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Summary. In this paper, martingale measures, introduced by J.B. Walsh, are 
investigated. We prove, with techniques of stochastic calculus, that each 
continuous orthogonal martingale measure is the time-changed image 
martingale measure of a white noise. 

We also exhibit a representation theorem for certain vector martingale 
measures as stochastic integrals of orthogonal martingale measures. Thus we 
can study the following martingale problem: 

f (X t )  - f (Xo )  - i ~ Lf(s,  Xs, x)qs(dx)ds is a P-martingale,  
OE 

where L is a second order differential operator and q a predictable random 
measure-valued process. We prove that this problem is bound to a stochastic 
differential equation with a term integral with respect to a martingale measure. 

Introduction 

The purpose of this paper is to study in details some properties of a class of 
martingale measures (continuous and orthogonal). This concept has been 
introduced by Walsh [14]. 

In section 1, we will review the principal results he obtained: existence of 
a random measure, called intensity, similar to the quadratic variation process for 
a martingale; construction of a stochastic integral. One fundamental example of 
these martingale measures is the white noise: it can be characterized by the 
deterministic nature of its intensity. Other examples will be described in the second 
section of the paper. 

The third part contains our main results. We give essentially two representation 
theorems. Firstly, we prove that each continuous martingale measure is the 
time-changed image measure of white noise. We use for the proof the fact that the 
intensity of a continuous martingale measure has the form qt(dx)dkt, where qt is 
a predictable family of random measures and k~ is a nondecreasing continuous 
process. By a generalization of a theorem of Skorohod, q, can be interpreted as the 
image measure of a deterministic measure 2. If k~ is deterministic, the martingale 
measure with intensity q,(dx)dk t is the image measure of a white noise with 
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intensity 2(dx)dk~. If k~ is not deterministic, we need a time change to obtain the 
representation. This method is thus similar to the one used to represent point 
processes as image measures of Poisson processes [2]. Our representation theorem 
is applied in [10], [11] to give a sense to a stochastic differential equation in a space 
of vector measures for a certain class of measure-valued branching processes. 

The second representation theorem describes vector martingale measures in 
terms of stochastic integrals with respect to orthogonal martingale measures, and 
generalizes the well known representation of continuous martingales as stochastic 
integrals of a Brownian motion. A fundamental application is to represent 
n continuous martingales (m~)~ 1 with quadratic variation processes 

( mi' m J), = i ~ aij(s, x)qs(dx)dk s 
O g  

(a being a quadratic matrix), as stochastic integrals with respect to n continuous 
martingale measures with intensity qt(dx)dkt: 

m~= Saik(S,x)M~(ds, dx), where a(s,x)=ac~*(s,x). 
k = l  0 E 

In the last section, we study the following martingale problem: let q be 
a R-predictable  random measure-valued process on a space (Q, ~ ,  ~ t ,  P), we 
define a solution of ( ~ )  as a couple (X, P )  on an extension such that 

Vfe C2([R'~), f(Xt)  - f(Xo) - i [. Lf(s, Xs, x)qs(dx)ds 
O E  

is a .g-martingale, with L a second order differential operator depending on the 
parameter  x, (Lf  = 1/2Xaijc~ijf + Z biOif), and q, a predictable random measure 
on a Lusin space E. 

This type of problems appears for example in many particles systems, when 
there is an interaction in the term of diffusion [9], or in control problems, when 
relaxed controls are introduced [3]. When the measure-valued process q is 
deterministic, by interpreting the measure q~(dx)ds as the intensity of a white noise 
W (unique in law), we prove that a solution of (~ )  is exactly the solution of 
a stochastic differential equation whose martingale term is a stochastic integral 
with respect to W. When q is random, the problem is not so well-posed: for a given 
process q, there is an infinity of martingale measures with intensity qs(dx)ds. But 
the representation theorem above described allows to give relations between 
a solution of (~ )  and such a martingale measure. 

1. Definition and Basic Properties of Martingale Measures 

Let us define, as Walsh [14], the notions of L2-valued a-finite measure and 
martingale measure. In the following, (Q, ~ ,  P) will denote a probability space and 
(E, g )  a Lusin space. We consider a set function U(A, ~) defined on .~" x ~, where 
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d is a subring of g which satisfies: 

IIU(A)II~ =E[U(A)  2] < oo V A ~ d  

A c~ B = ;g ~ U(A) + U(B) = U(A w B) a.s. VA and B in d .  

We will say that the map U is a-finite when there exists an increasing sequence (En) 
of E such that: 

1) U E , , = E  
n 

2) Vn, d~ = 'r -~ sr 

3) sup{llU(A)ll~, A ~ . }  < oo 
The set function U will be said countably additive if for each n, for each sequence 
(A~) ofg ,  decreasing to ~ ,  I] U(Aj)][ 2 tends to zero. Then it is easy to extend U by 
U(A) = lim U(A ~ E,) on every set of g such that the limit exists in L2((2, i f ,  P). 

n 

A set function which satisfies all these properties is called a a-finite LZ-valued 
measure. 

Definition I-1. Let ((2, i f ,  (J~)t => o, P) be a filtered probability space satisfying the 
"usual conditions" [1]. 
{M,(A), t > 0, A ~ d }  is a R-martingale measure if and only if: 

1) Mo(A ) = 0  V A 6 d  

2) {Mr(A), t > 0} is a R-martingale,  VA~W 

3) Vt > 0, Mr(. ) is a LZ-valued a-finite measure 

4) A c~B = ~ ~ M ( A )  and M(B) are orthogonal martingales, VA and B 
in W. 

Remarks. (1) For  each T > 0, the localizing family (E,), of M~ can be chosen 
independently of t, 0 < t < T(cf. [12]). 

(2) Walsh studies a more general class of martingale measures, which does not 
satisfy the condition (4). In his terminology, the martingale measures defined in I-1 
are called orthogonal martingale measures. 

Definition I-2. If M is a martingale measure and if, moreover, for all A of d ,  the 
map t ~ Mt(A ) is continuous, we will say that M is continous. 

Definition I-3. If M and N are two R-mart ingale measures on E and E' which 
satisfy: for A eg ,  and B e g ' ,  Vn, Vm, {M,(A)N,(B), t > 0} is a R-martingale,  then 
M and N are called orthogonal martingale measures. 

It is clear that we can associate with each set A of d the increasing process 
( M ( A ) )  of the martingale {Mr(A), t > 0}. The process can be regularized in 
a positive measure on ~+ x E, in the following sense: 

Theorem I-4. Walsh [14]. I f  M is a ~t-martingale measure, there exists a random 
a-finite positive measure v(ds, dx) on ~ + x E, R-predictable, such that for each A of 
d the process (v(O, t] x A)t is predictable, and satisfies: 

V A ~ d ,  V t > 0 ,  v((0, t] x A ) = ( M ( A ) )  t P a . s . .  
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I f M  is continuous, v is continuous, i.e. v({t} x E,) = 0 Vt > 0, Vne  N. The measure 
v is called the intensity of M. 

Remark I-5. 1) By point (4) of definition I-l ,  

VA, B ~ d ,  Vt > O, (M(A), M(B)),  = (M(A n B))~ = v((O, t] x A c~ B) P a.s. 

The measure v characterizes thus completely all quadratic variations of the 
martingale measure M. 

2) In the following, measures on N + x E are positive and a-finite. 

We can construct a stochastic integral with respect to M, by the method which 
is used in the construction of It6's integral (Walsh [14]). Let us consider: 

5 P = {h(e),s,x)= ~ hi(e) ) 1j,,,vd(s)l~(x), B i e ~  , h i a Yu~ measurable bounded 
i = 1  

function} and 

L ~ = { f ( e ) , s , x ) ~ |  E (  ~ f2(e),s,x)v(e),ds, d x ) ) < o o }  
~ + x E  

where N is the predictable a-field. 
If h is a function of 5 e, it is easy to verify that we can define a martingale 

measure with intensity h2(s, x)v(ds, dx) by: 

h .M, (A)= ~ h i (Mv,^ t (Ac~Bi) -  M,~^t(AnBi)) V A e d .  
i = l  

Since 5 ~ is dense in L~, the linear mapping h--, {h. Mt(A), t > O, A c d }  can be 
extended to L~ z as usual. If f ~  L~, f .  M is called the stochastic integral of f with 
respect to M. 

We then find usual properties of the stochastic integral. 

Proposition I-6. 1) Let f belong in L 2, then f . M is a martingale measure with respect 
to M. Moreover, if M is continuous, f .  M is continuous. 

2) I f  f and g belong to L 2, A and B to d ,  then 

( f . M ( A ) , 9 . M ( B ) ) t =  ~ ~ f(s,x)9(s,x)v(ds, dx).  
(0, t] A c ~ B  

This property characterizes continuous martingale measures, in the 
following sense. 

Corollary I-7. Let M be a martingale measure on E and v(ds, dx) a random 
continuous positive measure on ~ + x E. Then M is a continuous martingale measure 
with intensity v if and only if: 

0 (O,t]xE 

Vfe L 2, Vy > O. 



Martingale Measures and Stochastic Calculus 87 

t 
Remark. By extension, ~ ~f(s, x)M(ds, dx) will be denoted by M~(f). 

0 E  

Pro@ The condition is clearly necessary. 
Conversely, let us consider f in L 2 and the following functions F: 

F(o, u, x) = Of(o, u, x) ll~,q (u) 1~,(~0) , 

where G~ E Y~, 0 __< s < t, 0 e ~. 
The condition ( . )  implies that: 

E exp O l~,(M~(f) - M~(f)) -- 1~ ~ ~ ~f2(u, x)v(du, dx) = 1, i.e. 
s E  

E 1Gex p O ( M ~ ( f ) - M ~ ( f ) ) - ~ f 2 ( u , x ) v ( d u ,  dx) =P(G~) .  
s E  

Then, for f E L  2, Mr( f )  is a continuous martingale with quadratic variation 
t 

~f2(u, x)v(du, dx), according to the result of Jacod and Memin [8] about the 
oe  
characterization of continuous martingales. 

II. Examples of Martingale Measures 

(1) Let us suppose that E is a finite space {a 1, a 2 . . . a,}. A martingale measure is 
uniquely determined by the n orthogonal square integrable martingales 
(Mt({ai}))~= 1. Conversely, let me . . . .  , m~ be n orthogonal martingales with 

increasing processes (C~)i=l, then the mapping M~(A) ,.., = m, 6~o,~(A) defines 
i = l  

a martingale measure on E with intensity ~ dC[b~,,j(dx) 
i = l  

(2) More generally: 

Proposition lI-1. Let E be a Lusin space and (us) s >= o an E-valued predictable process. 
Let us consider moreover a square integrable martingale m t with quadratic variation 

t 

process C r Let Me(A ) = ~ 1A(U~)dms, for A in o ~, then {Mr(A), A e d ,  t __> O} is 
0 

a martingale measure with intensity equal to 3us(dx)dC s. I f  m is continuous, M is 
continuous. 

Conversely, all martingale measures with intensity 3u~(dx)dC~ are of this form, 
with m r = Mt(E ). 

Proof We get immediately the first assertion. 
Conversely, let us study the difference 

f(r ~) = 1A(Us(CO)) 
M t ( A ) -  M~(flr), AES ,  where 
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Let us remark that 

Mt( f le )  = i ~ 1A(Us)M(ds, dx) 
O E  

= i 1A(Us)dms , if m s =- Ms(E ) , 
o 

because f is not depending on x. 
Mt(A ) - Mt(flE) is a martingale with increasing process: 

t t 

~ (1A(X) --f(s))26,~(dx)dCs = ~ (1A(Us) - f ( s ) )2dCs  = 0 .  (Prop I-6). 
0 E  0 

Then, Mt(A ) = Mr(fl~) = i 1A(us)dms P a.s.. 
0 

(3) White noises. As the Brownian motion in the theory of continuous martingales, 
there exist fundamental martingale measures: white noises. Let us consider 
a centered Gaussian measure Won  (N+ x E, ~(N+)  | #, p), where # is a positive 
a-finite measure on R§ x E, defined by: 

V h e L  2 , E ( e x p W ( h ) ) = e x p ( 1 / 2 '  h2(y)#(dy)) .  (C) 
R.x E 

A construction of such a measure is given by Neveu 1-12]. 
The process Bt(A)= W(0,t] x A), defined for the state Ae~4  which satisfy 

#((0,t] x A)<  0% Vt > 0, is then a Gaussian process with independent increments 
and intensity #, with cadlag trajectories. It is easy to show that {B~(A), t > 0, 
A ~ d }  is a martingale measure with a deterministic intensity, with respect to its 
natural filtration. When # is continuous, its continuity is proven according to 
Corollary I-7 and the characterization (C). 

Definition II-2. When the measure # is continuous, the family {Br(A), t > 0, A e ~4} 
is called white noise with intensity #. 

White noises are completely determined by the deterministic nature of their 
intensity: 

Proposition II-3. Let {Mr(A ), t > O, A~,xJ} be a ~r-martingale measure with 
a deterministic continuous intensity v. Then, M is a white noise (with respect to its 
natural filtration). 

Proof. This result is immediate according to Corollary II-7 and to the 
characterization (C) of the centered Gaussian measures. 

(4) Image martingale measures 

Proposition and Definition II-4. (E, #) and (U, ~#) are two Lusin spaces. Let N be 
a martingale measure with intensity v(ds, dx) on f2 x N+ x U and ~b(co, s, u) 
a ~ | ~#-measurable E-valued process. 

Let Mr(co, B) = i ~ 1R(~b(~ s, u))N(co, ds, du). 
O U  
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{Mr(B), t > 0, B s g} defines a martingale measure with intensity #, where # is given 
by: 

#((0, t l x B )  = 5 S 1B(qS(s, u))v(ds, du).  
(0,  71 u 

M is called image martingale measure of N under ~b. Let us remark that if N is 
continuous, M is also continuous. 

III. Representation of Martingale Measures 

1. Intensity Decomposition. Construction o f  Martingale Measures 

We will prove at first that the form q,(dx)dk, for a martingale measure intensity is 
not a restrictive assumption. 

Lemma IIl-1. Let v(dt, dx) be a random predictable a-finite measure, v can be 
decomposed as follows; v(dt, d x ) =  q,(dx)dk t where k t is a random predictable 
increasing process and (qt(dx))t>o is a predictable family of  random a-finite 
measures. 

Proof  We will use the notations of section I. 
If v is a finite measure, the lemma is well known. Otherwise, there exists a 

P | g-measurable function W: f2 x E+ x E --+ (0, oo) such that 

v'(dt, dx) = v(dt, dx). W(t, x) 

is finite. Then we can decompose 

v'(dt, dx) = q;(dx)dk, ; 

the result follows by setting 

q,(dx) = W(t, x ) -  1 . q;(dx) . 

Remark. This decomposition is not unique, and it is always possible to assume that 
the process k, is increasing, for example by replacing kt by t + k,. In the following, 
we will use this decomposition of the intensity in which the time coordinate plays 
a special role, and we will denote the intensities of martingale measures in the form 
q,(dx)dkt, with an increasing processes (k,),__> 0. 

An important result is that it is always possible to give a representation of the 
random measures (qt(dx) t >_ o as image measures of deterministic measures (cf. 
A.V. Skorohod [131, N. E1-Karoui and J.P. Lepeltier [2], B. Grigelionis [63): 

Theorem III-2. Let (qt(dx) t >= o be a predictable family of  random a-finite measures, 
defined on a Lusin space (E, g).  

Let  us also consider a Lusin space (U, ag ) and a deterministic diffuse a-finite 
measure ;t on U which satisfies: 

q,(E) =< )~(U) V t r  , V o ~ E 2  . 
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Then there exists a predictable process (p(t, u), with values in E w {6}, (6 is the 
cemetery point), such that: 

q,(A) = ~ la(cp(t, u))2(du) V A e g ,  Vcoef2 
U 

and a predictable kernel fi'om E to U, Q(t, x, du) which satisfies: 

(**) 

S 18(u)f(q~ u))2(du) = ~f(x)Q(t, x, B)qt(dx) (***) 
O E 

V co ~ (2, Vfmeasurable positive, VB ~ ~ll. 
The kernel Q(t, x,. ) is the conditional law of u with respect to the tr-field generated 

by ~o. 

According to this theorem, the existence of a continuous martingale measure 
with intensity q~(dx)dk, follows immediately from the existence of a white noise, as 
our construction will show it. When k t is deterministic, the martingale measure is 
given as image measure of a white noise, and the general case follows by using 
a time-change. 

Theorem III-3. Let (t2, ~ ,  (~t)t >= o, P) be a filtered space and v a random positive 
continuous a-finite measure, satisfying: 

v(dt, dx) = qt(dx)dkt , (kt) continuous and increasing 

(qt) predictable. 

There exists on an extenison ~ = (f2 • O, Y |  (~t |  0, P |  P )  
a continuous martingale measure N with intensity v, obtained as time-changed image 
measure of a white noise. 

Moreover, N is orthogonal to each continuous ( ~ ,  P) martingale measure M. 

Proof. i) Let us assume that k t is deterministic. 
We can build on an auxiliary space (O, o~, i f , ,  P) a white noise B with intensity 

2(du)dk t where 2 satisfies the assumptions of theorem II1-2. On the extension 
(o, ~ ,  (.P,), ~ o, b)  = (~ x .0, .~ | J-,  (..~ | = o, ^ ^ ~t) t  > P | if), B is a continuous 
martingale measure with a deterministic intensity and then a (~,)-white noise 
(Proposition II-3). Let p(t, u) be the predictable process satisfying (**). It is clear 
that rp is ~ | q/measurable, ~ being the predictable a-field on the extension 6. 

By the example 1I-4 and (**), the family 

Nt(c9 , co', A) = i S 1A(CP(CO' S, u))B(e)', ds, du), A e g ,  
O U  

is a continuous martingale measure with intensity 

S 1A(r ~ s, u));4du)dk~ = v((O, t]  x A ) .  
(o, t] E 

Moreover, B and each ( t, P)-martingale measure M are orthogonal (by 
construction, M is again in a ~,-martingale measure). We verify that for each 
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predictable step function h, the martingale measures i S h(q~(s,u))B(ds, du) and 
O U  

M are orthogonal, and that this property is more generally satisfied for h in 
L2(dP | q~(dx)dkt). That implies immediately the orthogonality for M and N. 

ii) I f k  t is not deterministic, let us consider ~t = inf{s > O, k s > t}. z t is the then 
the increasing inverse of k r We can consider the a-finite random measure 
7(dt, dx) = q~(dx)dt, where q~ is predictable (for the filtration ~,~). 

According to i), we construct a white noise B with intensity 2(du)dt, 
q~ a predictable process (for ~ t ) ,  such that 

Nt(A) = i S 1A(cP(C~ s, u))B(ds, du) defines for t > O, A e g  , 
O U  

a ff~ -martingale measure, with intensity 7(dt, dx). 
Let us now consider the o~t-martingale measure {Mz(A), A e d ,  t > 0} defined 

by Mr(A ) = Nkt(A ). The intensity of M is then q,(dx)dkt, since: 
kt 

<M(A)>t = ~ ~ 1A(x)q~s(dx)ds = i ~ 1A(x)qu(dx)dku. 
O E  O E  

2. Extension and Representation o f  Martingale Measures as Image Measures o f  
a White Noise 

The main result of this part is to obtain a converse to theorem III-3, that is to 
describe all martingale measures as time changed image measures of white noises. 
To obtain this property, it is necessary to use an extension result, (this idea is due to 
Funaki [53), and the following theorem is thus fundamental. 

Theorem III-4. Let (f2, Y ,  (~'~)t >= o, P) be a filtered space, E and E two Lusin spaces 
and M a continuous martingale measure with intensity q,(dx)dk t on ~ + x E, where k t 
is a continuous increasing process and (qt (dx) )t >= o is a ~t-predictable family of  random 
measures. 

Let rt(x, d2 ) be a predictable probability transition kernel from E to E and 
define the predictable a-finite measure pt(dx, dye) on R+ x E x E as follows: pt(dx, 
d2 ) = qt(dx)rt(x, dye ). Then there exists on an extension (f2 x ~, ~ | ~' ,  P | P )  
a continuous martingale measure Mt(dx,  dye ) with intensity dktpt(dx, d2 ) and whose 
projection on ~+ x E is M, i.e. ~ l t ( A x E ,  (co, eS))=Mt(A, co ), gAes~ ,  
(~o, r S ) e ~  x ~, V t > 0 .  

Proof  Let N be the continuous martingale measure on E x /~, built on an 
auxiliary space (f~, ~ ,  (~t) t  => 0, P )  with intensity dk, pt(dx, d2 ) such that N and 
each ~t-martingale measure are orthogonal (Theorem III-3). 

Let us consider the mapping: 

t 

Mr(C) = i ~ r~(x, C)M(ds,  dx) + I I (lc(x, ~ ) - rs(X, C))N(ds, dx, dY) 
oE oEx/~ 

V C e g  | g, where rs(x, C) = ~ lc(x, Yc)r~(x, d2 ). 
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The two terms on the right of the above equality are orthogonal continuous 
martingale measures. {M,(C), C~E  | 6 7, t > 0} is then a continuous martingale 
measure with intensity given by: 

dk, I 5r2s(x,C)G(dx)+ ~ p~(dx, d~)(lc(x, 2 ) - G ( x , C ) ) 2 1  
(0, t] E Ex 

dk, I ~ r2(x, C)G(dx ) + ~ G(dx)G(x, d2) (lc(x, 
w 

2) + 
(O,t] L /~ E• /~ 

+ rZ~(x, C) - 2rs(X, C)lc(x, 2) / 
3 

= ~ dlq ~ r,(x, C)q,(dx) (rs(x ,.) is a probability) 
(0, t] 

= i dk,p,(C). 
0 

(b) Let us assume that C is in & 

l c ( x ) -  S rs(x,d~2)lc(x) = 0 and then Mr(C) = M,(C). 
g 

We can apply this result to continuous square integrable martingales, by 
interpreting them as degenerated martingale measures. 

Corollary III-5. Let n t be a continuous square integrable martingale with increasin 9 

process ( n )t (co) = i ~ or2 (cos, x) G (co, dx) dk~, (k,) being increasing and continuous, 
O E  

(q,(dx))t >_ 0 bein9 a predictable family of random measures and a(s, x) a function of 
L2(G(dx)dks). We assume moreover that n o = O. 

There exists on an extension a continuous martingale measure N with intensity 
o-2(s, x)qs(dx)dk ~ such that: 

n, = N , ( E ) .  

Remark. This result will be generalized in the next section to vector continuous 
square integrable martingales (theorem III-7). 

Proof The proof is nearly natural. 

L e t u s d e f i n e S = { s > O , ~ a 2 ( s , x ) q s ( d x ) r  
E 

o'2 (s, x)q~(dx) 
The random measures rs(dx) equal to Is(s) 

S ~2( s, X)qs(dx) 
E 

+ lso(S)a~(x), ~eE,  
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constitute a predictable family of probabilities and we can apply theorem III-4 with 

the kernel r~(dx) and the nondecreasing process .[ ~z (s, x)q~(dx)dk~. Therefore, there 
E 

exists a martingale measure N whose projection on N+ is n, with intensity 

r~(dx)S cr2(s, x)q~(dx)dk~ = a2(s, x)qs(dx)dk~ . 
E 

Using theorem III-4, we can now state one of our main results: each martingale 
measure is representable as time-changed image martingale measure of a white 
noise. An application of this result is given in M616ard, Roelly-Coppoletta [10]; 
[117: it allows to give a sense to a stochastic differential equation in the space of 
vector measures with values in L 2 (Q) for a certain class of measure-valued branch- 
ing processes. 

Theorem III-6. Let M be a continuous martingale measure on ((2, ~ ,  (~)~ >= o, P) 
with intensity q,(dx)dk~. Let 2 be the diffuse a-finite measure and (p be the predictable 
process given in Theorem 111-2. 

(1) If(k,) is deterministic, there exist an extension ((~, ~ ,  ~~, fi ) of(Q, ~ ,  ~,~, P) 
and a white noise B,(&, du) with intensity 2(du)dk t such that: 

VfELZ(qs(dx)dks), Mr(i)  = i S f(cP( s, u))B(ds, du) 
O U  

(2) In the general case, M is a time-changed image martingale measure of a white 
noise. 

Proof (1) We use the predictable kernel Qt(x, du) defined in Theorem III-2 
by (***). 

We consider the measure p~(dx, du) = Q,(x, du)qt(dx ). 
It satisfies: 

v B ~ ,  AE~U, S1B(~o(t, ut)lA(u);.(du)= S ~B(x)lA(u)p,(dx, du) 
U ExU 

According to theorem III-4, we build on E x U a continuous martingale measure 
A4 with intensity p~(dx, du)dk t and whose projection onto E is M. The martingale 

measure N(dt, du) = ~ M (dt, dx, du) has thus the intensity: 
E 

Q,(x, du) q,(dx)dk, = dk, 1 {~0(r, ~ ,~ a} 2(du) (6 cemetry point). 
E 

N t is not a white noise, because its intensity is not deterministic. We build then on 
an auxiliary space a white noise W,(du) with intensity )~(du)dk~ and we consider the 
martingale measure B,(du) = N,(du) + l{a } (~o(t,u)) W,(du). Then, B is a continuous 
martingale measure with deterministic intensity and is therefore a white noise 
(Proposition II-3). 
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Let f be in L2(qs(dx)dk~), then fo ~0 belongs to L2(dkt)v(du)) and 

t 

~ f(~o(s, u))S(ds, du) = i ~ f(~p(s, u))N(ds, du) 
O U  O U  

+ i ~f(p(s, u)ll{6}(q~(s, u))W(ds, du) 
o u  

= i ~f(~p(s, u))N(ds, du) 
O U  

= i ~.f(q~(s, u)) ~ M (ds, dx, du) 
O U  E 

= i ~ ~f(~o(s, u))M (ds, dx, du) 
o~v 

We want to compare this quantity to 

t 

~f(x)M(ds, dx) = i ~ ~f(x)2Vl (ds, dx, du). 
O E  O E U  

O E U  

0 U  

Thus 
t 

f f ~.f(rp(s, u)M (ds, dx, du) = i ~ Sf(x) ~ (ds, dx, du) 
O E U  O E U  

= i [. f(x) M (ds, dx) P a . s .  

O E  

(2) The proof of the generalization is similar to the proof of theorem III-3 (ii). 

3. Representation of Vector Martingale Measures 

The first theorem of this section gives a representation of vector martingale 
measures in terms of orthogonal martingale measures, which generalizes the 
representation theorem for continuous martingales in terms of Brownian motions. 

Theorem lli-7. Let (MI)7= 1 be n continuous martingale measures on a Lusin space E, 
with intensities: 

(Mi(q~) , MJ(~))t = i ~ p(x)tp(x)aij(s, X)qs(dx)dk s 
O E  
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where: 

aij(s, x) = ~ aik(S, X)ajk(S, X),  
k = l  

V i, k E {I . . . .  , n}, aik (S, X) e L Z ( q~(dx)dk~), (kt) is a continuous increasino process, 
(qr(dx)) is a predictable process of  random finite measures. 

There exists on an extension n continuous orthogonal martingale measures 
^ i n (M~ (dx))~= ~ with intensity q~(x)dk~ which satisfy: 

k = 1 0 E  

Proof  This theorem is proven with the same method as in [7]. Let us describe 
quickly the principal steps of the proof: 

We can suppose that ~(s, x) = al/Z(s, x) is the symmetric square root of a(s, x) 
and define: 

(s, x) = lim al/2(s, x)(a(s, x) -I- el) -1 , 
~ 0  

V(s ,x)e~+ x E .  

We have: 6 (s, x)a(s, x) = or(s, x )6  (s, x) = Eg(s, x), where ER(s, x) is the orthogonal 
projection onto range a(s, x)(Nd) and denote EN(s, x) = I -- Eg(s, x). 

We define then, for i in {1 . . . . .  n}, the continuous martingale measure 

k = l  0 k = 1 0 E  

where (M k)~= 1 are n continuous orthogonal martingale measures with intensity 
qs(dx)dk s built on an auxiliary space. It is therefore easy to verify that 

(3~I ~(f), f~l J(g))t = 6iji  i f ( x )g(x )qs (dx)dk ,  , V f, gEL2(q~(dx)dk~) 
O E  

and that 

i Si(x) ik(s, x) k(ds, dx): M (il. 
k = l  O E  

(The calculations are carried out in the book of Ikeda and Watanabe [7] p. 90.) 

Corollary III-8. I f  we use the notations and the result o f  theorem III-6, and if the 
i n process (kt) is deterministic, we can represent the martingale measures (M )i= 1 with 

i , by: n orthogonal white noises (B)i= 1 

M,~(f) = ~ i ~f(~~176 du) �9 
k = l o u  

A very interesting problem is to obtain a similar representation theorem 
for vector square integrable martingales (m~)~= 1 whose quadratic variation process 
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has the special form: (m  i, mJ) t  = ~ ~ aq(s, x)q,(dx)dk~ (where a is a quadratic 
0 E  

matrix). The aim is to represent them in terms of orthogonal martingale measures 
with intensity q~(dx)dk~. It will be used in particular to describe solutions 
of martingale problems; this will be the subject of the last section of the paper. 
To obtain this result, we need an extension property, which generalizes to 
vector martingales the extension property obtained in corollary III-5 for the 
dimension one. 

Proposition III-9. Let (m~)7: I be n continuous square integrable martingales such 
that m~ = O. We assume that the quadratic variation process corresponding to m i and 

mj is ( m i, m J )t = i S aq(s, x)q~(dx)dks, where: a(s, x) = a(s, x) a* (s, x) is a ~ | 8 
qg 

measurable matrix such that aij(s, x )e  LZ(qs(dx)dks) Vi,j~{1 . . . . .  n}, (kt)t>=o is 
a continuous increasing process, (qt(dx)) t >_ o is a predictable finite measure-valued 
process. 

i n Then on an extension, there exist n continuous martingale measures (M~(dx) )i= 1 
such that VB, CEo  ~, 

( Mi(B),  M J(C) ), = i S I B(X)I c(X)aij( s, X)qs(dx)dks 
O E  

V t > 0 .  and M[(E) = mt = 

Proof. (a) We suppose first that the symmetic matrix A(s) = 
(( [aq(s, x)q,(dx)))l~i~_; is invertible. Let us denote by 6(s) its inverse. For f in 

L2(q,(dx)dks), we will denote Q(s , f )  the symmetric matrix 
(( S aq(s, x ) f ( x )  q~(dx)))l~,~." Q(s, 1) : A (s). 

< j < n '  

It is easy to build on a larger space n martingale measures (N~)7= ~ which satisfy, 
V f g ~ L Z( q~(dx)dk~): 

(IV i( f) ,  ~ J(g) )t = i ~ f (s ,  x)g(s, xlaij(s, X)qs(dx)dk ~ , 
O E  

In fact, we can define on N+ x E • {1 . . . . .  n} a martingale measure N with 
n 

intensity ~ q~(dx)dksblil(dj) (see Theorem III-3) and construct the martingale 
i = l  

measures (Ns(dx))i= 1 as follows: 

VA6e ,  iV~(A)= ~ i la ik(s ,x)N(ds ,  dx,{k} )" 
k = l  O A  

We may take therefore: 

i~{1 . . . . .  n} ,  t >= O, f~L2(q~(dx)dk , ) ,  

k = 1  0 k = l  0 E 

(I identity matrix of ./A~,(N)). 
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i since Q(s, E) = A(s). Let us calculate It is immediate to verify that MI(E) = rn, 
the intensity of i ,  . (M)i= 1. For every f and g in L2(q,(dx)dk,), we set 

( M ' ( f ) ,  MS(g)),  = ~ i (Q(s,f)b(s))ik(Q(s, 9)6(s))j~ ~ akt(S, x)q,(dx)dk~ 
k,  l = l  0 E 

t 

+ i S [. ( f ( x ) I  - Q(s,f)f(S))ik(g(x)I -- Q(s, g)b(S))jzakt(S , x)q~(dx)dk~ 
k , /=10E  

= i [Q (s, f )  6 (s) A (s) (Q (s, 9) 6 (s))* ]i j dk~ 
0 

+ i [. [ ( f ( x ) I  - Q(s, f)3(s))a(s, x)(g(x)I - Q(s, 9)3(s))*-] ij q~(dx)dks 
O E  

Q(s,.) and 6(s) are symmetric matrices for every s in R+. Thus, 

and, 

Q(s, f )b(s)A (s)(Q(s, g)b(s) )* = Q(s, f )b(s)A (s)b(s)Q(s, 9) 

= Q(s,f)b(s)Q(s, 9) 

[. ( f ( x ) I  - Q(s, f)6(s))a(s,  x)(g(x)I - Q(s, g)b(s))* q~(dx) 
E 

= j ( f ( x ) I  - Q(s,f)b(s))a(s,  x)(g(x)l  - 6(s)Q(s, 9))q~(dx) 
E 

= [. [f(x)g(x)a(s,  x) - f ( x ) a ( s ,  x)b(s)Q(s, 9) - Q(s,f)b(s)g(x)a(s, x) 
E 

+ Q(s, f)6(s)a(s,  x)b(s)Q(s, 9)] q,(dx) 

= [.f(x)g(x)a(s, x)qs(dx ) - Q(s, f )3(s)Q(s,  9) 
E 

t 

So, ( M i ( f ) ,  MJ(g)) ,  = ~ Sf(x)g(x)aij(s, x)qs(dx)dk ~. 
O E  

(b) When A (s) is not invertible, we use a method similar to that one of Ikeda 
and Watanabe [7]: We introduce the symmetric matrix 6(s) which satisfies: 
VseN+,  3(s)A(s)= A(s)6(s)= ER(S), where ER(S ) is the orthogonal projection 
onto range A (s)Nd. We have: 

I - -  ER(S ) = EN(s), with EN(s)A(s ) = O, S(s)A(s)g(s) = O. 

Let us consider now: 

k = l  0 k = l  0 E 
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We get 

k = l  0 k = 1  0 E 

k = l  0 k = l  0 E  

k = l o  R = I O E  

The two right-hand terms have the intensity 

t 

i ~ (EN(s))~k(E~v(s)),,f akt(s, x)G(dx)dk, 
k, I = 1  0 E 

n t 

= ~. I (EN(s)A(s))n(EN(s))j'dk, = 0 
l = l  0 

and thus vanish. 
We verify easily, with an analogous calculation, that the quadratic variation 

(Mi( f ) ,  Mi(g)),  is i ~ f(x)g(x)aij(s, x)G(dx)dks. 
O E  

Let us give now the main lheorem, which is obtained immediately by 
application of theorem III-7 and proposition III-9: 

Theorem lII-10. Let (m~)~=l be n continuous square integrable martingales, with 
(matrix valued) quadratic variation process 

(,m i' mi) t  = } {. alj(s, x)qs(dx)dk ~ , 
O E  

There exist on an extension n continuous orthogonaI martingale measures 
(2~1 s(dx))i=i ~ 1 with intensity G(dx)dk~ which satisfy: 

k = 1 0 E  

IV. Study of a Martingale Problem 

One of the motivations for the investigation of the martingale measures theory was 
the study of solutions of problems as below: 
given a filtered space (f2, J~, o~, P) and q a finite measure-valued ~,-predictable 
random process on this space, we call solution of the martingale problem (C a ) 
a couple (X,/~) defined on an extension of (t?, ~-, 4 ,  P), X being a continuous 
process, satisfying: 

(Ca): gfE C2(IRe), f (Xt)  - f ( X o )  - i S Lf(s, X, ,  x)q,(dx)ds 
0 E  
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is a P martingale, where L is an elliptic operator, defined 
(E a Lusin space) by: 

2 i, j = 1 0 y ~ j  + i= 1 (s, y, x) 

99 

on R+ x ~d x E 

with bounded coefficients and a(s, y, x) = a(s, y, x )a* (s, y, x), V(s, y, x) E 
[~ + X [~d X E.  

We meet here some difficulties provided firstly by the integrated form of the 
generator in the martingale problem and secondly by the randomness of the 
measure q. In the first step, we assume that q is deterministic and we give an 
appropriate representation of the solutions of (~) with respect to white noises, 
which allows to obtain their existence and uniqueness with Lipschitz continuous 
coefficients. Secondly, we generalize this method to a random process q, by giving 
a representation of the solutions o f ( ~ )  with respect to martingale measures and we 
study the problem of the uniqueness of these solutions. 

1. A Particular Case: q is Determin&tic 

To clarify the situation, let us assume first that d = 1. We can always represent the 
solutions of (~)  as follows: 

t t 

X t = X o + ~ x/a2(s, X=, x)q=(dx) dB= + ~ y b(s, X=, x)q=(dx)ds 
0 O E  

where B is a brownian motion defined on an extension of(O, i f ,  P). But we are not 
able to assure the existence and the uniqueness of solutions of this equation, not 
even under Lipschitz continuity hypothesis on a and b. This representation is then 
not well adapted to the problem. The other idea is to interpret the deterministic 
measure q=(dx)ds as the intensity of a white noise W=(dx) defined on an extension of 
((2, Y ,  P) (Theorem III-10). A solution of (~) is then equivalent to a solution of: 

X t = X o + a(s, X=, x) W(ds, dx) + ~ ~ b(s, X=, x)q=(dx)ds, 
O E  O E  

whose existence and uniqueness are immediate, under Lipschitz continuity 
.conditions on o- and b. 

More generally, we obtain in the d-dimensional case: 

Proposition IV-1 Let us assume that q is deterministic. 
1) The existence of  a solution o f (~ )  is equivalent to the existence of a solution of 

the stochastic differential equation Vie {1 . . . . .  d}, 

d 

dX[ = ~, ~ aik(t, Xt, x) Wk(dt, dx) + ~ bi(t, X ,  x)qt(dx ) d t ,  (E) 
k = l  E E 

where (wk)dk= 1 are k orthogonal white noises defined on an extension of((2, ~ ,  P). 
2) Ira  and b are Lipschitz continuous in the second variable, uniformly in t and x, 

the stochastic differential equaton (E) has a unique pathwise solution. 
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Proof The representation is a particular case of theorem III-10. The law of a white 
noise being exactly defined by its intensity, the proposition is shown by applying 
similar methods developed in the book of Ikeda and Watanabe (p. 151). So we omit 
the proof. 

2. General Case 

We generalize the above point of view. When q is random, theorem III-10 allows us 
to give a tie between a solution of (~) and some martingale measures: 

Theorem IV-2. Let (Xt)t >= o be a d-dimensional continuous adapted process, solution 
of (~).  Then, on an extension, there exist d continuous orthogonal martingale 
measures (Mk)kd = 1 with intensity q~(dx)ds such that (X,)t >: o satisfies V ie  { i, . . . ,  d}, 

d 

dX] -- ~ ~ a,k(t, X t, x)Mk(dt,  dx) + ~ bi(t, X, ,  x)qt(dx)dt .  (E') 
k = l E  E 

The proof of Theorem IV-2 is routine (see proposition IV-l). 
The problem (~)  is a martingale problem with a random coefficient q and thus, 

it is not well-posed. In fact, just to know the random variable q on a space gives an 
infinity of solutions, since there is an infinity of martingale measures with intensity 
q~(dx)ds. Anyhow, if a d-dimensional process (Xt) t ~ 0 satisfies (E'), It6's formula 
implies that X satisfies (~). 

k d  For given orthogonal martingale measures (M)g ~ 1, and if a and b are uniform 
Lipschitz continuous, (E') has a unique pathwise solution; the proof is obtained by 
imitating the usual arguments for stochastic differential equations (Ikeda- 
Watanabe p. 165). 

Remark IV-5. We assume here that the drift coefficient is the linear function of q: 

b(s, y, q) = S b(s, y, x)q~(dx)ds. But we could generalize all the results to a function 
E 

b defined on [R+ x [R e x ~(E),  9 ( E )  being the space of probabilities on E. It can be 
useful for example to model particle systems with a non linear interaction in the 
drift coefficient [9]. 
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