -~ O. 

Proof Under our hypothesis, S = F~,/1/2) is a smooth compact submanifold of 
M of dimension k. Let ~z:N-~ S be the normal bundle of S in M. Then 

S~ = {z = e x p b ' b ~ N  s, ]lbll < e} .  
$ 

S~ is a neighborhood S~ of S in M. Denote z = exp b by z = (s, b). Let a be the 
s 

induced volume element on S and db the standard volume element on the normal 
bundle fibre. Then inside S~ the volume element of M can be written as 
dz = fl(s, b)a(ds)db, where fl(s, b) is a smooth function such that fl(s, b ) ~  1 as 
Ilbll--,0. 

By Lemma 3.2, it suffices to show that #t ___, #o weakly on M. Let f :  M --, R be 
continuous, bounded and positive. We have by (3.4) 

~ f ( z )#(dz)  ~ f (z )H(x ,  z)I-I(z, y)e-~<~)/z' dz 
M p( t , x , y )  ~ S~ 

- e-P~x'Y?/2t ( 1 ) " ~  f2(s;t) a(ds) (3.5) 
p(t, x, y) ~t s 

where 

~2(s; t) = ~ f(s, b)H(x,(s, b)) H ((s, b), y)fl(s, b)e-Et~'b)/2t db . 
~Ao) 

Here B~(0) is the ball in the fibre space N s of radius e and centered at the origin. The 
assumption that each geodesic has multiplicity k implies that for fixed s e S, the 
function E(s, b) has a unique nondegenerate isolated critical point on B,(0) at b = 0 
(see [2], p. 117). Hence by Laplace's method, we have the asymptotic relation 

~2(s; t) ,,~ (4nt) ("-k)/2 H(x, s) H (s, y)f(s) det [Hess EtN~] - 1/2 . 

(Hess EIN" is the restriction of the hessian of E on the fibre N s .) It follows from (3.3) 
and (3.5) that 

S f(z)#t(dz) ~ ~ f(z)#~ 
M M 

with #o defined by 

#~ = C ~ H(x, s) H(s, y) det [Hess EINs]- 1/2 a(ds) 
A c ~ S  

(C is the normalizing constant so that #(S) = 1). [] 

Remark 3.5. Theorem 3.3 remains true if Fx, y is a disjoint union of smooth 
manifolds such that each geodesic has multiplicity equal to the dimension of the 
connected component  it is in. In this case # is concentrated on the components of 
Fx.y which have the maximum dimension. 

Let us look at a two special cases. 
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Example 3.6. Let N and S be the north and south poles of m-dimensional sphere 
S" in R m+l. Then we see that  FN, s is S m-1 and # is the uniform distribution on 
S m-1. 

Example 3.7. Let F~,y = {71, �9 . �9 , 71} and along each of T~ the endpoints x , y  are 
not  conjugate. Then we have 

det [d  exp(~ ~(0))1-1/2 

= : i -  
,:1 detLdexp(7 F. s(0))J 

This is because if x, y are not  conjugate along a minimizing geodesic 7 joining them 
then ([2], p. 125) 

H(x,  ~,(1/2))n(~,(1/2), y) det [Hess E(7(112))] - li2 = 2-m det [d eXPx( ~ (0))] . 

w Analytic Manifolds 

In general, the geometry of Fx, y can be quite complicated. It is usually a subvariety 
of M with various singularities. We consider in this section analytic manifold 
M with analytic metric. We first give a characterizat ion of exact support  of limiting 
measures of Q~,y. Then we show that the limiting measure is unique. 

Consider the function E ( z ) =  2[p(x,  z )2+  p(z, y ) 2 ] _  p(x, y)2 E is analytic, 
nonnegat ive and vanishes exactly on S = F~,/1/2).  We will use the analyticity of 
E via the following fact: for any open set O c M we have 

S e-E(z)/2t dz ~ C(O) t -~ log , 
? i  o 

(4.1) 

where ~ e [m/2, m - 1/2] is rational and fl is nonnegative integral. Fur thermore ,  if 
z e M and O is a ne ighborhood of z then there exists e = e(z) > 0 such that c~ and 
fl in 4.1 depends only on z but  not on O provided diam(O) < e(z) ([2], p. 172). This 
fact gives rise to two functions a and fl on M. Let D : M ~ [m/2, m - 1/2] x N be 
the map D(z) = (e(z), fl(z)). Also define 

O ( z ; t ) = t -  ~logTJ  . 

It is clear that the growth rate of D(z; t) as t ~ 0 is a measurement  of the degeneracy 
of E at point  z. 

We now give the set Ira~2, m -  1/2] x N the lexicographic order; i.e., 
(~l, ill) ----< (az, f12)if~l ----< ~2 or ira I = az and fll < f12" With this ordering we verify 
easily that  D is upper  semicontinuous. Since S is compact,  D must  attain 
its maximum value on S. Let (ao, flo) be this maximum value. Set 
S O = { z e S : D ( z )  = (~o, flo)} and Fx~ = {y~F~,,y:V(1/2) ES~ 

We have the following result. 
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0 Theorem 4.1. For any limiting measure #, the support of kt is exactly equal to F~,y. 

Proof We first of all note that by (3.3), (4.1) and the continuity of H (x, z)H(z, y) in 
z, we can show (see the proof of Theorem 4.2 below) that there is a positive constant 
c such that 

Let 

/ l\no 
p(t ,x ,  y ) ~  ct-~o ~log t )  e-p(~,y)~/2' . (4.2) 

F = { z s M :  p(z, S O ) > s} .  

Then by (3.3) and (4.2) 

#~(F) ~ const, t ~o-~1 tog 

where (el, /71)= max D(z). Obviously we have (el, ~1) < (eo,/~o) �9 Therefore 
z~Fr~S 

I~t(F) ~ O. It follows that the support of measure #0 is contained in S o. 
To show that the support of # contains So, let zooS  o and let G be any 

neighborhood of z o in M. Since z 0 ~ So, by the definition of S o, we have from (4.1) 

~ e -e(~/2~ dz ~ c~t -~~ log 

with a positive c~. It follows from (3.4) and (4.2) that 

~(G) = c1 > 0 .  
C 

We thus have proved supp#~ ~ S ~ Therefore supp#~ = S ~ which implies the 
desired theorem. [] 

If ?~F~,y, then D(?(1/2); t) is a measurement of the degeneracy of the 
minimizing geodesic 7. Thus we paraphrase the above theorem by saying that the 
limiting measure is concentrated on the most degenerate minimizing geodesics. 

We now turn to the main theorem in this section. 

Theorem 4.2. I f  M and its metric are analytic, then for any f ixed x, y ~ M, the set of  
m e a s u r e s  {Qtx,  y , t > 0} converges weakly as t ~ O. 

Proof. Recall that O~o is a neighborhood of F~,y whose middle cross-section 
O~o(1/2 ) intersects neither the cut-locus of x nor that of y (see the proof of Lemma 
3.2). For  fixed e > 0, let ~ = {A~ . . . . .  A,} be a finite collection of disjoint open 
sets of M such that A~c O~o(1/2), diam(A~) < e for i =  1 . . . . .  n; 

Q) z]~ ~ Qo/2(1/2). Let f : M ~ R  be continuous, bounded and positive. Let 
i - 1  

f *  (z) =f (z )  H(x, z)H(z, y), z ~ O~o(1/2 ). Finally let 

6(e) = sup [f*(z2) - f * ( z l )  [ . 
p(zl, zz)<~ 

zl, z2~0~o(1/2 ) 
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We have as t ~ 0, 

f(z)#'(z) ~ ~ ~f(z)#t(dz) 
M A ~ y ~  zl 

ep(x'y)2/2t ( 1 )  m 
~ , ~ , , 7  E ~t ~f*(z)e-E(z'/2'dz 

A e f/~ a 

f*(z~) e-~(=~/~' dz + O(a(e)). 
p(t, x, y) A e.~' \n~/  a 

Here z a is any poin t  in A. No te  that  the term O(6(e)) is independen t  of t. It  is clear 

that  

( ~ ) - P ~  m { = 0  i f A c ~ S ~  ~ 3 
U ~ log \ n t /  Ie-E(z)/2tdz-+C(A) 

a > 0  if A c ~ S ~  

Therefore,  let t ing t + 0 in (4.3), we obta in  that  for any l imit ing measure/~o of #' ,  

~ f(z)#'(dz) + ~ f(z)#~ = ~ C(A)f*(z~) + O(6(e)) 
M M A~ aY,~ ArtS~ ZJ 

N o w  let e ~ 0 .  Since 6(e)---,0 as z ~ 0 ,  the l imit  on the r igh t -hand  side is 
independent  of the sequence a long which t ~ 0. I t  follows that  #t converges weakly  
to a unique measure.  Our  theorem now follows from L e m m a  3.1. [] 
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