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Summary. A mean field limit of the contact process is obtained as the range 
M approaches ~ .  Fluctuations about  the deterministic limit are identified as a 
Generalized Ornstein Uhlenbeck process. 

1. Introduction 

The interacting particle system which we are considering is the contact process 

large range. This process is a subset of M Z, where Z is the integer lattice, and with 

M is a large number. Given an initial configuration of occupied sites (particles), the 
system evolves according to the following rules: (i) particles die at rate one, (ii) a 
living particle at site x attempts to give birth to another particle at rate 4, and sends 
the new particle to a site chosen uniformly from sites located in Ix - 1, x + 1], (iii) 
if the chosen site is already occupied, the birth is suppressed, or, alternatively, the 
two particles coalesce into one. We will denote the set of occupied sites at time t by 
~ ,  where p indicates the distribution of the initial configuration. As M increases, 
the number of sites from which a single particle can choose to place an offspring 
increases---consequently, we call this the contact process with large range. A more 
detailed construction of this process and related processes will be provided later. 

Define: uM( t, x) = P(x  ~ M ~ut), where we will now always take the distribution of  
the initial configuration # to be the product measure P(x  e Mr = uM(0, x). It should 

1 
be remarked that, while uM is presently defined only for x e ~ Z, when the context 

of a statement requires a definition over the entire real line, we will take uM(t, r) 
l 

= uM(t, x)  where x is the rightmost point in the lattice ~ Z which is less than r. 

The mean field limit is stated in Theorem 2 and the Corollary. Many authors have 
established deterministic limits for interacting particle systems. In [DFL] ,  for 
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example, a reaction-diffusion limit is obtained for a system with rapid exclusion 
and slow Ising spin flips. There the nontrivial interaction is the Ising interaction, 
and the rapid exclusion is the device by which desired asymptotic independences 
are established. In this work, the interaction is of a completely different kind: the 
interference due to the restriction of at most one particle per site, as is the vehicle by 
which independence is established: the divergence of the range of interaction. 

Theorem 1. Consider the contact process with 2 and T fixed. I f  UM(O, X)--~ u(O, X) 
uniformly on compact sets, where u(O, x) is continuous with bounded derivative, then 

uM(t ,x)-*u(t ,x  ) forall  t e [0 ,  T]  and x e R  (1.1) 

where the function u( t, x) satisfies: 

x+ 1 dy 
t?u(t, x) _ u(t, x) + )~(1 - u(t, x)) ~ u(t, y ) - - .  (1.2) 

8t ~-1 2 

Theorem 1 is a statement about the convergence of occupation probabilities as 
M ~ o0. The following results embody the desired limit in the sense that random 
elements of the spaces D([0, T], R) and D([0, T],  S'(R)) converge to deterministic 
limits. Here S(R) is the space of Schwartz functions and S'(R) is its topological 
dual. In what follows, we will write M~Ut(X ) = 1 when x ~ U ~ ,  and u~U~(x)= 0 
otherwise. 

Theorem 2. For a given continuous function (a such that SUpx]xZ~(x)] < oQ, consider 

r ~Ut (x ) as an element of D( [ O, T], R ). Then XU(r ~ X(q~), 
1 

x~-Z 
where, 

+ a o  

x(49)= I r 
- o o  

Theorem 2 essentially states that as the range becomes large, the randomness 
associated with the values of M~,(X) which appear in X~(qS) disappears as in the 
weak law of large numbers. This is due to the fact (which will be proven), that as 
M - ,  oo the occupation events of two different sites become uncorrelated. Results 
given in [Mi l ]  relating tightness in D([0, T],  R) to tightness in D([0, T], S'(R)) 
imply the following 

1 
Corollary to Theorem 2. Consider X ~ ( r  ~ r where CeS(R).  

xe~-Z 
Viewing X M as an element olD([O, T], S'(R)), X M ~ X, where, 

x(r  I r 
- o o  

The next result is a central limit theorem complementing the weak law results of 
Theorem 2 and its Corollary. As in the previous result, we restrict ourselves to the 
space S(R). The following theorem identifies the fluctuations about the determin- 
istic limit. The statement of the theorem involves a Generalized Ornstein Uhlen- 
beck (GOU) process -a  random element Nt of C([0, T],S ' (R))  with law P 
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characterized by two operators At(~p) and Bt(49) which satisfy appropriate condi- 
tions (see Appendix) including the condition that: 

1 
f(Nt(q~)) - i N,(Au49)f'(Nud?)du - i ~ I[B.~)1lZf"(N.(a)du 

0 0 

is a P-martingale for a l l f s  C~ ~ (R), the space of infinitely differentiable functions of 
compact support. 

Theorem 3. Suppose that u(O, x) ~ S( R ). Consider 

1 
r ~ ( ~ )  - v / ~  x ~ z  ~(x)(Mr - uM(t, x)) 

as an element of D([O, T], S'(R)), and denote its law by P~t. Let P be the law of the 
G O U  process prescribed by: 

A,(4,) = ,Z4~ * ~ - 4~ - 24~X,(r-x) - ,~X,(4~'(fi)-x) (1.3) 
and 

IIBt(~)l[ 2 = X t { 2 ~  2 .13 + ~2 _ ,~X, (r  (1.4) 
where 

/~(x) - �89 l~l~l_< 1 ~ 

f -x(Y)  = f ( Y  ~ x) 

f* f l (x)  = ~ f ( y ) ~ ( y - -  x ) d y ,  

and Xt(ffg) is the deterministic process defined in Theorem 2. 
Then P~t=~ P. 

All of the results above are stated for the contact process in which offspring are 
placed uniformly over the sites within one unit of the parent particle. In fact, the 
proofs of Theorems 1 and 2 generalize to any offspring distribution which is 
piecewise continuous with bounded derivative, and we believe that Theorem 3 is 
also valid in this situation. 

The paper is organized in the following manner. In Sect. 2 we will describe the 
contact process and couplings to other related processes which will be used in the 
proofs of the results. Section 3 will contain the proofs of Theorems 1 and 2, and the 
proof of Theorem 3 is given in Sect. 4. The Appendix contains a brief discussion of 
tightness criteria and Generalized Ornstein-Uhlenbeck processes. 

2. Some Important Lemmas 

We begin this section with a detailed construction of the contact process (CP). In 
the course of this construction, several related branching random walks (BRWs) 
will also be described. These related processes are used extensively in the proofs of 
the Theorems. 

The first task involved in constructing the desired processes is to prescribe a 
means of identifying particles. Particles living at time t = 0 are considered to be the 
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first generation, and are identified by distinct integers which we denote by il, the 
subscript indicating the generation. A particle in the n th generation is denoted by a 
sequence of positive integers ( i l , . . . ,  i,), where i, = 3, for example, implies that the 
designated particle is chronologically the third offspring of the particle designated 
by (i 1 . . . .  , i,_ t )- 

We will now construct a branching random walk on R with birth rate 2 and 
death rate 1. To each possible particle x, identified by some n-vector, we assign a 
Poisson process T(x) at rate 2, and an exponential random variable D(x) with 
parameter  1. The T processes indicate when particles give birth to new particles, 
and the D random variables indicate when living particles die. If a particle located 
at x ~ R gives birth to another paticle, the offspring is placed at a location y selected 
uniformly from the interval Ix - 1, x + 1 ]. We designate this process starting with 
a single particle at x by: Z~. 

Minor modifications of the procedure specified in the preceding paragraph 

construct the branching random walk and the contact process on the lattice 1 Z. 
M 

We will begin with the BRW. The same processes T(x) and D(x) are used to 
1 

designate births and deaths of particles for the branching random walk on ~ Z. 

Therefore, the two BRWs are coupled in the sense that births and deaths occur at 
the same time for particles identified by the same n-vectors. However, the offspring 

1 
distribution is modified for the BRW on ~ Z. Given that a birth occurs from a 

particle at site x, the offspring is placed at a site y chosen uniformly from the sites 
1 

in Ix  - 1, x + 1] m - -  Z. We designate this BRW starting from a single particle 
M 

at x: MZ'[. 
The offspring locations of the two processes Z~ and MZ:[ can also be coupled in 

the following way. If a particle in Z~' gives birth to a particle displaced a distance 
6(0 < b < 1), the corresponding particle in MZ'[ places the offspring at a distance 
1 { [M6] + 1 } from its location, where Ix] denotes the integer part  of x. In words, 

( e l  for an x 1 Z, any offspring placed in the interval x - ~ ,  x in Z~ is placed at x 

in M x 
Z t �9 

1 
The contact process on ~ Z is exactly like the BRW with the restriction that 

there can exist only a single particle per site. Therefore, when a particle at a 
particular site encounters a birth-time and attempts to place a new particle on a site 
which is already occupied by a particle, no new particle is formed. While we do not 
place another particle at the site which is already occupied, we note that such an 
attempt was made at the particular time in question and we shall call such an 
occurrence a "hit." The CP starting from a fixed set A is designated by M~r and 
when the CP is started from a random initial configuration with distribution/~, we 
will denote the process by M~. 
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One feature of the CP which is of significant utility is the following duality 
relation: 

p ( M ~ A n B +  ~ )  = p(M~,c~ A #  ~ ) ,  (2.1) 

where M~ is equal in distribution to the original CP starting at B: M~. Because of 
this last fact, the CP is said to be "self-dual." For a complete description of contact 
process duality see [Du] or [Li]. We shall denote the dual process starting with a 
single occupied site x by i~x. Because of the original construction of the CP and 
self-duality, we can view the dual process M~'~, starting at x, as being coupled to a 
BRW M x Zt,  starting at x, in the sense that birth and death times, as well as offspring 
locations (or attempted offspring locations) are the same. 

The following lemmas are essential to the proofs of the theorems stated in the 
previous section. Lemma 2.1 establishes a bound on the probability of k or more 

1 
"hits" occurring between two CP duals starting at different points x and y in M Z, 

and Lemma 2.2 uses Lemma 2.1 to place bounds on certain covariance terms. Let 

IM[T,  x, yJ = {(s, z): 0 <_ s <_ T, M(~(Z) and 

[M~_(z)=O and M~'~_(z)=l or 

M~'~,_ (z) = 1 and M~_ (Z) = 0] }.  

In words, each element of IM[ T, x, y] prescribes the occurrence and space-time 
location of a hit. 

Lemma 2.1. Let  B k = { JIM[ T, x, YJl > k}. Then there are constants d k such that for  

all x and y in 1 Z with x:t=y, 
M ' 

dk 
P(Bk) <= M k 

Proof  Recalling the construction of the contact process, it is clear that we can 
define a BRW by ignoring all death times D,. The associated branching process is 
known as the Yule process ([AN]).  We shall call this BRW starting at a point 
x: urff. It is clear that we can extend our definition of I M [ T, x, y] to Mtff and Mr/~, 
and that this new IM[T,  x, y]  dominates the old one almost surely. It is adequte, 
therefore, to bound P(Bk) for the q processes. 

Let 0 be the (random) number of births which occur in Mrff ~ Mq~ by time t = T. 
Then N = 0 + 2 is the total number of particles in Mrff U Mt/~ at T. 

If we condition of the set {0 = m}, then the probability of any single birth event 
m + 2  

placing a particle on a site already occupied is bounded by -2-M~" This can be seen 

by considering the extreme case, where all of the m + 2 particles alive at t = T are 
within a unit distance of the parent particle. Consequently, 

P(Bk) < E re=o-- 1{~ mk 
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(~ where the term m k is an upper bound for the k ways of selecting the k hits from 

the m births. By the finiteness of the moments of the Yule process, the proof is 
complete. 

Lemma 2.2. Define 7~ - ~ ~",(xl ) - u~( t, x~). There exist constants C2, C3, and 
C4 such that for all t~[0 ,  T]: 

gt X2 C 2  

=M 

C3 X2 X3 (ii) ~ { ~ , ~ , }  =< M~ 

C, 
Xl  x 2  x 3  x 4  ~ -  (iii) E{TMYMTMY~a} < M 3 �9 

Remark. As will be seen below, the method of proof will deafly yield: 

E ~ t  ~ M n - t  �9 
1 

Proof We begin the proof of (i) by observing: 

= p(x l  ~M{u, x2 q~M~u) _ p(x t  c M r  2 q~M~ut) " 

The last equality is obtained by taking complements. We will also use the following 
consequence of contact process duality stated in (2.1). The probability that a site x 
is not occupied at time t is equal to the probability that the dual process starting at 
x does not hit any initially occupied site: 

Now. if z e M~'. then the probability that z @ M~ is equal to 1 -- uM(0, z). Because 
the initial configuration is a product measure, the probability that all of the sites in 
the dual process are disjoint from the initial set M~ is just the product of the 
respective probabilities, and we have: 

where the product over the empty set is defined to be one. 
We will now consider independent versions of the two dual processes: M~],, and 

M~2, which we denote by X~ 1 and Xr 2, and we define the process ~2 to be the X~ 2 
process in which particles are killed upon hitting or being hit by particles in the X~ '1 
proc.ess. Note that ~ depends upon Xl and the probability space on which Z~ ' is 
defined, but we omit this in the notation. This procedure is another way of 
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constructing the contact process, and Z7~w ~'~ is identical in distribution to 
M~,  w M~x~" 

For  convenience we define the following two random variables: 

f~ = [ I  (1 -- uM(0, z)) 
z eX~' 

g~ -= 1-[ (1 - UM(O, z)) 
z e ( ;  

We can now write the following: 

P(x~ r ) = E { f  xl} 

P(x2 emi t  u) = E { f  ~ } 

P ( x  I Cu~u t c~ x 2 eMmet) = E { f X ' g ~ }  

where f~ '  and f ~  are independent. Therefore, 

= 

= E {(f* '  g~,~ - - f~ ' f~ ) l ( i ,Mt r  ' ~, ~1I >= ~} 

< P ( I I M [ T , x , y ] I  > 1) < d~ 
= = = M '  

where the second equality follows from the fact that f ~ 2 =  g~ on the set 
{IIM[T,  x, Y]I = 0}, and the last inequality follows from Lemma 2.1. Note that, 
from the proof of Lemma 2.1, the bounds on the hit probabilities hold for the t/ 
processes, and therefore, the use of the bound for the independent Z processes is 
valid. This completes the proof of (i). 

To prove (ii), we write: 

E { ~ , ~ , ~ }  = IO(X1, X2, X 3 ~ M ~ )  __ P ( x 1  ' x2  ~ M ~ ) p ( x  3 ~ur 

- P(xa,  x3eM~ut)P(x2eM~ut) -- P(xz ,  XaeM~ut)P(xI eMr 

+ 2P(x~ e M ~ ) P ( x  2 ~ M ~ ) P ( x  3 e M~t) 

= _ P(x l ,  X 2, x3r162 --~ P(x l ,  x2r 

+ P(x I ,  Xa (! u~ut)P(x 2 r M~u) + P(x2 ' x3 r g ~ ) p ( x  I r u ~ )  

- 2n(x  1 r  

where the last equality followed by taking complements. 
As in the proof of part (i), we define independent versions of the contact process: 

Z~ ̀1, Z~ 2, and Xt 3 starting from the points appearing in the superscripts. We now let 
~} . . . .  J) be the Z~" process in which particles are killed upon hitting or begin hit by 

" x i  particles in the Z~ ~ process. Additionally, we let tt to be the Z~ '~ process in which 
particles are killed upon hitting or being hit by particles in either of the Z~ '~ 
processes, where j 4: i. 
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For  convenience we make  the following definitions: 

i x = I~ (1 - UM(O,z)) 
z ~X~ 

g~ - I ]  (1 - uM(O, z))  
z ~ , ~ )  

h~ - I~ (1 - uM(0, z)) .  
Z ~l  x 

We are now in a posit ion to use duality to write: 

x l  x2 x4 Xl x2 x3 x i  x2 x3 E{VMVMVM}=E{f  9~h - - f  9 ~ f  

- - fx 'g~fx~ --f'~gx~f x~ - 2fx~f~f:'~} . 

We now observe that  on the sets {IIM[T,x,y]I = 0} and {llM[r,x,  yll = 1} 
the integrand above vanishes. Additionally, the integrand is bounded,  so that  (ii) 
follows f rom L e m m a  2.1. Par t  (iii) follows from similar reasoning. 

The following L e m m a  will also be required in the p roof  of Theorem 1. 

L e m m a  2.3. I f  z I . . . . .  z,, and Ul . . . . .  Um are complex numbers with modulus less 
than or equal to 1, then: 

IZl . . .  zm - -  u 1 . . .  Um[  ~ ~ ]Z i - -  u i l .  
i = 1  

Proof. The proof  follows by induction using the following relation. 

z v  . . z m  - u l  . . .  u m  = ( z l  - u l ) ( z 2  . . . z m )  + u ~ ( z 2  . . . z m  - u ~  . . . U r n ) .  

3. Proofs of  Theorems 1 and 2 

Proof of Theorem 1. The p roof  will be done in two steps. The first step is showing 
that  lim uM(t, X) actually exists, and the second step is to show that  the limit u(t, x) 

M---~ oo 

satisfies Eq. 1.2. 
Define A = (IMZ~[ = ]M~x]), the set on which the number  of particles alive in 

the two processes is the same. Due to the coupled construct ion of these two 
processes, A is the set on which no hits occur in M~x. By Eq. (2.2): 

1--UM(t,x)= E {  []~ (1--UM(O,z))} 
z ~ 

where, 

MI1 (~) = 1-I (I - uM(0, z)) 
z~t /  

[ I  (~) = l~  (1 - u(O, z ) ) .  
ZEt/ 
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The last definition will be used later. By the definition of A: 

1--uM(t ,x)=E{~t~(MZ~[)I{A)}+E{MH(M~t~)I(Ao)} 

Now, the boundedness of the integrand in the second term on the right hand side 
C 

and Lemma 2.1 yield a bound on this term of the form ~ ,  which vanishes in the 

limit. We need only show that: 

E ( M I ] ( M z ~ ) ) I = E ~ I ~ ( z ~ ) ~  = -- 1 - -u ( t , x ) .  (3.1, lim 
M~oo l J l J 

We will actually prove a stronger version of Eq. 3.1: 

Lemma 3.1. lim sup E{IMl-I(Uz~) -- 1-[(Z~)l} = 0. 
M ~  O<_t<=T 

Proof Recall the definitions of the two processes Mrff and rff, which were intro- 
duced in the proof of Lemma 2.1. J uq} I and ]r/~[ are the total number of births that 
occur in MZ~ and Z~' up to t = T respectively. By Chebysheff's inequality and 
coupling: 

E([ t/~-] 2 ) 
P(IM~I~I > N) = P(I~/~I > N) =< N2 (3.2) 

For  the remainder of this proof we will let K = E(I~/}I2). We shall denote the 
locations of the particles in M~/~. and ~/~. by z~ t and zi. Since we know that the 
integrand in the statement of the Lemma is bounded by 1, we can use (3.2) and 
Lemma 2.3 to write: 

t t E (MZD - I](z~') 5 N~- + E tu~(O, # )  - u(O, z31 l{.t~l < N} 
Li = 1 = 

K { I,~-I 
= < ~ + E  y~ luM(O,#)--u(O, zY)l 

i=1 

+ Y~ lu(O, # )  - u(O, z , ) l  . 
i=1 

for any t e [ 0 ,  T]. 
K 

For any e > 0, select N such that ~ < 3" Now select M 1 so that for every 

M > MI: Juza(0, y) - u(0, y)J < f ~  whenever y ~ [ x  - N, x + N]. The motivation 

for this last statement is that on the set (Iq}l < N), the locations of the particles are 
confined to the interval [x  - N, x + N].  Observe that it was at this point that we 
used the uniform convergence of the initial conditions on compact sets. Finally, we 
make the observation that on the set {]t/~J < N}, the maximum number of jumps 
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that  can occur between the initial posit ion x and the location of any particle at t ime 
t is N. Consequently,  on this set the largest difference between the locat ion of any 

N 
two coupled particles in the two processes Mt/~ and r/~ is ~ and we have: 

N 
lu(0, zy )  - u(0, zi) < ~ sup lu'(0, Y)I - 

yE[x-- N, x + N] 

Therefore,  selecting M2 so that  for any  M > M2: 

N e 
- -  sup lu'(0, x)l < 
M y~t~-N, ~+NI 3 ' 

yields that  for M > max(M1,  M2): 

sup E{ MH(Mz;)-H(z;) }<~, 
O < t < r  

which completes the p roof  of the Lemma.  
We will now proceed to show that  the limit function u(t, x) satisfies Eqn. 1.2. It  

1 
is clear f rom the definition that  uM(t, X) is presently defined on x e ~  Z. Fo r  the 

remainder  of this paper  the functions uM(t, x) will be defined over  R in the following 
1 1 

way. Lett ing [r]M be the lattice point  x e ~ Z  so that  x =< r < x + ~ we define: 

uM(t,r) = uu(t,x) when [r]M = x .  

A simple generator  calculation yields: 

auM --UM(t'X)+j=~-M2-MP [X]M~M~Ut)~([X]M+ J~eM~M 

= - -UM(t ,X)+(1- -uM( t , x ) )~  U u t,x + + 0  
j = - M  

(3.3) 

where the second equality follows f rom L e m m a  2.2. We will now use the fact (see 
(3.1)) that  uM(t, x) ~ u(t, x), pointwise in x for any given t, to establish: 

lim 1 u M t , x +  = I u(y,t)dy (3.4) 
M ~ o v  M j =  - M  x-- 1 

lira c~uM(t, x) 9u(t, x) 
- ( 3 . 5 )  

u ~  oo c3t c3t 

To  establish (3.4), we note that  the left hand side is equal to: 

j uM(t, y)dy + o 
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Now,  by the boundedness  of  the integrand and the pointwise convergence of u .  to 
u, the domina ted  convergence theorem establishes the result. 

Proceeding to (3.5), we can write: 

t guu(t, 
UM(t , X) = UM(O, X) + j (S, x)ds . 

o gt 

Since we know that  for any x: uu(O, x) ~ u(O, x), as M ~ 0% we need only show 
~uu(t, x) 

that  for any given x, 8 ~  converges uniformly on t e [0, T].  Specifically, we 

will show that: 

For  any e > 0, there exists a constant  L(e, x) so that: 

gUM(t, X) OUN(t, x) < 

gt 8t = 

for all t e  [0, T]  and for all M, N > L(e, x ) .  (3.6) 

Defining: 

1 ~ u M t, [X]M + , XM(t, X) -- 2M j= -M 

(3.3) immediate ly  yields: 

~uM(t, x) ~uN(t, x) 
~t ~t 

-- (UN(t , X) -- uM(t, X)) + ).(1 -- UM(t, X))ZM(t , X) 

- 2(1 - ux(t, x))Zn(t, x) 

= (uN - uu)  + 2(uN - uM)2u + 2(1 - UN)[I:M -- I:N] 

Because ]uN(t, x)] < 1 for all N, x, and t, an appl icat ion of the triangle inequality 
yields the fact that  (3.6) will follow upon  establishing: 
(i) For  any e > 0, there exists an L1 (e, x) so that  for any M, N > L1 (e, x) and for all 
t ~ [0, T]:  

luu(t, X) -- uN(t, X)l < ~ . 
and 
(ii) Fo r  any e > 0, there exists a n  Z 2 (~3, X) SO that  for any M, N > Z 2 (~;, x)  and for all 
t ~ [0, T]:  

I Z ' u  - 2 : N I  < ~ �9 

Condi t ion  (i) follows directly f rom the triangle inequality and (3.1). To  establish 
(ii) we observe that: 

X M - - X N = X M - -  I UM(t,Y) + I UN(t,Y) --XN 
x - 1  x - 1  

x+l dy x+l dy  
+ ~ { U M ( t , y ) - - u ( t , Y ) } 2 +  f { u ( t , y ) - - u ~ ( t , y ) } ~ - .  

x - 1  x - 1  
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The first two pairs of terms on the RHS vanish in the limit, and an application of 
the dominated convergence theorem implies that the last two terms also vanish, 
establishing the result. 

Proof of Theorem 2. The proof will proceed in two main steps. Given a continuous 
function ~b such that suplx2qS(x)] < o% we will first establish that the laws of the 

x 

XM(~b) are tight in D([0, T], R), and we will then prove that the finite dimensional 
distributions (fdds) of the processes X.M(qS) converge to the fdds of X.(~b). 

We will begin by showing that: 

supE{M o__<~rsup Xs2~/(~b)2 } < oo (3.7) 

For any t />  0, there exists a 6 > 0 and an M1 so that 

sup P (  sup IX,M(O)-X~(4))I>@<~. (3.8) 
M > M I  O<-s,t<-T 

I t - s l < ~  

These are stronger conditions than (i) and (ii) in Lemma A.1 in the Appendix, and 
they imply, therefore, that the laws of the X.~(qS) are tight in D([0, T], R). 

Condition (3.7) is established directly. For any t e [0, 7"]: 

1 
XtM(~b) 2 -- M2 ~ ~ ~(X)~p(Y)M~"t(X)M~"t(Y) 

x E~-z y ~ z  

-5_ lr 
x Z 

( 1  1 ~ [x2~b(x)l) 2 
= ~ [~(x)[ + ~ ixl~- ~ -  Ixl~l I 1 

=< (3l[4110,0 + CllqSl12,0) 2 < oo . 

where II q~ I[~, p = sup x" ~ ~b(x) . 
x 

To verify (3.8) we begin by selecting a positive integer N so that: 

1 L~N 11~112, o 
x T - - < 2  

where t />  0 is already given. Note that, for any x~ [ - N ,  N], IqS(x)l < II q5 IIo. o. 
The idea is the following. If all of the sites in [ - N ,  N]  c were to change state at the 

/7 same time, the large possible change in Xy(qS) would be ~. Our attention is now 

directed to sites in the interval [ - N ,  N].  We select a positive number r so that: 
// 

r II 4) [I o, 0 < ~. In order for the event prescribed in (3.8) to occur, there would have 
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to exist a time interval: i = [ 2 6 ,  (n+2 1)5]  during which at least rM births or 

deaths occur among the sites in [ - N ,  N].  Observing that 2 is an upper bound on 
the rate at which births or deaths occur at any given site, and letting J ,  be the 
number of jumps (births or deaths) which occur among the sites in [ - - N , N ]  in the 
time interval I, ,  we have: 

P( J. > rM) < P( Yu > rM) 

1 J where Yu has Poisson distribution with mean /~ = (2MN + )2~. Using 

Chebysheff's inequality with the Laplace transform of the Poisson distribution we 
have: 

P( J, > rM) <= P( Yu > rM) = P(e~ > e ~ 

e - O r M  e (e  o - 1 ) #  . 

Setting 0 = 1 and using e - 1 < 2: 

P( J. > rM) <= e (zMN+ I)~a-'M . 

r 
Selecting 6 so that 2N26 < ~, we have: 

( [;] ) ( I ' l )  P J i > r M s o m e i =  1 . . . . .  + 1 < ~- + 1 e~ -1/2rM, 

which decreases exponentially in M. Therefore, there exists an M 1 so that for 
M > M1 the right hand side is less than t/, establishing (3.8). 

The remaining task is to verify that the fdds of xM(qs) converge weakly to the 
fdds of X.(r We will establish that for any t e  [0, T]: 

+ o o  

lim E{Xy(r  = S r 
M ~  - ~  

lim E{(Xy(r  - E[X,U(qS)]) 2 } = 0 
M - - +  o9 

(3.9) 

(3.10) 

It follows immediately from (3.9) and (3.10) that for any t ie[0,  T] and any 
continuous q5 i such that suplxZ4)i(x)l < o% for i = 1 , . . . ,  n, given any { > 0: 

+{o r x)a  ) lim P M Xt, ((ol)- < ~ Vi= l . . . .  ,n = l ,  
M-=>~ - oD 

which implies the desired weak convergence of the fdds. 
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We establish (3.9) by using Fubini's Theorem: 

lira E{X~(4~)} = lim E~ 1. Z 4)(x)M~Ut(X)} 

= lim 1 �9 t-~oo M ~' ~(X)UM(t , X) 
x e~ -Z  

x+ 1/2M 

= lim 2 ~ [q~(x) - 4(S)]UM(t, s)ds 
M~o~ x E~-Z x - 1 / 2 M  

x + 1/2M 

+ lim ~ ~ (~(s)uM(t,s)ds. 
M ~ ~ 1 7 6  x ~ - Z  x - 1 / 2 M  

The first term on the RHS vanishes as M ~ oe due to the continuity of q~. The 
second term can be rewritten as: 

+oo 

lira ~ 4)(s)uM(t; s)ds . 

Now, [ ~u M ] =< ] ~b] and q~ is integrable. Also ~bUM ~ ~bu pointwise in x. Therefore, 
the Dominated Convergence Theorem implies (3.9). 

(3.10) follows in much the same way, but requires a result stated in Lemma 2.2: 

M ~  x E M Z  

M--+ c~ X ff ~- Z 

(O(x)(M~U~(X)--u~(t,X))) 2 } 

(by Fubini's Theorem) 

= lira ~ ~ (o(x)(o(y)~)~tT~ 
M--, co x e ~ - Z  y e ~ Z  

( Ir (by Lemma 2.2) 12m  z 
= 0 ,  

completing the proof of Theorem 2. 

Proof of Corollary to Theorem 2. By Lemma A.3, tightness of the laws of the X u 
processes in the space D([0, T], S'(R)) follows from tightness of the processes 
X.M(~b) in D([0, T], R) for each (oeS(R). Since every ~bsS(R) is continuous with 
sup Ix24~(x) l < 0% this follows from the proof of Theorem 2. Additionally, (3.9) and 

x 

(3.10) above indentify the limit uniquely. 

4. Proof of  Theorem 3 

The first step is the explicit calculation of the generator of the process G(Y~(~b)) for 
(o~ C~(R), and GE C2(R), where, as before: 

1 
Y~(4') - ~ x ~ ~-~z 4)(x)(~' ~' (x) - uM(t, x)). 
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The fact that C~ is dense in S(R) allows us to define our generator for all ~b e S(R). 
If we define 

I 1 1 
if x e ~ Z  and Ixl ~ 1 

0 otherwise 

f*flM(X)-- 2 f (Y)f lM(Y--  X)-- 2--M j ~ M  f X + 
y e~-Z 

f_~(y) - f ( y  -- x) ,  

we find after a little work that the generator is: 

- + �89 

X Y { 2 4  )z *tim + ~2 _ 2XM(4~Z(flM)_x)} . (4.1) 

Now we will verify that the set of measures {PM} on D([0, T], S'(R)) corres- 
ponding to the yM processes are tight. The tightness coridition implies that any 
subsequence of {PM} has a further subsequence which converges to a probability 
measure on C([0, T], S'(R)). Then we will use the martingale characterization of 
the Generalized Ornstein Uhlenbeck processes given in [HS1] (see Lemma A.5 in 
the Appendix). To establish that all subsequential limits are indeed the same G O U  
process specified by the particular forms of two operators A t and Bt given in the 
statement of the theorem. 

Proof of tiohtness. It is sufficient to verify the following conditions (see [HS2]). Let 
pM be the law of yM, and let Ft denote the filtration: 

F t = a( Y~(q~):0 <- s <- t; (oeS(R)) .  

For any q5 e S(R), 

sup E {  Y~(~b) 2 } < oo for all t s  [0, T]  . :(4.2) 
M 

There exist e~(~b, t)~ F (i = 1, 2) such that: 

Jr(4)) =- YtM(e~) -- i C~7(CP' s)ds 
0 

Kt((~) =- 4(~b) 2 - i e~(q~, s)ds 
0 

are (pM, Ft) martingales, and such that 

sup E I sup IcqM(~b,s)l 2} < 
M ( O<s<t  

(4.3) 
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There exists an r/(r M) $ 0 as M ~ ~ such that: 

lim P (  sup , Y ~ ( r 1 6 2 1 6 2  (4.4) 
M ~  O<s<t 

Verifying (4.2) is easy. To establish (4.3) we first find c~ and a M. If we let 

c~( r  = j Z  M r x + - r  - r  ~'~,~ x + 

( ;~ • uM t,x (~ x +  
2mi=  -M + M " 

and 

2 M 

a little work yields 

~M(r t) = yM(cM(r aM(e, t) = xM(DM(r 

Now that we know the cds, we must establish (4.3). For a M this task is relatively 
straightforward. For cr M we will outline the procedure. First, viewing c~M(~b, t) as a 
stochastic process, we calculate the drift: bM(r t). We can then write: 

t 

0 0 

The first two terms comprise a martingale, and we can use the following conse- 
quence of Doob's inequality to bound them. Bounding the third term is laborious 
but straightforward. 

Proposition 4.1. 

I {i ; E sup <4E{c~fff) , t)2}~+4t~E [b~(r . (4.9) 
0 

Bounding sup E / sup ]c~M(q~, s)l 2 }: From (4.6)and (4.7)we find that 
M (O<-s-t 

1 { 2 ~ 2  M M ( J ) ( ~ 2 ( M )  
[ ~ M ( q b ' s ) l Z < ~ \ 2 M ]  E E E E cP 2 x +  y +  

x ~ Z  y ~ z  j=-M k=-U 

I 

~ z  y ~ - z  

__< ()~2 + 1)(cI1r + DI1r = 

independent of the value of t or M, completing the verification of condition (4.3). 
To finish the proof of tightness, we must establish (4.4). However, this follows 

from standard Poisson process theory, as, given any M, the set on which two jumps 
occur at the same time is a set of measure zero. Therefore, we now know that the 
sequence of measures pu  are tight. 
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Uniqueness and identification of subsequential limits. Now that we know that set 
{pM } is tight, we will establish that if a subsequence pMk =,. p, then P is the law of 
the G O U  process prescribed by the operators given in (1.3) and (1.4). 

After observing that the two operators satisfy the required conditions, we use 
the martingale condition to establish uniqueness; namely that if puk ~ p, then 

i i 1 G(Y~(~)) - YAAs~)G' (  K(~))ds  - -2 II Bs~ II 2 a" (  Ys(~))ds 
0 

is a P martingale. We first note that 

t 1 
G(Yt(~)) -- ~ Y~(Aff dp)G'(Y~(c~))ds - i ~ I[ Bff c~ 112 G"( Y~(~))ds 

0 0 

is a PM martingale, where Aft and II B~ II are expressed implicitly in the expression 
(4.1) for the generator LMG (Yff(~b)). This means that 

t , 1 

G(Y,(q~)) - j" YAA,~)G'(K(qS))ds  - o ~ 2 I ln~ l l=a"(YA4 ' ) )ds  
0 

t 

+ ~ Y~{(A, - Aff)q~}G'(Y~(6))ds 
0 

is a pM martingale: The following proposition establishes the differentiability of 
u(t, x) which is essential in the remainder of the proof. 

Proposition 4.2. I f  u(O, x ) �9  S( R ), then u(t, x) has bounded x-derivatives of all order. 

Proof Recall the following expression for u(t, x) given in (3.1): 

u( t ,x )= 1 -  E {z~zJl  - u(O,z)) } . 

Consequently, 

u~")(x) = - E l{Iz~l = k} - -  (1 -- u(0, zi)) 
k d x  n ' i=1  

where zl denotes the position of particle i. The above interchange is permissible, 
since we will find that the nth derivative of the integrand is bounded by an 
integrable function, for any given n > O. We now observe that there are k ~ ways to 
distribute the n derivatives over the product of k terms using the product rule. 
Because u(O, x ) �9  S(R), each of the k" permutations is bounded in absolute value by 
a constant M,  given by: 

M ~ =  sup ( ~sup [u(J"(0, x ) l ' . . .  "sup lu~J"(0, x)l ) ~ .  
(jl . . . . .  Jr) x 

J l  + . .  - Jl = n 
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Therefore, 

'u(n)(x),<=E { k=l~ l{iz~l = k} k"M. } ,  

and the boundedness of the moments of the branching process yields the required 
interchange condition and the desired result. 

Considering the form of A,(~b) given in (1.3), Proposition 4.2 implies that 
At:S(R ) ~ S(R). We use this fact, the continuity and boundedness of G and its 
derivatives, along with 

Proposition 4.3. If W~ is a martingale with respect to a filtration Ft and if'. 

lim E{IW, u - W , I  2 } = 0  for all t ,  
M--* o~ 

then Wt is a martingale with respect to F t. 

Proposition 4.3 implies that the proof of Theorem 3 will be complete upon 
showing: 

lim E { ( i Y~((As - A~)r162 } = O 
M ~ a o  

M~lim E { ( i l  )z} ~(llBsq~ll 2 - HBMr = O, 

which follow from straightforward computations. The martingale condition given 
in Lemma A.5 is now verified, and we have identified the limit process P, 
completing the proof of Theorem 3. 

Appendix: Topological Considerations 

Schwartz Functions 

The space of Schwartz functions denoted by S(R) is a Fr6chet space consisting of 
C~(R) functions topologized by the following seminorms: 

= sup x'~@-~ (x) , (A1) tlr p x~R 

where ~ and fl run over the nonnegative integers. Consequently, S(R) consists of 
those functions which, together with their derivatives, decrease faster than any 
polynomial as the argument approaches + oo. 

The space D([0, T], R). is the space of functions from the interval [0, T] to the real 
line R which are right-continuous with left-hand limits. We topologize this function 
space with the following metric: 

d(x,y) = inf~e:32EA, sup 12(0-- t[ < e, and sup Ix( t ) -  y(2(t))] < e~ ,  
O < t < T  O < t < T  ) 

where A is the set of strictly increasing continuous mappings of [0, T] onto itself. 
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To state tightness conditions, we first must define the following modulus of 
continuity: 

w~,(6) = inf sup wx[t i -1 ,  ti), 
{ti} O < i < r  

where: 
wx r a, b) = sup { I x (s) - x(t) l : s, t ~ [ a, b) } , 

and where the infimum extends over finite sequences {ti} with: 0 = t o < t 1 < . . .  
< t , =  1, a n d t l - t i _ l > 6 f o r a l l i =  1 , . . . , r .  

Lemma A.1. ([Bi], p. 125) A sequence of  measures {pM} on O(l-0, T], R) is tight if  
and only if  these two conditions hold: 

(i) For each ~l > O, there exists an a such that: 

PM { x:o~t=<rsup ,x(t)l > a } < ~l , M > I 

(ii) For each g > 0 and ~1 > O, there exists a 6 : 0 < 6 < 1, and an integer N such that: 

PM{x:w'~(6) > e} < ~l, m > N 

The following is a martingale condition for tightness which we use in the proof 
of Theorem 3 and later in this Appendix. This result appears in a disguised form in 
[HS2] in the discussion preceding Theorem (1.15). 

Lemma A.2. Let X M be elements of D ( [ O , T ] , R )  with laws pM. Let 
F~ = a(X~:0 <_ s <_ t). Then the {pM} are tight if the following conditions hold: 

(i) E I sup ( X ~ ) 2 } < o o  
[ O < t < T  

(ii) There exist non-anticipating functions e~(t) and e~(t) such that for t E [0, T]: 

J ~  = X ~  -- i ~ ( s ) d s  
o 

and 
t 

K ~  =- ( d~)2 _ ~ ~ ( s ) d s  
0 

are (pM, Ft ) martingales, where: 

supE{M o_S_<up_rlctff(t)'2} < ~ 1 7 6  i = 1 , 2 .  

The proof of this result given in [HS2] uses standard martingale theory in 
conjunction with the Censov criterion for tightness ([Bi], Theorem 15.6). 
The space D([0, T], S'(R)).  is the space of functions from the interval [0, T] to 
S'(R) which are right-continuous with left-hand limits, where, as before, S' (R)  is 
given the strong topology. The topology of D([0, T], S ' (R))  is generated by the 
following seminorms indexed to O, the bounded sets of S(R): 

do(x,y ) = inf~e:326A: sup 12(t)--tl<~, and sup Ilx(t)-y(A(t))l{0<g~, 
t O < _ t < T  O < t < T  ) 
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where, as before, A is the set of strictly increasing mappings of [0, T] onto itself. To 
state the following tightness criterion we must define the following collection 
of projections: Given (aeS(R)  and x~O([0, T], S'(R)) , / /r  T], S'(R)) 
D([0, T], R) is given by: 

He(x) -+ x(O) E D([O, T], R).  (A2) 

Lemma A.3. ([Mil]) Consider a sequence of probability measures {P,} on 
D([O,T] ,S ' (R) ) .  I f  for each r  the measure {P.II~ 1} are tight in 
P([0, T], R), then the measures {P,} are tight in D([0, T], S'(R)). 

Once again, tightness in D([0, T], S'(R)) is essentially a question of tightness of the 
projection processes in D([0, T], R). The following tightness criteria are used in the 
proof of Theorem 3. 

Lemma A.4. Let X ~ be elements of D([0, T] ,S ' (R) )  with laws pM. Let 
F s = a(Xs(q~): 0 <_ s <- t, d? e S(R)). Suppose that, for each c~ ~ S(R), the following 
conditions hold: 

(i) E{O<_t<_TSUp (Xy(~b))2} < m 

(ii) There exist non-anticipating functions aM(oh, t) and e~((a, t) such that for 
rE[0, T]: 

Jy(r = x y ( r  - i ~ ( r  s)ds 0 
and 

t 
KM(qS) -- (JM(~b))2 - ~ c~(r s)ds 

0 

are (pM, Ft) martingales, where: 

supEIM I. O<-t<-Tsup ,~(~b,t)12}< oo i = 1 , 2 .  

(iii) There exists an tl(d?, M) ~ 0 as M --~ oo such that: 

lim P (  s u P T l X ~ ( d ~ ) - - X ~ ( r  t l (4 ) ,M))=0 .  
M ~ a o  0 

Then the {pM} are tight in D([0, T], S'(R)), and all subsequential limits are 
concentrated on C([0, T], S'(R)). 

Remark. This Lemma is stated in a similar form in [DIPP] as Theorem 4.5. It 
follows directly from Lemmas A.2 and A.3 above, and results in [Mi2]. 

The Generalized Ornstein-Uhlenbeck Process 

This section is devoted to the description of certain probability measures on the 
space C([0, T], S'(R))  which appear as limits of the fluctuation field mentioned in 
Theorem 3. These measures are known as Generalized Ornstein-Uhlenbeck pro- 
cesses. The relevant result appears in [HS1] as Theorem 1.4. We will state the result 
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with a minor  m o d i f i c a t i o n - o u r  transit ion kernel is not  t ime-homogeneous.  The 
resulting differences are slight, and the p roof  provided in [HS1]  is easily extended 
to our  case. First, a little nota t ion is required. Let T7(r be a strongly cont inuous 
bounded  semigroup on S(R) with a generator: 

C' ) At(alp) = lim Tt+h r -- r (A3) 
h-~o \  h ' 

where 0 __< s < t < T. The semigroup proper ty  referred to is: 

S t T ; T ~ ( r  T,~(r when 0 < s < t - < u <  T .  

We require that At be bounded  on S(R) for any t ~ [0, T] ,  and we let B~ be a positive 
bounded  linear opera tor  on L2(R) for any given u~ [0, T].  

Lemma A.5. Let P be a probability measure on f2 = C([0, T], R) such that 
Vf~ C~ (R) and for all stopping times z such that: 

sup sup JNt^~(At^,r  ~ , 
~ s  0<_t<T 

with N the element of O, then the following is a P-martingale: 

f ( N , ^ , ( r  5 o X~(aur162 - ! ~ tlB.r162 

where [l" I[ designates the L 2 norm and the relevant filtration is: 

Then, 

Ft = ~ ( G ( r  0 _< s ___ t, r e s ( R ) ) .  

r ! 2 - f(Nt(r S Nu(Zur (Nu(r - ~ Ilnur f (NAr 
0 

is a P-martingale, and additionally, for any Borel set F c R, 

where 

(A4) 

P - a . s . ,  (A5) 

1 --y2 
g(t, y) = ~ - ~  e 2t 

In particular, P is uniquely determined by (A5), and, therefore, by (A4). 
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