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0 Introduction 

The study of the existence and path behaviour of infinite dimensional 
Ornstein-Uhlenbeck processes is almost twenty years old now. Dawson in his 
seminal 1972 paper [7] initiated the subject. It is however in recent years that the 
problem has been intensively studied by many people in different settings (e.g. 
[1, 5, 17, 10, 16]). 

In this paper we also study existence and continuity of Ornstein-Uhlenbeck 
processes in infinite dimensions. Our approach is purely Gaussian. We state our 
results in terms of the covariance function of the investigated process and we do not 
use the fact that the process satisfies certain infinite dimensional stochastic It6 
equations. In this approach we follow Antoniadis and Carmona [1]. It enables us 
to state and prove results outside the boundaries of the existing theory of It6 
equations in infinite dimensions. We extend and complement some results from 
[1, 5] and [17]; in [10] and [16] the diagonal 12 case is studied in greater depth. 

We use the framework and the language of Gross' Abstract Wiener Spaces 
(AWS) and cylindrical (weak) random variables as exposed in Kuo [19], and 
Badrikian and Chevet [2]. 

Let B' ~ H ~ B be an abstract Wiener space and let (S(t), t > 0) be a measurable 
(and sufficiently integrable) semigroup of bounded linear operators either on H or 
on B. We investigate the existence and the continuity of a B-valued Gaussian 
process (X~) with covariance given by 

s a t  

E [ f ' ( X s ) g ' ( X t ) ]  = S (S ' ( s  - u) f ' ,  S ' ( t  - u )g ' )n  du, Vs, t > O, Vf ' ,  g' s B ' .  (0.1) 
0 

*This work was partly written when W. Smoleflski visited the Mathematics Department in 
Angers 
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In Sect. 2 we give some sufficient conditions for the existence and continuity of 
(Xt) in the case of a measurable (in general non Co-) semigroup S(t) on B. The 
results obtained generalize those proved by Da Prato et al. [5] when B is Hilbert, 
Smolefiski [21] when S(t) is Co both on B and H; the proof is based on the same 
"factorization method", which uses a continuous mapping from Le([0, T]; B) into 
C([0, T]; B). Note that when S(t) is an arbitrary Co-semigroup on a Banach 
space B, the continuity of (Xt) is still an open problem. 

The main result of Sect. 3 is the existence and continuity of (Xt) when S(t) is an 
analytic semigroup on H (in general without extension on B). Thus, this section 
extends a result proved by Antoniadis and Carmona [1] for self-adjoint operators, 
and complements a result proved by Kotelenez [17] for analytic semigroups on 
B in the case of B being Hilbert. The proof is based on the comparison of the 
covariance under study with that of a continuous Gaussian B-valued process, as in 
Carmona [3]. In Sect. 1, we show that the approaches of Sects. 2 and 3 are not 
comparable. 

In the case of a Co-semigroup (S(t), t > 0) on a Hilbert space B, the process (X~) 
given by (0.1) can be represented as the stochastic integral 

t 

x ,  = S s ( t  - s)dWs, 
0 

where (Wt) is a B-valued Wiener process and H is the reproducing kernel Hilbert 
space of the law of W1. Therefore, (Xt) is a so-called "mild" solution of the 
Langevin equation 

dXt = AXtd t  + dWt (0.2) 
Xo 0 a.s. , 

where A is the infinitesimal generator of S(t) (cf. e.g. Chojnowska-Michalik [4]). 
The B-valued process (Wt) is continuous, and thus if A is not "too bad", the 
continuity of (Xt) is intuitively clear. In fact (Xt) is known to behave much better 
than (Wt) does; Dawson [7] showed that (Xt) may be H-continuous while (Wt) is 
not even H-valued. 

In the fourth section we investigate the interplay between the existence and the 
continuity of (Xt). Roughly speaking, we prove that in the case of self-adjoint 
strictly negative A, the continuity and the existence of (Xt) are equivalent if and 
only if A is bounded. Here we use the connection between Ornstein-Uhlenbeck 
processes and stationary Gaussian processes, for example studied in [15, 16, 10]. 

1 Preliminaries 

Let B' ~ H ~ B be an abstract Wiener space, and let 7 be the associated Gaussian 
probability on B, i.e., such that H is the reproducing kernel Hilbert space (RKHS) 
of ~/. 

Remark 1.1 Let (S(t), t > 0) be a measurable semigroup of linear continuous 
operators on B, that is for every x ~ B the map t ~ S(t)x is measurable. This implies 
that for any x ~ B, the map t E ]0, + oo [ ~ S(t)x ~ B is continuous when B is 
endowed with the strong topology (cf. e.g. Theorem 10.2.2 in [14]), and that the 
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map (t, x) ~ [0, + oo [ x B -+ S ( t ) x  ~ B is jointly measurable. Fix T > 0, 
0 <= s, t <= T, f ' ,  g' ~ B'; then the map 

r ~ [0, T ]  --+ (S ( s  - r)'f ' ,  S( t  - r ) 'g ' )n  = S f ' [ S ( s  - r ) x ]g ' [S ( t  - r)x]y(dx) 
B 

is measurable by Fubini's theorem. Fix a > 0; under proper integrability assump- 
tions on this semigroup, the integral So r u-aa[s (u ) ' f  ' 12 du converges, and 

S A t  

(s - u)-a( t  -- u ) - a ( S ( s  - u)'f', S( t  - u)' o ' ) ~ d u  
0 

is the covariance of some cylindrical B-valued Gaussian process (Z,, 0 < t _< T). 
To show that (Z,) is a genuine B-valued process, it suffices to prove the existence of 
a Gaussian measure #T on B such that 

T 

V f '  s B', ~ I f ' (x )[2d#T(X)  = ~ u-2a lS(u) ' f ' 12  d u ,  (1.1) 
B 0 

i.e., to show the existence of the B-valued random variable ZT.  Indeed, let t 
[0, Tl , ,and le t /~ denote the cylindrical law of Z,. Then for every f '  s B', 

5 f ' ( x )  2/*t(dx) = i u - 2alS(u)'f 'l~ 1 du 
B 0 

T 

<= ~ u - 2 a l S ( u ) ' f '  I~du = Sf ' (x)2#T(dX).  
0 B 

Hence the RKHS of #t is included in the RKHS of #r ,  SO that #t is also tight on B. 
When a = 0, we will denote by (X,, 0 < t < T) the corresponding cylindrical 
process (Z,, 0 < t < T). 

Let us now suppose that (S(t), t > 0) is a measurable semigroup of linear 
continuous operators on H, which is a separable Hilbert space. Then for any 
x, y ~ H, the map t ~ [0, T]  + (S ( t ) ' x ,  y ) ~  = (x ,  S ( t ) y )H  is measurable. This 
in turn implies the joint measurability of the map (t, x )e  [0, T ]  x H - +  S(t)x .  
Therefore, under proper integrability assumptions on IS(t)[L(mm, for f ' , g ' e  
B'  c H ' , , ~ H , O < s , t < T ,  

S A t  

Cs, t ( f ' ,  9') = ~ (S ( s  - u) ' f ' ,  S(t  - u ) 'g ' )Hdu (1.2) 
0 

is again the covariance of some cylindrical B-valued Gaussian process 
(Xt, 0 _< t _< T). This integrability requirement is trivially satisfied if the semigroup 
(S(t), t >_ 0) is Co on H, or more generally if ~o r IS(u) t~(~,mdu < oo. In this case 
there exists a (genuine) B-valued Gaussian process (X,, 0 < t < T) with covariance 
F~, , ( f ' ,  9') defined by (1.2). Indeed, for any f '  ~ B', 

T T 

IS(u) ' f '12 du <__ r l f ' l  2 ~ I S ( u ) ' t ~ m m d u  
0 0 

= < C I f ' l ~  

so that the law ~T of X T i s  tight. 
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In the sequel, we will assume that the semigroup (S(t), t > 0) acts on H or on B. 
The following result shows that these assumptions cannot be compared. 

Proposit ion 1.2 Let (S(t), t >= O) be a measurable semigroup of bounded linear oper- 
ators on a separable infinite dimensional Banach space E, which is not of the form 
S(t) = 2 t IdE for some 2 > O. Given T > 0: 

(i) IrE is Hilbert, there exists a separable Hilbert space B such that B' ~ E ~ B is 
an abstract Wiener space, and a subset I of ]0, T] of positive Lebesgue measure for 
which S(t) does not extend to a bounded linear operator orB for any t ~ I. 

(ii) There exists a separable Hilbert space H such that E' ~ H ~ E is an abstract 
Wiener space, and a subset I of ]0, T ]  of positive Lebesgue measure for which S(t) 
does not leave H invariant for any t ~ L 

Proof. Fix T > 0; there exists t s ]0, T ]  such that 12Id - S(t)IL(E,e) > 0 for each 
2 e Ill. Set F = S(t). 

(i) Let E be Hilbert; there exists ho ~ E'  -~ E such that ho and F'ho are linearly 
independent. We may and do assume that I ho le = 1, and that (fn; n > 0) is a CONS 
o r e  such that fo = ho, and the spans of {fo,f~} and of {ho, F 'ho} are equal. Set 

1 1 
e o = f o ,  e l = ~ ( f l + f 2 ) ,  and e , - ~  k=2 

n 
+ n ,  j u j T f . + l  for n=>2. 

Then (e,) is a CONS of E, and ~,>=on2(F'ho, e,}~ = + oz. Define I1 IrB on  g by 

(h, e,} 2 
tlhllg 2_, (n + 1) 2 ' 

n=O 

Then [[. I]n is Gross-measurable, and F'ho (~ B'; this shows that S(t) does not extend 
to a bounded linear operator  of B. Let J denote the set of reals s in ] 0, t [ such that 
S(s) extends to a bounded linear operator of B. Then J is measurable, and t - s r J 
for any s ~ J ;  therefore, the Lebesgue measure of ]0, t ] \ J  is at least t /2 .  

(ii) There exists x 6 E such that y = F (x) and x are linearly independent. Let 
((,, n > 1) be a sequence of independent standard Gaussian variables, (c~, n => 1) 
a sequence of strictly positive numbers and (x~, n => 1) a sequence of linearly 
independent elements of E such that span(x~, n _-> 1) is dense in E, x l  = x, and the 
series Y = ~ >_ 1 c,x~(~ converges a.s. in E. Let K denote the R K H S  of Y. I f y  r K, 
set H = K and let ? denote the law of Y. If y 6 K, let H ~ K be a dense Hilbert 
subspace of K which is the R K H S  of some Gaussian measure ~, and such that x 6 H 
and y r H. Then S(t) does not leave H invariant, and the proof  is completed as in 
part  (i). [] 

2 The method of  factorization for a semigroup acting on B 

In this section we suppose that B ' ~  H ~ B is an abstract Wiener space, that 
(S(t), t > 0) is a measurable semigroup of linear continuous operators on B. The 
method of factorization consists in deducing the continuity of a process from the 
LP-integrability property of a "worsened" process. It  depends on the following 
lemma, which is a slight generalization of Lemma 1 in [5]. 
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Lemma 2.1 Suppose that there exist f i~ [0, 1[ and C ~ 1R such that 

Vue]0, T], IIS(u)[IL(B,B> _--< Cu-~. 

Let  c~] f i ,  1], let p be a real number such that p ( ~ , - f i ) >  1. Then for 
f ~  LP([0, T],  B), the map 

t --* R J ( t )  = i (t - s y - l S ( t  - s)f(s)ds (2.1) 
0 

is continuous from [0, T] in (B, II II). 

Proof. It suffices to check that if the operator R= is defined by R~f ( t )=  
5 ' o ( t - s y - l S ( t - s ) f ( s ) d s ,  then there exists a constant C' such that 
Ili~f(t)lIB < C'llfHp for every f s  C([0, T]; B). Let q = p/(p - 1); then 

t 

]le~f(t) l[B< C ~ (t -- s)~-l(t  - s)-~lkf(s)HBdS 
0 

C ~ u ( e - ~ - l ) q d s  Jlf[Iv 
0 

=< C'llf[]v, 

where C' = C T  ~-~-  1/v[(e _ fi _ 1)q + 1]- 1/q. Then the continuity of R~fextends 
by a standard density argument from smooth functions to arbitrary functions 
f e  L~ T];B). [] 

The following theorem is the main result of this section; it extends continuity 
properties of Ornstein-Uhlenbeck processes proved in [5] and [21]. Condition (ii) 
is crucial to obtain the existence of a B-valued process with a "worsened" 
covariance function, and by Lemma 2.1, condition (i) is used to prove the continu- 
ity of the Ornstein-Uhlenbeck process. 

Theorem 2.2 Let  (S(t), t >= O) be a measurable semigroup of  bounded linear operators 
on B such that there exist reals fl ~ [0, �88 [, ~ ~ ] fl, 1 _ fl [, T > 0 and C > O for which 

(i) Vts ]0 ,  T],  [IS(t)llg<B,m <--_ Ct -~ (2,2) 

T 

(ii) F} ,g ,  = ~ t - z ~ ( s ( t ) ' f  ', S(t) 'g')Hdt,  f ' ,  g ' s  B' is the covariance of  some 
0 

Gaussian measure v on B (i.e., F),,g, = ~ f ' ( x )o ' ( x )v (dx ) ) .  
Then there exists a Gaussian B-valued stochastic process ( X ,  0 <- t <- T)  with 

continuous sample paths, and with covariance Fs, t( f ' ,  g') defined for 0 <__ s, t < T, and 
f ' , g '  ~ B '  by 

s a t  

rs, t( f ' ,  g') = E[ f ' (Xs )g ' (X t ) ]  = ~ (S(s  -- u)'f ' ,  S(t - u) 'g ' )Hdu.  (2.3) 
0 

Proof. The proof consists of four steps. 
Step 1. The assumptions (i),and,(ii)Tand the inequality [ S(u)' f '  ]H < C II S(u) IIL(B, m" 
II f [18' imply that for any f ~ B, ~0 u-2~ I1S(u)'f' 1]2du < oQ. Thus, as shown in 
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Remark 1.1, the existence of the measure v imposed in (ii) yields the existence of 
a B-valued Gaussian process ( Y  t, 0 < t < T)  with covariance 

E [ f ' ( Y ~ ) g ' ( Y t ) ]  = 
S A t  

I (s - u)-~(t  - u) -~<S(s  - u) ' f ' ,  S ( t  - u ) 'g ' } r~du ,  
0 

for O < s, t < T, f ' ,  g' e B'. Set  Y o = 0 .  
We prove that (Yt, 0 _< t < T) is weakly continuous in probability. Indeed, fix 

f ' e B ' ,  0 < s, t < T, and set 6 = t - s. Then E l f ' ( Y ,  - y~)2] = A1 + Az  where 

A1 = ~ u -2~ lS (u ) ' f ' l~rdu ,  
0 

A2 = i [u -~S (u ) ' f  ' - (u + 6) -~S(u  + 6)'f '[Zdu . 
0 

Since u-2~lS(u) ' f ' ]  2 is integrable on ]0, T]  because of assumption (2.2), A1 con- 
verges to 0 as 3 ~ 0. Fix s > 0, and let t / >  0 be chosen such that 

3 q  

u -  Z~lS(u)' f ' l ~ d u  <__ e . 
0 

Then for 0 < 6 < t/, [A21 ~ 4e if S < t/. Let t / <  s < T, and set 

F(u,  6) = l u - ~ S ( u ) ' f  ' - (u + 5)-~S(u + ~5)'f'[} 

for s ~< u < T. Then for every u e [7, T], lim6-.o F(u,  6) = O. 
Furthermore, for M = sup{l lS(u) l lL~B.m;~ <-- u <_ T} ,  since (u + O)-~u ~ < 1, 

the function F(u, 6) is dominated by 2 M Z [ f ' [ 2 u  - z ' .  Therefore, writing A z  as the 
sum of integrals over the intervals [0, 1/[ and It/, s] yields that 

T 

IA2I =< 4e + ~ F(u, 6)du,  
t/ 

and hence that ]A2[ < 5~ for small 6. 
Step  2. Therefore, given a n y f '  c B', the map t ~ f ' (Yt )  is continuous in probability 
on [0, T], and hence has a measurable version, still denoted byf'(Y.). This in turn 
implies the existence of a measurable version (t, co) ~ [0, T]  x ~ ~ Yt(co) e B of the 
process Y (see [8, chapitre 4, Th6or6me 30] or [11, Th6or6me 4.1.5]. 

We check that Y.(co) e LP([0, T], B) for almost every co and any p > 1. Indeed, 
by Fubini's theorem and Slepian's lemma, we have that: 

T T o o  

E ~ ][ Yt[lVdt = ~ ~ puP-iP([[  Yt[] > u ) d u d t  
0 0 0 

T a3 

< ~ ~ PuP-IP({I  YTIt > u ) d u d t  
0 0 

=< rE(ll gr  11"), 

which is finite by the Fernique-Skorohod Theorem. 
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Step 3. Let p be such that p(e - fl) > 1. Then by Lemma 2.1, the B-valued process 
X = (sin(z~c0/rc) R~ Y = / ~  Y such that 

sin(ha) 
Xt - ~ (t - s)~- ~ S(t - s) Y~ds, 0 <_ t <_ T ,  (2.4) 

0 

is well-defined and continuous. To conclude the proof, it suffices to compute the 
covariance of X.. 

Set Yf = L2([0, T], H), let fi denote the law of Y., and let # = rio/~-~ denote 
the law of X. Since H is continuously embedded in B, given any ~ ~ W, q0 
L2([0, T], B). Since 2(1 - a - fi) > 1, Lemma 2.1 implies that the process defined 
by 

t 

(T~qo)t = y (t - s)-~S(t - s)cp(s)ds = (Rl-~cp)t 
0 

belongs to cg([O, T], 

( R~  T~ (p), = 

B) ~ LP([0, T-l, B). Furthermore, 

i ( t - s ) ~ - t S ( t - s ) [ i ( s - u ) - ~ S ( s - u ) c p ( u ) d u l d s  

i { ! ( t -  s )=- l ( s -  u)-~ds} S ( t -  u)~o(u)du 

i { i x - ~ ( 1 - x ) ~ - l d x } S ( t - u ) ~ o ( u ) d u  

t TC 

- sin(zrc~) ! S(t - u)cp(u)du . 

The RKHS of the law # of X. is the image of the RKHS of/2 b y / ~ .  Therefore, to 
show that the RKHS o f#  is equal to V(g/F) = (/~ o T~)(.gf), it suffices to check that 
the RKHS of the law fi of Y is equal to T~(~).  Define the Hilbert norm 
Ilx II vr = inf{ [] y [1~; V(y)= x}. Then, if we identify V(~gF) as the RKHS of the 
measure on B with covariance Fs, t(f; 9') = ~SoA ~ (S(s - u)'f', S(t - u) 'g')~du, we 
will obtain that X. has the required covariance F. 
Step 4. Thus, the proof reduces to identify the RKHS of some cylindrical law with 
required covariance: 

F~,t (f ' ,  g') = (s - u)-a(t - u)-a(S(s - uYf',~, S(t - u) 'g')ndu 
0 

for a --- 0 or a = c~. The argument, which is well known (cf. e.g. Lemma 1 in [22] ), is 
sketched for the sake of completeness. 

Suppose that a = 0, let 2 be the cylindrical Gaussian probability on 
C([0, T] ,B)  with covariance F ~ i.e., such that for any f ' e B ' ,  t e [0 ,  T], 
Ez[lf,(cot)12] o , , = Ft, t ( f  , f  ). Let V(2ZF) be endowed with the Hilbert space structure 
defined above and let us identify V(~, ~) and V ( ~ ) '  in a usual way. Then 6t | f ' ,  as 
an element of V(~cF), has its norm given by: 

1lat@ f ' i[gt~)= inf { llyll2; V(y) = Ot@ f ' ,  liyii~ S l} . 



536 A. Millet and W. Smol~nski 

Fo r  any ~0 �9 W,  the act ion of fix |  = V(y) on V(~o) is 

(6t |  = f ' [V(cp) t]  = f '  S( t  - s)cp(s)ds , 

and hence the n o r m  of c~ t | f '  in V(~4r ~) is such that: 

II(~t|  ]12(~e/= sup ' S( t  - s)ep(s)ds ; II ~011~ =< 1 

= sup q), S( t  - s ) ' f ' d s  II (P tl~e < 1 
0 

t 

= I lS(t  - s ) ' f ' l ~ d s  = F ~ re '  e'~ t , t \ 3  ~ 3  ! �9 

0 

A similar a rgument  for a = cc show that  the R K H S  of the law fi of Y., with 
covar iance F ~, is equal  to T~(3r this concludes the proof. [] 

The following results show that  Theo rem 2.2 extends the cont inui ty of 
Orns t e in -Uh lenbeck  processes proved  in [5] for Hi lber t  spaces B and for Co- 
semigroups  S(t), and in [21] for Co-semigroups on Banach  spaces B being at the 
same t ime Co on H. Indeed, if B is a Hi lber t  space, stochastic integrat ion provides 
a B-valued r a n d o m  variable with covar iance F), ,g , .  

Theorem 2.3 Suppose that B is a Hi lbert  space, and let (W(t) ,  t >= O) be a B-valued 
Brownian motion. Le t  (S(t), t >= O) be a measurable semigroup o f  linear continuous 
operators on B such that: 

~fie [0,�88 [ ,3C e IR, Vt e l0 ,  T], IIS(t) IIL~B,B~ ~ C t  -p  �9 (2.5) 

Then there exists  a B-valued continuous Gaussian process (X, ,  t � 9  [0, T ] )  with 
covariance given by 

S A t  

E [ f ' ( X ~ ) g ' ( X t ) ]  = S ( S ( s  - u) ' f ' ,  S( t  - u)' g ' ) ~ d u  . 
0 

Proof. Let H denote  the R K H S  of the law of W ( T ) .  Since for e < �89 - fl, 

T 

( T -  s ) -2~(T  - s)-2Pds < oo , 
0 

the condi t ion (ii) of  T h e o r e m  2.2 is satisfied for the Gauss ian  measure  v = P o Y r  1 
on B, where 

T 

YT = ~ ( t - -  s ) - ~ S ( t - -  s ) d W ~ .  [] 
0 

, . 

If  (S(t), t __> 0) is also a measurab le  semigroup on H with "not  too big" n o r m  as 
t ~ 0 (e.g., is Co on H), then the condi t ion (ii) in Theo rem 2.2 is fulfilled. M o r e  
precisely we have the following: 
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Theorem 2.4 Let B' ~ H ~ B be an  abstract Wiener space and let (S(t), t > O) be 
a measurable semigroup of linear continuous operators on B and on H such that: 
~fl ~ [O, �88 s lR, Vt e ]O, r ]  

NS(t)IbL(~,B~ _-< C t  - ~  , 

I S(t)tLtH. n) <= Ct-n . (2.6) 

Then there exists a continuous B-valued Gaussian process with covariance F given by 

E [ f ' (X  (X s i t  Do' ,)] = 
0 

(S(s - u)' f ' ,  S(t - u)' g ' )ndu  . 

Proof For c~ ~ ] fi, �88 [, the cylindrical Gaussian measure v with covariance defined 
by 

T 

Vf' ,  g' 6 B', S ( T -  s ) -2~(S(T  - s)'f ' ,  S ( T -  s)' g ' ) n d s ,  
0 

is tight on B. Indeed, given any f '  r B', fi < e < �88 < �89 - fi, so that 2(c~ + fi) < 1; 
thus 

( T -  s ) - 2 ~ I S ( T -  s)' f '12 ds < C 2 ~ ( T -  s)-a(~+n)ds tf ' l  2 
0 0 

= < C ' l f ' l ~  

where C' = (T1-2~-2~/1 - 2e - 2fl)C 2. Theorem 2.2 concludes the proof. 

Let us state the following obvious questions which remain open: if (S(t), t > 0) is 
Co on a Banach space B and B' ~ H ~ B is an abstract Wiener space, does there 
exist a B-valued process (Xt) with covariance given by (2.3), and if yes is it 
continuous? 

We finally give an example of a measurable semigroup of linear continuous 
operators on B which satisfies (2.2), but is not Co. 

Example 2.5 This example is taken from [18, p. 161]. Let E = L 2 ( [ 0 ,  -t- oo [ ,  1R2), 
let k > 2, and let A be the operator on E defined by: 

a (x) = \ x k f ( x  ) _ x 2 g ( x ) / .  

Then A generates the semigroup (S(t) = e At, t >= 0) on E, defined by: 

\ xk te - t~ f (x )  + e-t~2g(x),} " 

Then the components of S( t ) ( f  g) are the Fourier transforms (with respect to the 
variable y) of functions V1 (t, y) and V2 (t, y) which satisfy a partial pseudo differen- 
tial equation. We estimate the norm of S(t) for 0 < t < T. Fix t ~ ] 0 ,  T]; the 
supremum of the function x --+ xkte -tx2 is achieved for Xo such that x 2 = k/2t, and is 



538 A. Millet and W. Smol6nski 

equal to (k/2) k/2 e-(k/2)t 1 -(k/2). Set/? = (k/2) - 1, and l e t f  g e L2([  0, + oo [, JR) be 
such that ~o [f2(x)  + 92(x)] dx < 1. Then 

S ( t ) ( f  ) 2 =  ~ e-2tx2[f2(x) + x2gt2f2(x) + + 92(x)]dx 

< 2 + 2 ~ e - 2 t X 2 x 2 k t 2 f 2 ( x ) d x  

0 

< 2 + 2 e - k t  2 .k  

which yields that II S(t)ll < Clt  -p for t s ]0, T].  
Choosing g = 0 and letting f =  0 outside a neighborhood of Xo on which 

xkte -~2 > �89 (k/2) k/2 e-(k/Z)t-~, and such that So [f2(x)  + gZ(x)] dx = 1, we obtain 
that there exists a constant C2 > 0  such that for t e ] 0 ,  T],  ]IS(0H > C2t -p. 
Therefore, if k > 2 the semigroup S(t) is not Co on E. However, if 2 < k < 5/2 one 
has that 0 </3 < �88 and hence for any c~ e ]/3, �89 - / 3  [ and f '  e E', 

T T 

u -2~ II S(u)'f' II~,du < ~ u-2~-2edu < oo . 
0 0 

3 Semigroups acting on H 

Let B' ~ H ~ B be an abstract Wiener space, let (S(t), t > 0) be a "regular" semi- 
group on H. In this section we prove the existence of a B-valued continuous process 
(X ,  t > 0) with given covariance F defined by 

s a t  

Vs, t e [0, T], ~f', g' e B', rs, ,( f ' ,  g') = ~ (S(s - u)'f', s( t  - u) 'g ' )ndu.  (3.1) 
o 

We do not require anything on the action of the Semigroup on B. Our results 
generalize Theorem II. 1' of Antoniadis and Carmona [ 1], and therefore cover their 
interesting examples 1, 2, 4, pp. 39-40. Again we impose two assumptions. The first 
one ensures the existence of a B-valued process with covariance F defined in (3.1). 
The second one is a "continuity" property of the semigroup, which is used to 
compare the covariance F with that of a continuous B-valued Gaussian process. 

Proposition 3.1 Let B' ~ H ~ B be an abstract Wiener space, and let (S(t), t >= O) be 
a measurable semigroup on H, such that: 
(i) There exists p > 1 such that 

T 

IS(u)l~[H, mdu < oo . (3.2) 
0 

(ii) There exists C > 0 and ~ ~ -] O, 13 for which: 
T 

Vt e [0, T],  Vx ~ H, S t[S(t)' - Id]S(u)'xl~du < Ct~lxl 2 . 
0 

(3.3) 
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Then there exists a B-valued continuous Gaussian process (Xt, 0 <_ t <_ T) with 
covariance F given by (3.1). 

Proof. Let (it, 0 _< t _< T) denote the cylindrical B-valued Gaussian process with 
covariance F given by (3.1). The integrability condition (3.2) on the norm of the 
semigroup implies the tightness of the law of IT. Furthermore, given any f '  ~ B', the 
variance off'(~t) is clearly increasing with t, so that the argument in Remark 1.1 
implies that the cylindrical law of each it is tight. Hence (~t, 0 <_ t <__ T) is a genuine 
B-valued process. 

To prove that i. has a continuous modification, we apply Proposition 5 in [31. 
Set Z ( f ' )  =f ' (~ r )  for everyf '  ~ B', and let U' denote the unit ball of B'. Then the 
Gaussian process ( Z ( f ' ) , f '  ~ U') is weakly continuous and satisfies: 

Vt ~ [0, T1, V(ff, g') ~ U ' x  U', IF,,,(f '  - g ' , f '  - g')[ -< E [ I Z ( f ' )  - Z(g')l 2-] . (3.4) 

Let 0 <- s <- t <_ T , f '  ~ B', and set q = p/(p - 1); then: 

E[] f ' ({ t )  - f ' (~,)lal  = i IS(t - u)' f '  - S(s - u)'f ' t2 du + i [S(t - u)'f'[2 du 
0 s 

<= i I[S(t - s ) '  - Id lS(u) ' f ' l~du 
0 

t - s  ~ l /p  

+ [f'12 ~0 [S(u)'[2fmmdu) ( t -  s) 1/~ 

C ll f '  ll 2,(t - s)a , 

where fl = inf(a, q - l )  ~ ]0, 1]. Let (Yt, t ~ [0, T1) be a Gaussian continuous pro- 
cess such that E(I Ys - Y,l 2) = Clt - sl ~ for (s, t) ~ [0, T] 2. Then: 

V(s, t)~[O, T12, V f ' e B ' , E [ [ f ' ( ~ ) - f ' ( i t ) I 2 1 < = E [ I Y ~  - Ytlal . (3.5) 

By Proposition 5 in [3], (3.4) and (3.5) imply the existence of a B-valued continuous 
stochastic process with covariance given by (3.1). [] 

Remark 3.2 The semigroup described in Example 2.5 also provides an example of 
a semigroup (S(t), t > 0) on H = E which satisfies the assumptions of Proposition 
3.1 for 2 < k < 3. Furthermore, if fl = (k /2 ) -  1, [IS(t)LIL(~,E)- Ct -~. Therefore, 
for ~ < k < 3, conditions (3.2) and (3.3) hold, while (2.6) fails. Proposition 3.1 shows 
that for any abstract Wiener space B ' ~  H ~ B, (Xt) is a B-valued continuous 
process, while Proposition 1.2(i) yields the existence of such an AWS such that 
(S(t), t > 0) does not extend to B. 

Furthermore, Example 2.5, Theorem 2.3 and Proposition 1.2(ii) show that there 
exists a semigroup (S(t), t > 0) on a Hilbert space B such that [L S(t)ILL(8, m ~ Ct-~ 
for 0 < fi < �88 (S(t), t > 0) does not act on the RKHS H of some measure 7 on B, 
and yet the process (Xt) is defined and continuous on B. Condition (2.6) clearly 
implies (3.2). 

Proposition 3.1 applies to sectorial semigroups on H. Indeed, let 
(S(t) = e -ta, t > 0) be a semigroup generated by a sectorial operator A with 
spectrum included in {Re(z) > 6 > 0}; then (see e.g. [13, p. 261 for any c~ ~ 10, �89 
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there exists constants 6, C~ and M~ such that for any u > O, S(u)x ~ Dom(A~). Thus 
for any x s H, t ~ [0, T],  

[S(t)S(u)x - S(u)x]u <= C~UIA~S(u)x[~ 

< C~M~Uu-~e-~"[x[~t, 
and hence 

T T 
]IS(t)' - Id]S(u)'xl2du ~ C~M~t2 2 2~lX[2 S u-2edu 

0 0 

= C t 2 ~ t x j 2  

so that both conditions (3.2) and (3.3) are satisfied. We next give a continuity result 
for X. in the case of an arbitrary analytic semigroup on H. Its simple proof is based 
on a maximal regularity result for the solution of an Abstract Cauchy Problem 
([9]; cf. also [20] or [6]), which we apply to obtain the direct comparison of the 
RKHS of X. and the RKHS of the Wiener process which is canonically associated 
with H. 

Theorem 3.3 Let B' ~ H ~ B be an abstract Wiener space with a separable space B, 
and let (S(t), t >= O) be an analytic semigroup on H. Then there exists a B-valued 
continuous Gaussian process (Xt, 0 <_ t <_ T) with eovariance F defined by (3.1). 

Proof An analytic semigroup is Co (see e.g. [13]), so that So T IS(u)[2n(n, mdu < oe. 
Hence there exists a B-valued process (Xt, 0 _< t _< T) with covariance F. Let 
~t denote the law of X. on L2([0, T],  B). The RKHS associated with the Gaussian 
measure # is 

H~ = { Y(" )IY(t) = i S(t -- u)x(u)du; x ~ LZ([O' T]' H) } (3.6) 

(cf. e.g. [22, p. 229]). To show that the inclusion i:H~--, C([0, T],  B) is Gross- 
measurable, it suffices to check that there exists a Hilbert space K ~ H~ such that 
the inclusion j :  K --* C([0, T],  B) is Gross-measurable. Set 

{ t g = z( ')  = ~o(s)dsl~o~L2([O, TJ, H) . 
0 

Then K is the RKHS of the law of a B-valued continuous Wiener process 
(Wt,0 -< t _< T) with E([f'(W1)] 2) = if, j2 for f '  ~ B'. 

We will show that H u c K. Let - A  denote the infinitesimal generator of S(t); 
since the semigroup is analytic, for every x ~L2([0,  T],  H) and almost every 
t ~ [0, T]  we have: 

i S(t - u)x(u)du ~ Dora(A), A ~ S(. - u)x(u)du ~ L2([0, T], H) , 
0 0 

where the last integral on [0, .] is defined as the limit of the corresponding ones on 
[0,. - 6] as 6 ~ 0, and 

t i i S S ( t -  u)x(u)du = q)(s)ds for ~o(s) = - A S ( s -  u)x(u)du + x(s),  
0 0 0 

which concludes the proof ([9, Lemma 3.1]; cf. also [20] or [6, p. 3153). [] 
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R e m a r k  3.4 In [17] the continuity of X. is proved in the case of B being Hilbert 
and S. being analytic on B (actually, a much more general result is proved for 
analytic semigroups on a Hilbert space). The following question is still unanswered: 
is the conclusion of Theorem 3.3 still true if S(t) is Co on H; we believe it is. 

R e m a r k  3.5 The proof of Theorem 3.3 shows that its conclusion remains valid if 
the analyticity hypothesis made on the semigroup (S(t), t > 0) is replaced by the 
following assumptions (i)-(iii): 

(i) (S(t), t > 0) is a measurable semigroup on H with infinitesimal generator - A. 
(ii) So r [S(u)[]~(mmdu < oe. 

(iii) For  every x ~ L2([O, T],  H) and almost every t E [0, T],  So S(t  - u )x (u )du  = 
So qo(s)ds, where q~(-) = - ~(-)  + x(-)  and the map ~ defined by 

O(t) = - A S ( t -  u )x (u )du  = lim S A S ( t -  u )x (u )du  
0 ~ - ~ 0  0 

belongs to L2([O, T],  H). 

R e m a r k  3.6 Let B' ~ H ~ B be an abstract Wiener space with a separable space B, 
let K be a Hilbert space such that K c H ~ H ' c  K'. In the statements of 
Proposition 3.1 and Theorem 3.3 one can replace the conclusion by the existence of 
a B-valued Gaussian process with covariance F K defined by: 

S A t  

gs, t e [ 0 ,  T],  ' ' , K , , V f ,  9 e B ,  F s , , ( f ,  g ) = ~ <S(s - u) ' f ' ,  S( t  - u)'g')K,du. 
0 

(3.7) 

R e m a r k  3.7 Let (S(t) = e -rA, t > 0) be a sectorial (hence analytic) semigroup of 
self-adjoint operators defined on a Hilbert space H. Suppose that the spectrum of 
A, say Z(A), is included in [Zo, + oo [ for some 2o ~ IR. Let f :  [2o, + oo [ ---, IR be 
such that ( S ( t ) , t > 0 )  has an analytic extension to D o m [ f (A ) ] ,  let 
K c D o m [ f ( A ) ]  be a Hilbert space, and let B be a Banach space such that the 
inclusion K c B is Gross-measurable. Then for any T > 0, Theorem 3.3 implies the 
existence of a B-valued Gaussian process (X ,  0 _< t _< T) with covariance F K 
defined by (3.7). 

R e m a r k  3.8 The two previous remarks cover the case of Theorem II.l '  in [1], and 
the corresponding examples on pp. 39 and 40. Indeed, Antoniadis and Carmona's 
theorem can be formulated as follows: Let A be a self-adjoint operator of H with 
spectrum 21(A) ~ [2o, + oo [ for some 20 ~ IR. Then - A  is a sectorial operator, 
and generates an analytic semigroup (S( t ) , t  > 0 )  on H (see e.g. [13]). Let 
a = �89 Ha = Dom(Id + IA[) ~ be endowed with the norm [Iflla = [(Id + [Al)af[u, 
let H-a  denote the completion of H with respect to the norm associated with the 
scalar product: 

< f g ) - a = < ( I d + l A [ ) - a f  ( I d + [ A l ) - a 9 ) ~ .  

Then (S(t), t > 0) is a semigroup on Ha, with infinitesimal generator - A  (with 
domain [-(Id + J A I) a] -1 (Dom(A)). Let Ha be the RKHS of a Gaussian measure/~a 
on some Banach space B, and let K be another Hilbert space such that 
H - a  ~- H'a ~ K ' .  Then Remarks 3.6 and 3.7 yield the existence of a B-valued 
continuous Gaussian process with covariance So^ ~ ( S(s  - u)' f ' ,  S( t  - u)' g'>K,du. 
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Remark 3.9 Theorem I L l '  in [1] can also be deduced f rom Propos i t ion  3.1. Indeed,  
(S(t), t > 0) is a Co-semigroup  on Ha with a = �89 Let E(A) denote  the spectral  
resolut ion of the identi ty associated with A, and  set R = (Id + I A[) a. Clearly, for 
u, t ~ [0, T ]  and x ~ Dom(A) ,  

II IS(t) - Id ]  S(u)x l12 = I R [S(t) - Id ]  S(u)x I~ 

= ~ (1 + 121)(e - a -  1)2e-2"~Ud(E(2)x, x ) .  
Z(A) 

I f  2o < 2 < O, 

I f 2 > O ,  

(e -at - 1) 2 =< e 2tl;'l - 1 < 2J).lte zla~ . 

(1 -- e-at)  2 < 1 -- e -2a < 212[t ~ 2[2lte 2)'~ . 

Therefore,  for C = 2e 21~'~ 

[1ES(t) - ldJa(u)x  II 2 ___< CtlRZa(u)xl  2 , 
and 

T T 

S II IS(t) - Id]S(u)x  [12 du < Ct S ~ (1 + t2[)2e-2Z"d(E(2)x, x ) d u  
0 0 Z(A) 

< C t T  ~ (1 + 1Z[)(1 + 12o])e21X~ x )  
~(A) n [&, O] 

1 - -  e -  2~,T 

(1 + 121) 2 22 d ( e ( 2 ) x ,  x )  + c t  j 
Z(A) c~ [0, + ~ [ 

< C't l lx l l2 ,  

for some cons tant  C ' >  0. This inequali ty extends f rom Dora(A)  to Ha by 
a s tandard  density argument .  This completes  the p roof  of  (3.6) with e = 1. 
Thus, given any Hilber t  space K c Ha, Propos i t ion  3.1 and R e m a r k  3.6 yield 
the existence of a B-valued cont inuous  Gauss ian  process with covar iance 
~o ̂ t  (S(s  - u)'f', S(t - u)' g')K, du. 

4 Relationship between the existence and the continuity 
of Ornstein-Uhlenbeck processes 

In this section we suppose that  K -~ K '  is a given Hi lber t  space and that  (S(t), t > O) 
is a C0-semigroup of self-adjoint opera tors  on K with infinitesimal genera tor  - A. 
Then  

S A t  

~,t( f ,  9 ) ~ (S(s  - u)'f', S(t - u)'9')~, du (4.1) 
0 

is defined for any s, t __> 0 a n d f ' ,  O' ~ K'. Given  T > 0 let H denote the R K H S  of the 
cylindrical measure  on K with covar iance  FT, r ( f ' ,  O'); then H c K. 

Theorem 4.1 Let K, S(t), A, H and F be as above. Assume moreover that 
X(A) C [ 2 o ,  oe [ for  some 2o > 0. Then the followin9 are equivalent: 

(i) A is bounded. 
(ii) For any Gross-measurable norm II II on H and B = I4 li Jr, there exists a B- 

valued almost surely continuous Gaussian process with covariance F defined by (4.1). 
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Proof. (i) implies that H = K, and thus it implies (ii) by the Theorem 3.3 above. 
Note that if A is a self-adjoint operator on K with 2:(A) c [2o, oe [ for some 
2o > 0, and if E(A) denotes the spectral decomposition of A, then for everyf '  e K', 

JS(t)'f'J~,dt = ~ S e-2Ztd<E(2)f',f') dt 
0 0 Z(A) 

= S ~-~d(E(2)f',f'> 

1 
<--If'l~,. 
= 220 

Therefore, F(f' ,  g') = So (S(t)'f', S(t)'g'}K, dt is the covarianee of a cylindrical 
Gaussian random variable on K, say Yo; we also assume that for a n y f e  K', Yo(f) 
is independent off(X.) where X. has covariance F. Then the cylindrical process 
defined by u = S(t) Yo + X, is stationary. Indeed, for every f e  K' ~ K, s < t, 

E[f (Y , ) f (Y t ) l  = E[S(s)' f(Yo)S(t)' f(Yo)-] + E [f(Xs)f(Xt)] 

= ~ (S(u + s)'f, S(u + t)'f} du 
0 

+ i (S(s - u)'f, S(t - u)'f) du 
0 

= S[~e--~('.;+t+ZU)du+ie-;~(t-.)-~.ts-U)du?d(E(2)ff} 
Z(A) 0 0 

= S e -~ ( t - s ) ld  Z(A) 2L (E (2 ) f f )  

1 A , / t - s \  

The RKHS of the law of Yo is equal to H~ = A-~K.  
To prove that (ii) implies (i), let A be self-adjoint, unbounded and such that 

2o = inf Z(A) > 0. We construct a Banach B such that the process (Xt) is B-valued, 
and such that 

V x > 0 ,  V a > 0 ,  P (  sup ] , X t - X s l l B  ~ X)--m-l, (4.2) 
O<=s,t<~a 

which implies that (X,) is almost surely discontinuous. Since sup Z(A)= + oo, 
there exists an increasing sequence of numbers ("k, k > 0), such that So = 2o, and 
for k >  1: 

ak+l >c~k+ 1, k - l ~ k > t k >  1,  

where tk will be specified later, 

Fk = E(I(k))(K) # {0} for I(2k) = [c~k, "k + 1 [, 1(2k + 1) = ["k + 1, "k+~ [ ,  

& = ~(E2o, ~ [ ) ( K ) ,  {o}. 
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Then K = (~k>_lFk; for every k > 1 let (e k, 1 =< i < J(k)) be a complete or thonor-  
mal system Of Fk, with 2 _-< J(k) <= + ~ .  For  any k > 1, we construct  by induction 
a complete o r thonormal  system of Fk, say (e/k; 1 =< i < J(k)) and an increasing 
sequence of integers (Nk(i), 1 <= i < J(k)) such that  for all 1 < i < J(k), 

(i + 2) /x J(k) <= Nk(i) + 1 _< (2i + 2) /x J (k ) ,  (4.3) 

span(e k, 1 __<j < i) c span(@ 1 <=j <= Nk( i ) ) ,  (4.4) 

- - •  k A ~ei espan(ek;  1 < j  < Nk( i ) ) .  (4.5) 

Let  us fix k > 1 and drop  k from the nota t ion for simplicity. 
Set e l = e l .  If J = 2 ,  set N ( 1 ) = I ;  if J > 2 ,  set N ( 1 ) = 2  and let 

fo = A - ~ e l  - ( A - � 8 9  el)el. I f f i  = 0 set e2 = e2, and otherwise set e2 =f0lJo[K 1. 
Suppose that N(i)  < J and the family of o r thonormal  vectors (ej; 1 < j < N(i))  

have been defined, and satisfy the induct ion hypothesis  (4.3) up to (4.5). 
If N(i)  + 2 < J, then set 

fi = A-~e i+l  -- ~ (A-~ei+l, ej)ej, (4.6) 
1 < j  < N(i) 

L(i)  = inf{n __> 1; e, ~ span(ej; 1 =<j < N( i ) )} ,  (4.7) 

gl = euo - ~ <eL(1), ej} ej :# 0 . (4.8) 
i <=j <~ N(i) 

Suppose that N(i) + 2 < J. I f f  = 0, set N(i  + 1) = N(i) + 1, and eN(i+l) = gdg~[~ 1 �9 
- 1  I f f  r 0, let eN(i)+l = f l f [ K  , and let 

hi = er~(i) - ~ (eL(i), ej)aj  . 
1 < j  < N(i) + 1 

If hi = 0, set N(i  + 1) = N(i) + 1, and otherwise set N(i  + 1) = N(i)  + 2, and 
eN(i+ l) = h~lhil~. 1. Then the family (ej; 1 < j < N(i  + 1)) is again o r thonormal  and 
satisfies the condit ions (4.3)-(4.5). 

If N(i) + 2 = J < oo, then for i + 1 < j  < J, set N(j )  = J -  1, and l e t f ,  L(i), 
and gi be defined by (4.6), (4.7) and (4.8) respectively. I f f  = 0, set eN(i + 1) = gilgiIK 1 , 
and otherwise set eu(i+l) = f i l f ] ~  1. Then the family (ej; 1 < j  < N(i  + 1)) is an 
o r thonormal  basis of F. 

Finally, if N(i)  + 1 = J, then (ej; 1 < j < N(i))  is an o r thonormal  basis of F, 
and the construct ion is over. 

The preceding construct ion ensures that  (ef; 1 < i < J(k)) is again a complete 
o r thonormal  system Of Fk. Let # denote  the span of (e~; 1 < j < J(k), k >= 1). Define 
a linear opera tor  L :  d o ~ do by setting 

= 

L(e~ k) = 2-(:k+i)a~ k for 2 =< i < J(2k) 

L(e~ k - l )  = 2-( :k- l+Oe~ k-1 for l = < i < J ( 2 k - 1 ) .  

Let us remind that  Hoo = A - ~ K .  Observe moreover  that the R K H S  of the law of 
XTo say J4 '~, is equal to H~  as a set, and that  there exists a constant  C > 0 such that  

1 
Clx[~ < IA~xlK < -~ Ixf~. 
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We show that LA --~ is Hilbert Schmidt on K, and define a new norm/1 II~ on ~ by 
setting llxllB ILxt~. Indeed, (4.5) implies that (A : e i , e ~ ) =  ( e ~ , A - i e ~ ) =  0 
except i f j  < 2i + 1 and i < 2j + 1. Thus 

Z = E Z ILA-+g~I~ 
k>_l l<_i<J(k)  

= E [ k - 2 0 ~ k ( ( A - � 8 9  g 2 k )  q_ (A-.~e2k, e l k )  + (A-,g2k, 8 2 k ) ) 2  

k > l  

+ 2 - ~ ( < A - ~  ~-1, d~-*) + ( ~ - ~ - ~ ,  d~-,> 

+ (A-%i~-~,e~k-~)) 2] + y' ~ 2 -~+0 
k>=l 2 < i < d ( k )  

( ; * 2 --•  k 

[ i - 1 / 2 ] < j < 2 i + 1  

~ [k-2~xk30~-i 1 + 2-4k30~k -1] + ~ C~k-21 ~ 2-2(k+0(2i § 1) 
k>= 1 k>= 1 2<= i<Y(k) 

/ 
Va > 0, VM > 0, P~  

For  every k > t, set 

< 3  E k - 2 + 2 o  * ~ 2-2k ~ (2 i+  1) 2-2~< ~ �9 
k>=l k>=l i > l  

Let B denote the completion of~, ~ with respect to the norm II lIB. It follows that 
H ~ B is an abstract Wiener space. Let (X,  0 _< t _< T) be the cylindrical Gaussian 
process with covariance F defined by (4.1). The taw of XT is tight on B, and hence 
(X,  0 _< t _< T) is a genuine B-valued process. In the last step of the proof we show 
that: 

sup IIX~- X,[IB > M~ = 1 . (4.9) 
O<=s,t<a / 

then 

/ 
Pk = P |  sup 

\ (2~) t __< s, t < k 

Pk > P ( sup 
\ (2~zk)- ~ _-< s, t < k - 

> p ( s l i p  \ (2~1 -~ <=s,t<=k 

tl x~ - x ,  [kB >= k) ; 

(~2k, L X  s _ LXt )K  > k )  

In the rest of the proof, let us fix k and set r/t = Xde2k). Then for 0 < s _< t _< T, 

s ~zk+l 

E(tlstlt) = ~ I e-Z(s-")e-Z(t-")d(E(2) e2k, ~2k) du 
0 ak 

~U+ 1 1 
= 5 e-'~(t-~) (1 -- e-a;'~)d(E(2)e21 k, e~ k) . 

gk 

Thus, for 1/2C~k < S < t ~ 1/k, and for some C > 1, 

C-*ak -1 exp( - c~k(t - s)) < E ( ~ h )  < Cc~*exp( - ek ( t  - s)). 
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Let  us put  Z, ~ ~ = C c~ k th. Then 

I < E(Zt 2) < C 2 and 0 < E ( Z s Z t ) < C 2 e x p ( - - c ~ k ( t - - s ) ) .  

Let  us fix n > 1, set c5 = J/2kn, and ~i = Z(2k)-l+(i-1)~ for 1 < i < n. Then if 

1 x 
~ ( x ) -  ~ e-('2/Z~dt, 

one has that  

Similarly, 

P inf [~i[ > m  < P  inf f~i[ > ~ 1 -  

Let us recall tha t  egk- * > tt, and that  we are free to choose tk as large as we wish 
(since we may  impose  tha t  tk ~ + oo as k ~ + 0o ). Of  course, 

/ S k = P (  sup ( l ' , - ~ j [ ) > M - m )  
l<i ,  j N n  

P (  sap  ( , ~ i , - , ~ j [ ) >  M - m )  
t<~i,j<n 

t < i < n  t < ~ < n  

Hence,  for fixed k, M, m and n, there exists A(k ,M,m,n )  such that  for 
~k > A (k, M, m, n), 

I / S k > l - [ ~ b ( M ) ]  ~ -  1 - ~ b  ~ 

Choose  m = x / ~ ,  M = (k 2 + 1),,/-C, and  then n such that  

[ r  ~ + 1 ) , ~ d ) ]  ~ + 1 - r =< 2 -(~§ 

Now choose tk such tha t  for c~k > ktk,/sk > 1 -- 2 -k. Obviously ,  Pk >-__ Pk, which 
completes  the p roo f  of (4.9), and hence tha t  of the theorem. [] 
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