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Summary. The un i fo rm rate  o f  convergence o f  the in tegra ted  relat ive mean  
square e r ror  over  a (with the sample  size T) increasing class X T o f  s t a t iona ry  
processes is s tudied for  several  es t imates  o f  the spectral  density.  The class X r is 
chosen in a way such tha t  es t imates  with a good  un i fo rm rate  of  convergence 
over  5~ r m a y  be t e rmed  'h igh reso lu t ion  spectral  es t imates ' .  By using this 
cr i ter ion several  effects are expla ined  theoret ical ly ,  for  example  the leakage 
effect. The advan tages  u f  using da t a  tapers  are p roved  and the use o f  local  and  
g loba l  bandwi ths  are studied. Fu r the rmore ,  the behav ior  o f  segment  es t imates  
are studied.  S imula t ions  are presented  for  the i l lus t ra t ion  of  some effects. 
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1. Introduction 

This p a p e r  is concerned  with the n o n p a r a m e t r i c  es t imat ion  o f  the spectral  densi ty  
f ( 2 )  o f  a s t a t iona ry  process  Xt, t ~ Z f rom the sample  X o . . . . .  XT-  1. The es t imat ion  

* This work has been supported by the Deutsche Forschungsgemeinschaft 



148 R. Dahlhaus 

usually is done by calculating the periodogram which, in the case of a zero mean, has 
the form 

IT()~) = {27rilE,T} -1 T~I ht, r X t e x p ( - i 2 t )  2 
t = O  

where 
T - 1  

Hk T = ~ h k k e N  o , t , T  , " 

~=0  

ht, T is a data taper, e.g. the cosine bell ht, r =1 [1-cos  {2~z(t+O.5)/T}]. 
Since the periodogram is only asymptotically unbiased but not consistent it has 

to be smoothed. One usually considers the estimate 

f~r'(2) : j" Ir(X+~)W~(~)cl~ ~ : = ( - ~ ,  ~] (1.1) 
/ /  

with a suitable kernel WN(a) e.g. W N ( a ) = N W ( N ~  ) with N-*O 
T " 

Although the usual asymptotic theory (asymptotic normality, integrated mean 
square error, etc.) leads to satisfactory results for the estimate, f~,~)(,~) behaves in 
certain situations rather badly. Several negative effects may arise that could not be 
explained successfully by the mathematical theory so far. 

Problems arise for example if strong peaks are present in the spectrum. If no data 
taper is used (ht, T ---- 1) the estimate is not able to resolve lower peaks of the spectrum. 
This effect has been called leakage effect. It can be cured by application of a data 
taper (cf. Bloomfield, 1976, Sect. 5.2). To illustrate the effect we have plotted in 
Fig. 1 the true spectrum of an (AR(14)-process (dark line) the kernel estimate (1.1) 
(more precisely (3.9)) with the nontapered periodogram and a global bandwith 
(dotted line) and the same estimate with a tapered periodogram (dashed line) (for 
details of the simulation see Sect. 4.1). We clearly see the strong bias of the 
nontapered estimate. Although this effect has been known for a long time, it has 
never been described theoretically in a stringent way. The ordinary asymptotic 
theory only shows disadvantages of data tapers: the variance and the mean square 
error of the estimate increase with the use of a taper (cf. Brillinger, 1981, 
Theor. 5.6.4). 

As a consequence of the bad behaviour of the above nontapered estimate (and 
other nonparametric estimates as well) applied workers (especially engineers) very 
often prefer a parametric (usually AR-) approach together with estimation 
procedures that have high resolution properties, e.g. the maximum entropy method 
(Burg-algorithm). Such procedures are termed 'high resolution spectral estimates' 
(cp. the articles in Childers, 1978). 

In this paper we will make an attempt to define by a mathematical model what 
is meant by 'high resolution spectral estimates', and to explain theoretically the 
leakage effect and other effects that may arise in nonparametric spectral estimation. 
Since most of the effects are small sample effects which disappear asymptotically 
we create a special asymptotic model by allowing e. g. the peaks to increase with the 
sample size. 

Since the variance of a spectral estimate fT is usually proportional to f it is 
natural to consider as a measure of goodness of an estimate the integrated relative 
mean square error. 
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Fig. 1. Window estimate 
with and without data taper 

= )2d2 , IBrAS(fT) i (_Ef~(~) 1 
_.  \ f (2 )  

IVAR(f~) = i /fT(~)\ - :  var i ~ )  d'~ 

_ .  [ 7 C S ;  - 1  , 

and SBIAS (fr),  SVAR (fr),  SMSE (fr)  be the corresponding statistics with the 
27r 27~s 

where k s = integral replaced by the sum ~ -  4= ~s T 

s = l , . . . , r  
We will study the convergence rate of  

sup IMSE (f r )  (1.2) 
KT 

for several estimates where 5Y r is a (with T) increasing class of  stochastic processes. 
By using an increasing class we require that the estimates behave uniformly good 
over an increasing number of stochastic processes when the sample size increases. 
By using this model we avoid that certain small sample effects such as the leakage 
effect disappear asymptotically. The class 2F r is defined in Sect. 2. It contains 
processes with spectral densities that have with Tincreasing peaks and troughs, for 
example autoregressive moving average processes with characteristic roots up to 
T -1 close to the unit circle. By this choice of Wr we are able to cover asymptotically 
problem cases in statistical inference. In particular, we are able to discuss the reso- 
lution properties of the estimates. Estimates f r  with sup IMSE (fr)=O(T-415) 

~fT 
will be termed 'high resolution spectral estimates'. T -'~/5 is the usual rate of 
convergence of the IMSE for window estimates with a positive kernel. 

In Sect. 3 we prove that tapered window estimates with a certain local bandwith 
have this high resolution property. 
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In Sect. 4 we present several window estimates that have a lower uniform rate of 
convergence, among them estimates with a global bandwith. For nontapered 
estimates we prove that sup IMSE (fr) does not even converge to zero. This explains 

~c T 

theoretically the leakage effect. The same holds for nontapered estimates when the 
spectrum contains troughs. We call this effect 'trough effect'. This is the first time 
that the trough effect is described. Furthermore, we prove that tapering may not 
only reduce the bias but also the variance of window estimates, which is contrary to 
widespread conjectures. 

Some effects are demonstrated by simulations. 
In Sect. 5 we consider segment estimates, i.e. estimates obtained by averaging 

periodograms over overlapping data segments. We prove that these estimates also 
have a lower uniform rate of convergence. 

The proofs are very technical. In order to make the paper more readable we have 
put nearly all proofs into the appendix. 

In Dahlhaus (1988) we have derived similar results for parametric estimates. 
A key role in our calculations is played by the following function. Let L r :  

IR~IR, T~IR +, be the periodic extension (with period 2~z) of 

T, [o~1<1/T (1.3) 
L~(~) = 1/[~1, l / T <  [~l<Tr' 

The function Lr(e0 is used to describe the properties of data tapers, to define the 
class YT- and as a tool for handling the cumulants of time-series statistics. The 
properties of LT(~) are summarized in Lemma A.I. 

We further use cumulants and cumulant spectra of stationary processes. For the 
definitions and the basic properties we refer to Brillinger (1981, Sect. 2.3, especially 
Theor. 2.3.2). 

2. The High Resolution Property 

We now define the class of processes ~ r  over which the estimates are supposed to 
be uniformly good. 

(2.1) Definition. Let S1,S2EN0, T e N  and 30>0, C0>l .  By ~fl](T, s1,s2,6o, Co) 
we denote the set of all fourth order stationary processes Xt, t ~ 77, that can be 
represented in the form 

Xt= ~, a~Yt-s 
S = - - o o  

where 
(i) Y~ is a fourth order stationary process Yt with mean 0, three times times 

differentiable spectrum f r  =f2, r with Co 1 <f2, r < Co, ~,k)r < Co (k = 1,2, 3), and 
continuous fourth order spectrum f4, r with f4, r < C2. 

(ii) The transfer function A (2)= ~ a s exp (-ifls)  is of the form 
s ~ - - c O  

r l  

YI A~j(;~-A~) s'~ 
A(2) = J~21 (2.1) 

I~ A2j(,~--,~2j) s2s 
j=l 



Nonparametric High Resolution Spectral Estimation 151 

L with sij<_~si(i= 1~ 2)and [2il j l -  2i2J21 ~___ 2~0 (mod 2n)for (i I ,jl)=]=(i2,J2)~l.e. ri= ~ ] .  
\ ~ u /  

The g~j= IA~j[ 2 are three times differentiable with 

Co 1LTij (2)2 < gij (4) - 1 5 CO Lr,, (4) 2 (4 e H ) ,  (2.2) 

where T/j< T, and 
Ig;a(2)l _-< Col,~[ (4 e H ) ,  (2.3) 

t! 2 ~ Igor( )l<Co Igl3)(2)l<Co (2e l l )  (2.4) 

Ig',~(,~)l_-> Co  x (141<~o) �9 (2.5) 

Note, that ~(T,  sl, s2,6 o, Co) is monotone in all five variables. We sometimes 
drop the subscripts and denote 5QT, sl, s2,5 o, Co) by 5~ r. 

An estimate f r  with sup I M S E ( f r ) = O ( T  -4Is) will be termed 'high 
~T 

resolution spectral estimate'. 

(2.2) Remarks. (i) The conditions (2.2)-(2.5) could also be formulated in terms of 
the Aij. Since the second order spectrum of the process X t E 5fr is of the form 

rl 
I~ glj(2--21j) slj 

~=1 f2,r(2) f (2)  =f2,x()O= r2 
F[ g 2 j ( 2 -  22i) s~ 

j = l  

we chose the formulation in terms of the glj- An example for a 9ij that fulfills 

2 1 : (2.2)-(2.5) is gij(2) =g(  ) = ~ - + 2  . Thus , f  has strong peaks of magnitude T~j and 

of multiplicity s2i at frequencies 22j (j = 1 ..... rE) and troughs of magnitude T[j: and 
of multiplicity s~ j at frequencies 21j (j = 1 ..... rl). Below we prove that the class ~T 
contains all ARMA-processes with roots up to I /T close to the unit circle. 

(ii) At first sight the conditions on the existence of the third derivatives seem to 
be inadequate for the treatise of strong peaks. However, the above conditions allow 
e.g. a value ~si Tz for I(logf)"l at a peak (trough) 2ii. 

(2.3) Theorem. Let sl, $2, T6 ]No, 0 < 6 o < 3 '  C~ > 20, Yt be a stationary process 

that fulfills the conditions of  Definition 2.1 (i) and X t be defined by 

P q 

Y, ajX,_j= ~ bjY,_j 
j=O j=0  

where 

and 

p r2 

aje izj= 1--[ (1-qzje-ia2JeiX) s2j 
j = o  j = l  

with 

q r l  

bj eiaj= 1-[ (1 -que-i&JeiX) s~j 
j=O j = l  

Co 1 <qij< l -1 /T ,  [2ilj1-2i2j~l> 23o(mod27r) for (i,,jl):#(i2,jz), and sij<s i. 
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T h e n  

X t  e f ( r~ sl , s2, ~ O, C O ) �9 

Proof. The transfer funct ion of  X t is of  the form (2.1) with A u (2) = 1 - q u e  ix. Direct 
calculation gives 

4 
rc ~-  [(1 - z )  2 +z22 ] < [1 -zeiZ] 2 < (1 - z )  2 ~-Z~. 2 

and we therefore obtain with T u = (1 - q u ) - 1  

LTij (2) 2 < 9U(2)- 1 < 2 ~2 LT,j (2)2.  (2.6) 
Since 

glj()~) = ~1 + qZj _ 2 q i j c o s  2 

also (2.3)-(2.5) are fulfilled�9 

We now derive an expansion for spectral densities of  processes J(T ~ f T "  This is 
the main proper ty  of  the class f T '  Let  rl, r2 ,ml ,  m z ~ N  o with m 1 + m 2 >  1 and 
r3=r2 ,  T s N ,  )~IE//~1, ~_2E[I rz, T l s l R ~  and T 2 f f I R  ~ . We define for d e n  0 

R(2, c~, d, m 1 , m2) = R(2, ~, d, ml ,  m2, ~1, _22, _T1, T2, r l ,  r2) 

ri V ak~+k2+k3L r~ ,~ ~k tL  T ( 2 +  k2 ~ ,  TU, k -- l j l1 2,,\  0~--~2j2)  
j i=l  1_ kl =0 .. . . .  tnl 

i=1 ,2 ,3  k2=O,...,m2 
k3 = 0 . . . . .  max(0, min (~-  1, m2)) 

d<=kl+k2+k3 

�9 LTzj~()c -- ,~2j3) k3 q- {m 1 = 2,  m 2 = 0,  d = 3} lal 3 LT.,(2-- ) - 1 j l ) 2 ]  �9 

(2.4) Theorem. Let  X t e f ( T, sl , s 2, Co, 6o) with spectral density f ,  transfer function 
A, and fourth order spectrum f4. Then we have for  d E {0, 1,2, 3} 

(a) f ( 2 )  - -k :0  f ( 2 )  k!  4 -O[R(2 ,a ' f ' 2 s l ' 2 s2 ) ] '  

A (2 + ~) _ 1 = O [R(2, ~, 1, sl,  S2) ] (b) A(2) 

and 

f4(71,72, Y3) 
(c) - O [R (fit, 71 - fix, 0, s I , Sa) R ( -  fit, 72 + ill, O, st ,  sz) 

f (flx) f (fl;) 
�9 R(&, ~3-&,  0 , s l , s g R ( - & ,  - 7 1 - y 2 - ~ 3  + & ,  0,sl, sg ]  

The O-terms depend only on s 1 , s 2, C O and ~o. 

We should note that  the remainder  terms in the above expansions are usually not 
small. The remainder  term is for  example large in (a) i f f  has a strong peak at 2 + c~ 
and is smooth at 2. 

3. High Resolution Window Estimates 

In this section we prove that  the window estimate (1. l) with a suitable data  taper  and 
a suitable local bandwith selection is a high resolution estimate. 
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3.1 Data Tapers 

As we will show a good taper is for example of the form ht, T=h ( T )  where h is 
\ - /  

sufficiently smooth, expecially at 0 and 1 (which is not fulfilled in the nontapered 
case h(x)=Iro,1)(x)). This smoothness is determined by the 'degree' of the taper 
defined below. 

(3.1) Definition. Let k 6 No and lc ~ [O, 1/2 ). Suppose ht, r = h T (  T )  is a sequence of 

data tapers with hT(X)= 0 for all xr  [0, 1) that fulfills the following conditions. 
(i) hr is ( k -  1)-times continuously differentialbe (in the case k = 1 we assume 

continuity and in the case k = 0  we make no assumption). 
(ii) There exists a finite set PT={par  ..... P~T) such that h T is (k+l)- t imes 

differentiable in all x ~ PT. 
(iii) Let SIT:= lira h~)(y) - lim h~)(y). There exists a c > 0  such that 

Y ~ PJT Y T p jT  

~, S~T >= C for all T~ N. 
j = l  

(iv) H2, T ~ T and D(Tg): = sup [h(~)(x)l + sup Ih~+l)(x)[ < k T  ~ with ~ ~ [0, 1/2). 
XCPT x C P T  

Then we say that the taper (the sequence of tapers) is of degree (k, x). 
In the non-tapered case ht, r=Zro.~(t/T) the degree therefore is (0, 0). 

(3.2) Example (Polynomial Taper). The function 

4~(x/e)~fl  - x / e )  ~, x e [0, e/2) 
h o(x) =. ~, x e [e/2, 1/21 

hQ(1 - x ) ,  x e (1/2, 1] 

is ( k -  1)-times continuously differentiable and (k + 1)-times differentiable in x r P 

= {0, 0/2, 1 - ~/2, 1 }. Thus, the taper ht, r = ho where 0 is fixed has degree (k, 0). 

Furthermore, we have sup ]h~e)(x)l<Ko-l(O<_E<2k) with K independent of 0- 

h t Thus, if e.g. ~ = Q r = T  -~/(k+l) the taper t,r=hoT has degree (k, tc) with 

TH4 r 
h~.(x)~)~(o,1)(x ) and lira Ha ' = 1 (cp. the discussion below Theorem 3.6). 

T--* oo 2, T 

Another example is the Tukey-Hamming taper (cp. Dahlhaus, 1988, Ex. 5.2). 
We now state a fundamental inequality for data tapers. Let 

T - 1  

H~r)(2)= ~ h~Texp(--iAt ) and HT(CO=H~T)(g). 
t = 0  

(3.3) Lemma. Let k ~ No, tc~ [0, 1/2) and (ht, T) T~N be a sequence of  data tapers of  
degree (k, ~c). Then there exists a constant K6  IR such that for  all ~ ~ IR and T6 N 

[HT(~)]/H~f~ < KT-k-1/2 +~LT(~)k + I . (3.1) 

Proof. The lemma is proved in Dahlhaus (1988, Lemma 5.4). 
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In practical situations we do not want to drop the first observation X o 
completely which would happen by using the taper ht, r =hT( t /T  ) with hT(0 ) = 0. 
One therefore chooses in practice the taper ht, r = h r ( ( t + l / 2 ) / T )  which also ful- 
fills (3.1). 

3.2 Local Bandwith Selection 

Another ingredient of high resolution window estimation is the bandwith selection. 
The usual arguments for bandwith selection are as follows. Under suitable 
regularity conditions one obtains 

EFT().) I = N _  2 f"().)  1 
f(),) f ( 2 )  "2 S a2 W ( a ) d a + o ( N - 2 )  (3.2) 

and 

fT(2) N 2 ~ z S W ( ~ ) 2 d ~ - k - o ( N ) .  (3.3) 
var f (2 )  -- T 

Minimizing the relative mean square error with respect to N then leads to the 
optimal (local) bandwith 

where 
BT "=N-1 

N=cwT1/5 f" (2)  2/5 
f (2 )  " 

(3.4) 

with a certain constant c w depending on W(c0. If f " (2)  = 0 one has to make a higher 
order expansion for the bias which leads to a lower rate than T 1Is for N. 

In the class 5Y r introduced in Sect. 2 the bandwith selection is more difficult. 
f"(2~ 

Firstly, J "-" may increase with T. From (2.2) to (2.4) we see that frO.)  may take at 
f ( 2 )  f ( 2 )  

sharp peaks the value T 2. The above Definition (3.4) then would lead to N ~ T  and a 
bandwith B r T-1 which is in accordance with our intuition. However, this causes 
considerable technical problems since the usual assumption B T T-* ov is violated. 

f(-~, ,  ). 
Secondly, the expansion (3.2) for the bias is only good i f ~  is approximately the 

same over the whole range of the bandwith. In the class ~T this is not true. Consider 
for example an AR(I)  process with root pT = 1 -- 1/T and spectral density 

f ( 2 ) = 2 ~  ]1--preiZ[ -2 . 

f"(O) f"(2~ 
Elementary calculations give f ( ~  / 2 T ( T - 1 ) a n d ~ f ~ = O f o r [ , ~ l ~ 3 - 1 / 2 T  -1 �9 

This means that the maximum and the point of inflection are less than T -1 apart 
(less than one Fourier frequency !) while the bandwith selection (3.4) would lead to 
N ~ T ( B T  T -1) at 2 = 0  (which seems to be reasonable) and to N = 0  (BT=oe;  
practically to a large bandwith) at 2 = 3-1/2 T -  1 which dearly is a bad choice. 

Thus, we have to use a bandwith B T which is not too large in the neighbourhood 
of strong peaks. One way to guarantee this is to incorporate the first derivative into 
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the bandwith selection. A bandwith that fits our needs is 

B T = N -  1 with 

U = U ( T , f ,  2) = c T  1Is {](log/)"l + ( log / )  '2 + 1} 2/5 
(3.5) 

with an arbitrary fixed constant c>0.  Since f " (2 )=( log f ) "+( log f ) ' 2 ,  this 
f (2)  

bandwith is close to the bandwith (3.4) if (log f ) " >  0. 
For the derivation of the high resolution property of the window estimate we do 

not need the special form (3.5) but only the following two properties of this 
bandwith. 

(3.4) Lemma. There ex&t constants C1, C a only depending on sl , s2, C O and 6 o such 
that we have for the bandwith selection (3.5) 

and 

2 , 2 / 5  

N = N ( T ' f ' 2 ) < C I  T1/5 i : ,  ~ j=l ~' LT'j(2-- '~J))  

N =  N ( T,f,  2) > C e T 1/5 max LT,~( 2-- 2ij) 4/5 
l , J  

(3.6) 

(3.7) 

uniformly for all spectral densities f x  of processes X t ~ Y'(T, sl, s 2 , 6 o, Co) (with Tij 
and 2ij as in Def. 2.1). 

(3.5) Remark. Since the bandwith (3.5) depends on the unknown spectral density 
this bandwith selection is not very helpful in practice. In our simulation (cp. 
Sect. 4.1) we have used this bandwith where f was replaced by a preliminary 
estimate. In order to get a high resolution estimate we only need the properties (3.6) 
and (3.7). Therefore, any other estimate with these properties would do. It would be 
very interesting to know whether practical suggestions such as using a bootstrap 
technique for bandwith selection (cp. Franke and H~rdle, 1988) will lead to a high 
resolution estimate in the sense of this paper. 

3.3 Convergence of  High Resolution Window Estimates 

We now discuss the properties of the window estimate fT (1) (cp. (1.1)), where 

WN( , )=NW(Na  ) with a function W : l R ~ [ O , q ] ( q  >0) of (3.8) 

C2 

bounded variation with W(fl) = 0 for Ifll > c2 and S W(fl)dfl= 1. 
-- c 2 

Since the periodogram can be calculated rapidly at the frequencies 2 = 2~ with the 
Fast Fourier Algorithm one prefers in practice the estimate 

~ r-1 2ns (3.9) 
fT(2)(2)= ~ IT(2+~slWN(as)' ~ - -  T 

s = 0  

(2 + 2 s = 0 is often excluded in the s u m -  this would not afflict our results). However, 



156 R. Dahlhaus 

due to the formula 

= - -  ~ c r (u) w exp ( - i2u) f~1)(2) 2z u=-(r-1) 

with the empirical tapered covariances 

Z 
O<_t,t+u<=T-1 

and 

w(u)= i W(cOexp(i~u)dc~ 
--TZ 

the estimate f~1)(2) can be calculated exactly. 
We now prove that f~l) and f~z) are high resolution estimates, i.e. that (1.2) has 

rate of convergence T -4/5. 

(3.6) Theorem. Let s1,s2~N0, S I " ~ S 2 ~ I  , 6 0 > 0 ,  C o > l ,  and (ht, r)r~N be a 
sequence of  data tapers of degree (k, ~) with k > max {s 1 , s 2 , s 1 + s 2 - 1 } and ~c < 1/40. 
Furthermore, let N= N(T,f ,  2) fulfill (3.6) and (3.7) (take e.g. (3.5)). Then we have 
for i = 1 , 2  

(a) supIBIAS(fr( i ) )=�88 c~2W(c0d~)2sup i 1 ' ~  ~:T 2 ~cT -~ ~ d2 +~ 

= O(T~4/5) TH4 r N 
(b) sup IVAR(f~ ~ =27t ~ W(e)2de ~ sup i d2+~ 

~r --r 2 , T  ~r'T --~ ~ -  

= O(T-4/5) 

(c) sup IMSE (f~0) = O(T -4/5) 

The same results hold for SBIAS (f~o), SVAR (f~0), and SMSE (f~0). 

The first equations in (a) and (b) are the same as in classical considerations (with 
a fixed spectral density). Especially, we obtain the same rate of convergence for the 
integrated relative mean square error, namely O (T-4/5). However, we note that we 
have made strong use of the local bandwith (properties (3.6) and (3.7)) to obtain 
these quations. 

In the next section we prove that both, the data taper and the local bandwith, are 
necessary for this uniform rate of convergence. 

The factor TH4"r in Theorem 3.6(b) is larger than 1 (Cauchy-Schwarz 
H22,r 

inequality). However, it is not correct to conclude from this that tapering always 
increases the variance of the estimates. We discuss this point in Sect. 4.4. The 

condition ~c< 1/40 allows the choice of a taper with lim TH4,r=2 1 (cp. Ex. 3.2). 
T---~ ~ H2, T 

4. Other Window Estimates 

In this section we describe several negative effects that may occur for window 
estimates if no data taper or no local bandwith is used. 
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4.1 A Simulation Example 

To iilutrate the effects we present a simulation example. T=256 Gaussian 
observations were generated for an AR (14)-process with innovation variance 1 and 
characteristic roots zj = qje ix~ and ffj where 

ql =0.95 21 =0.5 

q2 = 0.95 22 = 1.0 

q3 = 0.99 23 = 1.5 

q4=0.99 24=1.5 

q5 =0.95 25 =2.0 

q6 =0.95 J~6 = 2 .5  

q7 =0.95 27 =2.5 

(The same process was used in (Dahlhaus, 1988) for the consideration of 
nonparametric estimates). Afterwards different estimates of the spectral density 
(based on the same realization of the process) were considered. In all figures we have 
plotted the log spectrum and the log spectral estimate. 

~:l Ii i 
:J 

i~j I ~l': 

il 
l Ii~: 

I(, : /  E.II; 

f .i ~'~.,. . ,~ ?: i I ~: 

�9 ':' ',), 

............ ': ::::" ::.:'-21 / /  

'-,,,,: 

Fig. 2. High resolution 
spectral estimate 

In Fig. 2 we see the true spectral density and the high resolution estimate of 
Sect. 3 with the Tukey-Hamming taper 

ht, r-2-1- [1 - c o s  { 2 n ( t  + O . 5 ) / T } ] ,  

the Priestley window 

3 ( ( 2 )  2 ) 
w(,~) = ~ -  n 1 -  I,~l__> ~ ,  

and a local bandwith of the form (3.5) where (log f ) "  and (log f ) '  were estimated 
from a preliminary window estimate with a global bandwith. Although, the 
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estimate is not bad we feel that some improvements, in particular concerning the 
bandwith selection, could be made. For example, the small sidelobs beside the 
strong peak are disturbing. 

4.2 Global Bandwith Selection 

With a global bandwith selection we obtain only a lower rate of convergence. The 
reason is that we need a very small bandwith B r (a large N) at the peaks which 
prevents a good rate of convergence. This is made precise in the next theorem. 

(4.1) Theorem. Let  s 1 , s2 ~ N ,  s 1 + s 2 > 1, 6 o > O, C o > 1, and (h~, r) rsN be a sequence 
o f  data tapers o f  degree (k ,~)  with k > m a x { s l , s 2 , s l + s z - 1 }  and ~<1/40. 
Furthermore, let N = N ( T )  be independent o f f  and 2 with N ~  co. 

(a) I f  in addition s 1 =0, N T  2K-1 log2 T~0,  0 o < 3  and Co_->20, then there exists 
a constant C> 0 with 

(a.1) sup i (EFT(0(2) ) T2S2-1 

T 4 S 2  - 2  

(a.2) sup IBIAS ( f r  ~~ C N4S~ 
X T  

(a.3) sup IMSE ( f r  (~ > C T -  2/(4s~ + 1) 
Y'T 

f o r  i = 1, 2 and all T >  T O with some T O ~ N.  I f  s 2 = 0 the same holds with s 2 replaced by 

S 1 �9 

(b) I f  in addition 

N is independent o f f  and 2 with N >  T (4~1+~:-2"5)/(~1+4~-2) and N / T ~ O ,  (4.1) 

then we have for  i = 1, 2 

(b.1) sup IBIAS(fr(0)=o(1) 
~f'r 

(b.2) sup IVAR(fr(~ 

(b.3) sup IMSE(fr(~ 
~r T 

All results o f (a )  and (b) also hold for  the sum statistics SBIAS ,  S V A R  and S M S E .  

(4.2) Remark.  As a consequence of Theorem 4.1 we see that the rate of 
convergence of sup IMSE (f r  (~)) with a global bandwith is not as good as the rate 

~fT 
with a suitable local bandwith. Furthermore, the rate decreases with the multiplicity 
of the peak s z . The same holds if troughs are present (s t > 0). We are convinced that 

r 4 s2 - 1 

it is even possible to prove sup IBIAS ( f r  (~)) g N 4 ~ .  However, this would require 
much more calculations. ~" 

Figure 1 in the introduction shows the same estimate as in Fig. 2 but with a 
global bandwith (dashed line). We see that the sharp peak is too broad. 
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(a) 

(b) 

and 
(c) 

4.3 The Leakage and the Trough Effect 

We now study the behaviour of the estimate if no data taper is used. In this section 
we discuss the bias of the estimate and prove that the window estimate with the 
nontapered periodogram may even be inconsistent if the spectrum contains strong 
peaks (leakage effect) or strong troughs. More generally, we consider the tapered 
periodogram where the degree of the taper is too low. 

(4.3) Theorem. Let  (s 1 <= 1, s 2 > O) or (s 1 > O, s 2 <= 1). Suppose that the applied data 
taper is o f  degree (k, 1<) with k < max {Sl, s2, s 1 + s  2 - 1 } and tc < 1/10, and N fulfills 
(3.6) and(3.7) or (4.1). Then we have for  C O >= 20 andO < 30 < n/3 with a constant C > 0 

sup i (Ef(r~ ) ~r~ _ ~ \  f (2 )  1 d2_>_C, 

sup IBIAS ( f r  (i)) _>__ C 
~ T  

sup IMSE ( f r  (~)) > C 
~r  r 

for  i = 1,2 and all T >  T O with some T O ~ N.  The same holds for  the sum statistics 
SBIAS and SMSE. 

Theorem 4.3 together with Theorem 3.6 proves that a data taper of degree (k, x) 
with k = max {Sl, s2, s t + s 2 - 1} is necessary and sufficient for the window estimate 
to have the high resolution property. If the degree is not sufficient we do not even 
have consistency of the estimate in the above sense. Thus we need a certain 
smoothness of the data taper at the ends of the observation domain. In the 
nontapered case we obtain the following result. 

(4.4) Corollary. Let  sl , s 2 e N o, s 1 + s  2 > l, C O >20 and 0 < 6 o < n/3. Suppose that 
no data taper is applied and N fulfills (3.6) and (3.7) or (4.1). Then all assertions o f  
Theorem 4.3 hold. 

, / /  
. J  

...... ,,,,,,,," 

. i 
.::5.' 

> ':::-::L �9 
~ < : , . , ,  .. . : "  

Ill ::::::::::,:: .:fi 

I Fig. 3. Periodogram 
........................................................................................................................................................................................................................... without data taper 
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The corollary establishes theoretically the leakage effect for window estimates 
with the nontapered periodogram (s 2 > 0). The spectrum is overestimated due to 
leakage from strong peaks. From Theorem 3.6 we see that this effect can be cured by 
applying a data taper. 

In Fig. 3 we see the periodogram without a data taper together with the true 
spectral density. The corresponding window estimate with a global bandwith is 
plotted in Fig. 1 (dotted line). The spectrum is overestimated and obviously the 
same will hold for any kernel estimate. 

Corollary 4.4 also establishes theoretically the trough effect (s 1 > 0). Again the 
spectrum is overestimated. It is not possible to find the troughs sufficiently with the 
nontapered periodogram. This effect can be cured by applying a data taper. 

'~i; :::::::::::::::::::::: i!!:::::: 

v 'k ::; : : ' '  

:ii i::' Ii I Irl r~ I~ 
L[dFLI 

Fig. 4. Periodogram 
without data taper 

':: ~ iii :: :" ' : : :  .... 

::i,""~',,,::' . . . .  :~:i!: , ,  0 : ! ' "  .... 

::: L' 

-II I ,:il illl 

.... Fig. 5. Periodogram 
with data taper 
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In Figs. 4 and 5 we see an example for the trough effect. Instead of an AR(14)- 
process we have simulated a MA(14)-process with the same roots. In Fig. 4 we have 
plotted the nontapered periodogram (again unsmoothed) and in Fig. 5 the tapered 
periodogram. The nontapered estimate is not able to resolve the troughs, while the 
tapered estimate clearly is. In the nontapered case the spectrum is overestimated. 
This effect is of importance if one takes differences to remove trends or seasonal 
differences to remove periodic components, and one wants to decide with a 
nonparametric estimate whether the difference filter was too strong. 

4.4 The Variance Effect 

It is a common opinion (cf. Brillinger, 1981, p. 151; Hannan, 1970, p. 272; 
Priestley, 1981, p. 562) that tapering may reduce in many situations the bias while it 

TH4 T 
increases the variance. This opinion results from the term H z '  in the 

2 , T  
asymptotic variance o f f ~  i) (in this paper Theorem 3.6(b)) which is greater than one 
in the tapered case and equal to one in the nontapered case. However, this argument 
implicitely assumes that the variance converges, in the situation where strong peaks 
are present and no data taper is applied, to the same limit as in Theorem 3.6(b) with 
TH4, r / H  2, r = 1. In the next theorem we prove that this is not true. 

(4.5) Theorem. Let s 1 > 0 or  s 2 > O. Suppose that no data taper is applied and N 

fulfills (3.6) and (3.7) or (4.1). Then we have for Co=>20 and 0<6o<7~/3 

sup IVAR ( f r  (i)) > C 
597- 

for  i= 1,2 with some C> O. The same holds for  the sum statistics SVAR. 

We conjecture that the same assertion as in Theorem 4.5 holds if the degree of 
the applied data taper is too low, i.e. if k < max {sl, s2, sl + s 2 - I }. 

5. Segment Estimates 

We now study estimates of the spectral density obtained by averaging periodograms 
over (overlapping) data segments. Let 

1 M - 1  
fv(a)(2)'=~r ~" I~k(2) 

k=O 
with 

Lk 2 

(2) = {2 u H  2 N (0)} -1 ~ - i2 ( t -  Lk)}  ~k , ht- 1.k, NXt exp { . 
t = L k  

The interesting cases are L = N  and L < N  where the segments are overlapping. 
T =  L M +  N - L  is the sample size. We shall call this estimate the segment estimate 
for short. The estimate has been considered by various authors (e. g. Bartlett, 1950; 
Welch, 1967; Brillinger, 1975; Kolmogorov and Zhurbenko, 1978; Dahlhaus, 
1985). For  smooth spectral densities this estimate has roughly the same mean 
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sequare error as the window estimate (with global bandwith). Zhurbenko (1980) 
proves for a particular taper ht, N and Lipschitz-continuous spectral densities that 
the mean square error of the estimate is lower than the mean square error of the 
window estimate with several common windows but higher than the optimal 
window estimate. Furthermore, Zhurbenko (1983) shows by considering a spectral 
measure with a jump that the segment estimate is less sensitive to disturbances from 
outlying frequencies than the window estimate (Zhurbenko, 1983, Theorem 8 and 
Theorem 11). However, he compares the segment estimate with taper to the window 
estimate without taper. 

We now study the segment estimate in the framework of this paper and prove 
that the uniform rate of convergence over the class s T is lower than the 
corresponding convergence rate of the window estimate. We do not make any 
assumptions on the relation between L and N. 

(5.1) Theorem. Let & , s 2 ~ N  with s l + s 2 > l ,  Co>20, 0 < 6 0 <  7 , and C be a 
positive constant. 

(a) I f  no taper is applied, i.e. h , N = l  ( t = 0  ..... N - l ) ,  then 

T 2 
sup IVAR (f~(3))_-> C ~ > C .  

(b) I f  the data taper is o f  degree (k, ~) with k > 1 and N 1 +s~ log Nlog T/T-+O, 
then 

sup IVAR ( f r  {3)) > CT -{1 +4~)/(,+4~} 

~ (5.1) 
>=CT -1/3 i f  ~c<1/8 .  

(c) I f  ht, N=ht,K,p is the Kolmogorov-Zhurbenko Taper (cf. Zhurbenko, 1980, 
(2.10)) with K, P ~ N,  N = K(P - 1), K <  N ~ and N 1 + 8 ~ log N log T/T--+ O, then we also 
have (5.1). 

The same results hold for the IMSE. 

Thus, the IMSE of the segment estimate has a lower uniform rate of convergence 
than the window estimate of Sect. 3. In fact, the rate is even worse. By considering 
an AR(sa)-process in the proof  it can be shown that e.g. (5.1) can be replaced by 

sup IVAR ( f r  (3)) > CT-{1 +4K)/(2 s2 +4~:) . 
,g'T 

By calculating also the bias it is possible to prove 

sup IMSE ( f r  t3)) -->_ C T -  (1 +4~)/{*,2 + 1 +,~) 
XT 

A considerable improvement of the segment estimate may be achieved by using a 
local segment length N depending on f and the frequency 2, e. g. the segment length 
N defined by (3.5). However, we doubt that it is possible to achieve by a local 
segment selection the same rate T -4Is as for the window estimate in Sect. 3. 
Furthermore, a local segment selection is very inconvenient in practice because the 
use of the Fast-Fourier algorithm does no longer lead to any computational savings 
in comparison to an ordinary Fourier transformation. This increases the com- 
putational effort dramatically. 
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6. Concluding Remarks 

In this paper we have introduced a mathematical model to describe theoretically 
nonparametric 'high resolution spectral estimates'. Instead of the ordinary rate of 
convergence we have studied a uniform rate of convergence over a (with the sample 
size T) increasing class of stationary processes. 

By using this model we were able to prove the advantages of using data tapers in 
time series analysis. We have explained the leakage effect caused by peaks in the 
spectrum and the trough effect caused by values close to zero. We could also prove, 
contrary to widespread conjectures, that tapering does not only reduce the bias but 
may also reduce the variance of the window estimate. 

We also demonstrated the advantages of a local bandwith over a global 
bandwith. Furthermore, we have proved that segment estimates have a lower 
Uniform rate of convergence. 

Several problems remain unsolved. For example, the construction ofa bandwith 
that does not depend on the unknown spectral density but on the data (e.g. on a 
preliminary estimate) and that leads to a high resolution estimate in the sense of this 
paper. Furthermore, the paper does not sufficiently answer the question how the 
data taper should be chosen in practise. 

Appendix 

The appendix contains the technical details of the paper. 

A.1 Properties of the Function LT(tZ ) 
(A.1) Lemma.Let LT(a)bedefinedasin(1.2),r,s>Oand~,fl, ?, v,#~IR. Weobtain 
with a constant K independent of T, T 1 and T 2 

a) LT(C 0 is monotone increasing in T and decreasing in cr ~ [0, ~z]. 
b) S Lr(  ~)rd~<-KTr-1 for all r > l .  

11 

c) y LT( )d -<Klog r 
/ /  

d) re-1 < Lr(~) 
e) I~ILT(~)<I for I~1<~ 

f) Lr,(vfLr:(tOS<LT1 LT2(IX)~+Lrl(v)rLT2 for I'h, I~[<~ 

g) Lr(ccO < KcLT(~ ) 
h) ~ LTI (~+fl)Lr2(fl)d fl _~KLrnin(rl, T2)(~) max (log T1, log T:) 

H 

i) LT(7)<KLr(fl) for all ~,fl with l=-/~l<2rc/T. 

Proof. The proofs are straightforward. Some of them may be found in Dahlhaus 

(1983). To prove 0 consider the cases Ivl > ~ '  ' and I~1 > Iv~l. To prove h) for 
l 

TI<T: consider the cases I~1< T( ~ and I~1> T~ -~ and apply f) and g). 
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A.2 The High Resolution Property: Proof of Theorem 2.4 

Let X t ~ f T "  Then X t has a spectral density of the form f(2)  = h 1 (2) h 2 (~)h o (~) where 
ho(2 ) =f~, r(2) and 

h~(2) = gr 2u) ~ (-i),+, ( i= 1,2). 

We start by proving similar assertions as in Theorem 2.4 for h 1 and h 2 separately. 
Let r l , r 2 , m l , m z 6 N ,  T 6 N ,  _21~H ~, 2_z ~ / /~ ,  _T1 61R~, _T2~IR ~. We define for 
d~N0 

R 1 (2, 0~, to, ml) = R  1 (~, ~, to, m 1 , rl,  2~, rl) 

= ~ [;~=e[~[kLTu()~--),u)k-t-{ml=2,[=a}'otl3LTa30~--J,U)2] 
j = l  

R z (2, ~, to, m2) = R 2 (2, c~, t ~ mE, r2, ~_.2, T2) 

-- ~ ~ I~lkz+k3 LT:j~(X + O: -- 22h) a2 LT~j~(2 -- 22ds) ks 
k Jz ' J3  =1  / 2 = 1  . . . . .  m2 

[ k 3  = 0 . . . . .  max(0, rain ( g -  1, m2)) 
L d-<k2 +k3 

(A.2) Lemma. We have for  to-- 1,2, 3 and i = 1,2 

hi(~Av~) g-1 h}k)(~) ~k 
h~(2) 1=g=1 ~ h~(2) k! t-O[R~(2, a,d, 2s,)]. 

The O-term depends only on s 1 , s 2 , C o and go. 

Proof. Let i=  1. Then 

mj(,~+cO g~j(,~) c~2 gi'j(~.) 
gu(2) l = e  ~ - ~  2 gu(2) 

The relations 

(2.3) and (2.4) imply 

@ xj)-l= 2 Yl 
= 1  M ( { 1  . . . . .  n} j e M  

M + ~  

I- O [1~13 LT,~ (,~)2]. 

(xj-1), (A.1) 

Olj(;~ + ~)slj 1 = ~  (~ 4 ~2 (olj(,~)s,j),, 
g1~(2) sl' 2 gu(2) s', 

[-2su 1 + O |  2 I~[kLT1j('~)k+{sl~ = 1} [~IaLT~j(2) 2 
Lk = 3 

(A.2) 

Lemma A.l(f) now implies with (A.1) the result for to= 3 and with (2.3) and (2.4) 
also for d = 1,2. 
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h~(2) 

The case i = 2 is more difficult. Let h a = h ;  *. We obtain as for i = 1 

h a (2) h; (2 + ~) ~2 h;' (2 + ~) 

h~(2+~) ~=(-~) h3(2+~ ~ 2 h3(2+~) 

2 1 + 0  ~ I~lkLrz~(2q-~--22j)kq-{s2=l,~=N}l~[3Lr~j(2q-~--2zj) 2 �9 
L)=i k = 3  

This implies the result for # = 1. We now replace a and by functions 
depending on 2. Below we will prove /~3 (Z + a) a t ~ ) 

/h~(2+~) ' 
= ~ ~  ~(~2-~)"]=O[R2(2'='2'2s2)]n 3[z)/  (A.3) 

which implies the result for E = 2. Similarly, it can be shown 

and 

2 fh'3' (2 + cr h~ (2)~ = O [R2 (2, cr 3, 2s2) ] (A.4) 

= I ~  g(2)) Lh3(,t) kh3(2))J 

Since h~ 
h2 

We have 

Since 

h~ and h2' = hd , ~/ /h~ ~2 
ha h2 h3 e z ~h j )  this implies the result for f = 3. 

' 2  ' 2  ] 

= o [1~1 = Lr=  , (2 + ~x - 22fl 2 + I~1 e L:r=, (2 - ,h  j) Lr= s (2 + o: - )-Eft 

+ I~[ 3 Lr= , (2 - 22j)LT2 , (2 q- o: - -  22j) 2 ] (A.6) 

we obtain (A.3). 

Proof  o f  Theorem 2.4. (a) The result follows with Lemma A.2 and (A.1). 
$1j 

(b) Let x=l~[Lrl j(2 ) and y =  ~ x k. In (A.2) we have proved that 
k = l  

gl~(2+~)=lJ 1 z=, gaj(2)=,J < K k ~  ~ x k < K y + ( K Y )  z.  

This implies 

Alj(2+~) =1J-1 < 2 K y .  
Alj(2) 
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In the same way we get 

A2j(2) s2~-1 __2K s2j 
A ~ )  k~l I~lkLr2/2 + =)k 

and we therefore obtain with Lemma A. 1 (f) and (A. 1) the result. Since (b) implies 

A(2+~)  =O[R(2,  ~, 0, SI,S2) ] 

we also obtain (c). 

A.3 Local Bandwith Selection and Proof  of  Lemma 3.4 

(A.3) Lemma. Let W: lR~[0, q ] ( C l > l  ) with W(fl)=O for I/~l>c~, 
C2 

W(fl )d~= l, and WN(~)= NW(NT).  Then 
- - C 2  

(a) W N (~) <= c~ + 1 N -  k + 1 LN (~)k for all k ~ N .  

I f  in addition T ~/s LT~ (2) 4/5 <--N <- T with T 1 <: T, then 

Lr~ (2) r 
(b) i Ic~[kLr~ (2 +~)~ WN(cOdc~< K ~ logN 

and 

(c) i le[kLrl (2 + e)eLr (/~ + ~)2 WN(e)d ~ 

LTI(2)  t 
<=KpNI-1/'T 1+1/p Nk logN 

for p > 1 and all k, ( E N O with constants that are independent of  N, T and 2. 

Proof. (a) is straightforward. To prove (b) we start with T 1 =< N. We obtain with 
Lemma A. 1 (i) 

c2/N 

i S 
- -  r* - -  c 2 / N  

LT1 (2y  
<=KLTI(AY i Ic~[kWN(~) & < K  N k 

If N=< T1 _-< T we consider the three cases 12[ <=2c2/T1, 2c2/T1 <= [2[ <__2c2/N and 
[21 >= 2c2/N separately. We omit details. 

(c) We apply H61der's inequality and obtain as an upper bound 

The second terms is bounded by 

KN 1 - ,/p T 1 + 1/p 

which implies with (b) the result. 



Nonparametric High Resolution Spectral Estimation 167 

Proof of Lemma 3.4. We have 

2 < j ( a - & s )  
(log f ( 2 ) ) ' =  ~ ( -1 ) /+ ,  sij + (A.7) 

~=l j~l gu (2 -2u)  fr(2)  
and 

5ij  - -  i=1 j=l LOIj(2--2ij) t ~ )  J - l - ~ - - t ~ )  

(2.2) to (2.4) and Lemma A.l(f) now imply (3.6). 
Before proving (3.7) we make a preliminary consideration. If [4-  2u[ > go for all 

i,j then (2.2)to (2.4)and Lemma A. l (e) imply  (n0te that ,rll, lrz,<~o ) 

and 

Let 

I(log f(~-))'I =< (sl +s2) ~-o2+ C~ 

2rcC~ 4 
I(log f(2)Yl < (Sx +s2) --~--~ +2Cg.  

2=C~ r~C 2 
Ko=max[(s, +s2) ~-o +2C4, (sl +Sz)-~o +C2, ~-~o]  

( A . 8 )  

(A.9) 

and C 2 = {64 CoS/~}-a. To prove (3.7) we now consider three cases. We start with 
1 1 

1 2 - & j l < a : - S C 4 ~  ~ and Ti~>8C4Ko for some i,j. Since Ko> 4 we have 
- - =8C Ko 

5 =< go and therefore 12--2kel > go for (k, #)=t= (i,j). Thus, 

C a max Lrk,(2-- 2ke) z = C z Lr, i ( 2 -  ,~ij) 2 . 
k ,d 

Furthermore, we have 

and 
(log f(2)) '  = ( -  1)i+lsij{Y(,,~) -t- R~I) (,,],)} 

(log f(2))" = ( - I f  + is u {x(2) - y ( 2 )  2 + R~2)(2)} 

w i t h  x (2) = g'i} (2 - ~ . i j ) / g i j ( 2  - 21j) ,  y ( 2 )  = O ~ j ( x  - ~ . i j ) /g i j ( ,~  - 2 u ) .  Analogously to 
(A. 8) and (A.9) we obtain for the remainder terms IR}))(2)[ < Ko, and [R}~ )(2)[< K o. 
Elementary calculations give 

I(log f(2)) ' l  + (logf(2))'2 > x (2) + 2y (2) R~)) (2) + R})) (2) 2 + R~ ) (2). 

(2.2) to (2.5) imply 

and, since g > T j  1, 

ly (2)12 ~ C4Lru(2 -2u) 2 < C 6 Ix (2)1 

Ix(2)l > 64C6K~. 

(A.IO) 
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This gives 

21y(Z)R~)~(Z)l<= Ix(2)l IR}))(Z)I2<=Ix? )1 and 
4 ' 

i.e. (A.10) is larger than ~x(~4)I;>CzLTu(,~-Zid)2. 

1 
If ]Z-2ijI<6-SC;,Ko and Tij<SC~Ko we have 

1 >= C z T 2 > C a LT, j (2 -- 2ij) 2 

which implies (3.7). If  12-  2kel => 6 for all k, ~ we obtain 

1 
C 2 max LT,<(Z--Zk,e)2<=C2 ~ =  1 

k,g 

which again implies (3.7). 

IR}j%~)I = Ix_~)l, 

A.4 High Resolution Window Estimates 

Proof of Theorem 3.6. Let i= 1. (a) We have with KT(~ ) = {2 ~zH2, T}-I [HT(~)]2 

f(Z) -,, -.  L 7U7 1 WN(~)KT(~)d~d~ 

-.  L 7U)) -. L f ( ~  1 Kr(a)dad fl (1.11) 

I-f('~+~<+'8) 1 + i_= WN(fi) -~i L- f ( - ~  1 KT(a)dctd fi (1.12) 

+ i [s('~+n) 1 -~ L f U )  i WN(fl)d fl (A.13) 

We obtain with Theorem 2 . 4 ( a ) ( f =  1), Lemma 3.3 and Lemma A.1 

-.i L ~U~7~f(z+a+fi) 1]Kr(cOd a 

ri 2si i 
<=K ~ ~ T-(2k+I-2~)LT, j,(Z+fi-Zlj,) kl 

j i= l  ki=O -re 
i : 1 , 2  kl +k2=>1 

�9 L r2j:(2 + fl + ct - Z2j2)k2LT(~) 2k +2-kl -k2da 

<_KT2~ 1 ~  i {LT, s , (Z+ f i -Z i j , ) L r~ j~ ( ) ' + f l+a -22 j~ )  

-[- L T ( O 0 [ L Tl j, ( Z -I- [} --  Z U ~ ) -I- L T2 h ( )c -t- fl -t- o~ - -  )~2 j 2 ) ] } dor 

<_Kr2~-~logr~ {Lrlj,(2+fi-2u~)+Lr~s,(Z+fi-Z2j2) } (A.14) 
J~ 
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Using Lemma A.3 we therefore obtain as an upper bound for (A.12) 

KT2~-~ l~ 2T Z { L T ( 2 - 2 ~ j ) + L r ( 2 - 2 2 j ) }  �9 
J~ 

Thus, the integrated square of (A.12) is with Lemma A.l(f) less than 

Jl 
<=KT 4r'-I log 4 T=  o(T-4/5). 

With (A. 14), Theorem 2.4(a) (Y = 1 ) and Lemma A. 1 (f) we obtain as an upper bound 
of (A.11) 

2sl 

Jill  L~j~(2- 2xj~) 
Ji ki =0 - g  

kl + k 2 > 1  

�9 L r . , (2  + fl - 2~j) ~ {Lr.~(2 + fl - 2 . )  + L r~,,(2 + fl - 2 ~ ) }  WN (fl)dfl .  

Lemma A.3(b), the Cauchy-Schwarz inequality, and Lemma A.l(f) lead to the 
upper bound 

Lr~s, (2 - 21j,) kl Lr~j2 (2 - 22j~) k~ 
KT2~-I (log2 T) Z Z Ukl +k:-~ 

Ji kl+k2>= 2 

From (3.7) we have 

Lr ~j (2 - 2ij) k/5 L T ~ ( 2 -  2~J)k --<K _<K. (A.15) 
N k - Tk/5 -- 

Thus, the above expression is bounded by 

KT 2 ~-~ (log 2 T) ~ {Lrlj, ( 2 - ) q  jl) q- Lr2j2(2- 22j2)} �9 
Jl 

Therefore, we obtain that the integrated square of (A.11) is o(T-4/5). Theorem 
2.4(a) (~ = 3) implies that (A.13) is equal to 

2 N  2 f (2 )  ~ e2W(e)de+O R(2, e, 3,2sl,2s2)WN(e)de . (A.16) 

The same arguments as before imply that the remainder is bounded by 

Klog T ~ ~ Lr~(2--21J~)k'/SLr~s2(2--22J2)k~/5 
T(k~ +k2)/5 

j i  kl = 0 , . . . , 3  
k 2 = 0  . . . . .  3 
kl +k2_->3 

The integrand square of this expression is o(T-4/5). Using Lemma 3.4 the first term 
in (A.16) is bounded by 

KT -2/5 ~ L r , j ( 2 -  2q)2/5 
i j  

whose integrated square is O(T-~*/5). Since all constants depend only on s~, s 2, 6 o 
and Co part (a) is proved. 
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(b) Let 

%(< 7) = H r ( ~ l  - 7 1 ) H r  (~1 - ~ 2 ) H r  (~2 - ~ 2 ) H r ( ~ 2  - ~1) .  

By using the product theorem for cumulants (Brillinger, 1981, Theor. 2.3.2) we 
obtain 

- g  

_. ~ f (2 ) f (2 )  

f(~l)f(72) + ~ w . ( z -  ~1) w.(,~ + ~a)0~(~, ~)&& 
//4 f (2 ) f (2 )  

A (~',, ~'2, ~3) WN(,Z--oq) WN()~-~2) +.,5 
�9 Hr(cq - 71)Hr(- cq - Yz) 

�9 Hr(a2-ya)Hr(-%+7l+~2+Ta)dTde]d2. (A.17) 

With (A.I) the first term is equal to 

{2~Hz,r} -2 WN(2-- cq) WN(2--c~2)Or(ct, 7)d~dad2 (A.18) 
I i 5  

MC{I . . . . .  6} i / 5  j 

M,~ (A.19) 

where 
f (a l )  

b 1 - 
f (2)  

1 b2 f(ct2)_l  , [A(~,t) 
' = f ( 2 )  ' ~  

- b A ( ~ , ) [  b4= A(~I) - 1 ,  b 5 {A(72)[ 1 and 1 
A ( ~ 2 )  IA(~2)I ' 6 =  ~ - " 

Consider a summand of the above sum with M c~ { 1, 2} 4= qS, e. g. with 1 s M. We have 
with Theorem 2.4(b) 

A(~I) 
( - ~  -1)Hr(~  - YO/H~2T 

= 0  T -112+~ ~" • T kLr(c q - - • 1 )  k + l - k t - k 2  

j i  kl = 1 
k l + k 2 _ - > l  

" L r ( ~  - ~ a )  k' Lr (~  - & s f ~ l  
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and therefore with LT(2 ) < T 

sup ([b3 f, l)lLrr ( ~  - 71)1//-/~!~ 

<--KT-1/2+~(~ T-1Lr(cZl-21j,)Lr(Y1-22j2)q-Lr(~Zl-ya)). 
- -  , \ J i  

Similarly, we obtain 

sup (Ib~l, 1)[HT(~I -~2)[ /n~j~  

<=KT-1/2+~(~j~ T-1LT(~ 

sup (Ib 5 I, 1)lHr (~2 - ?2)[/H~f2T 

<=KT-1/z+K(~3~ T-1LT(O;z--21jl)LT(,2--22jz)+LT(O~2--,2)) 

sup (Ib6l, a)IHT (Y2 - -  =a)I/H~/2T 

K T - 1 / 2  + r< (E  r-1 Lr(a ' _ 2131 ) Lr (?2 -- 22j2) + LT (~1 -- 72)~ 
\J, / 

which implies with Lernma A. 1 

2, T f sup ([bjl, 
/ /2  j = 3  

<=KT-2 +4~ log2 T ~, [LT(~I -- 72) 2 +Lr(oq -- 21j~) 2 + LT(~2 - 21j~) 2] 
Jl 

Therefore, the corresponding surnmand of (A.19) is bounded by 

KT4~-21~ 2T I ~ [cq -21 k~+k~ 
//3 ki=O 

kl +k2 >_-1 

L r ~  (2 - 21j~) k~ L v ~ ( ~  - 22~) k~ WN (~1 - 2) 
2Si 

�9 Z Z 1~-21~'+~L~.~(~-~ljf 'L~,(~-~,) '~ W~(~-2) 
j~ di = 0 

�9 Z {L~(~, - ~)~ + LT(~I --'h j r  + LT(~ -- 2 1 j y } ]  d~d2 
J5 A 

Lemrna A.3(b) and (c) (p = 10) now leads to theupper  bound 

fll f 2 S' L T~ s' ( 2 - KT~-Zlog2 T. Tl+l/v. Nl-1/p ~ ~ -2~J' )kl LT~(2--22j~) k~ 
Nk~ Nk~ L j i  ki=O 

k~ +k2_->1 

�9 Y Y L:r.~(2-2.y'  L~,,( - . y ~  d2 
Ji r  Nr e 

171 
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By using (A.15) this expression is bounded by 

< K r 4 ~ - i + l / v  ~ i L T ( 2 - X i s ) d 2 = ~  �9 
i,j -~ 

Consider now a summand with Mc~(1,2} = 0  and Mc~ {3,4,5,6} 4=~b, e.g. 3~M.  
We obtain in the same way 

Ib3Hr(~  - Vl)[/H~2! 2 <=KT- ~/2 +~ ( ~  T - ~  LT(~ --)~,j~)LT(?~ --'~2j2)) 

and therefore 

H~-i2r f I b a [  sup(Ibjl, 1) 10r(~,7)ld? 
112 "~ 

< K T - 2  +4-,,1092 T ~ [LT(~ 1 -- ~2) LT(~I -- 21j~) + LT(~I - 21j,)Lr(e2 -- 21j~) 
J~ 

+ LT(el  - 2t j~) LT (e2 -- 22j~)] �9 

Integration over e~ and e2 in the corresponding summand in (A.19) gives with 
IWN(c01 <KN,  (3.6) and Lemma A.1 as an upper bound 

KT4""-21~ 4 T  i NZd2<=KT4~-l l~  4 T = ~  

Therefore, (A.19) is of order o(T-4/5).  (A.18) is equal to 

n 2 .  2 j" WN(~-O~l) W N ( 2 - ~ e ) l H ~ r ) ( ~ - o h ) 1 2 d m d 2  
//3 

= 2~zH4,T/H~,T [. W u ( 2 - ~ ) 2  cl~d2 + R (A.20) 
H z 

with 

]R ] <-<_KT4~- 21og2 T 
H a 

~ KT4~-2 log 2 T 
l/a 

WN(2 - ~1) [ WN (2 - ~2) - WN( 2 - ~1)ILr(~l - ~2) 2 d~d2 

N] WN(2 -- ~2 -- ~1) -- WN(2-- o~l)lLT(o~z)2 d~d~. 

Since W is of bounded variation we obtain 

,f ]WN(2-- ~2 - - e q ) -  WN(A- cq)]d~ 1 ~KNIct2] , 
// 

i.e. the whole expression is bounded by K T  4K-2 log 3 T~ N2d,~=o(T-4/5) .  
(A.I 8) therefore is equal to 

(2~z) ( l im  TH4 T~ " N 
\ r-~ o~ - ~ 

By the same methods we obtain that the second summand of (A.~7) is of order 
o (T-4/5), and, by using Theorem 2.4(c), that the third summand of (A. 17) is also of 
the same order. (c) is an immediate consequence of (a) amd (b). 
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The proofs for i = 2 and for SBIAS, SVAR, and SMSE are completely analogue 
to the proof for i=  1. For example in (A. 11) to (A. 13) we have sums over Fourier- 
frequencies instead of the fl-integrals. We can make use of Lemma A. 1 (i) to replace 
these sums by the corresponding integrals in the estimations. 

A.5 Properties of AR(s)- and MA(s)-proeesses 

The properties of nontapered estimates and &estimates with a global bandwith are 
proved in Sect. 4 by considering AR(s)- and MA(s)-processes. We now derive some 
properties for these processes. In the next section we study the function H r (e) in the 
nontapered case. 

(A.4) Lemma. Let J(t be the Gaussian A R  (s)-process with s-times the characteristic 
root PT = 1 -- l /T,  innovation variance 1 and spectral density f Then 

/'C 

(a) X t ~ g ( T , O , S ,  6o,Co) i f  0 < 6 o <  ~- and Co>20. 

f (2  + a) / ~ \  f2 , -  1 ) 
(b) ---l=2={2,T}2Ssin2*t~)f(,Z+~)+OtZ= l f ( ~ )  .= I<'LT(;C+~)'  

(c) /f /T(2) is the periodogram with a data taper of  degree (k, ~c) where k =  s -  1, 
then 

_~ \ f (2)  -~ - .  ~ f - ~  1 Kr(a)dad2 

is bounded from below. 

Proof. (a) follows from Theorem 2.3. To prove (b) we note that 

1 - p e  ia e i~ - 1 (A.21) 
1 - p e  "z+~) - 1 +pal z 1 - p e  i(~+~) 

since I1 --pTei~[ 2 --<KLr(Y) 2 this implies (b). Assertion (c) is derived in the proof of 
Theorem 7.1 of Dahlhaus (1988). Note, that EOT--O o considered in the cited 

) theorem is up to a constant equal to -~ \ f(,~) 1 d2. 

A.6 Elementary Properties in the Nontapered Case 

Let 

Ar(~): = e x p ( - i a t ) =  e x p ( - i a ) - I  =exp - i ~ - -  ,=o sin(c~/2) 

=HT(~ ) if hi, T=1 ( t=0  ..... T-- l )  (A.22) 

(A.5) Lemma. Let hi, T=1 ( t = 0  ..... T--l) .  Then 
(a) Hk, T = T  for all k e N ,  
(b) IAT(a)I<=KLT(a) with a K>0,  
(c) IAT(~)F>KT for all [~]<~r/T with a K > 0  
(d) I f  PT = 1 -- 1/T, then 
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1 - p r  e'~ A T ('~ - -  ~ )  = A T (q] - -  GO +PT eiv 1 - -  e-  '(~ - ~) T 
I --pT e'r 1 --pe i~ 

= 0 [LT( ~ -- o 0 + LT(7)]. (A.23) 

Proof. All proofs are straightforward. (d) follows with (A.21) and (A.22). 

A.7 Global Bandwith Selection 

For the proof of Theorem 4.1 we need the following lemma, It is the analogue result 
to Lemma A.3, now for a global bandwith. 

(A.6) Lemma. Let WN be defined as in Lemma A.3 and N < T. Then we have for all 
k e n  o and f e N  

~" LN( )Ot +log T} 

Proof. By considering the cases 121 < N  -a and 121 > N -1 we obtain the result with 
Lemma A.3(a) and Lemma A.l(b), (f). 

Proof of  Theorem 4.1. (a.l) Let i=  1 and s 1 =0. Similarly to (A.11)-(A.13) we have 

f (2)  - .  L f()l,) - .  L~ ~ 1 WN(fi)dfid~ 

- , . ,  - ,  L- ~ i w,,(~)al3d~ 

- ,  [. ~ 1 Kr(a)da.  (A.24) + 

Analogously to (AA4) we get 

f ( 2 + ~ )  1 KT(~)<-KT 2~=1 ~ LT(2+~-22~2)Lr(cO. 
f(2)  - j2 

rr2, -q 
Thus, the 2-integral over the third term is O [T 2~- ' log 2 T] = o [ ~ j .  We obtain 

with Theorem 2.4(a) (~= 1, ml =0) and Lemma A.6 

~f(2+c~+fl)  3 I /T \  2s2-1 

--re 

Therefore, the 2-integral over the first term of (A.24) is 

O IT2~log2 T2S2-2 3 fr2s2-1~ 

The k-integral over the second term of (A.24) is equal to 

- .  - .  L ~f-(Z ~ WN(fl)dfid2. (A.25) 
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We now consider the spectral density of the Gaussian AR (s2)-process with s z times 
the characteristic root PT = 1 -- 1 /T  and innovation variance 1. By using Lemma 
A.4(b) and Lemma A.6 (A.25) is equal to 

2re {2Pr} s~ -,~if(2) d2 -,~i sinS~ W N ( f l ) d f l + O \ - N ~  j �9 

i T 2 sz - 1 
Since f (2)d2>=cT 2s2-1 this is bounded form below by c N2S~ with some 

constant c > 0. The case i=  2 is proved analogously. If s2 = 0 we consider in the last 
part of the proof  a MA (s~)-process with s I times the characteristic root P T = 1 - -  1 / T  

and obtain the same result as before. (a.2) is an immediate consequence of (a.1) 
(Cauchy-Schwarz inequality). Furthermore, we know for a process with fixed 

N 
spectral density (independent of T) that IVAR(fr(~ -. This implies 

sup~r~ IMSE(f(r i ) )>=cmax\  ' = 

(b) can be checked by a straightforward modification of the proof  of Theo- 
rem 3.6 by using Lemma A.6 instead of Lemma A.3(b). We omit details. 

A.8 The Leakage and the Trough Effect: Proof of Theorem 4.3 

Proof  o f  Theorem 4.3. Let i = 1 and (s 1 = 1, s 2 > 0). Then k < s 2 . Let X t be the 
Gaussian AR(s)-process with s = k  + 1 times the characteristic root PT = 1 - 1 / T .  
Theorem 2.3 implies X, 6 f (T, Sl, s 2 , 60, Co). We now prove that the ).-integrals over 
(A.1I) and (A.13) tend to zero while the 2-integral over (A.12) is bounded from 
below. We get with Theorem 2.4(a) (Y= 1), Lemma 3.3 and Lemma A.1 

~ ( f ( 2 + ~ + f l )  \ ~ - + - ~  i )Kr(o: )d~ 

2, i <=KT -2"+2"+1 ~, L T ( ~ - ' b o ~ + f l ) J L T ( O O 2 s - J d o ~  
j = l  - - r e  

<= K T  2'~ log T. 

Furthermore, we obtain with Lemma A.3 or Lemma A.6 

i f (~ '+f l )  1 WN(fl)dfld2<-KT -1/5 I 
-- Tr " ~  

which implies that the A-integrals over (A. 11) and (A. 13) tend to zero. The 2-integral 
over (A.12) is equal to 

- ~ -~ k f ( , t )  I Kr(e)  dad2 

which is bounded from below by Lemma A.4(c). This prove (a) for (s 1 =< 1, s 2 > 0). 
If (s l>0,  s2=<l) we use instead the representation (A.24) and consider an 

MA (s)-process with s = k + 1 times the characteristic root P T = l - -  l / T .  Similarly, 
we obtain 
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( f  (2 +a+ f l ) - 1 )  WN(fl)dfi < K ~2' N-JLT(). +a) j 
- \ ~t j = l  

and therefore for the ).-integral over the first term in (A.24) as an upper bound 

Kr2~-2 '+l  ~ i i N-JLT(2)kLT(OO2S-kLT()~+a) jd~ 
j , k = l  - ~  - r ~  

We obtain as an upper bound with Lemma A.l(f), (g) 
2 s  2 s - - 1  

KT2~-2s+l i i Z E N-JtLT().)2SLT().+a))-kLT().)k+JLT(O:)2s-k] dad). 
- r t  - ~  j = l  k = l  

If N is local i. e. N >= c T 1/5 LT (2)~/s from (3.7), this is with Lemma A. 1 (b) bounded by 
KT2,~-4/s. I fNis  global this is bounded by KT 2" +2s- 1/N2S" Thus, the ).-integral over 
the first term of (A.24) tends to zero. 

The ).-integral over the second term is equal to 

i i ) -,< -,< ~ 7 ~  1 WN(fl)dfid2=o(1 ), 

The ).-integral over the third term is equal to 

- .  - :  

which is bounded from below by Yemma A.4(c) (since f - 1  (2) is the spectral density 
of an AR(s)-process with root PT = 1 -- 1/T). This proves (a) for (sl > 0, s 2 ~ 1). 

(b) and (c) are immediate consequences. The ease i=  2 and the results for SBIAS 
and SMSE are proved analogously. 

Proof of Corollary 4.4. Suppose e.g. s 1 >0.  Since the nontapered c a s e  h t , T  = - 1 is a 
data taper of degree (0,0) we obtain the assertion from the relation 

Y(T, sl, s2, ao, Co) ~ f ( T ,  s 1 , 0, ao, Co). 

A.9 The Variance Effect: Proof of Theorem 4.5 

Proof of Theorem 4.5. Let s2 > 0 and X t e f r  be the Gaussian AR(1)-process with 
the characteristic root p T = l -  1/T and innovation variance 1. Again we have 
relation (A.17) with f4(7)=0. The Cauchy-Schwarz inequality, Theorem 2.4(a) 
(C = 0), Lemma A.5 and Lemma A.I (e) imply 

H27~ j f(71)f(72) 
n2 f (a l ) f (~2)  ~/T(a' 7)d7 

= T - 2  ~ {n ~ f(Yi) )!/2 

i , j = l  k = 0  

_<_K. 
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Furthermore, we obtain with Theorem 2.4(a)(~=1), and Lemma 
Lemma A.6 

s W.(2-el)  W.(2 +_e2)dal de2d2=o(1). 
113 \ f ( ,O 2 

A.3 or 

Thus, we get with (A.17) 

var d2={ZnT} -2 ~ WN(2--al)[WN(2--e2) 
- ~  115 

+ WN(2 + e2)] f(71)f(72) f(el)f(e2) ~T(e, 7)dvded2 +o (I) 

which, by applying (A.1) and Lemma A.5(d), is equal to 

T -2 ~ Wu(2-~ t ) [WN(2-ez )+  W~(2+e2)]p~f(7l)f(?2) 
/ / 5  

�9 [1 - e  -"~'-~)r] [1 - e  -i('-'~)T] [1 - e  -i(~-~)r ] [1 -e-"~-'~)rld~ded2 

+OIT-2 //,~ WN(2--a1) WN(2--ez)LT(el-71)LT(71)LT(V2)2dyded21 

+ similar terms + o (1). (A.26) 

The O-term is bounded by 

K T  -1 log T ~ NWN(2-e2)LT(~l)ded2=o(1 ). 
113 

The same holds for all other 'similar terms'. We have 

p~l 
i f(Y) exp (ieu)da = 1 _p2" 

Let w u (u)= i WN (e)exp (ieu)de. Extensive but straighforward calculations show 

that (A.26) is equal to 

i 8 ~2p~ r - 2  (1 -p~)-2 {(wN(0) - wN(T)p~ cos,~T) 2 + (p~w~(0) 

- w N (T) cos 2T) 2 } d2 

2 1 
Since (1 --p2T) = ~ - -  T~-, wN(0) = 1, [WN(T)I < wN(O), and p~ = (1 - l/T)r-+e -1 this 

expression is bounded from below, and Theorem 4.5 is proved. Ifs  2 = 0 and s 1 > 0 we 
consider instead the Gaussian MA (1)-process with characteristic root PT = 1 - -  l / T .  

The result then follows analogously. 
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A . 1 0  S e g m e n t  E s t i m a t e s :  P r o o f  o f  T h e o r e m  5 . 1  

Proof. Following the proof  of Theorem 2.2 in Dahlhaus (1985) we get for a 
Gaussian process 

i //fr(3) (2)'~ ~ f-TfST-] [~n f(yl)f(y2) _~ var\  vv~j /d2={27rMH2'u}-2 3 f (2 ) f (2 )  I H N ( A - -  yx)[ 2 

�9 ]H s (2 - 72)[2 [A M (LTt - L72)12 d71 d72 d2 

M I f(Tt) 2 ] 

(A.27) 

Both summands are positive. We prove the lower bound for the first summand. Let 
X r e Y'r be the Gaussian AR(1)-process with characteristic root p r =  1 - I / T  and 
innovation variance 1. Let 

N - 1  

Hg(c0=  Z {ht+l,N-h,N}exp(-ic~t) with hN,N=h_I,N=0. 
t=  --1 

Summation by parts yields 

HN(c0 = {exp (ic0 -- 1}-1H~(~).  (1.28) 

With Lemma 3.3, (A. 1) and Lemma A. 4(b) therefore the first summand of (A. 27) is 
equal to 

{2~MH2,N} -2 [n~3 IHN(Z--Yt)12]HN(2--Y2)]2[AM(LYl-Ly2)lZdyd2 

+ 4 zc2p2r ~ f(Y~)f(Tz)[H~()o- 71)[ 2 [H~(2 - •2)12 [A~t(Lyl - L?z)lZdyd2q 
/ /3 A 

E + 0  N 4~-~k-2 E 5 L~'(~I)k'L~,(~-~,)2~+2-klLT(~2) ~2 
k l , k 2 = 0  N 3 

1 < k l + k 2 < 3  

�9 Ls (2 _ ~2)2 k + 2 - k~ d7 j (A. 29) 

By using Lemma A.1 we get as an upper bound for the 0-term 

KN4,,-2 Tlog Tlog N 

which is o ~ x  in the tapered and o ~ -  in the nontapered case. By using the 

definition of H N and AM we obtain that the first term of (A.29) is larger than 
c N > c  N 1 N ML = ~ if L < N  and larger than C ~ > = C ~  if L>N. Since [7~[<(2T) -x 

< ~ (both, for L _< N and L > N) we obtain with Lemma A.5 (c) implies ILva - Ly2[ = M 
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and (2.6) as an lower bound for the second term of  (A.29) 

, 5 I H ~ ( 2 -  7)[2dy d2. (A.30) CT4HZ2 ~u [yl=<(2 T )  - 1  

Suppose now that no data taper is applied. Then 

HN D (c0 = exp (ic 0 -- exp ( -- ic~ ( N -  1)). 

Therefore, we obtain with •--0 

{[Hff (2 - 7)[ 2 -IH~(A)I2}/H2,N < KN 2 ~ 171 (A.31 ) 

and (A.30) is larger than 

[Hg(2)Igd2+O~T4HZ,~ 5 5 {]H~(2-7:)12 CT2 H[ 2 5 
H [_ H ] y l [ < ( 2  T )  - :  

+ In~(2)l 2 } 5 NZ~lTzldyd2] 
ly21__<(2 T) 

T 2 
>-C ~+o(T ' ]>-C C (A.32) 
- N \ N ] -  ~ >  

If a taper is applied we again obtain (A.31) and (A.32). (A.28), Lemma 3.3, and 
//2, N ~ N imply 

IH~(a)I/H~!~ <=KN-k-1/2*~LN(~)k<=K-3/2+~LN(a). (A.33) 

Therefore, by using Lemma A.I the O-term is bounded by 

KTN-2+4'~=o(T2N-3-4'~). 

The H61der inequality implies 

N - - 1  

- ,,N} =5  [Hg(2)l 2dR 27r ~ {ht+l,N h 2 
t = - 1  / /  

< KN-3/4 +K . 

Straighforward calculations give (cp. Def. 2.3) 

u-~ {ht+LN_ht, u}2=2~ h'(x)Zdx+O ~ T  ~ CN-1 27t ~,, 
t =  - 1  0 

and therefore as a lower bound for (A.32) and for the second term of (A.29) 

CTaN -3-4~ with some constant C > 0 .  

N 
Together with the lower bound C ~ for the first term of (A.29) this leads to a 

convergence rate of at most T -(1 +4K)/(4+d-~) 
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The  p r o o f  for  the K o l m o g o r o v - Z h u r b e n k o  t aper  is the same as for  a t aper  of  
degree (k, ~). I n  pa r t i cu l a r  we also have  (A.31) a n d  (A.33). W e  omi t  details.  

I f  s 2 - - 0  we cons ide r  ins tead  a G a u s s i a n  M A  (1)-process wi th  charac ter i s t ic  roo t  
P r  = 1 - 1 / T .  This  leads  to the same result .  W e  omi t  the p r o o f  o f  this case. 
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