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Summary.  We study a statistical mechanics of self-avoiding paths on the 
pre-Sierpinski gasket. We first show the existence of the thermodynamic  limit of 
the (appropriately scaled) free energy. Then we show that there are two 
domains in the weight parameters (i.e. two phases) between which the scaling 
differs; i.e. there is a certain kind of phase transition in our  model, and we find 
the critical exponents of the free energy at the phase transition point. We also 
show the convergence of the distribution of the scaled length of the paths at 
thermodynamic  limit. 

O. Introduction 

Let us define the pre-Sierpinski Gasket as follows. Let O = (O, O), ao = (~, ~ ) ,  

b o = (1, 0), and let F o be a graph which consists of the vertices and the edges of the 
equilateral triangle AOaob o. Let us define a sequence of graphs (Fig. 1) inductively 
by 

Fn+l = Fn w ( F  n + 2nao)w(F  n + 2"bo), n = 0, 1, 2 . . . . .  

o~ 
where, A + a = {x + alxr and k A  = {kxlxeA}. Let F = U F, .  F is the 

n = 0  

pre-Sierpinski Gasket. Let G O be the set of the vertices in F, and a n = 2nao, 
bn = 2nbo . 

We define the set of self-avoiding paths W o on G o to be the set of mappings 
w:Z+ ~ G  o such that there exists L(w)r u {  o9 } for which w(i)= w(L(w)), 
i>L(w),  w(il)#w(i2), 0 < i  1 < i  2__<L(w), and Iw( i ) -w( i+  1 ) [ = 1 ,  and 

w(i)w(i + 1) c F, 0 <_ i <_ L(w) - 1. We call L(w) the length of the path w. 
In this paper, we study the special subsets W (n), n > 1, in W o, the set of self 

avoiding paths from 0 to a n that do not  pass through bn, i.e., 

W (n~ = {we Wo; w(O) = O, w(L(w)) =an, w(i) ~: bn, i >= O} . 
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We define probabi l i ty  measures/~,(ti) ,  t i e R ,  n > 1, in W (') by 

,u,(ti)(A) = Z.( f i )  -1 ~ e -L(w)z, A c W (') 
w E A  

where Z , ( t i ) =  ~ e -L(wl~ 
WE W In) 

Our  results are the following. 

(0.1) Theorem. There is a tic > 0 such that 

(i) if  ti < tic, then fo(ti)  = lim 3 " logZ, ( f l )  exists and is positive, 
n--* ~ 

(ii) if  ti > tic, then f l ( f l )  = lim 2 " logZ , ( f l )  exists and is negative, 

and 

(iii) Z,( t ic)  x / 5 -  1 --~ ~ a s  Yl----~ ~ .  

In terms of statistical mechanics,  we may  call f0 and f l  the free energy, and tic the 
critical point. We can interpret  our  result in the manner  that  there are effectively 
3 - "  (times a constant)  degrees of f reedom for ti < ti~ and 2 " (times a constant)  
degrees of f reedom for/3 > ti~. Such a kind of phase transit ion does not seem to be 
convent ional  in s tandard  statistical mechanics.  

(0,2) T h e o r e m .  (i) f o : (  - oo, 
Moreover,  fo(ti)  "~ (tic - ti)" as 

tic)--* (0, ~ ) is continuous and strictly decreasing. 
ti "( tic. Here 

(ii)  f l : ( f ic ,  ~ ) - - * ( - ~ , 0 )  is continuous and strictly decreasing. Moreover,  
f l ( f i )  ~ - (ti - tic) b as ti J, tic. Here 

b = log log2  - 0.79862. 

( 77 )1 a = log log3 ~- 1.26579 . 
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(0.3) Theorem. (i) I f  ~ < ~ ,  then the probability law of 3-"L(w) under I~,(~)(dw) 
converges in law to ~1(p)for some l(fl) > O. 
(ii) I f  fl > fie, then the probability law of 2-"L(w) under #,(~)(dw) converges in law 
to @(,) for  some l'(fl) > O. 

(iii) The probability law of L(w) under l~.(B~)(dw) converges in law to 

a certain probability measure v in (0, oo ). Moreover, the Laplace transform 
9(~) = ~o exp(~x)v(dx) is an entire function in ~ and satisfies 

( ( 7  2 x / 5 )  ) 3 2 _ ~ .  9(~)3 .,~__ - 1 g ~ - + g(~);, ~eC,  and g ' ( 0 ) > 0 .  

The value of the critical point fl~ can be evaluated numerically and we have 
fl~ = 0 .827691. . .  ( e x p ( -  tic) = 0 .437057. . .  ). 

We remark that the value of critical exponent b in Theorem (0.2)(ii) has been 
known to R. Rammal, G. Toulouse, J. Vannimenus [8] and D.J. Klein, W.A. Seiz 
[6] as the value of an exponent for end-to-end separation of self-avoiding paths. 
The exponent a in Theorem (0.2)(i) is not considered in their works. We also 
remark that the recursion relation in Proposition (1.1) below is also given in these 
works, and in D. Ben-Avraham, S. Havlin [2]. 

1. Recursion Formula 

Let T o denote the set of subgraphs in F which are the translation of F o. For w E Wo, 
let 

Sl(w ) = {i~{0 . . . . .  L ( w ) -  1}; the triangle in T o containing X(i) and X(i  + 1) 
does not contain X ( i -  1) if i > 1, and does not contain X(i  + 2) if 
i <= L(w) -- 2} 

and 

S2(w)= { ie{O . . . .  , L ( w ) - 2 } ;  a triangle in To contains X(i), X(i+ 1), and 
X(i  + 2)}. 

Let Sa (w) and s2 (w) be the numbers of the elements of $1 (w) and S 2 (w), respectively. 
Then we have st(w ) + 2Sz(W ) = L(w). 

For a subset W of W 0, let ~b(W) be the generating function for W defined by 

q~(W)(x,y)= Z xSl(W)Y s:(w) , for(x ,y)s[O,  ~ ) 2 .  
W ~ W  

Let W(") = {we/4/o; w(O) = O, w(L(w)) = a., w(i) = b. for some 

i <  L(w) ,  w ( i ) ~ f ,  for all i = 0 . . . . .  L(w)}, 

and let q~.(x, y ) =  ~b(W("~)(x, y) and O.(x, y ) =  q~(ff/("))(x, y). Then we have the 
following. 
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(1.1) Proposition. (1) 41 (x, y) = (x + y)a + x2(x + 2y) and 
01(x,  y) = xy(x  + 2y) , 

(2) For n >- 1 
(~n+ I(X, y) = (JD1 ((J~n(X , y), On(X , y ) ) ,  (1.2) 

and 
O,+ ,(x, y) = O , (~ , (x ,  y), On(X, y)) .  (1.3) 

Proof. The assertion (1) is a simple exercise (see Fig. 2). To  prove the assertion (2), 
let G, = 2"G o and T, be the set of subgraphs  in F which are the t ranslat ion of F , ,  
n > 1, For  each w e  W o and n, k > 0, let 

T(o"~(w) -- min{i  > 0 ;  w(i )eG.}  , 
and 

T{")(w) = min{i  > T~")I ; w( i )eG.}  /x L(w) .  

For  w e  W<"+I)~ l~ ("+1), let 7z(")(w)(k) = 2-"w(T~"~), k > 0. Then it is easy to see 
that  ~z(")(w)e W (1), if w e  W ("+1), and 7z<")(w) e I~ (1~ if w e  j/g(n+ 1) 

\\ / \\\ lll X 
\ , 1 ~ -  - / - / " \  / \  / \ I \  I \ 

, / ~ _ _ A r  / - - - ~ ' - - - ~  

,\ I i i  I 
I I  - -  - -  - \\\ 

' , 
I I \ I / \\ 

, , ,, , 
/ Z____ .2 /___x  I . . . .  v _ _ _ - ' ,  

//  
/ 

i I \\ 
/ , /  ,, 

]l' l~l~l ~ /// / ' \  
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t �9 

Fig. 2 
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Let Woe W (1). Suppose that 7t(")w = w o, w e w  ~"+11. Then we see that w(i)'s, 
T~")(w) < i <  T(k")+l(w) are in a triangle of T, if keSl(Wo), and that w(i)'s, 
T~")(w) < i < T~")+ 2(w), are in a triangle of T, if k e S 2 (Wo). Moreover ,  these triangles 
are different from each other. So to count  the number  of w e  W ("+I) with 
r~(")w = w o, we can think of the subgraphs inside these triangles independently. 
Therefore the self-similarity of the Sierpinski Gasket  implies that 

4~({w ~ W ~"+ 17 ; rc~")w = w0 })(x, y) = 4~,(x, y)Sl(wo)O,(x, y)S2~wo). 

This shows that 4~,+1(x, y) = ~bl(q~,(x, y), O,(x, y)). Similarly, we can show that  
On+l(X, Y) = {~l((/)n(X , y), On(X, Y)). 

This completes the proof. 

2. Basic Results 

Let G~ = (x,y) and G(x,y)  = G l ( x , y )  = (q)l(x,y), 0 1 ( x , y ) )  , and define 
G"(x, y) by G"(x, y) = G"-  1(4q (x, y), 01(x,  y)). Then G"(x, y) = (45 (x, y), O.(x, y)), 
n > 1. Note  that G"(x, y) are polynomials in x and y. Let Ro(x, y) = y /x  and 

R.(x,  y) = O.(x, y)/~.(x,  y) , n >  1,  x, y > O . 

Then it is easy to see the following. 

�9 ,+ l (x ,y )  = 4>,(x,y)3{(1 + 2R,(x ,y))  + q~,(x,y)-l(1 + R,(x ,y ) )  2} , (2.1) 

~ ,+ l ( x , y )  = q>,(x, y)2{(1 + R,(x ,y) )  2 + q~,(x, y)(1 + 2 R , ( x , y ) ) } ,  (2.2) 

and 

R.+l(x ,  y) = g. (x ,  y) 1 + cb.(x, y ) - '  1 + 1 + 2R.(x, y ) J J  

=< (1 + q0n(X, y ) - l )  -1 "Rn(x , y ) ,  

< e,(x, y).&(x, y ) ,  
for x , y  > 0. 
Therefore from (2.3), we see that 

R.+l(x, y) < &(x, y), 

Also, we have 

(2.3) 

log q~.+,(x,y) = 31og<P.(x,y) + log{(1 + 2R.(x, y)) + q~.(x, y) - l (1  + R.(x,  y ) ) 2 } .  

(2.5) 

log g,,+ l(x, y) = 2 log q~,(x, y) + log{(1 + R,(x,  y))2 + ob,(x, y)(1 + 2R,(x, y))}.  
(2.6) 

(2.7) Lemma.  For any a, b > O, let 9(x) = 9(x; a, b) = ax 3 + bx 2, x > O. 
Also, let 9" be the n-fold composition of 9. Then 9"(x) ~ 0 as n--+ oo 

x, y > 0 .  (2.4) 
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(4a + b2) 1/2 - b)  
for any x e O, 2a 

((4a + b2) l/2 - b ) 
x 6 2a , co . 

and 9"(x) ~ oo as n--+ oo for any 

0 , ( 4 a +  b2) 1 / 2 -  b )  Then it is that Proof. Suppose that x s 2a " easy to see 
/ 

0 < g(x) < x. Since g: (0, ~ ) ~ (0, ov ) is increasing, we see that  9"(x) $ as n ~. Let 

y = lim g"(x). Then we see that 0 < y < x and g(Y) = Y. This implies that y = 0. 
n ~ o o  

T h e c a s e x e ( (  4 a + b 2 ) l / 2 - b  ) 2a , oo is similar. Q.E.D. 

(2.8) 

(1) If sup ~b,(x, y) > - -  
n 

(2) Suppose that 

lim 2-"  log q~,(x, y) < O. Moreover, lira R,(x, y) = O. 
n ~ o o  t l ~ o o  

P r o p o s i t i o n .  Let x, y > 0 .  

~/-5 - 1 then lim 3-n log q~n(x, y) > O. 
2 ' t l - ~  oo 

,5-1 ,5-1 
sup O.(x, y) < Then lira 4~.(x, y) - 

, = 2 , - , ~  2 
or  

1 
Proo[. (1) Suppose that supq~.(x, y) > v -  Since q~.+l(x, y) 

. 2 

q)n(X, y)3 + q~n(X, y)2 = O(qbn(X, y); 1, 1) by (2.1), we see f r o m  L e m m a  (2.7) t h a t  

lim 4~.(x, y) = oo, By (2.5), we have log q~.+m(x, y) > 3mlog ~.(X, y). These imply 
n--~ oo 

that lira 3-"logq~.(x, y) > 0. 
i i ~ o o  

U 2 -  

(2) Suppose that s u p 4 ~ . ( x , y ) < ~ / 5 - 1 .  Then by (2.3) we have R.+~(x, y) 
. 2 

< R,(x, y)(1 + 4~,(x, y ) -~) - i  =< 3 R,(x, y). This shows that 

R,(x,  Y) < ( ~ +  3 ) - " ( x Y - ) \  2 . (2.9) 

Therefore lim R,(x, y) = 0. Note that 
n ~ o o  

cI).+l(x,y)=-g(4o.(x, y);1 + 2R.(x, y),(l + R.(x, y))2). 

Thus by Lemma (2.7), if R.(x, y) < e for any n > N: and 

{4(1 + 2s) + (1 + 04} 1/2 - (1 + e) 2 then lim q~.(x, y) = 0 .  
q~u(x' Y) < 2(1 + 2e) ' . . ~  
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1 
Therefore if lira q~,(x, y) < _ _ v -  then lim q~.(x, y) = 0. So we 

n_~ 2 ' . - ~  

lim 4~,(x, y) = 0 or - -  

Now let lim 4~n(x, y) = 0. By (2.6) we have 
n--* oo 

{ 3 } 
lim log q~,+l(x, y) -- ~log ~n(x, y) = -- oo. 

n ~ o o  

Therefore we see that  

( ~ ) - n  log q~n+N(X, y ) <  log ~bN(x, y) 

for sufficiently large N. This implies that  

lim log ~U (X, y) < 0. 
n ---~ oo 

Then, again by (2.6), we see that  

~ i m { l o g 4 ~ + ~ ( x , y ) - ( 2 - ( ~ ) " ) . l o g c b ~ ( x , y ) } < O .  

Therefore we see that  

{ ( l ( 2 ) k + ~  1 ) ;  -1 
( I  1 - ~ \ - j ]  ] j  "2-"logCb~+N(x,y)<log45N(x,y) 

k = l  

for sufficiently large N. This implies that  

see that  

f 
Let D = l(x,  y)e(0, 

(2.10) Proposition. (1) D is a closed set in (0, oo )2. 
(2) I f(x,  y)e D, 0 < x' < x and 0 < y' < y, then (x', y')E D. 

(3) I f(x,  y)eD, 0 < x' < x and 0 < y' < y, then lim ~0 (x', y') = 0. 
n ~ o o  

In particular, if(x, y)~D\OD, then lira ~n(x, y) = 0. 
n--* oo 

(4) I f(x,  y)eODr~(O, o0) 2, x' > x and y' > y, then (x',y')E(O, oo)2\D. 

(5) I f(x,  y)eSDc~(O, o0) 2, then lira ~0,(x, y) - x /~ - I. Moreover, 
t~--? oo 2 

{4(1 + 2R.(x, y)) + (1 + R.(x, y))~}l/2 _ (1 + R.(x, y))2 
o~.(x, y) > 

lim 2 - " l o g  ~,(x, y) < 0. Q.E.D. 
n--* co 

oO )2; supn q),(x, y) < xfl5~ ---1 }. Then we have the following. 

(2.11) 
2(1 + 2R.(x, y)) 
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Proof (1) and (2) is obvious, since r y) is continuous and increasing in x and y. 
(3) Let 2 = max{x'/x, y'/y} < 1. Then it is easy to see by induction that 

q~n(x, ' y,) < )2"q~n(X, y) <: ,~2" . X ~  -- | Thus we have our assertion. 
= = 2 " 

(4) If (x ' ,y ')cO, then by (2) we see that (x,y)~(O, x ' ) x  (0, y ' ) c D .  This 
contradicts the assumption that (x, y) s ~?D. 

(5) Let (xt, y , )= (tx, ty), t > 0. Then by (4), we see that (x,, y,)s(0,  oo )2\D if 
t > l .  

Let G(t) = 1 + 2R,(x,, Yt) and b,(t) = (1 + R,(x,, yt)) 2. Then a,(t) and b,(t) are 
continuous in t. By (2.1) and (2.4), we see that cb,+l(xt, y t )< 9(qJ,(x~, y~); am(t), 
bin(t)) for n > m and t~(0, oo). 

(4am(l) + bm(1)2)1/2 - bm(1). Then there is a t > 1 such Suppose that (b,,(x, y) < 
2am(l) 

(4%(0 + bin(t)2) 1/z - bin(t) 
that q~m(X,, y~) < . Then by Lemma (2.7), we have 

2am(t) 

lira q),(x,, Yt) <= lim 9"(q~m(x,, yt); am(t ), b,,(t)) = 0 .  

But this contradicts Proposition (2.8) and the fact that (x~, yt)e(0, oo)Z\D. This 
proves (2.11). Since R,(x, y)--* 0 as n--+ oo, by Proposit ion (2.8)(2), (2.11) implies 
that 

lim 4 , . ( x ,  y)  - x / ~  - 1 
n~oo 2 

(2,12) Propos,,iO][l, (1) a n ( x  , y) =~_ ( ~ 5 - ~ -  3 )  

(2) lim 2 ogR,,(x, y) < 0 if(x, v)eD\(?D. 
pl ~ :so 

(3) R~ y) -1  = - I + ~ ( x ,  y ) - '  1 
k=0 k 

.for (x, y) e (0, oo )2. 

ED. 

Q.E.D. 

+ 1 +'2Rk(x, y) 

(4) R(x, y ) =  lim R,(x, y) exists and is continuous in (x, y)e(O, oo) 2. 
n~oo 

Moreover, R(x, y) > 0 !f(x, y)~(O, oo )2\D, and R(x, y) = 0 if(x, y)~D. 
R,(x, y) ( Ro(x ' y)2 ) .  ~. 1 

(5) 0 < log R(x, y-~)- < 1 + 1 + 2Ro(x, Y)] k=, cI),,(x, y)- 

for any (x, y)~(O, oo )2\O and n > O. 

Proof (1) is already proved in (2.9), (2) follows from Propositions (2.8) and (2,10) 

and the fact that R,(x, y) < " i-I q)k( x, Y), (x, y)eD. (3) is obvious from (2.3). 
k=0 

Now let us prove (4). (1) implies that lim R,(x, y ) = 0  if (x,y)ED. So 
n~so 

R(x, y ) = 0  and is continuous in D. Let (x,y)e(0,  oo)2\D. Then there is 
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a (x', y') e (0, oo )2\D with x' < x and y' < y. It is easy to see that  

lira 3 - " log in f{~ , (x" ,y" ) ; (x" ,  y" )e [x ' ,  o o ) x  [y', oo)) 
n ~ o o  

- n  ! t = l i ra3 l o g ~ , ( x , y ) > 0 .  
n ~ o o  

Thus by (3), we see that R,(x, y)- i  converges uniformly on compacts in 
[x', ov ) • [-y', c~ ). Therefore we see that R(x, y) > 0 and is continuous in 
(0, ~ )2\D. 

The final point which we have to show is the continuity of R at 
(x, y) e OD c~ (0, o )  2. However, by (2.4) we see that if (x., y.) ~ (x, y) as n ~ oo, then 

0 < lim R(x,,  y,) < l im  R,,(x,, y,) = R,,(x, y) ~ 0 as m ~ ~ . 
n ~ c t )  n ~ o o  

Thus R is continuous at (x, y). 

(5) is obvious from (3) and (4). Q.E.D. 

(2.13) Proposition. I f  (x, y)E(0, cx3)2\D, then 

(x, y)eD\SD, then lim 2-"  log ~,(x,  y) exists. 
n ---~ oo 

Proof. From (2.5) and (2.6), we have 

and 

lim 3-"  log ~b.(x, y) exists. I f  
n ~ o o  

n - 1  

3-"  log ~b,(x, y) = logx + ~ 3 -k-x log{(1 + 2Rk(X, y)) 
k = 0  

+ C~k(X, y)- l (1  + Rk(X, y));} , 

n - 1  

2-"  log~b,(x, y) = logx + ~ 2 -k-1 log{(1 + Rk(X, y))2 
k = 0  

+ @k(X, y)(1 + 2Rk(X, y))}. 

(2.14) 

(2.15) 

By (2.4) and Proposit ion (2.8) we see that lira 3-"  log 45(x, y) exists, and also by 
n ~ o o  

Proposition (2.8) we see that lim 2-"  log ~b,(x, y) exists. 
n ~ c ~ 3  

Let us summarize the results in this section. 

(2.16) Theorem. (I) R(x, y ) =  lim R,(x, y) exists for (x, y)e(O, 00) 2 and is 
n ~  oo 

continuous in (x, y). 

 --'}. henOisacloseds t 
in (0, oo )2. Moreover, 
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(1) If(x,  y)s(O, ~ )Z\D, then R(x, y) > O, and lim 3- ' logq~,(x ,  y) exists and is 
n ~ c o  

positive. 

(2) I f (x ,  y)ESD r~(O, oo ) 2, then R(x, y )=  0 and lim q~,(x, y) - x/~ - 1 

(3) I f ( x ,  y)eD\OD, then R(x, y ) = 0 ,  and l im2  "logqS,(x,y) exists and is 
n ~  oo 

negative. 

3. Preliminary Results 

(3.1) Lemma. Let A a n d A , , n =  1 , 2 , . . . , b e 2  x 2matrices. Weassumethatthere 

is an invertible 2 x 2 matrix P and PAP -1 = ( Z  1 0 ] , 2 1 > 2 2 > 0 .  We 
/ ^  \ 

assume 
\o 22 / 

moreover that there is a qo:N --+ (0, oo such that I[A, - All < ~o(n), n = 1, 2 . . . .  and 

~ ~o(n) < oo. Then we have 
n = l  

ll2~('+m)(A,+,,A,+,, ~ . . A a ) -  )~m'QA, ,A, ,_I  . . . A~il 

+ 2 [  1 q)(k) .exp 2{ IlIP][ liP-liE q~(k) 
k = m + l  k = l  

(3.2) 

(: :) for any n, m > O. Here Q = P ~ P. In particular, lira 21 A , . . .  A~ exists. 
n ~  oo 

Moreover, if the elements of A, are positive for any n > 1, and/f(1,  0)Q # 0, then 

n ~ o o  n ~ o o  

Proof. First observe that 

2 1 " - I l A , . . . A l l I = < l l P [ I [ l P  111 f i  {;t~I(I[PAP 1[]+ [[P(Ak-A)P-~[I)}  
k = l  

for any n > 1. Also, observe that 

,{i n. II(Am+, . . .  Am+l) - -  A"I[ 

<=2~" ~" HP-I(PAp-1) ' -~P(Ak+, , - -  A ) P - I ( P A k + m - I P - 1 ) . . .  PAm+Ip-1)P[] 
k = l  

<=2~lllPll2JlP-I[12 ~ qo(k+m)'exp(2~lHpllJ[P-~li  ~ qg( l+m))  
k = l  / = 1  
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for any n, m __> 0. This implies that 

l l2i~"'(A,+,, . . .  A , , + , ) -  Q[[ (3,4) 

~fl~lllIpI[2'Ip-I[12( ~ (P(k))'exPQ 1 k =m+~ (~0(~))1  

+ PlPlJ IIP-~ll 

Our assertion (3.2) is an easy consequence of (3.3) and (3.4). By using (3.2), we see 

easily that lim lira NXi-"(A, �9 �9 A~) - 2 f m Q ( A m . . .  A~)I[ = 0. This proves the 

existence of lira ) .[".  A ,  . . .  A t. 
n~co 

Now assume that the elementes of A,'s are positive. By (3.4), we see 

that lira lira ] [ 2 i - " ( A , + m . . . A , , + , ) - Q I I = 0 .  Therefore, if (1 ,0 )Q+0,  then 

lira 2i-"'(1, 0 ) (A,+ , , . . .  A,,+I) + 0 for sufficiently large m. Therefore we see that 
n ---~ oo 

�9 () (0) 
A 1 > 0  or [im,~o{-",(1,0)(A,+~ "+~) 1 >0. [im I{-"-(1,0)(A~+ . . . . .  ~+~) 0 

n ~ o  n~co (,) (0) ar po  t ve woobtain,h  Since the elements of A m . . . A a  0 a n d A ~ . . . A ~  1 

last assertion. Q.E.D. 

(3.5) Proposition. (1) I f  (x, y)e(0, oo)2\D, then lira 3 - " '~x  (log~.(x,y)) and 

lim 3-" 0 n-~ oo "~yy (log q),(x, y)) exist and are positive. 

(2) I f  (x, y) e OD r~ (0, oo )2, 

.~ ~ 2 J ~y (log4'.(x, y)) 

(3) / f  (x, y)~D\aD, then ~im 2 -~'-~x(logqS.(x, y)) and 

exist and are positive. 

then lim 7 �9 (logq~,(x,y)) and 
n ~ 5  

exist and are positive. 

lira 2 -~ ~ �9 ~ ( l o g  ~(x, y)) 
n~ ':6 

Proof  Let B(x, y ) =  'G(x, y), 'G(x, y) , x, y e [ O ,  00) 2, where 'G denotes 

(q~(x, y ) )  Then we have the transposition of G: 'G(x, y) = kO(x ,  y)_" 

( 2 ( x + y ) +  3x 2 + 4xy  2 ( x + y ) + 2 x 2 ~  
B(x, Y) 2xy  + 2y 2 x 2 + 4xy  ,]" (3.6) \ 
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Note that 

' c"(~ ,  r ) , U y  . . . .  

(1) Now we assume that (x, y)e(0, ~ )Z \D .  Let 

A , = f 3 + 4 R . ( x , y ) +  24~.(x,y)-~(1 + R.(x,y)) 2 + 24~,,(x, y)-t(1 + R.(x,y))'] 

k 2R.( x, y)(1 + R.( x, y)) 1 + 4R.( x, y) ) 
and 

( 3 + 4R(x, y) 2 )  
A =  2R(x, y)(1 +R(x ,  y)) 1 + 4R(x, y) " 

Then we have B(G"(x, y)) = cP,(x, y)2A,. By Proposition (2.12)(5) and Theorem 

(2A6)(II)(1), we see that ~ ~,(x,y)  - t  < oo and ~ }R,(x, y ) -  R(x, Y)t < or. 
n - - 1  n = l  

Therefore we have 

ffA - ~ .  ff < 0o . (3.8) 
n = 0  

The eigenvalues of A are 1 +2R(x,y) and 3(1 + 2R(x, y)). Moreover, 

1 ( l + R(x, y) 1 ) for 
Q = 1 + 2R(x, y) kR(x, y)(1 + R(x, y)) R(x, y) 

this matrix A. Thus 
/ 

(1,0) Q =t= 0, Therefore by Lemma (3.1)~ we see that 

lira (3(1 + 2R(x, y))-"A,-1 .. �9 Ao exists and 
n ~ G o  

n --* o~3 

By (2.1), we have 
n - - 1  

45(x, y ) =  x' [7[ q~t(x, 5) 2 {(1 + 2Rk(x, y) )+  4~k(x, y)-1(1 + Rk(x, y))Z} . 
k = O  

Therefore again by Theorem (2.16), we see that 

n - - 1  

lim 45(x, y)-~((1 + 2R(x, y))n [I 4)k(x, y)2) exists and is positive. 
rt ~ c~O k = O  

Noting that 

3 "'~xx log q~,(x, y) = ~,(x, y)- i (1 + 2R(x, y))" 1~[ ebk(x, y)Z 
k = O  

(') x (3(1 + 2R(x, y)))-"(1,0)A,-t  . . .  A o 0 ' 

( 3 . 9 )  
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and 

{ nl } 
3-n'~yy log r y) = r y)- i  (1 + 2R(x, y))" H q~k( x, y)2 

k=0 

x (3(1 + 2R(x, y)))-n(1, O)An_l... Ao(01) , 

we have our assertion (1). 
Since the proof for the assertions (2) and (3) are similar, we only give a sketch for 

them. 
(2) Let (x, y) ~ c3D n (0, oo )2. Then we see that 

{2qJ,,(x, y) + 3r y)2 + R.(x, y)(2~b.(x, y) + 4r y)2) 
B(G'(x, Y)) \ 2~.(x, y)ZR.(x, y)(1 + R.(x, y)) 

2~.(x,y)(eb.(x, y) + 1 + R~(x, y))'~ 
(3.10) r y)2(1 + 4R.(x, y)) fl 

~ t ~ = ( , 7 - . ~ , ~  ~ 2 ) ~h~. by Pro~osition,~,0,1,t a.d ~ropos~- 
0 (3 - , , /5) /2 

t ion (2.12)(1), we see that 

IIB(G'(x, y))-  All  < oo . ( 3 , 1 1 )  
n=O 

The eigenvalues of A are obviously 7 - xf5 and ~ ~  , and Q = (~ 

matrix A. Thus we have our assertion (2) similarly. 
(3) Let (x, y) ~ D\3D. Let 

(2(1 + R.(x, y)) + eb.(x, y)(3 + 4R.(x, y)) 
A. \ 2r y)R.(x, y)(1 + Rn(X, y)) 

and 

Then B(G"(x, y))= 43.(x, y)A n 
(2.1 6) (II) (3), we see that 

~) for this 

2(1 + R.(x, y)) + 2~.(x, y)'] 
r y)(1 + 4R.(x, y)) ] ' 

(2.12)(2) and Theorem and by Proposition 

I IA . -  All < oo . 
n = O  

TheeJgenva,ues orA are2and0, and : )  By 2,, we have 

n 1 

eb.(x, y) = x. [ l  (Ok(X, y){(1 + Rk(X, y))2 + ClJk(X ' y)(1 + 2Rk(x, y))}, 
k=0 

(3.12) 

(3.13) 
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n--i t and so ~lim cl),(x, y)- ' ( ~= ~ 4)~(x, y) 

assertion (3) similarly. 

Kumiko Hattori et al. 

exists and is positive. Thus we have our 

Q.E.D. 

4. The Convergence of Laplace Transformations 

For any (x, y) e(0, oo )2, we define a probability measure v~ x' y~ in N x N by 

( 1 ( 8 ' k ( 8 ' ~  ) 
v:X,,)({(k, 1)})=4j (x, y) 1 ~ t~x) t_~y jc lJ , , (x ,y )Lx=y=o xk f  , k , l ~N .  (4.1) 

Let 9(s, t; v~, "'sl) be the moment  generating function of the probability measure 

C x, y), i.e., g(s, t; v~, x'y)) = ~v • v exp(ks + lt)v~X'Y)(dk| s, t~C. Then it is easy to 

see that 

g(s, t; v~ ~'y)) = eb,(x, y)- 1 cI) (xe s, ye') . 

(4.2) Proposition. (1)Let(x, y)E(O, oo)Z\D. Thentherearea > Oandb > Osuch 
that g(3 "s, 3-"t; v(ff 'y)) -~ exp(as + bt) as n ~ oo for any s, t~C. 

Proof Let F,(x, y)= (logeb,(x, y), R,(x, y)), x, ys(O, oo) z. Also let 

H(q,r)= 2 q + l o g ( ( l + r ) 2 + e ~  r l + e  q 1 + ~ ) )  , q e R  

and r > 0. Then we have 

F,+l(x, y) = H(F,(x, y)), n > O, x, ye(O, oo) 2 , (4,3) 

and 

Let B(q, r) = 

Fo(x, y) = (logx, Y )  . (4,4) 

tH(q , r ) ,~  r (q , r ) ) ,q~R and r > 0, where ~H denotes the 

transposition of H. 
First we prove our assertion (1). Take an element (x', y') in (0, co )2\D with 

{ x ' < x a n d y ' < y .  L e t c $ = m l n  log , log . N o t e t h a t  

B ( q , r ) = I 3 - e i q ( 1  +r)2(l)ir2 2 r + e - i ( 1  + r ) ~ - l , ] ) _  2 

Ire-q 1 + l ~ r  1 + e -q 1 + l ~ 2 r J ]  (4.5) 

2(l  + e q(l + r))(1 + 2 r  + e-~(1 + r )2 )  - 1 

I+e-q l + l ~ S r / /  - e -"  r 2 \  +e-" 1 
-2  
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f o ranys ,  t e [ - & l ] a n d n ,  m > O .  Here, Q(r) = (10 

can conclude that 

Letter,=(3 ~ 1 . Then, 

O =- A(R(xe ~, yet)) - B(F,,(xe s, yet)) 

= (q)n-l( 1 + R,,)2S,, 
l k - -  ( D ; 1 R n ( 1  @ R n ) 2 ( 1  q.- 2R,,)$2, 

4(R. -- R)(1 + 2R)-1S.  + 2~b21(1 + R,,)(R,, - 2R)(1 + 2R)-1S,,~ 
q~[l((1 + R,,)Zs,, + 2R~(1 + R,,)S2.) / 

where, ~b. = cb,,(xe s, yet), R,, = R,,(xe ~, yet), R = R(xe ~, yet), and S. = (1 + 2R. + 
cb.-l(1 + Rn)2) -1. Therefore, by Theorem (2.16), we see that there is a constant  
C' < oo such that 

2 2 

IlOll =< ~ ~ IDi.il < C'(cb,,(xeS, ye') -1 + IR, , (xe~,Y#)-  R(xe~,ye')]), 
i = l j = l  

for any s, t e l  - b, 1] and n >__ 0. Since qS(x, y) is increasing in x and y, we see by 
Proposi t ion (2.12)(5) that  there is a constant  C < ~ such that 

IlA(R(xe ~, yet)) - B(F~(xe s, ye'))[I =< C ~ q~k(x', y , ) - i  (4.6) 
k = n  

for any s, t e  [ - c5, I] and n > 0. Note  that eigenvalues of A(r) are 3 and 1, and that  

c~ yet)) ( ~ t F . +  1 (xeS, ye~),~'F,+l(xe~, 

( , ~ )  4,t = B(F"(xe~' Yet)) " " " B(F~ Yet)) - exp(t - s)y/x exp(t - s)y/x 

Therefore by Lemma (3.1), we see that there is a C' < oo such that 

c9 'F,+,,(xe ~, yet)) 3 ~"+m)(~s'F,+,,(xe',ye'),~t 

,n ~ , /c~. ' c~ 'Fm(xeS, ye'))  C'k=m+l,=k ~ ~ ' : b l ( x ' ' y ' ) - I  - -3 -  Q(R(xe ,  ye ))k~s tF,,(xe~, ye ), ~ < 

(4.8) 

(1 + 2r) 1~. F rom (4.8), we 
0 / 

sup sup {[log 4',,(xe', ye t) - log q~,(x, y) l; s, t ~ [ - c" 3 ", c- 3 "] } < oo (4.9) 
n 

for any c > 0. 
Also, noting (0, l)Q(r) = 0, we see that 

l im3-" log ( sup{ IR , (xe  s,ye t ) - R , , ( x ,  Y)I; s, t e [ - c . 3  " , c - 3 - " ] } ) < 0 .  (4.10) 
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Therefore we see that 

sup sup {l(b.(x, y) -  ~eb,(xe 3-' ' ,  ye ~ -"')[ ; 
n 

and 

s, t e [ - - c , c ] }  < o~ , (4.11) 

s u p s u p { l q g , ( x , y ) - l O , ( x e  3-% , ye3-"')l ; s , t ~ [ - c , c ] }  < oo (4.t2) 
n 

for any c > 0. 
q),(x, y ) -  1 q~ (xe 3 "s, ye 3 ",) and 49,(x, y ) -  10 , ( xe  3 "s, ye 3 "~) are entire functions 
in C ~ and the coefficients of  their Taylor 's  expansion at (0, 0) are nonnegative. Thus 
{4~.(x, y)-~ q~.(xe a-"s, ye 3-",)},~= 1 and {q~.(x, y)-~ O.(xe  3-"s ye 3 ",)}~: ~ are nor- 
mal families~ Therefore  (4.10) implies that R.(xe 3 %,ye 3-nt) ~ R(x, y), n-+ co, 
uniformly on some ne ighborhood of (0. 0) in C 2. 

[ Let log(4~.(x, y)-  l ~.(xea-%, yea-"~)) = a~'i)iskt 1 and R.(xe3-%, ye 3-"~) 
k , l = O  

= ~ b~)~skt ~. Then we already saw that b~)o ~ R ( x ,  y) and b ~ ) ~ 0  unless 
k , l = 0  

(k, l) = (0, 0). Also, we see that a(0"!0 = 0. By Proposi t ion (3.5), we see that there are 
a~,o > 0 and ao,~ > 0 such that a]')o ~ a ~ , 0  and a~.)l --*ao, a. 

By (2.5), we have 

Y', a~,~lskt  ~ 3-(k+t-lla~)lSQ l + log 1 + 2 3-k 1I.(,,)~k.l ~-  , Uk, [.~ L 

k , t = O  k , l = O  k , l = O  

+ 4 ) . ( x , y )  ' exp  ~ ..k.~o ~7" 1 + Z 3 ~.k,,o ~7 
k , / = O  k , l = O  

- log(q),+ ~(x, y) 'q),(x,  y ) - 3 ) .  (4.13) 

Expanding the right hand side of (4.1 3) by s and t, and comparing the Skt ~ terms of 
both sides, we find that there are polynomials Pk, ~, q(bk' ~' ), k, l > O, k + l > 2, q > 1, 
in bk, l,, 0 --< k' _< k, 0 _< l' _</,and Pk,* . . . .  q (ak ' , l ' ,  bk,,t,), k, l >  O,m, q > l , k  + l >  2, 
in a t .  ~, and bk,, ~,, 0 < k' <= k, 0 <_ l' <_ l such that 

k, = ,*~,, + Pk, l,o(b~',c) 
q = l  

k + l h (n )  "~ ~ 
~ k ,  l, m, q~,~k' ,  l '  

m = l  

x {1 + 2R.(x,  y ) +  qo.(x, y)-a(1 + R.(x,  y))2}-q ,  

for k, l  >= 0 with k + 1>  2. 
Since {a~")~}2=1 is bounded for any k, 1>  0, (4.14)implies that a(~ ), --*0 as n - ,  0% 
for k + I=> 2. This proves that 4 , (xe  3- '*,ye 3-"')/cI, (x, y) converges to 
exp (a l, o S + ao, a t) uniformly on compacts in (s, t )e  C 2. This completes lhe proof  of 
the assertion (1). 

Since the proof  of the assertion (2) is similar, we give a sketch of the proof  
only. Take an element (x' ,y ')  in D\c~D with x '  > x  and y' > y .  Let 
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6 = min log , log . Then we have in this case 

2r))- 1 
B(q, r)= 2 i eq( l  + 2r)((l + r)2 i eq(1;2 "] "~-2 

- -  eqq - 1 + 
r e  q 1 + 1 + 2r 1 - ~ r J  ] 

2((1 + r) + eq)((1 + r) 2 + eq(1 + 2r)) -z 

( Q r2 ~-1__ 2 r 2 ( l + r ) / ' ( ( 1  + _ _ _  +l~r j / I r2  ~ - 2  (4.15) 
e q e q+ 1 + ~ ) )  - e  q 27~leq+ 1 

Let A(r' = ( a  20). Then, since eb,(x,y) isincreasinginx and y, by Proposition 

(2.12)(1) and Theorem (2.16) we see that there is a constant  C < oc such that 

[[A(R(xd, ye')) - B(F, (xd, yd))[I < C ~,(x' ,  y') + (4.16) 

for any s, t e [ - 6, 6] and n > 0. The eigenvalues of A (r) are 2 and 0. Therefore, 
similarly to the proof  of the assertion (1), we see that 

{ q~, (x, y)- 10b,(xe 2 -% 2 -~tx, ao ,ye )~',=1 and {q),(x,y)-lO,(xeZ-"',yeZ-"t)}2= 1 

are normal  families, and moreover,  qS (x, y)- 10,(xe 2-"s, ye 2 -",) _+ O, n --+ oo, uni- 
formly on compacts  in (s, t)eC 2. By using (2.6), we obtain the assertion (2) 
similarly. Q.E.D. 

(4.17) Proposition. Let (x, y)eODc~(O, 00) 2. Then there is an entire function 
q0 : C 2 --+ C such that 

q>, (x"  exp ( ( 7 - ~ - ~ ) - "  s ) ,  y'exp((722"//5)-"t)))--+qo(s, t) ,  

uniformly in {(s, t )eC2;  Isl ~ R, Itl ~ R} for all R > O, and 

~o((7 2 x f 5 ) s  , (7 --~x/5)t) = ~o(s, t)3 + ~o(s, t)2 

for an), (s, t)~ C 2. 
0 0 

Moreover, ~s (p(O, O) > 0 and ~Tcp(O, O) > O. 

Proof. We prove this assertion in two steps. 

Step 1. Let 2 = - - . 7  - x /5  We will show that there is a 6 > 0 such that 
2 

n - -+  cK) , 

(4.18) 

(4.19) 

supq~,((1 + 2 "6)x, (1 + 2 - ' 6 ) y )  < I . (4.20) 
n 
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Let  u = , 0  . T h e n  G(u) = u and  ~x ~G(u) , ~y 

(3 - v / 5 ) / 2  " By (2.11) and  P ropos i t i o n  (2.12)(1), we see that  

there is a cons t an t  C < oo such tha t  

l u - G " ( x ,  y ) ] < C  , n > 0 .  (4.21) 

Let ( ;(v) = G(u + v ) -  u, yEN 2, and  v, = G ' ( (x ,  y ) - -  u) = G"(x, y) - u, n > O. 
Here  G" and  G" are the n-fold c o m p o s i t i o n  of G and  G, respectively, and  
G~ y) = (x, y), and  G ~ y) - u) = (x, y) - u. T h e n  we see by (4.21) tha t  

Iv, I _-< C n > 0 .  (4.22) 

By the mean-va lue  theorem,  we have 

I ~ ( v .  + z) - v .+~ l  = I 6 ( u  + v.  + z) - 6 ( u  + v~ 

< 2(1 + C'([v,1 + Izj))lz] (4.23) 

for any  n > 1 and  z s ~:~2 with ]z] < 1. 

Take  a posit ive n u m b e r  a > 0 such that  

- f i  (1 + C'2 -k) < l. T h e n  by (4.23) and  induct ion,  we see that  
k = O  k - i  k - 1  

IGk(vo + z) -- vkl < 2klzl �9 1-[ (1 + C'[vtl)" l-[ (1 + C',;L (,-zl) (4.24) 
/ = 0  / = 0  

< ;?lzl /a,  

for k ~ 7 / a n d  z E R  z with 0 _< k < n and  Izt < a .2-" .  In fact, we have 

18k+1( / )0  q- Z) - -  Vk+ll ~ 2 ' (1  "q- C'lvkl)(1 + C'l(,~(Vo + z) - vkl)lGk(vo + z) -- vkl 

< 2.(1 + C'[vk[)(1 + C'2- ( " -~ ) ldk (v  o + z) -- v,I .  
Since 

G"((x, y) + z) = (4),((x, y) + z) , O,((x, y) + z)) 

= u + v,, + ( ( ; " ( V o  + z)  - v . ) ,  

and  lul < 1, (4.22) and  (4.24) imply our  assertion. 
Step 2. By (4.20), we see that  there is a 6 > 0 such that  

s u p O , ( x e  ~-~ ye ~ ~)  < 1 
n 

T h e n  we see that  there exists a posit ive cons tan t  
ebk(xe ~ "~, ye;-"a) < C o, 0 _< k _< n - 1. Thus  by 

R,(xe ~"~ ,  ye;.-"~)< C~o(Y). 

a .  ~ (1 + C'jVkl ) 
k = O  

(4.25) 

C o < l  such that  
(2.3), we have 

This implies tha t  lira O,(xe a-"~, ye ~ "~) = O. 
n ~ o o  
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T h e r e f o r e  we see t ha t  

l im s u p { l O , ( x e  ~ "S, ye;" "7)1 ; s , t ~ C  , Is l ,  Itl =<3} = 0 .  (4.26) 
n~oo 

Also, (4.25) impl ies  tha t  ; '- "s { ~ . ( x e  , ~ - . t , ~  ye ~),=o is a n o r m a l  fami ly  of  h o l o m o r p h i c  
func t ions  in {(s, t ) e C 2 ;  Isl, Itl < 3}. 

Let  eb,(xe ;~ "~,ye a n~)= ~ a(k,)tskt~ and  O,(xeZ-"~ , yea -~ ' )=  ~ b(k",)lskt l. 
k , I = O  k , I = O  

T h e n  "(~). , n ~ co. By Ok,, --* O, n --* co, for  all k a n d  I. I t  is obv i ous  tha t  a~)o --* 1 
2 

P r o p o s i t i o n  (3.5)(3), we see tha t  there  are  a~,o > 0 and  a o , ~ >  0 such tha t  
a~,)o ~ al ,  o a n d  a~, i ~ ao. 1, n ~ co. By (1.2), we have  

~(n+ 1 )ok f l  " k , l  ~ ~ = )~-(k+l)(a~n)l + b~) l )  s k t l  
k , l=O k , l=O 

+ 2-(k+l)a(kn , )sk l l  ,~-(k+l)E~(n)lt, k, l "~ oh(n)  ] sk  t l 
"~Uk, 1 ] 

k , l = O  k , l=O 

(4.27) 

There fore ,  we see tha t  there  are  p o l y n o m i a l s  Pk, l(ak', r,  bk,, r ' ) ,  k, 1 > 0, k + l > 2, in 
ak,. ~,'S and  be,, r"s,  0 < k', k" <= k, 0 < l', l" < l, 0 < k' + l' < k + l, such tha t  

l'la(n)2 d~,(n) I . ( . ) ~ . ( . )  p l.(~) b~! , r . )  a~'.'~ 1) = 2-(k+Z)(2(a~0",~o + b~,)o) + w o,o + - , -o ,o"0,  oJJ-k,,  + k. lV"k',,', 
(4.28) 

for  a n y n > 0 a n d k ,  l > 0 w i t h k + l > 2 .  
N o t e  tha t  2-(k+'J(2(a~)o + b~]~o) + (3a~lo + 4a~}ob~o)  ) --. 2 -(k+' ~) as n ~ 0o. 

So by  i nduc t ion  we see tha t  there  are  ak,~'S such tha t  -(") ~k, 1 -*  ak, t as n --* oo and  

~ - ( k  + l - 1 )  r, ak, l . . . .  k, ~ + Pk, l(ak',/', 0) (4.29) 

for  k, l > 0 wi th  k + l > 2. The re fo re  we see tha t  there  is a h o l o m o r p h i c  func t ion  
~o:f2 ~ G, f2 = {(s, t ) ~ C 2 ;  1st, It[ < 3}, such tha t  

�9 , (xe  ~-"s, ye ~-"t) ~ qo(s, t) , (4.30) 
and  

O, (xe  ~-"~, ye ~-~') ~ 0 ,  (4.31) 

as n --, oe, u n i f o r m l y  in {(s, t )~ C2 ;  [st, Itl < ~/2}, and  

q)(S, t )  ~-- qO(/~-18,  A-i t )3  + p(,)o-iS, )L- 1"/) 2 (4.32) 

for  a n y  (s, t ) ~ C  2 with  1st, ltl < c~/2. 
F o r  a n y  R > 0, t ake  an  m e  N such tha t  2 - m R  < 3/2. T h e n  we see tha t  

~t-(n+m)S cb,,+,,,(xe , ye.~ '"*'~t) = cb,,,(cb,,(xe:~ ".~-"~, ye.~-,;~-~), 

O,,(xe ;~-''~-~s , ye'~-"'~-"*)) --* qG(~p(2-"s ,  2 -~ t ) ,  0 ) ,  n --* co , (4.33) 

un i fo rmly  in {(s, t ) ~ C 2 ;  ]sl, Itl < R}. This  a lso  shows  tha t  ~o can  be ex tended  to an  
ent i re  func t ion  in C a which  satisfies (4.32) for  all (s, t ) ~ C  2. This  c o m p l e t e s  the 
proof .  
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Setting g(s, t) = ~o(s, t), we have the following assertion. 

an entire (4.34) Corollary. Let (x, y) EOD c~(0, ~ ) 2 .  Then there is 
g: C 2 -~ C such that 

7 -  . vT, ~ 7 -"s t ,  g(s,t), n--, 0% 
g ' 2 ] 

uniformly in {(s, t)eC2; Isl, Itl < R} for all R > 0, and 

g ( ( 7  ~ _ ~ ) s ,  (7 2 , , f 5 ) t ) .  3 -  x~-g(s,t)3 ~ - t  
2 + 2 g(s, t) 

for any (s, t)e C 2. 

Moreover, ~s g(0, 0) > 0 and g(0, 0) > 0. 

function 

(4.35) 

(4.36) 

5. Critical Exponents 

L e t 2 -  x / 5 - 1  a n d 2 - - -  

and 

3 
"~ , and let 

2 

fo(X, y) = lim 3-" log r y), (x, y)6(0, oo ) 2 \ D  , (5.1) 

f l(x,  y) = lim 2-" log qJ,(x, y), (x, y)eD . (5.2) 

(5.3) Proposition. (1)fo(q~n(X,y), On(X, y))=3"fo(x ,y  ) for any n >  l and 
(x, y)~(O, oo )2\D. 

(2) fl(4~n(x; y), O~(x, y)) = 2"fx(x , y)for any n >-_ 1 and (x, y)ED. 

(3) fo(x,y) = logx + ~ 3-k- ' log{(1 + 2Rk(x, y)) + 4~k(x, y) '(1 + R~(x, y))2} 
k=O 

for any (x, y)~(O, ~ )2\D. In particular, 

l o g x < f o ( x , y ) < l o g x + l o g { ( 1  + ( 1 ) ) ( 1  + Y) )} ,  (x,y)~(0, oo)2\D.  

(4) f l (x ,  y) = logx + ~ 2-k-l log{(1 + Rk(x, y))2 + 4~k(x, y)(1 + 2Rk(x, y))} 
k=0 

for any (x, y)e D. In particular, 

! o g x = < f t ( x , y ) < l o g x + l o g  1 + , (x,y) e D .  

Proof. (1) and (2) are obtained easily from the definitions, (5.1), and (5.2). The 
equality in (3) is obtained by the iterated use of (2.5). 
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To prove the inequality in (3), let us first show that 4~,+1(x, y) > ,b,(x, y), for 
( x , y ) e D  c and n > 0 .  Assume, for some n and some (x ,y )ED c, that  
~b,+l(x, y) < q~,(x, y). Then from (2.4) and Lemma (2.7), we have 

4~,(x, y) < {4(1 + 2R,(x, y)) + (1 + R,(x,  y)),}~/2 _ (1 + R,(x,  y))2 

2(1 + R,(x,  y)) 

< {4(1 + 2R,+l(x ,  y)) + (1 + R,+ l(X, y))4},/2 _ (1 + R,+~(x, y))2 

2(1 + en . l (X , y ) )  

Again by Lemma (2.7), this implies that ~b,+z(x, y) _-< ~b,+l(X, y), which indicates 
that  q~, is decreasing with respect to n, which contradicts the statement of 
Proposi t ion (2.13). Using the monotonic i ty  of R~(x, y) and ebk(x, y), we have 

l + 2Rk(X,y ) + q~k(X,y)-l(1 + R~(x,y)) 2 ~ (1 + 4~o(X, y)-~)(1 + Ro(x,y)) 2 

From this, we obtain the inequality. (4) is obtained similarly. Q.E.D. 

(5.4) Lemma.  Let g(x) = x 3 + x 2, x > O, and let 2, = g "(1), where g-"  is the 
n-fold composition of - 1 -,, g , t he inversemapofca .  Then 2<=2 ,<=2+2  , n > O .  In 

particular, C O = f i  ((1 + 2 , -1 ) -~ . s  "-1) < oo. 
n = 0  

Proof Since g: [0, oo ) --+ [0, oo ) is a cont inuous strictly increasing function and 
g(2) = 2, we see that 2, > 2. Note  that g'(x) = 3x 2 + 2X ~ 322 + 22 > 2, X > 2. 
Thus we see that 

2 . - 2 = g ( 2 , + 1 ) - 9 ( 2 ) > 2 ( 2 , + 1 - 2 ) ,  n > 0 .  

Therefore we have 2, - 2 < 2-"(1 - 2), n > 0. Since 7. = (1 + 2-1)  -1, this implies 
that C o < oo. Q.E.D. 

Let N(x ,y )  = min{n > 0; q~,(x,y) > 1}, (x, y)e(0,  oo)2\D. Then we have the 
following. 

(5.5) Proposition. For any (x, y)e(O, oo )2\D with x < I and n < N(x,  y ) -  1, 
/ X 

~).(X, , ) ' ~ q - 2  -N(x ' y )+n+l  and R.(x, y)~f~n'CoQY ). 
Proof Since q~u(x,y)-L(x,Y)< 1 and cb,+t(x ,y)> g(eb,(x, y)) by (2.1), we have 
ebN~,yj- l_ , , (x ,y)<2m, m < = N ( x , y ) - - l .  Also by (2.3), we have R , ( x , y )  

< ]1 (1 + q~k(X, y ) - l )  1 X . These and Lemma (5.4) imply our 
k = 0  

assertion. Q.E.D. 

(5.6) Proposition. For any (x, y)e(O, ov)2\D with x < 1, 

- N(x,  y)log 3 + (log log 12 - 2 log 3) < logfo(X , y) 
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Proof. Let m =  N ( x , y ) + 2 .  Then by (2.l), we have c b , , ( x , y ) >  12. Thus 
by Proposit ion (5.3), we have log 12 <fo(Cbm(x, y ) ,O , , ( x ,  y)) and so 
log log 12 < logfo(X, y) + (N(x ,  y) + 2)log 3. 

Now let m = N ( x ,  y) - 1. Then 4~m(x, y) < 1. Thus by Propositions (5.3) and 
(5.5), we have 

l o g f o ( x , y ) + ( N ( x , y ) - l ) . l o g 3 < = l o g l o g  2 1 + [  N(x''l-~ o x " 

These prove our assertion. 

(5.7) Proposition. Let  (x, y) e ~?D m (0, oo )2. Then we have 

sup {[N(x" e", y" e ~) + log (u + v ) / log  a ] ; (u, v) e [0, 1] 2 \ {(0, 0)} } < oo . 

7 -  .,/g 
Here  ~ - - -  

2 

Proof. Since q0(0,0) ~ / 5 - 1  3 ~ 0 0, - - - 2  < 4 '  ~ o ( 0 , 0 ) > 0  and ~ 0 (  0 ) > 0 ,  we see by 

using (4.19) that there is an ee(0, 1) such that ~o(e-1, 0 ) >  2, ~0(0, ~ -~) > 2 and 
~p(e, e) < 3. By Proposit ion (4.17), we see that cb,(xe ~-~,  ye  ~ "') ~ cp(s, t), n ~ oo, 
uniformly in (s, t)E [0, g-112. Then, there is an N e N such that 

,p,(x. e y) > 2 ,  (5.8) 

~b,(x, y '  e ~-"~- ') > 2 ,  (5.9) 
and 

3 
cI),(xe ~ "~, ye  ~-"~) < -~ (5.10) 

for any n > N. 
Let (u, v)e [0, c~-ue]z\{(0, 0)} and let m = - log(max{u, v})/logT. Then we see 

that 

c I ) ( x . e  ", y . e  v) > min{~b,(x-e ~-"'- ~, y), cl)(x, y . e  ~ ,,e- L)} > 2 (5.11) 

i fm < n + loge/ log co, and 

3 
q~,(x.e" , y ' e  v) < eb , (x . e  ~-"~ , y ' e  ~ "~) < ~ (5.12) 

if m > n - loge/log cc 

Therefore we have 

] N ( x . e "  , y ' e  v) - ml < [loge/log~] . (5.13) 

Since �89 + v) < max{u, v} < u + v, this proves our assertion. 

(5.14) Corollary. Le t  (x, y)ec?Dc~(O, oo) z. Then we have 

{ l o g  log3 l og (u+  v ) l ; (u , v )e[O,  112\{(0,0)}}< oo. sup fo (x. e", y- e v) - log c~ 
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(5.15) Proposition. Let (x, y) 6 8D c~ (0, 0o )2. Then we have 

{ log/3 v); } 
sup l o g R ( x ' e " , y ' e ~ ) - l ~ g  ~ log(u + (u,v)e[0,  112\{(0,0)} < oo . 

p - + 3 

2 

Proof. Since 4)N(~, y,)(x', y') > 1, we have by (2.2) 4)N(x, y,l+,(x', y') > 2", n > O. 
Therefore from Proposition (2.12), we have 

R(xeU, ye~)- ~ RNtxeu y,~) (xe", ye ~) <= exp[2{1 + ( x - l y e  ~ u)}2/{1 + 2(x-  ~ ye~-")} ] . 
(5.16) 

Similarly to the proof of (2.11), we have 

4~.(xe ~, ye ~ ) 

_> {4(1 + 2R.(xe", ye~)) + (1 + R.(xe", ye~)4} I/2 - (1 + R.(xe", ye~)) 2 
(5.17) 

- 2(1 + 2R,(xe u, ye~)) 

By Proposition (5.5), we have ~. (xe" ,  ye  v) <= )~ + 2 -N(xe~'ye~)+n+ l 
/ \ 

R , ( x e " , y e ~ ) < ) 7 " C o ( Y ) d  - ' ,  n <  N(xe  " , y e ~ ) - l .  Therefore, noting 

/ 3 = 2  1 = 2 - 1 + 1 ,  we have 

f } sup t45,(xe~,ye~) -1 - ( / 3 -  l ) l ;u ,v~[0 ,  1] < oo . 
k k=O 

Now observe that 

m-1 ( _ _ ~ 0  ( 1 R~k(xe"'ye-~'2~+ 2Rk(Xe., ye~)] ] �9 log/3 = k ~ l o g  l+cI)k(xe u,ye~) -~ 1 +  - - m  

and 

that 

(5.18) 

Note also that [log0 + a) - log(1 + b)[ < [a - b[, a, b > 0. Since we have 

1 + q~,(xe" ,yeV) -1 1 + 1 + 2 - ~ , ( x ~ , y e " ) ] )  - 

< le,(xe",yeV) -1 - ( B  1)l'(1 + R.(xeU, ye~) 2) + (/3 1).R,(xe",ye ~) 

for n <= N(xe", ye ~) - 1, we can conclude that 

sup{llogRm~e,,ev)(xe", ye v) + N(xe", ye~)log/31; (u, v)e[0, 112\{(0, 0)}} < oo . 

Combining this with Proposit ion (5.7), we obtain our assertion. Q.E.D. 
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Now let N ( u , v ) = N x y ( u , v ) = m i n { n > O ;  @n(xe-",ye-V)<=2}, (x,y) 

E c?D c~ (0, oo )2 (u, v) e [0, 1og2)2\{(0, 0)}. Then similarly to Proposition (5.5), we 
obtain the following. 

7-,/? 
(5.19) Proposition. Let ~ - . Then 

2 

sup {IN (u, v) + log (u + v)/log c~l; (u, v)~ [0, ~]z \{(0, 0)}} < oo 

By Proposition (5.3), combined with Propositions (2.12) and (5.19), we have 

(5.20) Proposition. There are constants C i and C a such that 

- ~7 (u, v) log 2 + C i _<_ log { - f i  (xe-", ye-V)} __< _ ~7 (u, v)log 2 + C a 

for any (u, v)e [0, el2\{(0, 0)}. 

(5.21) Corollary. Let (x, y)edDc~(O, oo) z. Then we have 

{ log2 l o g ( u + v ) ;  (u,v)e[0, 112\{(0,0)}}< o0. sup log{ - - f l (xe-%ye-V)}  -- logc~ 

6. Proofs of Theorems in Introduction and Remarks 

It is obvious that 

and 
Z,(fl) = 4' .(e-e,e 2~), t i e R ,  (6.1) 

exp(sL(w))#,(fl)(dw)= @,(e ~eS, e-Z#eZS), s e C .  (6.2) 
m{,,) 

Then Theorem (0.1) follows from Proposition (2.10) and Theorem (2.16). Theorem 
(0.2) follows from Corollaries (5.14) and (5.21). Also, Theorem (0.3) follows from 
Propositions (4.2), (4.17) and Corollary (4.34). Thus we proved all theorems in 
Introduction. 

We can obtain a rough shape of the domain D by numerical calculations by 
using the following. 

(6.3) Lemma. Let (x, y)e(0, oo )2. 

(1) I f  there exists n > 0 such that cb,(x, y) > - - ,  ~ - 1 then (x, y)e(0, oo )2\D. 
- 2 

(2) l f  there exists n > 0 such that q),+i(x, y) < eb,(x, y), then (x, y )~D\SO.  

Proof. (1) is a direct consequence of the definition of D. As in the proof of 
Proposition (2.8), we have 4~,+1(x, y) = 9(~b,(x, y); 1 + 2R,(x, y), (1 + R,(x, y))2). 
From (2.4) and Lemma (2.7) we obtain (2). Q.E.D. 

In Fig. 3 we give a shape of D numerically obtained using the above criterion. 
Next, we let _R,(fi) = R,(e -~, e-Z~). We list up some properties of/~,(fl). 
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Y 

! 

I 

o I X 
2 

Fig. 3 

(6.4) Proposition. (1) /~(fl) = lira /~n(fi), fl E ~, exists and is continuous in ft. 
n ~  oo 

(2) f ( / ~ )  = o , / f / ~  > Pc, and R (p) > o, if ~ < L.  
(3) R (fl) is decreasing with respect to ft. 

l og~  
(4) sup Ilog/~(/?) - ~ log(t i  c - fl)l < oo where 2 - 7 - x / 5  and  

f i~>f l~  /3 c 1 ' 2 ' 

7~_ 3 + , f  ~ 
2 

0.1 

Fig. 4 

Proof The assert ions (1) and  (2) fol low f rom Propos i t ion  (2.12) and  Theorem 
(2.16). By (2.3), we have 

en+l(x,y)-i  =e n (x , y )1  q-cDn(x,y ) l '(en(x , y)-i q-(en(x,y ) 1 q - 2 ) - 1 ) .  
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Since the function f :  [0, or -+ [0, m ) given by f ( t )  = t + (t + 2) 1 is increasing 
and q~n(e - ' ,  e 2~) is decreasing in fi, we see by induction that R, (e  ~, e-2/~)  -1  is 
increasing in ft. This implies the assertion (3). (4) comes from Proposition 
(5.15). Q.E.D. 

Proposit ion (6.2)(4) implies, in terms of statistical mechanics, that the critical 

logT< 1.108877 In conventional notation, exponent of /~(fi) is P - = l o g ) ~ -  " " "  

/~(/3) ~ (tic - fl)o,/3 ]" tic. We give a figure of/~'(/3), obtained numerically, in Fig. 4. 
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