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0 Introduction

The study of the existence and path behaviour of infinite dimensional
Ornstein—Uhlenbeck processes is almost twenty years old now. Dawson in his
seminal 1972 paper [7] initiated the subject. It is however in recent years that the
problem has been intensively studied by many people in different settings (e.g.
[1,5,17,10, 16]).

In this paper we also study existence and continuity of Ornstein—Uhlenbeck
processes in infinite dimensions. Our approach is purely Gaussian. We state our
results in terms of the covariance function of the investigated process and we do not
use the fact that the process satisfies certain infinite dimensional stochastic Itd
equations. In this approach we follow Antoniadis and Carmona [1]. It enables us
to state and prove results outside the boundaries of the existing theory of It
equations in infinite dimensions. We extend and complement some results from
[1, 5] and [17]; in [10] and [16] the diagonal /, case is studied in greater depth.

We use the framework and the language of Gross’ Abstract Wiener Spaces
(AWS) and cylindrical (weak) random variables as exposed in Kuo [19], and
Badrikian and Chevet [2].

Let B’ H c B be an abstract Wiener space and let (S(¢), t = 0) be a measurable
(and sufficiently integrable) semigroup of bounded linear operators either on H or
on B. We investigate the existence and the continuity of a B-Valued Gaussian
process (X,) with covariance given by

N

E[f(Xy)g (X)] f (S'G—w)f,S(t—wgdgduy, Vs,t>0,Yf,9eB . (0.1)
0
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In Sect. 2 we give some sufficient conditions for the existence and continuity of
(X,) in the case of a measurable (in general non C,-) semigroup S(¢) on B. The
results obtained generalize those proved by Da Prato et al. [5] when B is Hilbert,
Smolenski [21] when S(¢) is Coy both on B and H; the proof is based on the same
“factorization method”, which uses a continuous mapping from L?([0, T']; B) into
C([0, T]; B). Note that when S(t) is an arbitrary Cgy-semigroup on a Banach
space B, the continuity of (X,) is still an open problem.

The main result of Sect. 3 is the existence and continuity of (X} when S(¢) is an
analytic semigroup on H (in general without extension on B). Thus, this section
extends a result proved by Antoniadis and Carmona [1] for self-adjoint operators,
and complements a result proved by Kotelenez [17] for analytic semigroups on
B in the case of B being Hilbert. The proof is based on the comparison of the
covariance under study with that of a continuous Gaussian B-valued process, as in
Carmona [3]. In Sect. 1, we show that the approaches of Sects. 2 and 3 are not
comparable.

In the case of a Cy-semigroup (S(), t = 0) on a Hilbert space B, the process (X,)
given by (0.1) can be represented as the stochastic integral

X, =

O ey

St — s)dw,,

where (W,) is a B-valued Wiener process and H is the reproducing kernel Hilbert

space of the law of W,. Therefore, (X,) is a so-called “mild” solution of the
Langevin equation

dX, = AX,dt + dW,

{ ! (T (0.2)

Xo=0 as. ,

where A is the infinitesimal generator of S(¢) (cf. e.g. Chojnowska—Michalik [4]).
The B-valued process (W,) is continuous, and thus if 4 is not “too bad”, the
continuity of (X,) is intuitively clear. In fact (X,) is known to behave much better
than (W,) does; Dawson [7] showed that (X,) may be H-continuous while (W) is
not even H-valued.

In the fourth section we investigate the interplay between the existence and the
continuity of (X,). Roughly speaking, we prove that in the case of self-adjoint
strictly negative A4, the continuity and the existence of (X,) are equivalent if and
only if A is bounded. Here we use the connection between Ornstein—Uhlenbeck
processes and stationary Gaussian processes, for example studied in [15, 16, 10].

1 Preliminaries

Let B’ s H & B be an abstract Wiener space, and let y be the associated Gaussian
probability on B, i.e., such that H is the reproducing kernel Hilbert space (RKHS)
of y.

Remark 1.1 Let (S(¢),t = 0) be a measurable semigroup of linear continuous
operators on B, that is for every x € B the map ¢ — S(t)x is measurable. This implies
that for any x € B, the map t€]0, + oo [ — S(t)x € B is continuous when B is
endowed with the strong topology (cf. e.g. Theorem 10.2.2 in [14]), and that the
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map {t,x)e[0, + o[ xB—->S(t)xeB 1is jointly measurable. Fix T >0,
05, t<T,f, g eB; then the map

re[0, 71> <SG —rVf, St —r'g>u=[ f'[S(s ~ )x]g' [S{t ~ r)x]y(dx)

is measurable by Fubini’s theorem. Fix a = 0; under proper integrability assump-
tions on this semigroup, the integral [ u "“[S (uyf|% du converges, and

S AL

[ =07t —w)™*<S—wf, St—ugdgdu

0
is the covariance of some cylindrical B-valued Gaussian process (Z,0 <t < T).
To show that (Z,) is a genuine B-valued process, it suffices to prove the existence of
a Gaussian measure u¢ on B such that

T
V' eB, [ ()Fdur(x) = (f)u_z‘”s(u flEdu, (1L.1)
B

i.e., to show the existence of the B-valued random variable Z;. Indeed, let te
[0, T],.and let g, denote the cylindrical law of Z,. Then for every f' € B/,

§ 1/ (x)? m(dx) = IM_Z“IS(M)’f’I?Jdu
B

< fum|Syf Iadu—jf () pr(dx) .

Hence the RKHS of g, is included in the RKHS of uy, so that g, is also tight on B.
When a =0, we will denote by (X,,0 £t < T) the corresponding cylindrical
process (Z;,, 0=t < T).

Let us now suppose that (S{z), t = 0} is a measurable semigroup of linear
continuous operators on H, which is a separable Hilbert space. Then for any
x,yeH, the map te[0,T] - {S(t)x, y>ug = {x,S{t)y >y is measurable. This
in turn implies the joint measurability of the map (7, x)e [0, T]x H - S(f)x.
Therefore, under proper integrability assumptions on |S(t)| g, m), for [, g €
B «cH ~HO0Ls,t5T,

SAL

I ([, 9) = (f) (S(s—u) f, St —uyg dudu (1.2)

is again the covariance of some cylindrical B-valued Gaussian process
(X, 0 =t £ T). This integrability requirement is tr1v1ally satisfied if the semigroup
S@®,t= O) is Coq on H, or more generally if jo |S(W)|7 @, mydu < oo. In this case
there exists a (genuine) B-valued Gaussian process (X;, 0 < ¢ < T) with covariance
s (f', ¢') defined by (1.2). Indeed, for any ' € B’,

T T
VIS@yf1Edu < T\ f'15 ISy}, mdu
o] 0

<CIf'&,
so that the law puq of X is tight.
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In the sequel, we will assume that the semigroup (S(¢), ¢ = 0) acts on H or on B.
The following result shows that these assumptions cannot be compared.

Proposition 1.2 Let {S(t), t = 0) be a measurable semigroup of bounded linear oper-
ators on a separable infinite dimensional Banach space E, which is not of the form
S(t) = 2'Idg for some A > 0. Given T > O:

(i) IfE is Hilbert, there exists a separable Hilbert space B such that B'c E < Bis
an abstract Wiener space, and a subset I of 10, T'] of positive Lebesgue measure for
which S(t) does not extend to a bounded linear operator of B for any teI.

(i) There exists a separable Hilbert space H such that E' c H < E is an abstract
Wiener space, and a subset I of 10, T'] of positive Lebesgue measure for which S(t)
does not leave H invariant for any t € 1.

Proof. Fix T > 0; there exists ¢ € ]0, T'] such that |AId — S(¢)|., gy > O for each
AeR. Set F = S(1).

(i) Let E be Hilbert; there exists sy € E' ~ E such that hy and F'h, are linearly
independent. We may and do assume that |ig|g = 1, and that ( f,; n = 0)is a CONS
of E such that f;, = hy, and the spans of { fy, f;} and of {ho, F'h,} are equal. Set

1

e =Jo, €1 \/E(fl +f2), and e, = ﬁ(fl - kZ;fk)

n
+__—f;‘+1 forngz.
Jn+n?

Then (e,) is a CONS of E, and Y, n?*{F'ho, ,>% = + oo . Define | - ||z on E by

2w (et
IhiE= % oot
Then || - || 5 is Gross-measurable, and F'h, ¢ B’'; this shows that S(z) does not extend
to a bounded linear operator of B. Let J denote the set of reals sin ]0, ¢[ such that
S(s) extends to a bounded linear operator of B. Then J is measurable, and t — s ¢ J
for any s € J; therefore, the Lebesgue measure of 10, t]\J is at least ¢/2.

(ii) There exists x € E such that y = F(x) and x are linearly independent. Let
{C,,n = 1) be a sequence of independent standard Gaussian variables, (c,, n = 1)
a sequence of strictly positive numbers and (x,, n = 1) a sequence of linearly
independent elements of E such that span(x,, n = 1) is dense in E, x; = x, and the
series ¥ = Y, 5 ¢,x,(, converges a.s. in E. Let K denote the RKHS of Y. If y ¢ K,
set H = K and let y denote the law of Y. If ye K, let H < K be a dense Hilbert
subspace of K which is the RKHS of some Gaussian measure y, and such that x e H
and y ¢ H. Then S(t) does not leave H invariant, and the proof is completed as in
part (). O

2 The method of factorization for a semigroup acting on B

In this section we suppose that B'c H s B is an abstract Wiener space, that
(S(t), t = 0) is a measurable semigroup of linear continuous operators on B. The
method of factorization consists in deducing the continuity of a process from the
L7-integrability property of a “worsened” process. It depends on the following
lemma, which is a slight generalization of Lemma 1 in [5].
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Lemma 2.1 Suppose that there exist f [0, 1[ and C € R such that
Vuel0,T1, [|SW)llrm.s = Cu™’.

Let aoe]p, 1], let p be a real number such that p(e— f)>1. Then for
fe LX[0, T], B), the map

t— R, f(t) = f(t — $FT1S(t — 5)f(s)ds 2.1)

is continuous from [0, T] in (B, | |).

Proof. 1t suffices to check that if the operator R, is defined by R,f{()=
{5t —s)*7'S(t — 5)f(s)ds, then there exists a constant C’ such that
IR f(®)lg = C'| £, for every fe C([0, T']; B). Let g = p/(p — 1); then

IR, @z CJt— st =97 f(5)]zds
0

< c( f u<a~p-1)qu>1/q 0fl,

0

SCU

where C' = CT* #~Y?[(a — B — 1)q + 1] /% Then the continuity of R, fextends
by a standard density argument from smooth functions to arbitrary functions
fe L*([0,T];B). O

The following theorem is the main result of this section; it extends continuity
properties of Ornstein—Uhlenbeck processes proved in [5] and [21]. Condition (ii)
is crucial to obtain the existence of a B-valued process with a “worsened”
covariance function, and by Lemma 2.1, condition (i} is used to prove the continu-
ity of the Ornstein—Uhlenbeck process.

Theorem 2.2 Let (S(t), t = 0) be a measurable semigroup of bounded linear operators
on B such that there exist reals e [0, 1, €18, 5 — B[, T > O and C > 0 for which

(1) veel0, 71, [1SOlremn=<Ct™’. (2.2)

T
(@) I't ,= f t72S(t) f, S(tY g dudt, ', g € B' is the covariance of some
0

Gaussian measure v on B (i.e, I'}. , = fB x)g (x)v(dx)).

Then there exists a Gaussian B valued stochastic process (X,,0 2t < T) with
continuous sample paths, and with covariance I's (f’, g') defined for 0 < s5,t < T, and
f,9' € B’ by

S At

I (f, 9= ELf(X)g'(X)] = (I) S —uwf,SC—uwgrpdu. (23)

Proof. The proof consists of four steps.
Step 1. The assumptions (i) and (11) and the inequality [S(u) f'|x < c|| S}l L, B):
| f"1lg imply that for any /" e B, jo “2%)| S(u) f'|*du < o . Thus, as shown in
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Remark 1.1, the existence of the measure v imposed in (ii) yields the existence of
a B-valued Gaussian process (Y;, 0 < t < T) with covariance

SAL

ELf(Y)g(Y)]= | (s—w) "t —u) (S —u f,5¢~uwg > adu,
0

for0<s,t<T,f,geB. Set Yy =0
We prove that (Y,,0 < ¢ £ T) is weakly continuous in probability. Indeed, fix
feB,0<s,t<T,andset 6 =t —s. Then E[f(Y, — Y)*]1 = A, + 4, where

A, = E u” 2| S () ' fdu

0

s

Ay = [|u™*S@W)f — (u+ 6)"*S(u + 0)f'|}du .

0

Since u~2*|S(u) f'|% is integrable on ]0, T] because of assumption (2.2), 4, con-
verges to 0 as § — 0, Fix ¢ > G, and let # > 0 be chosen such that

3y
fu™IS@fhdus<e.
0

Then for 0 < <n,[4,| £4eif s<# Let y £s < T, and set
F(u,0) = lu™*S@) f' — (u+0)"*Su + ) [z

for s £ u £ T. Then for every ue [y, T], lims_o F(u, ) =0

Furthermore, for M =sup{|S(WllLe ;1 Su < T}, since (u+ 6) *u* £ 1,
the function F(u, ) is dominated by 2M 2| f'|3u~2* Therefore, writing 4, as the
sum of integrals over the intervals [0, #[ and [#, s] yields that

T
|41 < 4e + [ F(u, 6)du
7

and hence that |4,| £ 5¢ for small 6.
Step 2. Therefore, given any f* € B', the map ¢t — f'(¥,) is continuous in probability
on [0, T, and hence has a measurable version, still denoted by f'(Y.). This in turn
implies the existence of a measurable version (¢, w) € [0, T] x Q@ — Y,(w) € B of the
process Y (see [8, chapitre 4, Théoréme 30] or [11, Théoréme 4.1.5].

We check that Y.(w) e L*([0, T], B) for almost every w and any p = 1. Indeed,
by Fubini’s theorem and Slepian’s lemma, we have that:

T T o
E[|Yli7dt = | [ pu?~*P(]| Y;| > uydudt
0 00
T «
{0 pu P Y| > uwydude
00
< TE(]| Y[y,

which is finite by the Fernique—Skorohod Theorem.



Continuity of Ornstein—Uhlenbeck processes 535

Step 3. Let p be such that p(x — p) > 1. Then by Lemma 2.1, the B-valued process
= (sin(na)/n) R, Y = R, Y such that

sm (noc)

j(t SFTISE—5)Yds, 0<t<T, (2.4)

is well-defined and continuous. To conclude the proof, it suffices to compute the
covariance of X.. _

Set # = L*([0, T, H), let ji denote the law of Y., and let u = fic R, * denote
the law of X. Since H is continuously embedded in B, given any @€ #, g€
L*([0, T7, B). Since 2(1 — « — B) > 1, Lemma 2.1 implies that the process defined
by

t

(T.0) = [ (t — 5)7*S(t — 5)p(s)ds = (R, —.9),

0

belongs to 4([0, T, B) =« L*([0, T'], B). Furthermore,

(R, T,p), = }(t N (= s)l: js" (s —u)~*S(s — u)q)(u)du} ds

0 0

{}(t — s s — u)’“ds}S(t — wyo(u)du

u

il
Oty ™

= ; { } x (1~ X)“_ldX}S(t — wo(u)du
0

0

n

}S(z — U)o (u)du

~ sin(na)

The RKHS of the law g of X is the image of the RKHS of /i by R,. Therefore, to
show that the RKHS of u is equal to V() = (R, o T,)(#), it suffices to check that
the RKHS of the law g of Y is equal to T,(s#). Define the Hilbert norm
[ x|l voey = Inf{ || ¥ ; V(¥) = x}. Then, if we identify V(s#) as the RKHS of the
measure on B with covariance I's .(f", g') = |3" " {S(s — w) ', S(t — w) g’ > du, we
will obtain that X has the required covariance r.

Step 4. Thus, the proof reduces to identify the RKHS of some cylindrical law with
required covariance:

t

(s —w)™t—w ™ S—wf, SC—uwg)izdu

N

s (f.g)=

O oy >

for a = 0 or a = «. The argument, which is well known (cf. e.g. Lemma 1 in [22]), is
sketched for the sake of completeness.

Suppose that a =0, let 1 be the cylindrical Gaussian probability on
C([0, T], B) with covariance I'°, ie., such that for any f'eB, te[0, T],
E[1f (@)*1=T?2f.f). Let V(#) be endowed with the Hilbert space structure
defined above and let us identify V(o) and V() in a usual way. Then §, ® [, as
an element of V(s#), has its norm given by:

Il 3, @f”tf(yf) lnf{Hy”Jf: V(J’)=5t®f’:|‘yn9f§1}~
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For any ¢ € #, the action of §, ® 1’ = V(y) on V(o) is
@: @ V(@) =f'[V(p)] =f’<f St — S)qo(S)dS> )
(1]

and hence the norm of §, ® f” in V() is such that:

2

16: @1 IZ/(JK) = sup {

f’<£S(t - S)(P(S)d5> Slelle = 1}

2

= sup{<<o, 8¢~ s)’f’ds> el = 1}
0 H
=[I1S@—9) flEds =T2.(f.1).
0

A similar argument for a = o show that the RKHS of the law ji of Y., with
covariance I'%, is equal to T,(); this concludes the proof. [

The following results show that Theorem 2.2 extends the continuity of
Ornstein-Uhlenbeck processes proved in [5] for Hilbert spaces B and for C,-
semigroups S(t), and in [21] for Cy-semigroups on Banach spaces B being at the
same time Cy on H. Indeed, if B is a Hilbert space, stochastic integration provides
a B-valued random variable with covariance I'}. , .

Theorem 2.3 Suppose that B is a Hilbert space, and let (W(t), t = 0) be a B-valued
Brownian motion. Let (S(¢), t = 0) be a measurable semigroup of linear continuous
operators on B such that:

Ipel0,4[,3CeR,Vtel0, T 1S) |L@.n < Ct 0. (2.5)

Then there exists a B-valued continuous Gaussian process (X,,te[0, T]) with
covariance given by

SAt

E[f(X)g(X)]= | <S(s—w'f, St—u)g>pdu.
4]
Proof. Let H denote the RKHS of the law of W(T). Since for a« < 1 — B,

(T —s)"*(T —s)"$ds < w0 ,

O ey

the condition (ii) of Theorem 2.2 is satisfied for the Gaussian measure v = Po Y 7!
on B, where

YT=f(t—s)‘“S(t—~s)dWs. O
0

If (S(¢), t = 0) is also a measurable semigroup on H with “not too big” norm as
t— 0 (e.g, is C; on H), then the condition (i) in Theorem 2.2 is fulfilled. More
precisely we have the fol!owing:
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Theorem 2.4 Let B's H G B be an abstract Wiener space and let (S(t), t = 0) be
a measurable semigroup of linear continuous operators on B and on H such that:
IBef0,1[,ICe R, Vte]0, T]

SO |L@m=Ct™7,
ISO\a.m < Ct7P. (2.6)

Then there exists a continuous B-valued Gaussian process with covariance I given by

S At
E[f(X)g(Xl= | <S(s—u)f,SEt—uwg ) udu.
0

Proof. For « € 1B, 1 [, the cylindrical Gaussian measure v with covariance defined
by

T

Vf,g eB, [ (T—s)"?S(T s\ f, S(T—5)gouds,
0

is tight on B. Indeed, given any f"e B, B <o <% <% — B, so that 2{x + B) < ;
thus

[ — 9 ST — o £ s < CZG(T— s)*““f”ds) S1E
[¢] 0

<CIf%,
where C' = (T*72*72#/1 — 20 — 2B)C?. Theorem 2.2 concludes the proof. [

Let us state the following obvious questions which remain open: if (S(¢), t = 0)is
C, on a Banach space B and B' g H 5 B is an abstract Wiener space, does there
exist a B-valued process (X,) with covariance given by (2.3), and if yes is it
continuous?

We finally give an example of a measurable semigroup of linear continuous
operators on B which satisfies (2.2), but is not C,.

Example 2.5 This example is taken from [18, p. 161]. Let E = L2([0, + oo [, R?),
let k > 2, and let A be the operator on E defined by:

N [ =2
A<g>(") = <x"f(x) _ ng<x)) |

Then A generates the semigroup (S(r) = e, t = 0) on E, defined by:

N <=1
50(5 )= (s o0

Then the components of S(t){ f, g) are the Fourier transforms (with respect to the
variable y) of functions V;(t, y) and ¥, (t, y) which satisfy a partial pseudo differen-
tial equation. We estimate the norm of S(f) for 0 <t < 7. Fix t€]0, 7']; the
supremum of the function x — x*te ™" is achieved for x, such that x3 = k/2¢, and is



538 A. Millet and W. Smolénski

equal to (k/2)"/2 e~ %D 1=(2) Set B = (k/2) — 1,and let f; g € L*([0, + oo [, R) be
such that {3 [ f%(x) + ¢g*(x)]dx < 1. Then

S@) <J;)

2 0
= [ e[ f2(x) + x¥*2f3(x) + 2x*1 f(x)g(x) + g*(x)]dx
0

<2+ 2§ e ™ x¥2f2(x)dx
0

k k
§ 2 + 2(5> e—-ktz—k ,

which yields that | S(t)|| £ C.t™# for t€]0, T].

Choosing g = 0 and letting f= 0 outside a neighborhood of x, on which
xFte™™ = % (k/2)? e=*/¢~# and such that [ [ f*(x) + g*(x)]dx = 1, we obtain
that there exists a constant C, > 0 such that for t€]0,T], ||S(®)] = C,t™%.
Therefore, if k > 2 the semigroup S(¢) is not Cq on E. However, if 2 < k < 5/2 one
has that 0 < f <4, and hence for any o€ ]B,5 — fl and /' e E,

T T
fu2|S@flzdu < fu>"*du<oo .
0 0

3 Semigroups acting on H

Let B's H < B be an abstract Wiener space, let (S(¢), t = 0) be a “regular” semi-
group on H. In this section we prove the existence of a B-valued continuous process
(X,,t = 0) with given covariance I" defined by

S At

Vs, te [0, T1LVSf, g e B, I .(f,g) = | {Sts—wf, 8t —ugipdu. (3.1)
0

We do not require anything on the action of the semigroup on B. Our results
generalize Theorem IL.1’ of Antoniadis and Carmona [1], and therefore cover their
interesting examples 1, 2, 4, pp. 39-40. Again we impose two assumptions. The first
one ensures the existence of a B-valued process with covariance I' defined in (3.1).
The second one is a “continuity” property of the semigroup, which is used to
compare the covariance I" with that of a continuous B-valued Gaussian process.

Proposition 3.1 Let B' H s B be an abstract Wiener space, and let (S(z), t = 0) be
a measurable semigroup on H, such that:
(i) There exists p > 1 such that

T

[ 18()|3e, mydu < o0 (3.2)

0

(i) There exists C > 0 and o € ]0, 1] for which:

Vte [0, T, VxeH, f I[S(@) — I1d]1S(uy x|3du < Ct¥)x|% . (3.3)
4]
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Then there exists a B-valued continuous Gaussian process (X, 05t £ T) with
covariance I' given by (3.1).

Proof. Let (£,,0 £t £ T') denote the cylindrical B-valued Gaussian process with
covariance I' given by (3.1). The integrability condition (3.2) on the norm of the
semigroup implies the tightness of the law of ;. Furthermore, given any /" € B', the
variance of f'(&,) is clearly increasing with t, so that the argument in Remark 1.1
implies that the cylindrical law of each &, is tight. Hence (¢,,0 £ t £ T)is a genuine
B-valued process.

To prove that £. has a continuous modification, we apply Proposition 5 in [3].
Set Z(f") = f' (&) for every f € B, and let U’ denote the unit ball of B’. Then the
Gaussian process (Z(f"),f" € U’) is weakly continuous and satisfies:

Vee[0, TLY(f,g)eU x UL (f —¢.f — g S E[Z(f) - Z(g)V]. B4
Let0<s<t<T,f eB, and set q = p/(p — 1); then:

ELf@E)—fEIPT=FISt —w f — S(s — wf hdu + [ IS¢ — w/f'|fdu

0

=

\[S( — ) — 1d1S(w) f"|7rdu

O ey

t—5

1/p
+|f’|?1< § 1Sy |zte, H)du> (t — )t

0
SCIf iz@E—sy,

where f = inf(e, g~1) €0, 1]. Let (Y,, t € [0, T']) be a Gaussian continuous pro-
cess such that E(| Y, — Y,|?) = C|t — s|® for (s, t) € [0, T]* Then:

Vis, e [0, T,V e B, E[If' (&) - fEPISE[Y, - VI’ ]. (3.9

By Proposition 5 in [3], (3.4) and (3.5) imply the existence of a B-valued continuous
stochastic process with covariance given by (3.1). O

Remark 3.2 The semigroup described in Example 2.5 also provides an example of
a semigroup (S(¢), t = 0) on H = E which satisfies the assumptions of Proposition
3.1 for 2 < k < 3. Furthermore, if f = (k/2) — 1, | S(t) | &, &) ~ Ct~*. Therefore,
for 3 < k < 3, conditions (3.2) and (3.3) hold, while (2.6) fails. Proposition 3.1 shows
that for any abstract Wiener space B's H < B, (X,) is a B-valued continuous
process, while Proposition 1.2(i) yields the existence of such an AWS such that
(S(t), t = 0) does not extend to B.

Furthermore, Example 2.5, Theorem 2.3 and Proposition 1.2(ii) show that there
exists a sem1gr0up (S(2), t = 0) on a Hilbert space B such that || S(t) |l . 5 ~ Ct™*
for0< <% (SO, t= O) does not act on the RKHS H of some measure y on B,
and yet the process (X,) is defined and continuous on B. Condition (2.6) clearly
implies (3.2).

Proposition 3.1 applies to sectorial semigroups on H. Indeed, let
(S(ty=e"",t 2 0) be a semigroup generated by a sectorial operator A4 with
spectrum included in {Re(z) > & > 0}; then (see e.g. [13, p. 26] for any a € ]0, i[
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there exists constants d, C, and M, such that for any u > 0, S(u)x € Dom(4*). Thus
forany xe H,t [0, T,

[S@Sw)x — Swx|y £ C,t* | A*SW)x|n

< C,M,t"u"e x|y ,
and hence

T T
[I[S@ — 1d1S(wy x|hdu < C2M262*|x|} | u™2du
e} O

= Ct¥|xlf,

so that both conditions (3.2) and (3.3) are satisfied. We next give a continuity result
for X in the case of an arbitrary analytic semigroup on H. Its simple proof is based
on a maximal regularity result for the solution of an Abstract Cauchy Problem
([97; cf. also [20] or [6]), which we apply to obtain the direct comparison of the
RKHS of X, and the RKHS of the Wiener process which is canonically associated
with H.

Theorem 3.3 Let B' 5 H 5 B be an abstract Wiener space with a separable space B,
and let (S(¢),t = 0) be an analytic semigroup on H. Then there exists a B-valued
continuous Gaussian process (X;,0 <t £ T) with covariance I" defined by (3.1).

Proof. An analytic semigroup is Cy (see e.g. [13]), so that j§ [SW))7. @, mydu < oo
Hence there exists a B-valued process (X,,0 <t < T') with covariance I'. Let
u denote the law of X, on L%([0, T, B). The RKHS associated with the Gaussian
measure [ is

H,= {Y(‘)ly(f) = [ 8(t — wx(u)du; x € L*([0, T'], H)} ; (3:6)
0

(cf. e.g. [22, p. 229]). To show that the inclusion i: H, — C([0, T'], B) is Gross-
measurable, it suffices to check that there exists a Hilbert space K = H,, such that
the inclusion j: K — C([0, T'], B) is Gross-measurable. Set

K= {z(-) - f o(s)ds|g € L2([0, T, H)} .

Then K is the RKHS of the law of a B-valued continuous Wiener process
(W,,0 <t < T) with E(|f(W1)I*) = /|5 for f € B.

We will show that H, < K. Let — A4 denote the infinitesimal generator of S(t);
since the semigroup is analytic, for every x e L*([0, T], H) and almost every
te[0, T} we have:

jl" St — wx(uwydu e Dom(4), A f S(. — wx(uydue L*([0, T], H) ,
0 0

where the last integral on [0, .] is defined as the limit of the corresponding ones on
[0,.— 6] as § -0, and

j St — u)x(wydu = j p(s)ds for o(s) = — A [ S(s —wx(wdu + x(s),

0

which concludes the proof ([9, Lemma 3.1]; cf. also [20] or [6, p. 315]). O
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Remark 3.4 In [17] the continuity of X, is proved in the case of B being Hilbert
and S. being analytic on B (actually, a much more general result is proved for
analytic semigroups on a Hilbert space). The following question is still unanswered:
is the conclusion of Theorem 3.3 still true if S(t) is Cq on H; we believe it is.

Remark 3.5 The proof of Theorem 3.3 shows that its conclusion remains valid if
the analyticity hypothesis made on the semigroup (S(t), t = 0) is replaced by the
following assumptions (i} (iii):

(i) (S(t), ¢t = 0)is a measurable semigroup on H with infinitesimal generator — 4.
(ii) Jo 1S, mdu < oo.
(i) For every x € L*([0, T'], H) and almost every t € [0, T], jg S(t — u)yx(w)du =
{5 o(s)ds, where (-} = — ¥/(*) + x(*) and the map ¥ defined by

yity=—A4 jt' St — u)x(w)du = lim 1}5 AS(t — w)x(u)du
0 5~0 0

belongs to L*([0, T, H).

Remark 3.6 Let B's H g B be an abstract Wiener space with a separable space B,
let K be a Hilbert space such that K « H ~ H' — K’. In the statements of
Proposition 3.1 and Theorem 3.3 one can replace the conclusion by the existence of
a B-valued Gaussian process with covariance I'* defined by:

SAL

Vs, te[0,T1Vf, g e B, I'S(f,g)= | {Ss—wf,St—uwgedu. (37
0

Remark 3.7 Let (S(t) = e ™, t = 0) be a sectorial (hence analytic) semigroup of
self-adjoint operators defined on a Hilbert space H. Suppose that the spectrum of
A, say 2(A), is included in [4¢, + oo [ for some Ay e R. Let f: [Ag, + o0 [ — R be
such that (S(f),t 20) has an analytic extension to Dom[f(4)], let
K < Domf f(4}] be a Hilbert space, and let B be a Banach space such that the
inclusion K < Bis Gross-measurable. Then for any T > 0, Theorem 3.3 implies the
existence of a B-valued Gaussian process (X,,0 <¢ £ T) with covariance I'%
defined by (3.7).

Remark 3.8 The two previous remarks cover the case of Theorem IL1" in [1], and
the corresponding examples on pp. 39 and 40. Indeed, Antoniadis and Carmona’s
theorem can be formulated as follows: Let 4 be a self-adjoint operator of H with
spectrum X(A4) < [Ao, + oo [ for some o€ R. Then —A is a sectorial operator,
and generates an analytic semigroup (S(1),1 =0) on H (see e.g [13]). Let
a=7%,H,=Dom(ld + [A|)* be endowed with the norm | £, = |(Id + |A])*f g
let H_, denote the completion of H with respect to the norm associated with the
scalar product:

{Lgy-a=<Ad +14D)7f (d+[4])"gon .

Then (S(t), t = 0) is a semigroup on H,, with infinitesimal generator —4 (with
domain [(Id + [4])*] ™! (Dom(A)). Let H, be the RKHS of a Gaussian measure y,
on some Banach space B, and let K be another Hilbert space such that

—a~ H, © K'. Then Remarks 3.6 and 3.7 yield the existence of a B-valued
continuous Gaussian process with covariance 5" (S(s — u) /", S(t — w) ¢’ D -du.
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Remark 3.9 Theorem I1.1"in [1] can also be deduced from Proposition 3.1. Indeed,
(S@),t=0)is a Cy-semigroup on H, with a = %. Let E(A) denote the spectral
resolution of the identity associated with A4, and set R = (Id + |4[)*. Clearly, for
u,te [0, T] and x € Dom(A4),

ICS(®) — 1d]S@xIZ = |R[S() — 1d]S(w)x
= [ (1+]ADe ™™~ 1)2e 22 (E()x, x) .

Z(4)
If Ao <4 <0,
(e — 1) < ¥ — 1 < 2[A|te?™I7 .
If 1> 0,
(1 — e ™2 <1 —e 24 <2 At < 2] A|1e?lT .

Therefore, for C = 2%,
(INGES Id]S(u)x[]f < CtIRZS(u)x]IZ, ’

and

?n [S() — Id1Sw)x |2 du < sz [ (1 +]4)2e"22d¢ER)x, x> du

0 Z(4)

<CT | (14401 + [Ao])e™ld<E(A)x, x)

Z(AY n [44,01
1 — e—Z/IT
+Ct [} (1 + |4} ——=——d<{E()x, x>
ZA) N[0, +oof 2)“
< C'tlx|z,

for some constant €’ > 0. This inequality extends from Dom(A4) to H, by
a standard density argument. This completes the proof of (3.6) with « = 1.
Thus, given any Hilbert space K <« H,, Proposition 3.1 and Remark 3.6 yield
the existence of a B-valued continuous Gaussian process with covariance

(57 <S(s —u) f', S(t — u)g'dx du.

4 Relationship between the existence and the continuity
of Ornstein-Uhlenbeck processes

In this section we suppose that K ~ K’ is a given Hilbert space and that (S(z), t = 0)
is a Cy-semigroup of self-adjoint operators on K with infinitesimal generator — 4.
Then

SAL

Il f' )= | {SG—w/f,St—ug)xdu (4.1)
0

is defined for any s, ¢ = 0 and /', ¢’ € K'. Given T > 0 let H denote the RKHS of the
cylindrical measure on K with covariance I'r, r(f’, ¢'); then H < K.

Theorem 4.1 Let K, S(t), A, H and I' be as above. Assume moreover that
Z(A) = [Ao, o[ for some Ay > 0. Then the following are equivalent:

(i) A is bounded.

(i) For any Gross-measurable norm || || on H and B = H", there exists a B-
valued almost surely continuous Gaussian process with covariance I defined by (4.1).
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Proof. (i) implies that H = K, and thus it implies (ii) by the Theorem 3.3 above.
Note that if 4 is a self-adjoint operator on K with X(4) < [y, oo [ for some
Ao > 0, and if E(A) denotes the spectral decomposition of 4, then for every f' € K,

§ IS f'|% dt = J"J e MACEMN S, [ dt

0 X(4)

d<EN S5
= I spacEaIs S

_ﬁlf’l2

Therefore, I'(f',g') = [o <S@) [, S(t) g’ Yk dt is the covariance of a cylindrical
Gaussian random variable on K, say Y,; we also assume that for any fe K', Y,(f)
is independent of f(X.) where X_ has covariance I'. Then the cylindrical process
defined by Y, = S(t) Y, + X, is stationary. Indeed, for every fe K' ~ K, s £ t,

ELf(Y)f(Y)] = E[S(s) f(Yo)S@) f(Yo)] + E[f(X) f(X)]
= Of Su+syf,Su+tyfydu
0

+ f (S(s—uy f,8¢ —uyf>du

j l:j e ATty o f e"»“‘“)“"(s_“)dujld<E(/1)faf>
0

XAy L O

= [ et d<E(A)ff>

Z{A)

1

3ot =S
—|A S<2>f

2
=2

The RKHS of the law of Y, is equal to H, = A" *K.

To prove that (ii) implies (i), let 4 be self-adjoint, unbounded and such that
Ao = inf X(A) > 0. We construct a Banach B such that the process (X,) is B-valued,
and such that

K

Vx>O,Va>O,P< sup HXZ—XSHng):l, 4.2)

0sst=a

which implies that (X,) is almost surely discontinuous. Since sup X(4) = + oo,
there exists an increasing sequence of numbers (o, k = 0), such that o« = g, and
fork=1:

ak+1>(xk+1, k_lofk>tkgl,

where 1, will be specified later,
Fp = E(I())(K) # {0} for 1(2k) = [ou, o + 1[, 12k + 1) = [ + L, o4 [
F, —E(umfh[ *{01



544 A. Millet and W. Smolénski

Then K = @, F,; for every k = 1 let (ef, 1 < i < J(k)) be a complete orthonor-
mal system of F;, with 2 < J(k) £ + oo. For any k = 1, we construct by induction
a complete orthonormal system of F,, say (¢¥;1 < i < J(k)) and an increasing
sequence of integers (N*(i), 1 £ i < J(k)) such that for all 1 <i < J(k),

(+2) A JR)SNG)+1<Qi+2) A J@K), (4.3)
span(ef, 1 <j < i) = span(ef; 1 <j < N*(i)), (4.4)
A" %el espan(eh; 1 <j < N*(i)) . (4.5

Let us fix k = 1 and drop k from the notation for simplicity.

Set ¢y =e,. If J=2, set N()=1; if J>2, set N(1)=2 and let
fo=A"%e; — (A %ey, 808, If fo = O set e, = e,, and otherwise set e, = fi| folx *.

Suppose that N(i) < J and the family of orthonormal vectors (¢;; 1 £ j < N(i))
have been defined, and satisfy the induction hypothesis (4.3) up to (4.5).

If N(i) + 2 £ J, then set

fi=A R — Y AP, 808, (4.6)
1=2jsN{)
L(i)y=inf{n 2 L;e,¢span(e; 1 £j < N(i)}, 4.7
gi=ey— 2 <erw.ere+0. (4.8)
1Zj£EN(@)

Suppose that N() + 2 < J. If f = 0, set N(i + 1) = N(i) + 1, and exg+1) = gilgilx * -
Iffl‘ §é 0, let 8N(i)+1 =fl‘lfllllzla and 1et

hi = epg) — Z {erus & )& -
1SS NG +1

If b, =0, set N(i+1)=N(@)+ 1, and otherwise set N(i + 1) = N(i) + 2, and
eng+1y = Milhilx . Then the family (¢;; 1 < j < N(i 4 1)) is again orthonormal and
satisfies the conditions (4.3)—(4.5).

IfNG@+2=J<oo,thenfori+1=<j<J,set N(j)=J — 1, and let £, L(i),
and g; be defined by (4.6), (4.7) and (4.8) respectively. If £ = 0, set eyg+1) = gilgilx '
and otherwise set eyg+1) =filfilx'. Then the family (¢;; 1 <j< N(i+ 1)) is an
orthonormal basis of F.

Finally, if N(i) 4+ 1 = J, then (¢;; 1 £j £ N(i)) is an orthonormal basis of F,
and the construction is over.

The preceding construction ensures that (¢¥; 1 < i < J(k)) is again a complete
orthonormal system of Fy. Let & denote the span of (¢%; 1 < j < J(k), k = 1). Define
a linear operator L:4& — & by setting

L) = k™' et
L(s?¥) = 27@F+02k for 2 <i < J(2k)
L(g#~1) =27 @k 1H0e2k=1 for 1 <i<J2k—~1).
Let us remind that H,, = A~ * K. Observe moreover that the RKHS of the law of

X ,,say o, is equal to H, as a set, and that there exists a constant C > 0 such that

R 1
Clxle < [4¥x]x < 5 IxLr
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We show that L4 ™% is Hilbert Schmidt on K, and define a new norm || || on # by
setting || x||5 = |Lx|x. Indeed, (4.5) implies that (A~ ¥ef, e5> = (e, A7%el) =0
except if j£2i+ 1 and i £2j 4+ 1. Thus
Y= ) ILATEeE
kzlisi<J®
= Y k72 ({AFe o) + (A7 Hed", 61) + (A7 %ed", 615))?

kz1
+ 2—4k(<A~%8%k—1’8%k—1> + <A—%8§k—1’8%k—1>
+ <A—%8§k—1’8%k~1>)2] + Z Z 2—2(k+i)

kzl 22i<Ji)

2
(A%, 8’{>>

([z‘-m]ggzwl

<Y kB0t 42730 ]+ Y ey Y 272060025 4 1)

kz1 kz1 2 i< k)

S3Y kP44t Y 27 Y Qi+ 127 < oo

kzt k21 izl

Let B denote the completion of # with respect to the norm || ||z. It follows that
H s B is an abstract Wiener space. Let (X, 0 <t < T') be the cylindrical Gaussian
process with covariance I" defined by (4.1). The law of X 1 is tight on B, and hence
(X,,0 <t £ T)is a genuine B-valued process. In the last step of the proof we show
that:

Va>0,VM>0,P( sup [IXS—X,||B>M>=1. (4.9)

0=st=a

Forevery k = 1, set

pk=P< sup HXS—Xriigék);
()

“lestgk!

then
pk%P< sup <8%",LXS—LXT>K£1<>

Qu) Tt g5k
2p(sp kAN - X2 t).
@uy gtk
In the rest of the proof, let us fix k and set y, = X,(¢?). Thenfor 0 < s <t < T,
S ar+1

En)=] [ e e 0 E@)ed, 63> du
0 ax

art+ 1 1 X
= | e‘“’_s)z—l—(l — e T2 dE(A)edk, e |

ax

Thus, for 1/20 < s <t < 1/k, and for some C > 1,

C™ oy Vexp( — alt — 5)) £ E(nen) £ Cog texp( —ou(t — 5)) -
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Let us put Z, = C*aiy,. Then
1S EZ)<C? and 0< E(Z,Z,) < CPexp(—ou(t — ) .

Let us fix n > 1, set § = 1/2kn, and & = Zy5y-14¢-1ys for 1 £i < n. Then if

1 X
p() = —== | e Mdr,
27'C —x
one has that

(&l
P\ sup 151<M>§ ( sup ———§M>——>(¢(M i
(1<1<" 1sisn /E(1E1) e )

Similarly,

~ 1l m m\ \"
P inf &2 )gp( nf >—> <1— <—))
<l§i§n " ;; ,/E(|f]) C/ w-owo d) C

Let us recall that o, k! > 1, and that we are free to choose t, as large as we wish
(since we may impose that t, » + oo as k — + o). Of course,

Fk=P< sup (|£i“_€j')>M'—m>

1ihjsn

§P< sup (Iéil—lfj|)>M-m>

124j<n

P({ sup ]5,~!>M}m{ inf léi|<m}>

I<ign 1gizn

1—[P< sup ]filéM)—l-P( inf |éi|§m>].
1Si<n 1gi<n

Hence, for fixed k, M, m and n, there exists A(k, M, m,n) such that for

o > Ak, M, m, n),
>1— [d)(M)]n _ I:l _ qb(%)iln — k1)
Choose m = /C, M = (k* + 1),/C, and then n such that
1 n
K+ D/OT + |1 -0 —=)| 27D,
[6((K* + /O] +[ qs(ﬁﬂ <

Now choose t, such that for o > kt,, P, = 1 — 27% Obviously, p, = P,, which
completes the proof of {4.9), and hence that of the theorem. [

v

i

Acknowledgements. The authors are grateful to A. Chojnowska-Michalik, G. Da Prato and J.
Zabezyk for comments and references which improved the results of Sect. 3, and to W. Bryc and
P. Paschke for their advice concerning the final formulation of Proposition 1.2; they thank the
referee for careful reading and helpful remarks.



Continuity of Ornstein—Uhlenbeck processes 547

References

1.

2.

10.

11.
12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

Antoniadis, A., Carmona, R. Eigenfunction expansions for infinite dimensional
Ornstein—~Uhlenbeck processes. Probab. Theory Relat. Fields 74, 31-54 (1987)

Badrikian, A., Chevet, S.. Mesure cylindrique, espaces de Wiener et fonctions aléatoires
gaussiennes. (Lect. Notes Math., vol. 379) Berlin Heidelberg New York: Springer 1974

. Carmona, R.: Tensor products of Gaussian measures. In: Proc. Conf. Vector Space Measures

and Appli. Dublin 1977. (Lect. Notes Math., vol. 644, pp. 96-124) Berlin Heidelberg New
York: Springer 1978

. Chojnowska-Michalik, A.: Stochastic differential equations in Hilbert spaces. (Banach Cent.

Publ, vol. 5 Probability Theory, pp. 53-74) Warsawa: PWN 1979

. da Prato, G., Kwapien, S., Zabczyk J.: Regularity of solutions of linear stochastic equations in

Hilbert spaces. Stochastics 23, 1-23 (1987)

. da Prato, G., Sinestrari, E.: Differential operators with non dense domain. Ann. Sc. Norm.

Super. Pisa, ClL Sci,, IV. 14, 285-344 (1988)

. Dawson, D.A.: Stochastic evolution equations. Math. Biosci. 15, 287-316 (1972)
. Dellacherie, C., Meyer, P.A.: Probabilités et potentiels, chaps. 1-4. Paris: Hermann 1975
. de Simon, L.: Un Applicazione della teoria degli integrali signorali allo studio delle equazioni

differenziali lineari astrate del primo ordine. Rend. Semin. Mat. Univ. Padova 34, 205-223
(1964)

Fernique, X.: La régularité des fonctions aléatoires d’Ornstein—Uhlenbeck a valeurs dans [?;
le cas diagonal. C.R. Acad. Sci., Paris, Sér. T 309, 59-62 (1939)

Fernique, X.: Fonctions aléatoires dans les espaces Lusiniens. Expo. Math. 8, 289-364 (1990)
Fernique, X.: Régularité de fonctions aléatoires gaussiennes en dimension infinie. (Preprint
1990)

Henry, D.: Geometric theory of semilinear parabolic equations. (Lect. Notes Math., vol. 840)
Berlin Heidelberg New York: Springer 1981

Hille, E., Phillips, R.S.: Functional analysis and semigroups. Coll. Publ. Am. Math. Soc.
vol. 31) Providence RI: Am. Math. Soc. 1957

Iscoe, I, Mc Donald, D.: Continuity of >-valued Ornstein-Uhlenbeck processes. Technical
Report of the Carleton University 1986

Iscoe, I, Marcus, M.B., Mc Donald, D., Talagrand, M., Zinn, J.: Continuity of [*-valued
Ornstein—Uhlenbeck processes. Ann. Probab. 18, 68-84 (1990)

Kotelenez, P.. A maximal inequality for stochastic convolution integrals on Hilbert spaces
and space-time regularity of linear stochastic partial differential equations. Stochastics 21,
328-345 (1987)

. Krein, S.G.: Linear differential equations in Banach spaces. (Transl. Math. Monogr., vol. 29)

Providence, RI: Am. Math. Soc. 1971

Kuo, HH.: Gaussian measures in Banach spaces. (Lect. Notes Math., vol. 463) Berlin
Heidelberg New York: Springer 1975

Sinestrari, E.: On the abstract Cauchy problem of parabolic type in spaces of continuous
functions. J. Math. Anal. Appl. 107, 16-66 (1985)

Smolefiski, W.H.: Continuity of Ornstein-Uhlenbeck processes. Bull. Pol. Acad. Sci. 37,
203-206 (198%)

Smolefiski, W., Sztencel, R., Zabezyk, J.: Large deviations estimates for semi-linear equations.
In: Englebert, H.J., Schmidt, W. (eds.) Proceedings of the 5th IFIP Conference on Stochastic
Differential Systems. Eisenach 1986. (Lect. Notes Control Inf. Sci, vol. 96, pp. 218-231)
Berlin Heidelberg New York: Springer 1987



