
Probab. Theory Relat. Fields 92, 493-510 (1992) Probability 
Theory " " '  Related Fields 

�9 Springer-Verlag 1992 

The packing measure of a general subordinator* 

Bert E. Fristedt 1 and S. James Taylor 2 
i School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA 
2 Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA 

Received January 7, 1991; in revised form November 28, 1991 

Summary. Precise conditions are obtained for the packing measure of an arbitrary 
subordinator to be zero, positive and finite, or infinite. It develops that the packing 
measure problem for a subordinator X(t) is equivalent to the upper local growth 
problem for Y(t) = min (Y1 (t), Y2 (t)), where Y1 and Y2 are independent copies of X. 
A finite and positive packing measure is possible for subordinators "close to 
Cauchy"; for such a subordinator there is non-random concave upwards function 
that exactly describes the upper local growth of Y(although, as is well known, there 
is no such function for the subordinator X itself). 

1 Introduction 

Fristedt and Pruitt 
appropriate measure 
Hausdorff measure 

[1] showed that for each subordinator X(t) there is an 
function cp(s) such that the trajectory up to time t has 

(p-mX[O,t]=t for a l l t ~ 0  a.s. 

Taylor and Tricot [4] defined packing measure and showed that the trajectory of 
a transient Brownian motion has finite positive ~o-packing measure for (p(s) = s2/ 
log llogsl. In [6] Taylor gave a criterion on ~0 which determines whether the 
sample path of a strictly stable process in R d of index e < d, 0 < c~ < 2 has zero or 
infinite p-packing measure. In this case there is no function ~0 such that 

0 < (p-pX[O, 1] < + oo, (1.1) 

and the reason for this is that efficient packing comes from using points on the path 
where there are unusually large jumps. One might suspect that this behavior would 
persist for every L6vy process with infinite L6vy measure. However, the strictly 
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asymmetric Cauchy process in R a (d > 2) satisfies (1.1) with (p(s)= s/[logsl, as 
shown by Rezakhanlou and Taylor [2]. We also believe that there are symmetric 
Lhvy processes in R e (d > 3) which are sufficiently close to Brownian motion to 
have an exact packing measure function. 

The purpose of the present paper is to analyze the o-packing measure of an 
arbitrary subordinator. The results extend immediately to a type B L4vy process in 
R d, but we state them only in R. It is well known that no subordinator has an exact 
upper growth rate, so we were surprised to discover that there is a class of 
subordinators for which there is an exact ~0 satisfying (1.1). The reason for this will 
become clear as we explore precise analytic conditions on the large tail of the 
distribution of X(t) and translate these into conditions on the growth rate of the 
L6vy measure near 0. Efficient packing comes from two large excursions rather 
than just one. For  subordinators close to Cauchy the rare event of two large 
excursions is more likely to be realized by a large number of small jumps rather 
than two large jumps. Thus, in giving a complete solution of Problem 2 on page 392 
of [5], we discover a third category where (1.1) holds. 

In Sect. 2 we first gather the results we need about subordinators and about 
packing measures. Of some independent interest may be a more powerful auxiliary 
packing measure with the same class of sets of zero or infinite measure. In Sect. 3 we 
establish connections between the distribution of X(t) and the IAvy measure near 
zero, and in Sect. 4 we give examples which show that all possibilities can be 
realized. Finally in Sect. 5, we obain definitive results on the (p-packing measure of 
the trajectory of a subordinator. As usual, c or k will stand for a finite positive 
constant whose value may change from line to line. 

2 Preliminaries 

By a subordinator we mean a real-valued increasing process X(t) with stationary 
independent increments and X(0) = 0. We take X to be right-continuous. For  fixed 
s > 0, the processes 

~ ( t )  = X ( s )  - X ( s  - t ) ,  

~ ( t )  = X ( s  + t) - X ( s )  

are independent copies of X(t), although Yx (t) is only defined for t < s and if 
left-continuous rather than right-continuous. We also need the first passage time 
process P(a) defined for a > 0 by 

P(a) = inf{s > O: X(s) > a}. 

Our analysis involves a study of the large tail of the distribution of X(t), so, for 
t, y _-> O, we define 

F(t, y) = P { X ( 0  _-__ y} = P { P ( y )  _-< t} .  

The Laplace transform of the distribution of X(t) is 

E{e-XX(O} = e-tO,x) , 
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where 9(2) = ~o (1 - e-) '")v(dr), and v is a measure on (0, ~ )  such that  

co 

(r A 1)v(dr) < oe (2.1) 
0 

(where r A 1 denotes the min imum of r and 1). If (o(s) = s then the (o-packing 
measure of every subset of the real line coincides with Lebesgue measure. There- 
fore, it is natural  to restrict our  at tent ion to measure functions (o which satisfy 
(o(x)/x $ in addit ion to the usual properties: (o(0) = 0, (o strictly increasing, and 
(o continuous.  One consequence of these assumptions is that  (o(ax) + (o(bx) > (o(x) 
whenever a + b = 1, 0 _< a < 1, x > 0. Another  consequence is that  the inverse 
function (~ of (O satisfies ~(t)/t ~. 

For  a collection J of intervals I, let 

(0(3) = ~ (o([I[) ,  

where [.1 denotes Legesgue measure, and 

[]d[] = sup{ I / I , I  ~ J )  . 

Fo r  each E = R, let J t  denote  the family of intervals (x - r, x + r) with center 
x ~ E. Define the set function 

(O-P(E) = l imsup {(o(d): ]]d H < 6, J disjoint, and d c J z }  �9 
6 ~ 0  

In [4, p. 6811 Taylor  and Tricot  showed that  (O-P changes by only bounded  
factors if d ~  is replaced by semidyadic intervals each containing a point  of E near 
the midpoint .  In the present paper  we need to work with a possibly sparser 
collection of intervals that  depends on (O. 

Start  with any sequence x,  which decreases to zero slowly enough to ensure 

(o(Sx,) < c (2.2) 
(o(5x,+l) = 

for some constant  c, and define the packing class F = F(E, {x,}) to consist of 
those intervals (jx,,(j+ 5)x,), j s Z ,  such that  there is a point  of E in 
[ ( j  + 2 ) x , , ( j  + 3)xn]. Now put 

q~-P+(E) = lim sup {~o(d): IlJll < 6, d disjoint, and J c F(E, {x.})} . 
6 ~ 0  

An easy argument ,  approximat ing inside an interval of d e  by one o f / ' (E ,  {x, }), and 
conversely, shows that  there are finite constants cl ,  c2 such that  

cl (O-P+ (E) < (p-P(E) < c2(O-P+ (E) (2.3) 

for all E c R. The final step is to generate outer  measures: 

(O-p(E) = inf{~,(o-P(Ei):E~ ~ E i } ;  

(O-p+(E)=inf{~(O-P+(Ei):Ec wEi}. 
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We call (p-p the (p-packing measure  and  use (p-p+ as a computa t iona l  aid since (2.3) 
ensures that  bo th  measures  have the same class of sets of  zero measure.  The  key 
tool  for evaluat ing packing measure  is to spread a finite measure  uniformly on the 
set and  then evaluate  the lower density. We state the relevant theorem f rom [4]. 

Theorem 1. Suppose/2 is any finite Borel measure in R and (p is a measure function. 
Then there is a )~ > 0 such that, for all BoreI E ~ R, 

where 
,~/2(E)inf{A(x): x e E }  < (p-p(E) </2(E)sup{A(x): x e E }  , 

(p(2r) 
A (x) -- lira sup 

r-~o / 2 ( x - r , x + r )  
(2.4) 

3 Local growth conditions needed for the density theorem 

As usual we define a Borel measure /2  concent ra ted  on the t ra jectory by taking the 
occupa t ion  measure.  F o r  any Borel set A put  

#(A) = [{se(0, 1): X ( s ) e A } ] .  (3.1) 

For  x = X(s) we want  to pick values of  r such that  #(x - r,x + r) is small: this 
requires us to choose values of t which m a k e  bo th  [X(s + t ) -  X(s)]  and 
[X(s) - X(s - t)] large. We make  this precise in 

L e m m a  A. I f #  is defined by (3.1) and A(x) is the upper density defined by (2.4), then 

• A(X(s)) <= sup l im 
t$0 

(p([X(s + t) - X(s)]  A IX(s)  -- X(s -- t)]) < A(X(s)) .  

Proof Let Y,(t) = X(s + t) - X(s), Yg(t) = X(s) - X(s - t) and suppose  that  
l i m s u p t ,  o (p ( Y, (t) /x Y2(t))/t < k < +oo.  Then  for all small t > 0, e > 0 either 
(p(Y,(t)) < (k + e)t or (p(Y2(t)) < (k + e)t; that  is, either Yt(t) < O((k + e)t) or  
Y2(t) < O((k + e)t) so that,  either Pi(t)(k + e)t) > t or P2(~0(k + e)t) > t and  thus 
Pl(O(k + e)t) + Pi(~/(k + E)t) >= t. Replacing t by t/(k + e) gives, for all small t, 

o r  

Pl(O(t)) + P2(O(t)) > _  1 

2t = 2(k + e) 

(?(2r) < 2(p(r) < 2(k + e) 
/2(x - r, x + r) = #(x - r, x + r) = 

for x = X(s) and all r = 0(t)  small  enough.  Hence  

A(x) __< 2(k + e). 

Conversely  suppose  l imsupt  +0(p(Yl(t)A Y2(t))/t >_--k > 0. The  same a rgumen t  
shows tha t  

A(x) >= ( k -  ~). 
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Since e is arbitrary,  the lemma is proved. It is clear that  a ze ro -one  law applies to 
this lira sup so that  there is a constant  m a [0, oo] such that  

~o(~(t) A ~(t))  
l imsup  = m a.s. (3.2) 

~$o t 

Since clearly the value of m is related to the o-packing measure by Theorem 
1 our  main  task is now to determine conditions which will make m zero, infinite, or 
finite and positive. 

L e m m a  B. If  k is such that 

i l F(t, O(kt)) 2 dt , < o G  

o ~ 

then 

cp(Yl(t ) A Yz(t)) 
l imsup < k a.s. 

t~o t 

where II1, Y2 are independent copies of the subordinator X. 

Proof Suppose 0 < b < 1. By monotonic i ty  

k P{  50(YI(t) A Y2(t))>-kb-2 forsomets(b"+l,b"]} 
n= l  t -- 

=< ~ P{q~(Y~(b")) A cp(Y2(b")) >-- kb "-1} 
n = [  

=< Ilogb] ~ ~ n{~p(Yl(t)) A q~(Y2(t)) _-> kt 
n = l  b n 

1 1 1 

"~oltF(t'~(kt))2dt < ~ " ]logb] 

By Borel-Cantell i ,  lira sup, ~ o ~o( Y~ (t) A Yz(t))/t < kb- 2 a.s. Since b can be arbitrar-  
ily close to 1, the lemma is proved. 

Lemma  C. If  k is such that 

i ~F(t,O(kt))2dt = + ~  , 
0 

then 

lim sup 
t ~ 0  

a.s.  
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Proof 

p ~(Yl(t) /~ Y2(t)) > �88 for some t e  ,2n_ 1 i.o. 
t 

> P  t 

(where "i.o." denotes "infinitely often"). Since the events are independent,  this 
probabil i ty will be 1 by Borel-Cantel l i  if the following series diverges: 

= ~ P  - _ _  > 
n = l  

1 oo 1 /2  n 

> ~ ~ P{rp(Yl(t) A Y2(t)) > kt} dt- 
= log2  n=l 1/2-§ = t 

1 1~2 F(t, ff(kt)) 2 dt + oo 

log 2 o t 

It is now an obvious quest ion as to whether  the integral 

i ~ F(t, ~ (kt)) 2 dt (3.3) 
0 

can converge for some values of k and diverge for others. In order  to decide this we 
connect  (3.3) with the L6vy measure. 

Lemm a  D. If  there is a finite k making (3.3) or 

1 
i t f(t, k~t(t)) z dt 
0 

finite, then 
1 

j tr iO(t),  ~ ) 2 d t  < ~ . 
0 
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Proof. We may  assume k > 1 so that  O(kt) < kO(t) and F(t, ~,(kt)) > F(t, bp(t)) and 
the convergence of (3.3) implies that 

} l F ( t ,  kO(t))2dt . < oo (3.4) 
0 t 

But F(t, kO(t)) is not  less than the probabil i ty that by time t there is at least one 
jump of size greater than kO(t). Thus (3.4) requires 

which implies 

But 

Hence,  

and (3.5) becomes 

i l 
o 7(1 - e-tV~k~176 < oo , 

i 1(  1 /x tv[k~,'(t), oo)) 2 dt < oo. 
0 L 

1 
(1 - e -~/'qk~'r o0))2 < F(�89 kO(t)) 2 

< f (s ,  kt~ (s)) 2 ds 
= l o g  2 t/2 

- - ,Oas t $ O. 

lim tv[kO(t), oo) = 0 ,  
r i o  

1 

[. tv[k~,(t), c~)2dt < oo . 
0 

But, for k > 1 we have 

(3.5) 

(3.6) 

V[X, o o ) 2 q 0 ( x ) c p ' ( x ) d x  < O0 ; 

r 

(iii) 
0 

k -I i 

k2 f uv[O(u), oo)2du = I tv[O(kt), oo)Zdt 
0 0 

1 

< ~ tv[k~/J(t),oo)2dt < oo ; 
0 

so the lemma is proved.  

It wilt be helpful to state a number  of condit ions equivalent to the growth 
condi t ion on the L6vy measure obtained in Lemma D. 

Lemma E. The following statements are equivalent: 

1 

(i) S tv[~(t), 00) 2 dt < oo ; 
0 

1 

(ii) ~ tv[cO(kt), oo)2dt < oo;  
0 
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(iv) 

(v) 

The following statements follow from (i): 

(vi) 

(vii) 

1 
j" cp(x)2v[x, ~ ) v ( d x )  < oo ; 
o 

O(1) 
I V[CX, oo)2(p(x)~o'(x)dx < 0(3 . 
o 

tv[cO(kt), co) ~ 0 as t $ 0 ; 

qo(x)v[cx, oo)~O as x.~ O; 

(viii) ~ x 2 v(dx dt < ~ ; 
o o 

t , (t) 
X2 v(dx) -+ 0 as t ,~ 0 (ix) 0(02 �9 

Proof (i) ~ (ii): Fo r  c = 1, the equivalence follows immediately from the substitu- 
t ion s = kt. Then,  general c is easily treated using 

O(kt)=< cO(kt)=< O(ckt) i f c = > l ,  

~(kt) >= ctp(kt) >= tp(ckt) if c ~ 1.  

(i) r (iii) and (ii) r (v) come from the change of variables t = ~0(x) (using k = 1 
in (ii)), as does (vi) r (vii). (ii) ~ (vi) is done in the por t ion  of the proof  of L emma  
C leading to (3.6). 

(iii) r (iv): 

1 
} vex, oo)2d(cp(x) 2) i vEx, oo)2(o(x)~p'(x)dx = -~ 

6 6 

1 1 1 2 = ~V[ ,00)2(0(1) 2 -- ~V[C~,oO) r 2 

1 
+ ~ ~o(x)2v[x, ~)dx .  

(vii) =~ (ix): An argument  similar to, but  easier than, that  leading to (3.6) gives 
6v[g~, or) --, 0 as ~ $ 0 as a consequence of (2.1). Thus 

0 (t) 0 (0 
I x 2 v ( d x ) =  l i m -  ~ x2dv[x ,  oo) 
o 650  o 

= lim - 0( t )2v[0( t ) ,oo)  + 82v[5 ,~)  + 2 ~ xv[x ,  oo)dx 
650 

0 (t) 
< 2  j xv[x ,  oo)dx.  

o 
But 

t o(t) 1 * (') 
i]/(t) 2 ! XY[X, c~)dx S ~ -~  s @(x)Y[x, oo)dx -+0  
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since ~o(x)v[x, o o ) ~ O  as x ~ 0. 
(iv) ~ (viii): The integral in (viii) can be written 

1 t 0 (0 O (t) 
2 f ~ ~ y2 ~ z2v(dz)v(dy)dt  

0 t/" t~! 0 y 

which, by interchange of order of integration, equals 

0(1) 0G) 1 . 2 _ 2  ty z 
2 ! ~ ~ ~ d t v ( d z ) v ( d y )  

e(~) (tptt) ) 

--< 20~1'o 0!1, ZO'((P(Z))Yzz2(P(Z ) I ~t~'(t) . - e{z)_ at v(dz)v(dy) 

0(1) 0(I) ~O(y)2z(p,(Z) 
< O(i)~ ~,(1)~ Y2cP(z)cP'(Z)z v(dz)v(dy) =< ~ ~ (p(z) v(dz)v(dy) 

0 y 0 y 

0(1) 1 0(1) 

<= ~ ~o(Y)Zv(dz)v(dY) = ~ (~176 oo. 
0 y 0 

We now derive another conclusion from the integrability condition on the large tail 
of F(t, y). 

Lemma F. I f  c is such that 

then 
}•F(t ,  c@(t ) )  2 d t <  00 , 
o 

t 0(t) 

l imt~0sup~ ! xv(dx) =< 4c.  

Proof  We split X(t) into two independent pieces XI (t) and X2(t), where 
qJ(2t) 

--Z ]" (1--e-~X)v(dx) E(e - xx~m) = e o 

- t  ~ (1-e-a~)v(dx) E(e -~x~(~ = e ~,~ 

(3.7) 

Then F(t, cO (t)) _>_ F 1 (t, c o (t)), where F 1 (t, y) = P {X l (t) ~ y}. Thus, if t, ,~ 0 so that 

1 > t 1 ~ 2t2 > 4ta > - �9 �9 > 0 ,  
then 

? Fl(t 'cO(t))2dt  < oo. 
n = 1 tn /2  t 

This implies that ~ Fl(�89 2 < oo so that 

Fl ( �89  a s n ~ o o .  (3.8) 

If (3.7) fails we can find such a sequence t,, with 

[ x v ( d x ) > 4 c  for a l l n .  ~(t.) 



502 B.E. Fristedt and S.J. Taylor 

Now the mean and variance of X1 (t,/2) are 

O(tn) 

t2 I xv(dx) > 2cO(t.) 
2 o 

and 
tn O(t,) 
g ! x2v(dx)" 

By Chebyshev's inequality, 

1~ r x 2 v(dx) < 2 ~n Jo 

_ 1 tn  ~ ( t . )  

2c 2 O(tn) 2 ! 

by Lemma E(ix). But this contradicts (3.8). 
We are now ready to prove a converse. 

Lemma G. Suppose there is a constant c such that 

1 

[ tv[O(t), ov)2 dt < o, 
0 

and 
t o(t) 1 

l imsup~-~  ! xv (dx )<-~c .  

Then 

i ~ F(t'CO(t)) 2 dt < 00. 
0 

Proof. This time we write X(t) = Xl(t)  + X2(t)  with 

O(t) 
- - t  J (1-- e-aX)v(dx) E(e -~x~m) = e o 

- t  ~ ( 1 - e  zx)v(dx) E (e - ~x~m) = e ~,~ 

x 2 v(dx) ~ 0 

and again write F i ( t , y ) = P { X i ( t ) > y } .  Since X ( t ) > y  implies 
Xl(t)  > �89 or X2(t) > �89 we have 

F(t, cO(t)) < F,  (t, �89 + F2(t, 1CO(t)) �9 

Our result will now follow if we can show 

*1 
(a) ! tFl(t,�89 2 dt < oo 

that either 
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and 

(b) i ~F2(t,�89 dt < oo , 
0 

since (a) and (b) together also imply that 

i lFt(t , �89189 < vo . 

(a): The expectation and variance of X~(t) are 

0 (t) 

t ~ xv(dx)<�89 for small t 
O 

and 
0 (t) 

t ~ x2v(dx) .  
0 

Chebyshev gives 
~' (t) 

t [. x2v(dx) 
Fl(t,�89 = < o 

(~c~(t))  2 

I, t ,l,(t) <= ~ ~ j" x2 v(dx) . 
0 

Hence 

= x2v(dx)d t  < 
0 0 

by Lemma E(viii). 

(b): X2(t) > �89 implies that X2 has at least one jump so that 

F2(t, �89162 < tv[tfi(t), r 
and, therefore 

} ~F2(t, ~c~(t))2 dt <= i tv[Ip(t), oo)2 dt < oo . 
0 0 

We can now combine the results of Lemmas D, F, G in the form of 

Theorem 2. I f  F(t, y) = P{X(t) > y}, there are three disjoint possibilities: 

(i) i 1 o t F(t, Ct/t(t)) 2 dt < oo for all e > 0 

if and only if 

1 

~ tv[tp(t), c~)2 dt < ~ and lim t o(t) j" x v ( d x ) = O ;  
o t ~1 o ~-77J o 

(ii) tF ( t ,  ctp(t)) 2 dt < oo for some but not all c > 0 
0 
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if and only if 

1 

tV[~(t), oo)2dt < vO 
0 

(iii) 

if and only if 

and 

o 7F(t' c0(t))2 dt = + ao 

t 0 (t) 
0 < limsup-7-rv,, .[ xv(dx) < oo ; 

t~o 4'(0 b 

for all c > 0 

1 t 0 (t) 

j t v [ O ( t ) , o o ) 2 d t  = co or l i m s u p - = ,  j oo . 
o t~0 ~,(t) 0 

Remark 1. The case (ii) above cannot 
generally, if there is a 7 < 1 such that 

For  ~ corresponding to such a (p, 

occur if rp(x) = x ~, 0 < c~ < 1 or, more 

for all c > 1. 

2 u 2 - n  

(p(u) ~ f yv(dy) 
U n = l  u 2  - n  

_<_ 2cp(u) ~ 2-"v[u2-",2u2-") 
n = l  

< 20(u) ~ v[u2-", oo) 
n = l  

< 2 ~ 2"~-nqo(u2-")V[U2-",O0) 
n = l  

< 2 sup {q)(y)v[y, ov)} ~. 2"'-" 
y __< (1/2)u n = 1 

-+0 a s u ~ 0  

since (p(y)v[y, oo)~ 0 by (3.5). 

Remark 2. In the statement of Theorem 2, the constant can be moved inside the 
argument of the ~ function, even though in general O(kt) need not be of the same 
order as O(t). Thus, for example 

i ~F(t, cO(t)) zdt < oo for some but not all c > 0 
0 

Proof Write t = ~o(u). Then 

u o 

i 0 (t) tv[~(t),oo)2dt < ov~ l i  m t ~ x v ( d x ) = O .  
o t J, o ~ J  o 
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if and only if 

i lF( t ,  O(kt)) 2 dt < oo for some but not all k > 0 .  
o r 

Proof. Use the conditions of the theorem and note: 

i 1 i uriC(u), oo)2du , 0 t v [~/(kt)' 00)2 dt k-20 

t o(k~) 11. u q' (') 
l i m s u p ~ t  ~ ~ x v ( d x ) = ~  l m s u p ~ )  ~ xv(dx) .  

o o 

4 Examples 

In the last section we have seen that we will get a finite positive density A(x) for 
a ~o such that 

1 t q~ (t) 

tv[i/J(t),oo)2dt < 0(3 and 0 < l i m s u p ~  ! xv(dx) < oo, 
o 

where ~ is the inverse function of q0. Remark 1 shows that it is impossible for these 
two conditions to both hold if qo is comparable to a power less than 1, so we need to 
ask whether there is any subordinator for which the condition can be satisfied. We 
compute several examples and show in Example C that for certain subordinators 
close to Cauchy the two conditions are satisfied simultaneously. 

A. A stable subordinator of index ~, 0 < c~ < 1 has 

dx 1 
v(dx) - 1+~, v[x, oo) = - -  . 

X O~X ~ 

Try (p(x) = x ~ log which makes 

Then 

/ 1 5n/~ 
r ~ t ' /~ l logt}\  / a s ,  $ 0 .  

i dt 1~_i~(@)2 ~ d t { = ~ 1 7 6  i f f i< l /2=  t v i a ( t ) ,  oo) 2 = 
o <oo  if f l > 1 / 2 .  

Thus, case (iii) of Theorem 2 holds if/~ < �89 and, by Remark 1, case (i) holds if fl > �89 
This example was previously treated in [6]. 

B. A gamma process is given by v(dx) = (e-X/x)dx, so v[x, oo) ~ log 1 as x ; 0. 
x 

I 0 (t) 

Now, for any ~0, ~ ! xv(dx) <= 2t ~ 0 as t ; 0 so again the behavior will be 
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determined by the convergence or divergence of S~ t v [~ (t), oo)2 dt or, equivalently, I , ]  2 
i~ ~ o ~  d~ 
o 

A critical function q} is 

for which 

and 

~(x)= 
log 1 (log log 1)~ (log log log 1)P 

1 

0 ( t ) -  e - {t0og+)O0oglog+)~} 

oil t log ~ l ]2 { : ~  at ~ 
if e < 1 / 2  or e=1 /2 ,  fi__<l 
if a > 1 / 2  or c~=1/2, f i > l .  

C. A subordinator close to Cauchy: 

SO 

Now we try 

v(dx)= 
dx 

1)1+ ~ 
x 2 log x 

f o r 0 < x < e - l , a > 0 ,  

1 
v[x, oo),., x ( logl )  1+~ as x + 0 .  

~0(x) = x ( l o g  1 / J ,  fl > O, 

s o  

0(t) ~ t(log 1/t) -p 

and thus ~01 tv[O(t), oo)2dt converges if and only if 

i (log l/t) 2~ 
t(l~-g 1-~T-2 dt < 00. 

o 

Therefore, we have convergence if and only if fl < �89 + c~. We also have 

S x v(dx)~ log ~ 1/a if fl=c~ 

0 i f f i < ~ .  

Applying Theorem 2, we see that, for f l  = c~, 

i~F(t,c~(t))2dt 
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converges for some but not all c > 0. By Lemmas B and C this implies that there 
exists a fine positive k such that 

lira sup - k a.s. (4.1) 
t ;0  t 

We conjecture, but cannot formulate an exact theorem, that only subordinators 
which are close to Cauchy can have an exact function (p such that (4.1) holds. 

5 T h e  p a c k i n g  cp-measure 

We can now adapt standard arguments. Lemmas B and C combined with Theorem 
2 and Remark 2 following Theorem 2 give 

Theorem 3. For independent subordinators Y~ and Y2 having the same distribution 
and a measure function ~o with inverse ~, there are three possibilities: 

t t ~!o 
(i) ~tv[O(t) ,oo)Zdt<oo and l i m ~ 7  j ! xv (dx )=O 

0 t;O 
~o(Iq(t) A ~ ( t ) )  

lira sup = 0 a.s. ; 
t t $ 0  

i t Oit) (ii) o tv[~ll(t),o~)2dt < oo and 0 < l i m s u p ~ t  ~ xv (dx )<  

e(Yl(t) A ~(t)) 
limsup = k  a.s.; 

t ;0  t 

(iii) i tv[~c(t),oo)2dt= +~ 
o 

t ~,(t) 
or limsup ~ xv(dx)=  +oo 

t~0 

lim sup 
t $ 0  

(p(Yl(t) A Ya(t)) 
= O(9 a.s. 

Moreover, lim sup[Yl(t) A Y2(t) ]/O(t) is O, positive and finite, or infinite according as 
the same is true for lim sup cp(Yl(t ) A Yz(t))/t. 

Remark. The preceding theorem, in combination with Example C of the preceding 
section, indicates that it is possible to have 

Y~ (t)/, ~(t) 
0 < lim sup 

t ; 0 ~ , ( t )  
< o o  

for appropriate Y~ and Y2 (independent identically distributed having no drift and 
convex 0), in contrast to the known impossibility of 

0 < lira sup X(t) 
t $ 0  ~ < o 0  
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for convex ~ and subordinators  X having no drift. 
We now wish to prove our  main 

Theorem 4. For a measure function cp and subordinator X(t) 

0 if case (i) holds 

(p-p(X[0, t ] )  = c if  case (ii) holds 

oo if case (iii) holds 

in the classification of  Theorem 3. 

Proof (iii): Using the occupat ion measure (3.1), and L emma  A we see that, for 
fixed se(0 ,  1), x = X(s) a,s. A(x) = + o% where 

~o(2r) 
A(x) = lim sup 

r+o l l ( x - r , x + r ) "  

By Fubini,  i f E  = {se(0, I): A(X(s)) = + oo} we have IE] = 1 so that  #(X(E)) = 1. 
Applying Theorem 1 to X(E) gives 

( p - p X [ 0 , 1 ]  ____ r = + o o .  a.s. 

(i): In the first case, Lemma  A shows that  

A(x) = 0 a.s. 

for x = X(s), s fixed in (0, I). If 

E = A(X(s)) = 0 }  

we again have IEI = 1 and #(X(E)) = 1. Applying Theorem 1 gives 

r = 0 a.s. 

However  we now have to worry  about  (p-pX(EC), the packing measure of the bad 
points on the trajectory where A(x) > 0. We deal with these by using the auxiliary 
measure (p-p+ on the set 

~x = X(s), 0 < s  < 1" l imsup (p[X(s + t ) -  X(s)] A [ X ( s ) -  X ( s -  t)] > 4 ~  F~ 
( t$0 t ) 

which contains the set of x E X[0 ,  1] where A(x) > 8e. N o w  let x ,  = �89 so 
that (2.1) is clearly satisfied. 

If x e F~, there is a sequence tl + 0 such that  

X(s + ti) - X(s) > r and X(s) - X(s  - ti) > r , 

which by Cauchy-Schwar tz  is bounded  by 

-] a/z F 1 71/2 
f i t v [~r176176  ~ !  ~F(2t'x3t)(t))ZdtJ 

and both  of these integrals are finite using the hypothesis  and L emma  G. 
On the other  hand, if l i ' n is bad of type K, then X (t) hits [ jx , ,  ( j  + 1)x,] ,  moves 

at least x,  in less than 2 - "  units from the first hitting place of this interval and then 
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moves a further 2x. in less than 2-" units of time from the first hitting place of 
[ ( j  + 2)x. , ( j  + 3)x.]. Hence 

P(Ij,. is bad of type K) < P(X(t) hits [ j x . , ( j  + 1)x.])F(2-",x.)F(2-",2x.)  

so that 

~. P(Ij,. is bad of type K) < F(2-",x.)2E (number of intervals hit). 
J 

By Lemma 6.1 of [3], N,,, the expected number of intervals of the form 
[ j x . , ( j  + 1)x.] hit by X(t), is bounded by c[EP(�89 -1. So, using Lemma 6 of 
[1] we obtain 

E(N.) <= c9 < cv[�89 oo) + c ~ - -  v(dx) (5.3) 
0 X .  

since 

g(2) = ~ (1 - e-Z~) v(dr) 
0 

) - 1  

< v(dr) + ~ ).rv(dr) 
) - 1  0 

for any 2 > 0. The first of the terms on the right in (5.3) is o(2 -n) by Lemma E(vi) 
and the second is o(2-") by the second hypothesis. If we multiply by 2 -n and sum 
on n (5.2) is bounded by ~ .  f ( 2 -n ,~ ( e2 -~ ) )  a which is 

1 1 1 2 < 7F(2t, s~,(~et)) dt < oo 
0 

by hypothesis. 

1 
(ii): In this case there is a constant ko > 0 such that tF( t ,  ~/(kt)) 2 dt converges 

o 
for k > ko and diverges for 0 < k < ko. From Lemmas B and C, for each fixed 
s~(0, 1), 

~ o E x ( s  + t) - X ( s ) ]  A EX(s) - X ( s  - t)]  
lira sup 

t ;0  
= C a . s .  

for some c satisfying �88 < c < ko. Using a Fubini argument as before gives 

~o-pX[O, 13 > �88 > 0 

after applying Theorem 1 to the good points. We now pick a ci > c large enough to 
ensure that 

i lF(2 t ,  �89189 < oo 
0 t 
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Let 

~se(O, 1 ) : l imsupEX(s  + t ) -  X(s)] A [ X ( s ) -  X(s  - t ) ]  < 4c1~,  E1 ( t$0 t = J 
f s~(0 ,  1): lim sup [X(s  + t ) -  X(s)] /x [ X ( s ) -  X ( s -  t)] > 4c1~.  E2 ( t~0 t ) 

Since IEll = 1, Theorem 1 tells us that 

(o-p(X(E1)) < 8cl < oo . 

The arguments  we used in case (i), now apply to show r  = 0 for the 
sequence 

x, = �89162  . 

Put t ing all this together gives the result that  a.s. 

0 < c3s < (p-pX[O,s] < c4s < oo . 

But Z(s) = ~o-pX[O,s] is clearly a cont inuous subordinator  and must, therefore, 
satisfy Z(s) = cs a.s. for a suitable constant  c. 
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