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S u m m a r y .  Let a smooth curve be given by a function r = f ( ~ )  in polar coordinate 
system in the plane, and let R be a uniformly distributed random variable on the 
interval [alL, a2L] with some a2 > al > 0 and a large L > 0. Ya. G. Sinai has 
conjectured that given some real numbers c2 > Cl, the number of  lattice points in 

thedomainbetweenthecurves(R+~)f(~)and(R+ R)f(~)isasymptotically 
Poisson distributed for "good" functions f(-). We cannot prove this conjecture, but we 
show that if a probability measure with some nice properties is given on the space of 
smooth functions, then almost all functions with respect to this measure satisfy Sinai's 
conjecture. This is an improvement of an earlier result of Sinai [9], and actually the 
proof also contains many ideas of  that paper. 

1. Introduction 

Let us consider a curve on the two-dimensional Euclidean space R 2 which is given by 
the equation r = f (~ ) ,  0 _< ~ _< 0, with some 0 < 0 _< 27r in polar coordinate system, 
where f ( . )  > 0 is a continuous Lipschitz one function on [0, 0]. Given some non-zero 

point z = (zl ,  x2) C IR 2 let Izl = ~/x~ + z 2 denote its absolute value and ~(x)  the 

angle between the vectors (1,0) and z = (xl,  z2). Let us fix two real numbers c2 > ct 
c1 

and define for all sufficiently large R > 0 (we need that R + ~ > 0) the domain 

= O R ( f )  = ~X E ]I~ 2, 0 ~ ~((X)) ~ 0, OR 
K 

(1.1) 

Simple calculation shows that the area of the domain OR is 

( 1 +  c ' + c '  ) fo  ~ 2R---- 5 -  (c2 - Cl) f2(~o) d~ . 
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We are interested in the number of  lattice points in OR, i.e. in the cardinality of  the 
set @R • Z 2, where Z 2 denotes the points in R 2 with integer coordinates, if R is 
a uniformly distributed random variable in an interval [alL, a2L]. Here a2 > al > 
0 are fixed positive numbers, and the parameter L > 0 is large. More precisely, 
we are interested in the limiting behaviour of  the number of lattice points in this 
domain if L --+ oc. Ya. G. Sinai has formulated the conjecture that for "typical" nice 
curves the distribution of  the cardinality of this set tends to the Poisson distribution 

with parameter ,~ = (c2 - c l ) f :  f 2 ( ~ ) d p .  There is no explicitly defined curve for 
which we can verify the above conjecture. On the other hand, we can show that if 
a probability measure is given on the set of  continuous Lipschitz one functions with 
some nice properties, then almost all functions with respect to this measure satisfy 
Sinai's conjecture. This is a strengthening of  a result of Sinai in paper [9], and actually 
the proof also depends heavily on the ideas of  this paper. To formulate our result first 
we introduce the following notion: 

Definition of  Proper ty  A. A probability measure P on the set o f  continuous Lipschitz 
one functions f (~ ) ,  0 < ~ < O, satisfies Property A if 

1.) There are some positive numbers 0 < bl < b2 and b3 > 0 such that almost all 
functions f (~ ) ,  0 < ~ < O, with respect to the measure P satisfy the inequality 
bl < f ( ~ )  < b2 and I f (~l )  - f(q02)] < b31#91 - ~2l for  all O <_ ~1 < ~2 <_ O. 

2.) Let us fix some integer l~ >_ 2 and 0 <_ ~1 < ~2 < "'" < ~k <_ O. The random 
vector ( f ( ~ l ) , . . . ,  f (~k))  has a density function 

p~(xl,...,x~lpi,...,~k) 

which satisfies the following properties." 

2a.) 
k 

pk(Xl, . . . , x h [ ~ l , . . . , ~ k )  < ak  H I~i -- ~)i--ll -'c 
i=2 

with some "r < 2 and Ck depending only on k. 
2b.) The densityfunction p k ( x l , . . . , x k l ~ l , . . . , ~ k ) ,  0 < ~1 < ~2 < "'" < ~k <_ 

0 is a differentiablefunction of  its 2k arguments x l , . . . ,  xk and ~ 1 , . . . ,  ~k, 
and it satisfies the inequality 

< Ck I I  I~)i -- ~i-11 -Dk 

o@jPk(X l , . . . ,  I~)1, . . .  , ~k) 4=2 

for  all j = 1 , . . . ,  l~ with some Ck > 0 and Dk > 0 depending only on k. 

We shall prove the following 

Theorem.  Let P be a probability measure with Property A on the space of  continuous 
functions on the interval [0, 0], and let R be a uniformly distributed random variable 
on the interval [alL, a2L] with some a2 > al > 0 and a parameter L > O. Given 
some function f ( . )  on [0, 0], consider the set O R ( f )  defined by formula (1.1). Let 
~c = ~L(f)  denote the number o f  lattice points in OR( f ) ,  i.e. the cardinaIity of  the 
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set OR( f )  N 7/, 2. Then for almost all functions f with respect to the measure P the 
random variables ~L tend in distribution to the Poisson distribution with parameter 

/~ : (C 2 __ e l  ) J00 f2(~) d~ as L --~ ~ o .  

Sinai proved in [9] a weaker version of this result. He proved that if the function 
f(.)  is chosen randomly and independently of the radius R with respect to some 
probability distribution' with nice properties, then the distribution of the number of 
lattice points tends to a mixture of Poisson distributions with different parameters. 
Sinai expressed the conditions on the distribution of the functions f in a form slightly 
different from ours, with the help of certain conditional density functions. Let us 
remark that our conditions are less restrictive, and this is important in such applications 
as for instance the example given in Section 2. 

Most ideas of this work came from paper [9]. The most important step of the proof, 
the formulation of the Proposition can be traced in a hidden way in [9], and even the 
Proposition's proof contains several ideas of that paper. The proof of the Proposition is 
based on the estimate of the second moments of a certain random variable. For Sinai, 
to prove his weaker result, it was enough to estimate the first moment of a similar 
random variable. But he also remarked that the higher moments of such variables can 
be estimated similarly, although some additional technical difficulties appear. 

Problems about the number of lattice points have been investigated for a long 
time in number theory and probabilistic number theory. See e.g. [8] for a classical 
treatment, [6] for the investigation of number of lattice points in a large circle with 
random centre or [5] for a modem treatment of the problem. Recently, this problem 
got even greater importance because of some questions in physics. We are interested 
in the behaviour of the spectrum of an operator in a quantum system. In particular, we 
would like to understand whether the quantization of a completely integrable classical 
mechanical system (which has nice trajectories) gives a different type of spectrum 
than that of a hyperbolic system with chaotic behaviour. There are certain conjectures 
about this problem. It is believed that the local behaviour of the spectrum is similar 
to the realizations of a Poisson process in the case of the quantum counterpart of a 
"typical" completely integrable system, and the spectrum satisfies Wigner's semicircle 
law in the case of quantization of hyperbolic systems. Actually, the situation is much 
more complex. We do not want to discuss this problem in detail, because this is not 
the subject of the present paper, and we are rather far from its good understanding. 

The investigation of the spectrum of certain quantum systems leads to the problem 
about the number of lattice points in a given domain. An example for completely 
integrable systems whose quantization leads to such a problem is the free motion of 
a particle on a periodic rotation surface. (More precisely, we make a factorization of 
the surface with respect to the period. In such a way we get the motion of a particle 
on a compact surface resembling to a torus.) The quantization of this model leads to 
the problem about the eigenvalues of the Laplace-Beltrami operator on this surface. 
These eigenvalues can be calculated with a sufficiently good accuracy by means of the 
so-called quasi-classical approximation. (See papers [2] and [10]). Then the problem 
about the number of eigenvalues in an interval leads to the problem of counting the 
number of lattice points in a domain in ]~2 whose boundary is determined through 
the rotation surface and the interval (See [2] or [10]). We are interested both in the 
local and global behaviour of the spectrum. 

The local behaviour of the spectrum, the number of eigenvalues in a randomly 
chosen interval of fixed constant length, leads to the probabilistic problem investigated 
in this paper. This is the reason why Sinai formulated his conjecture. We cannot prove 
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this conjecture for any explicitly given curve. Our aim was to show that it holds for 
typical curves. In the special case of circle, which corresponds to the spectrum of 
the Laplace operator on the toms [0, 1] • [0, 1], this conjecture does not hold. (See 
Problem 1 in Section 2.) Sinai's conjecture implies that the number of eigenvalues of 
the Laplace operator on a generic rotation surface is asymptotically Poissonian in a 
randomly chosen interval of constant length. 

The global behaviour of the spectrum, the number of eigenvalues in a large interval 
[0, L] leads to problems more intensively investigated in classical number theory, 
namely to the number of lattice points in a large domain. Here again, we are interested 
in the behaviour of generic curves. An investigation in this direction is done in 
paper [7]. 

Other physical models lead to other number theoretical problems. We mention in 
this direction paper [3] and the references in it, where the physical problem the authors 
considered led to the investigation of the number of lattice points in a large circle with 
random center. This problem was studied by means of computer simulation. Both the 
local and global behaviour of the spectrum was investigated. The computer simulations 
indicate a Poissonian local behaviour of this model too. A good description of the 
global behaviour of the spectrum of this model is still an open question. 

The theorem formulated above also has the following generalization: 

Theorem' .  For all m = (ml, m2) E 2~ 2 define, with the help of a function f and a 
random variable R, the (random) mapping 

and the random field 

79 = {ff( (ma,  m2)); (fFbl, TRY2) C Z 2} �9 

I f  R is a uniformly distributed random variable on an interval [alL, a2L], then for 
almost all functions f with respect to a probability measure P with Property A the 
finite dimensional distributions of the random field 7 9 tend to that of a Poisson pro- 
cess on [0, 0] x C-co, co] with counting measure f2(qo)dqodx as L ---+ co. This con- 
vergence means that for any K >_ 1 and disjoint rectangles Cdj,aj] • Ce ,ejl c 
[0, 0] x [ - c o ,  co], j = 1 , . . . ,  K,  the number of points in these rectangles tend to in- 

dependent Poissonian random variables with parameters Aj = (~j - e3) f~aj f2(qo) dg~, 
% 

j =  I , . . . , K .  

Theorem ~ states in particular that the distribution of the number of lattice points 
which are mapped by the transformation F to the rectangle [0, 0] x [Cl, c2] tends to 

the Poisson distribution with parameter A = (c2 - C l ) f :  f2(g))dg). In such a way 
it contains the statement of the Theorem as a special case. The proof of Theorem'  
is based on the same ideas as the proof of the Theorem. But since it is technically 
complicated we omit it. 
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2. Some remarks about the Theorem 

The conditions of the Theorem can be slightly weakened. The following version of 
the Theorem may be useful in certain applications. 

Stronger version of the Theorem. The Theorem and Theorem ~ remain valid if Part 1.) 
of Property A is replaced by the following weaker condition 1/  ) 

1.') There are some positive numbers 0 < bl < b2 such that almost all functions f(~),  
0 < ~ < O, with respect to the measure P satisfy the inequality bl < f(~9) < b2 
and 

( t f ( ~ l ) -  fO#2)' ) Ke-~x  P sup > x < (2.1) 
\0<~1<q0250 I('~l --  (/921 

for all x > 0 with some K > 0 and A > O. 

At the end of this paper we briefly explain the modifications needed in the proof of 
this stronger version of the Theorem. 

We discuss the content of Property A and give the following example: 

Remark 1. Let W(t)  = W(t ,  co), 0 > t > u with some u < 0 be a Wiener process, 
and define the process B(~) = B(~,  w) = f ~  W(t ,  w)dr, 0 <_ ~ <_ O. Then the 
Theorem holds for almost all trajectories of the process B(qo, co) if a sufficiently big 
constant is added to it. More explicitly, B(~,  w) + C(w) satisfies the Theorem if 
C(w) > - min~_<~_<0 B(~, w) + c with some positive constant c, i.e. the distribution 
of the number of lattice points in �9 w)+C(w)) tends to the Poisson distribution 
with parameter 

/0 ~ (e 2 --  e l )  ( B ( ~ ,  co) -t- C(co)) 2 d)9 

if R is uniformly distributed in the interval [alL, a2L] with some a2 > al > 0, and 
L --+ oc. 

We briefly explain the proof of Remark 1 with the help of the Stronger version of the 
Theorem. 

Introduce the sigma algebra Y~ = {Sr(W(s)), s _< ~}. Then the process 
(B(~, w), 5c~,) is a Gaussian Markov process. We show that B(~, w) satisfies Part 2) 
of Property A with r = 3/2. For this aim fix the parameters ~1 , . . . ,  ~k and the values 
W(~a) = Yl . . . . .  W(~k) = y~. We calculate the conditional density function of the 
random vector ( B ( ~ I ) , . . . ,  B ( ~ ) )  under this condition. It equals 

k 

P(Y~ ..... Yk)(Xl x~lqol, , qok) - pyl (xl I~1) l i P  (y~-l'~d(xil~i-t, ~i, xi-~) 
i=2 

where p(V~-l,Vd(x ~ IPi-i ,  ~i, Xi--1) is the conditional density function of /3(~i)  under 
the condition B(~i_I)  = X i _ l ,  W ( ~ i _ I )  : Yi--1 and W(qoi) = Yi, and p~I(xll~l ) is 
the conditional density of B(~I)  under the condition W(~l)  = Yl. These conditional 

density functions are Gaussian with expectation x~-i + (!& - ~i-1) yi-1 + Yi and 
variance 2 
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J•Pi 
~qoi 

D(~i-1, ~oi) = (min(s, t) - ~ i -1 ) (~ i  - max(s,  t)) ds dt 
i--I i--1 

; o -  {-113) 

for i > 2, and the density of p~l(zl[ff l  ) can be written down similarly. Part 2) 
of  Property A can be proved with the help of  the above formulas after integration 
with respect to the conditions W ( ~ )  = y~, s = 1 , . . . ,  k. (The appearance of the 
parameter "r = 3 /2  can also be explained with the help of  the observation that B(~)  
and T-3/2B(T~) have the same distribution.) But the distribution of B(~)  does not 
satisfy Part 1) of Property A, since although the derivative Bt(~,  w) = W ( %  c~) is 
bounded, this bound depends on cJ. 

A natural way to overcome this difficulty is to make a conditioning of the process 
W(t) by the condition {sup IW(t)[ < A} with some A > 0 or to consider the process 
lYV(t) which is the reflected Wiener process W(t )  with reflective barriers - A  and A, 
then to integrate this process and apply the Theorem for the integrated process, (more 
precisely for the integrated process + A  ~, with some A ~ > A). Then we can exploit 
that the probability of  the event that this new process agrees with B ( p )  tends to 1 as 
A ---+ oc. To carry out this program we should prove that the distribution of this new 
process satisfies Property A. This statement is probably true, but we cannot check 
Part 2b) of  Property A. Hence we choose a slightly different approach. 

Define the function hA(t), 

t - 4 k A  i f ( 4 k - 1 ) A < _ t < ( 4 k + l ) A ,  k = 0 , = k l , . . .  

hA(t)= ( 4 k + 2 ) A - t  i f ( 4 k + l ) A _ < t < ( 4 k + 3 ) A ,  k = 0 , + l , . . .  

and the random process BI (~ )  = hA(B(qo)). (The process BI (~ )  is actually the 
process B(qo) after reflection with reflective barriers - A  and A.) Then the process 
Bl(qo) + A ~ with A I > A satisfies Property A if Part 1) is replaced by its weaker 
version Part lt). Part 2) of  Property A can be checked in this case, since the density 
function appearing in it can be written down explicitly. It is not difficult to show that 
Part 1 ~) of  Property A holds, since 

sup I-~1(~1)-- Bl(~2){ < sup ]W(t) I . 

Then we get the proof of  Remark 1 by letting A tend to infinity. 
Although the technically most difficult part in the proof of  Remark 1 was to check 

Part 2b), actually the most restrictive condition of Property A is Part 2a), especially 
the restriction ~- < 2. It has the following content. For fixed 0 < qOl < qo2 < 
�9 . '  < !ok the density function of the random vector ( f (qo l ) , . . . ,  f(qok)) is a bounded 
function with a bound that may depend on qo 1 . . . . .  ~o k . Since bl < f(991) < b2 and 
]f(~oi) - f((Pi-1)[ < b3[~oi - qoi-ll for i = 2 , . . . ,  k, hence the density function can 

k 
differ from zero only on a set of Lebesgue measure (b2 - bl)b3 k-1 [-[(~oi - qoi-1). 

i=2 
Hence 

const. 
sup p k ( X l , . . . , X k l ~ O 1 , . . . , ~ k ) > _ _  k 

xi , . ,xk 1-I ( ~  - ~-I) 
/=2 
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The upper bound imposed in Part 2a) of Property A on this density function is a 
power of  r < 2 of  this lower estimate. It also gives a lower bound on the Lebesgue 
measure of  the set where the density function 

Pk(Xi,  . . . , xk1901, . . . , 90k) 

is not zero. The requirement that the trajectory f(90) is chosen "sufficiently randomly" 
is hidden in this condition. It is also connected with the smoothness properties of  the 
functions f(90). We do not want to discuss this question in detail, we only prove the 
following Remark 2, which also indicates the limits of  applicability of the Theorem. 

Remark  2. Let a probability measure P on the space of continuous functions satisfy 
Property A or its weaker version. Then the set of  all twice differentiable functions 
with bounded second derivatives has zero P probability. 

To prove Remark 2 it is enough to show that 

P ( l i m  sup f(90) + f(90 + 2h) - 2f(90 + h) ) 
h---*OO<-~p<-O-2h h2 = oc_ = 1 , (2.2) 

because twice differentiable functions with finite second derivatives do not satisfy this 
r + l  

relation. To prove (2.2) fix some 0 _< 90 _< 0 - 2h, K > 0 and integer k > 2 - r 

define the e v e n t  

Ah = A h ( k ,  90, K )  

I f ( 9 0 + j h ) + f ( 9 0 + ( j + 2 ) h ) - 2 f ( 9 0 + ( j + l ) h ) )  < K }  
= sup h2 [l_<j_<k 

and estimate its probability. 
Observe that 

s u p p ( x l , . . . ,  xk+2190 + h, 90 + 2 h , . . . ,  90 + (k + 2)h) _< Ck+zh -(k+l)r,  

by Part 2a) of  Property A. Hence 

P ( A h )  <_ const, h - ( k + l > k ( B h )  

with 

)~h : Bh(]~) = { ( X l , . . . ,  Xk+2), bl <_ Xl~X2 ~ b2~ 

132j -}-Xj+ 2 -- 2Xj+I[ < K h  2, j ~- 1 , . . . , / g }  , 

where k(.) denotes Lebesgue measure. We have 

,X,(Bh(k)) = (b2 -- bi)2(2/-s 

since for fixed x l  . . . .  , x j  the point xj+l  is in an interval of  length 2 K h  2 for j = 2, 
. . . .  k + 1. Hence, 

P ( A h )  <_ const, h 2~-(k+1)~" < const, h --+ 0 as h --+ 0 ,  

where the const, may depend on K .  Hence we get that 
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P {lira sup Y(~) + f(qo + 2h) - 2 f ( ~  + h) _< K ~  = 0 .  
0_<~o_<8--2h ] \ h ~ 0  h 2 

Since this relation holds for a l l / 4  > 0, hence relation (2.2) and Remark 2 holds. 

We finish these remarks by posing two open problems. 

Problem 1. Give explicit curves which satisfy the Theorem. In particular, let us 
consider the ellipses given by the equations x 2 + ay 2 : 1 with some a > 0. Is it true 
that these ellipses satisfy Sinai's conjecture for almost all a > 0? The circle, i.e. the 
ellipsis with a = 1 does not satisfy it. In this case f(qo) = 1, and the problem leads 
to the following number theoretical question. Let r(n) denote the number of integer 
solutions of the equation k 2 + l 2 = n. What can be said about the distribution of  the 
number theoretical function r(n)?  

For the sake of  simplicity, let us consider only the case when c2 - cl < 1/2. Then 

the interval R + ~ ,  R + contains the square root of  only one integer n, and the 

number of  lattice points in OR equals r(n) with this integer n. On the other hand, the 
probability that this interval contains the square root of  a fixed integer n is less than 
const. L -2  if R is uniformly distributed on the interval [alL, a~L]. The behaviour of 
the function r(n) is fairly well-known. (See e.g. [4].) For our purposes it is enough to 
know that r(n) = 0 if the prime factorization of  n contains a prime factor of the form 
4k + 3 on an odd power. We also know that the density of  the integers satisfying this 
property is one. The above facts imply that in the case of  circle the probability that 
@R contains no lattice point tends to one as L --~ oc. A more detailed analysis also 
shows that the conditional probability of  the event that the number of lattice points 
in OR tends to infinity is almost one under the condition that @R is not empty. On 
the other hand, some computer simulations suggest that this is a degenerate case, and 
almost all ellipses satisfy Sinai's conjecture (see [1]). 

Problem 2. Prove the Theorem for almost all functions with respect to such probability 
measures which contain very smooth (e.g. analytic) functions with positive probability. 

3. Reduction of the proof of the Theorem 

In the proof we apply a version of  the method of  moments. Let us first show that if 
a sequence of  random variables ~z satisfies the relation 

E --+ k~- for all k = 1 , 2 , . . . ,  (3.1) 

as L --+ cx~, then this sequence tends in distribution to the Poisson distribution with 
parameter A. To prove this, let us observe that if ~ is a Poisson distributed random 
variable with parameter A, then 

_ ' w  - 

n = k  " n = k  n=0 " " 

The moment E ~  can be expressed as a linear combination of  the quantities E ( ~ L ) ,  

0 _< p < k. Hence if formula (3.1) holds, then E~L k tends to the k-th moment of  
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a Poisson distributed random variable with parameter )~. But if all moments of a 
sequence of random variables converge to the moments of a Poisson distribution with 
parameter A, then this sequenceconverges in distribution to the Poisson law with 
parameter A. 

We have chosen this approach, because the following identity holds: For all func- 
tions f 

/ r \ (~L(; ,  R ) )  = Z X ( { r o s e  �9 for all s =  1 , . . .  

{rn 1 ,...,mk}C2~2k 

Here x(A) denotes the indicator function of the event A. The summation is taken for 
such k-tuples of lattice points where all points ml  . . . . .  mk are different, and two 
k-tuples are identified if they contain the same lattice points, only in different order. 
Hence, for all functions f 

E (~L(f '  R ) )  = Z Ex({m~C�9 f~ ' (3.2) 
{rr~l,..,,mk }EZ 2k 

where expectation is taken for a random variable _R which is uniformly distributed 
in the interval [a~L, azL]. We can handle the terms in the sum (3.2), but only in the 
case when the differences between the angles ~(ms), s = 1, . . . ,  k, are not too small. 
Hence, first we reduce the proof of the Theorem to the investigation of a sum where 
only such terms appear. To formulate this statement more explicitly we need some 
notations. First we explain the strategy of our proof. 

We shall split the domain �9  by means of small sectors Dj and put even 
smaller buffer zones Cj between them. We shall prove that the contribution of the 
sectors Cj is negligible. This is the content of Lemma 1. We can show with the help 
of Lemma 2 that the probability of the event that there is some Dj which contains 
two lattice points in OR(f )  tends to zero. This is a rareness type argument, typical in 
the proof of Poissonian limit theorems. In our approach however, we need a stronger 
statement. We shall drop all Mtuples which have two points in the same sector iI)j 
with some j and count only the remaining Mtuples all of whose elements are in 
�9 We show that only a negligible error is committed in this way. This is the 
content of formula (3.3), and the reduction of the Theorem to this statement is done 
by means of Lemma 3. The hard step in the proof of the Theorem is the verification 
of formula (3.3). It states that some moment type expression behaves so as if the 
number of lattice points of OR in different sectors li) 5 were independent. There is 
no such independence in our model, but we shall prove a Proposition which can be 
considered as a law of large numbers type result (such results are related to some sort 
of independence) and which implies the Theorem. 

In these Lemmas and in the Proposition the random radius R does not appear. 
These results formulate some properties which almost all functions with respect to a 
probability measure with Property A satisfy. Lemma 1 is exceptional in this respect. 
(The random radius R appears in it, but it formulates a property which all positive 
continouus Lipschitz one functions satisfy.) We shall show that a function with these 
properties satisfies Sinai's conjecture. 

Put 

0 = ~ o ( n )  < ~ l ( n )  < . . .  < ~)2p+l (n )  _~ 0 <~ qO2p+2(n), (2;0 = p(n)) 
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in such a way that 

q o 2 j + 1 - g ) 2 j = ( l o g n )  -c~, j = 0 , 1 , . . . , p ,  

qo2j+2 --  ~ 2 j + l  = ( logn)  -fl,  j = 0, 1 , . . .  ,p  - 1 , 

and qo2p+2 - #92p+~ < (log n) - ~  

2 
with some a < fl and c~ > , where r is the same number which appears in Part 

2 - T  
2a) of  Property A. (For the sake of simpler notations in the sequel we denote by log 
logarithm with base 2.) Clearly, p(n) < 2rr(log n) c~. Define also the sets 

C j  = C j ( n )  = {X E ] ~ 2  An < Iggl < ]~'rb, (/:92j+1 < ~ ( X )  <~ ~ 2 j + 2 }  , 

Dj = II)j(n) = {x E R 2, An  < lxl < Bn ,  ~2j < ~ ( x ) < ~ 2 j + l } ,  

j = O , . . . , p ( n ) .  

In the definition of the sets Cj  (n) and Dj (n) we choose A > 0 as sufficiently small, 
/3 > 0 as sufficiently large fixed constants. 

For all continuous Lipschitz one functions f( . ) ,  integers k = 1 ,2 , . .  
we define the random variable (depending on R) 

~ ( k ,  f ,  R) = 

and the number 

a n d n > 0  

Z 
0< j  1 <...<jk<_p(n) 

Z X ( { m ~ E � 9 1 7 6  

ms EDjs (n)l'qZ 2 
s=l, . . . :k 

EL(k,  f )  = E@~(k, f ,  R ) ,  

where the integer n is determined by the relation 2 '~ < L < 2 '~+~, n -- 1 , 2 , . . . ,  
and the sign of expectation s means again expectation for the random variable R, 
distributed uniformly in the interval [at L, a2L]. We shall prove that if f ( . )  is chosen 
randomly with respect to a probability measure satisfying Property A, then 

A(f) k 
lira EL(f ,  k) - k! for all k = 1 , 2 , . . .  for almost all f (3.3) 

L---+ oo 

with A(f)  = (c2 - cl) .f:  f2(~p) dg~. First we show with the help of  three lemmas to be 
proved in Section 5 that formula (3.3) implies the Theorem. Let us formulate these 
lemmas. We introduce the following notation. Given a finite or countable set A, let 
IAI denote its cardinality. 

L e m m a  1. Let f(qo), 0 < qo < O, be an arbitrary continuous Lipschitz one fimction 
such that a < f (~)  < b with some 0 < a < b < oc for all 0 < ~ <_ O, and R = RL a 
uniformly distributed random variable on the interval [al L, a2L]. Let 2 ~ < L < 2 r~+l , 
and define the random variables 

{ I r/(i)L = rl~)(f) = m;  m E U CJ (2'~) N Z 2 N � 9  
j=0  
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(1) Then rio ~ 0 as L --+ oo, where ~ means convergence in probability. 

L e m m a  2. Let P be a probability measure with Property A on the space of  continuous 
Lipschitz one functions. For arbitrary K > 0 and function f ( . )  define the sets An ( f ) ,  
n = 1,2, . . . .  

= {(/TZ,/~/,), gr~ E Z 2, ~ E Z 2, 7~ # A,~(f)  rh, 

m E Dj (n), r~ E Dj ( n ) f o r  some 0 <_ j <_ p(n), 

I ' l l  < _ 

f(~o(ra)) f ( ~ ( ~ ) )  n 

For almost all functions f ( . )  with respect to the measure P the relation 

22'r~ 
[A2~(f)[ < 7zce(2_r)/~ / f n  > n ( f )  

holds. 

The following Lemma 3 is a generalization of Lemma 2. 

L e m m a  3. Let the conditions of  Lemma 2 be satisfied. For arbitrary K > O, k = 
O, 1 , . . . ,  and function f ( . )  define the sets Bn ,k ( f ) ,  n = 1 , 2 , . . . ,  

B~,~( f )  = { ( r a , ~ , m l , . . .  , ink), m C Z 2, 'rY2 E Z 2, m s E Z 2 f o r  1 < s < k , 

m E Dj(n),  r~ ~ Dj(n),  with some 0 <_ j <_ p ( n ) ,  

all lattice points m,  r~ atut ms ,  s = 1 , . . . ,  t~ are different, 

i'll  tml < K 
f (~(ra))  f(~(r~))  7 '  

,m, [mst I K } 
f(cp(m)) f(~o(m~)) < --'n 1 < s < l~ . 

For almost all functions f ( . )  with respect to the measure P the relation 

22n 
IBz,~,k(f)] < Ckn~<2_,)/2 i f n  > n ( f , k )  

holds with some Ck > O. 

Given some L > 1, introduce the integer n such that 2 '~ _< L < 2n+t; and define the 
random variables 

p(2 n) 
f(1) ~(1)(/? R) = the number of m E Z 2 such that m C OR( f )  N LJ DJ (2n) 

j=0 

and 

~(2) = ~ ) ( f .  R) = the number of indices j L 
such that ~ m E Z 2 N OR( f )  N Dj (2  n) . 
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We claim that if the function f( .)  is chosen randomly with respect to a probability 
measure P with Property A, then 

(1) ~L ( f , R ) - ( L ( f , R ) ~ O  a s L ~ o c ,  (3.4) 

and 
~(2)(f, R) . (3.4') r --~L(f,R)~O asL---+~c 

for almost all f(.). 
p(2 n) p(2 n) 

If m �9 OR, then m �9 U Cj(2 'b u U II~j(2~) if the constants A and B in the 
j=0 j=0 

definition of Cj and Dj are appropriately chosen, since a iL  < R < a2L, and the 
function f is bounded away both from zero and infinity. Hence Lemma 1 implies 
(3.4). To prove (3.4') observe that 

R R K 
f(~p(m)) f(~(rh)) f(~p(m)) f(~(rh)) 2 ~ 

if m, rh �9 OR. Hence the random variable 

r/~ = r/~(f) = ]{(m, rh), m, rh E •2, (m,f~) E A2,~(f), m �9 OR}I 

satisfies the relation ~ ) -  ~(L2) I < rln. 

To prove (3.4') it is enough to show that rl~ ~ 0. To show this, first we remark 
that for all positive continuous Lipschitz one functions f(.)  

sup P ( m  c OR(f)) < const. 2 -2~ 
m 

if R is uniformly distributed in the interval [alL, a2L], and 2 ~ < L < 2 ~+x. Then 
Lemma 2 yields that 

E?]n < 
2 2n 

nO~(2_~.)/2 sup P ( m  E OR(f)) < const, n ~(~--2)/2 ~ 0 .  
m 

Hence to prove the Theorem it is enough to show that 

for almost all f( .)  as L ~ cx~. (3.5) 

We prove that Lemma 3 and formula (3.3) imply this relation. For this aim we 
introduce the random variables 

r f ,  R) = {(m, rh, m l , .  . . ,  ink), (m, r-n, m l , .  .. , ink) E B~,~( f )  , 

p(n) 
ms c [..J Dj,  m,  r-n, ms ~ OR( f ) ,  s = l , . . . ,  k}  

j= l  

and verify the relation 
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# (1)(b 1 , f . R ) <  ( ~ ) ( f ' R ) )  <~2~(lGf, f~ ) f o r ~ = l , 2 , . . . .  ~2 n ( k ,  f ,  R) - s2r~ v,~ - -  , _ 

(3.6) 
Indeed, if a k-tuple Dye, . . .  ,Ddk is such that IDj~ N �9 = P~ -> 1 for all 

s = 1 , . . . ,  k, then it is counted once in the middle term of (3.6), pl " �9 �9 P k  _ >  1 times 
( ~ p 8 - 1 )  

at the right-hand side and p~ . . . p~  1 - ~ < 1 times at the left-hand side 
8=1 

of (3.6). Taking expectation in (3.6) we get that 

EL(f ,R)  (t) ~ < EL(f,I~) for k =  I 2, - Er (k - l, f ,  R) < E ~Z R) 

with 2 ~ _< L < 2 ~+1. Hence to reduce the proof of the Theorem to formula (3.3) it 
is enough to show that 

E/-O)tk - 1 , f ,R)  --+ 0 if L ---+ ec for almost all f and k = 1,2, b 2 n \  , . . .  

where expectation is taken with respect to the random variable _R which is uniformly 
distributed in the interval [al L, a2L], and 2 '~ _< L < 2 n+l. This relation holds, because 
Lemma 3 implies that 

~ / . ( 1 ) [  k 2 2n  
s2=, , f ,  R) <_ Ck - -  n a ( 2 _ r ) / 2  s u p  P(~  C OR(f)) ~ const, r~ -a(2-r) /2 

m E Z  2 

if n > n(f, k). 

4. Proof of  the Theorem with the help of some Lemmas 

The hardest part of the proof is the justification of formula (3.3). It is based on a 
Proposition, which will be formulated below. To do this, first we introduce some 
notations. Define the intervals 

Ip(f ,m, 6) = [~m~f(~P(m)), (P~i)6  f(~(m)) 1 , 

D 
8=(5~=-(logn) -v, p = 0 , • 1 7 7  r a C G  2 

and 

zn (z__+ 1)n 1 ] t ( logn)  ~ < z < f?( logn) ~, 
L = L(n)  = ( log-n)~ '  ( l o g n ) ~  J ' 

.Ad~,n(f, j l , . . . , j k ,p2 , . . . , p~ , z )  
I 

/ ( m t , . . . , m k ) ,  ra~ r Z 2 , A 

Im~l [mll 
f ( p ( m , ) )  f(cp(mt)) 

8 = l , . . . , k ,  

- -  E Ip~(f, ml,5~), s = 2 , . . . , / % }  . 

(4.1) 

where D, i t  a n d / )  are appropriate positive integers, and ~ > 0 and f? > 0 are also 
appropriately chosen. We define with their help the sets 
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P u t  

f 
S~,~ = J O l , . . . , j k , P z , . . . , P k , Z )  , O <_jl < j2 < "'" < jk  <_ p(n) , 

{P~I < - - ,  s = 2, k, A(log n) '~ < z < / ) ( l o g  n) ~ 

(All numbers j l , . . .  , jk ,  p 2 , . . .  ,Pk and z in the definition of S~,k are integers.) Now 
we formulate the following Proposition. 

Proposit ion.  Let a continuous Lipschitz one function f ( . )  be chosen randomly with 
respect to a probability measure with Property A. Then for  almost all functions f ( . )  
and all k >_ 1 the relation 

lim r I M k,a n ( f  , j i  , . . . , jk ,  P 2 ,  . . . , P k ,  Z )  l 
~ o o .  sup _ | ,~7~~ ~ :  ~ - (~-~2~- 1 )V--~- 

t j l , . . . , j k , p 2 , . . . , p k , z ) E ~ b ' 2 n  k k xo~ , v  

h q 

- I-[ f2( 2J )  = 0 
3 8 = 2  

holds with probability one if  n takes integer values. 

To explain the content of the Proposition define, for fixed k, n and arbitrary integers 
j l , . . .  , jk ,  P2 , . . .  ~Pk and z, the set 

X ( f )  = X ( f ,  k, n, j l , . . . ,  jk ,  P 2 , ' - ' ,  Pk, Z) 

I (Xl , . . . ,xk) ,  Djs, s = 1 , . . . ,k ,  Iz l } 

% 

C s = 2, . . .  k} 
f(cp(xs)) f ( ~ ( x l ) )  

Some calculation shows that the volume of the set X ( f )  asymptotically equals 

h 

zn2(l~ n ) - 2 v - ~  1-1 ~ ( l o g  n) - a  fz(~pzj~) 
s = 2  

k 

= znZ(log n ) - 2 ~ - k ~ - ( k - l ) v  1-I fz(~2j~ ) .  
s = 2  

The Proposition states that for almost all functions f ( . )  with respect to a probability 
measure with Property A the number of  lattice points in the sets X ( f )  is asymptotically 
equal to the volume of these sets, at least for an exponentially rare subsequence of 
indices, n = 2 z, l = 1,2, . . . .  

The Proposition is useful for the following reason: We split the set of all ]~-tuples 
m = ( m l , . . . , m k )  which give a contribution to the expression ~2~(k,f ,  R)  into 
relatively few classes Adk.2~ (their number is a power of  n if L is of  order 2n). As the 
subsequent calculation will show, each/c-tuple from a class Adk,2~ gives contribution 
one to the sum ~2~(k, f )  with almost the same probability whose asymptotic value can 
be given explicitly. This is so, because a k-tuple gives a contribution one to this sum if 
the random radius R falls in the intersection of k intervals, and we know the length and 
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relative position of these intervals with a sufficiently good accuracy if we know which 
class 3A~,2,, this k-tuple belongs to. The Proposition gives the asymptotic size of the 
sets Adk,2~. Hence, we can estimate the expected value of EL(k, f) = Er f, R) 
by multipying the cardinality of .A4k,2~ with the probability that the points from a 
h-tuple of this class fall into OR(f)  and then by summing up for all classes. In such 
a way we can prove formula (3.3). 

The following heuristic argument may explain why the subsequent calculation 
yields the desired result. We consider the following auxiliary problem. Let us have a 
Poisson process, independent of a uniformly distributed random variable R in an inter- 
val [alL, a2L]. Give the limit distribution of the number of points r of this Poisson 
process in the domain OR(f)  if L ---+ oc, and OR(f)  is defined in formula (1.1). It 
is not difficult to see that this limit is Poissonian with the same parameter A which 
appeared in Theorem 1. Indeed, the conditional distribution of r under the condi- 
tion of prescribed R is Poissonian with a parameter (the area of OR(f))  which tends 

to A as R -+ oc. We also have E ---+ ~-.~. This expectation could have been 

calculated in a more complicated way by means of sets defined analogously to the 
sets Ad~.~ in (4.1). The only difference in the definition is that now we count the 
number of points of the underlying Poisson process instead of lattice points in the 

domain. Then E ( ~  c) equals asymptotically the sum of the expected value of same 

the cardinality of these sets multiplied with the probability of the event that all points 
of a given k-tuple from this set is in OR(f) .  (These probabilities are asymptotically 
the same for all k-tuples from a prescribed class.) What we do in the subsequent 
calculation is to show that our model imitates the previous one, and EL(k, f) can be 

approximated by the same sum (disregarding some negligible error terms)as E ( t ' ~ )  

in the auxiliary model. Hence this sum has the right asymptotics. This program can 
be carried out if we know that the asymptotic cardinality of the sets Adk,~ is the 
same as that of the analogous sets in the auxiliary model. But this is the content of 
the Proposition. 

Let us consider the elements of a class 3Ak,~ 

( m l , . . . , m k )  E Jk4k,n(jl,...,jk,p2,... Pk,Z) 

with a fixed ( J l , . . .  ,jk,P2,... ,Pk, z) E Sn,k. Then 

m~ c OR(f)  for all s = 1 , . . . , k  (4.2) 

if and only if 

R 
l l 

f(~(ml)) 
C [ A ( T / ~ I ,  �9 . . , ?77~k) , B ( ? T Z l ,  ., rn~)] (4.3) 

with some A(ml , . . . ,  ink) and B(ml , . . . ,  ink). The endpoints of this interval satisfy 
the relation 
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A ( r n l , . . . ,  ink) 

= (l~ - ' 2 < 8 < k m a x - c 2 + p d S n } + o ( ( l ~  )-~~ ) 

B(m~, . . . , rak) 

----(l~ m i n { - c l ,  min - c l + p s ( S n } + o ( ( l ~  ) - ~ )  
ZTt - 2 < s < k  

(4.3 l) 

where co = min{r/, ~1, c~}. In the case A ( m l , . . . ,  rak) > B ( m l , . . . ,  ink) the interval 
defined in (4.3) is empty�9 The O(.) in (4.3') is uniform for 

( j l ,  . . . , jk ,P2, . . . ,Pk, z) E Sn,k �9 

1 
We remark that the main term in (4.3') is of  order - ,  since z is of  order (log n) ~. 

n 
Hence the O(.) term in this formula is a negligible error. This also means that the 
length of the interval where R has to fall to satisfy relation (4.2) is asymptotically 
the same for all k-tuples from a fixed class A-4k,n. This interval is centered around 

the point f ( ~ ( m l ) ) '  which place strongly depends on which k-tuple in Adh,n is 

considered. But this holds only for the position and not the length of the interval. 
Let us first remark that (4.2) holds if and only if R satisfies the relation 

cl < I m ~ l  < R +  52 
R + - ~  _ fg)(ms))  - ~ for a l l s =  1, . . . ,k .  (4.4) 

The left-hand side and right-hand side of  (4.4) are monotone functions of  R if R is 
sufficiently large. Hence R is in the intersection of k intervals if L > L0 with some 
fixed threshold L0. Therefore (4.3) holds. 

If  ma C OR( f ) ,  then 

R - Iml l  + O , ( 4 , 5 )  

and if ( m l , . . . ,  ink) E .Adk,n( j l , . . . ,  j k , p 2 , . . .  ,pk, z), then 

f ( ~ ( m i ) )  _ (log n)~ f (~2j l )  
q-rl  

Iml[ zn  

Im~ I [roll ps6~(log n)~f(~2ji  ) 
f (~(m~))  f (~ ( rnD)  + zn  

+ r ~  f o r 2 < s < k  

(4.5 t) 

(4.5") 

hold with some %, 1 < s < k, less than const. - -  

s = 1 . . . . .  k, then by (4.4) 

(log n) - ~  
�9 Hence, if ms  C @R(f),  

R +  cl(logn)~f(~2Jl)  + rl < Ira1[ < R q- 
zn  -- f ( ~ ( m l ) )  -- 

c2(log n)~ f(cp2jl ) q- ~'1 
z n  

and 
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R +  
et (log n)~ f (qD2jl ) 

z?% 

+ ~ < Irall + Ps~n(logn)nf(g)2Jl) 
- f(~.o(ral)) z n  

< R + c2(l~ + r's 
z n  

for 2 < s < /~ with ~ < const. - -  

These relations imply that 

(log n) - ~  (logn)-co and rs < const. - - ,  s = 1 , . . . ,  ]~. 
?% n 

A(rat , .  . . , rak) > 

B(ral ,  . . . , ral~) < 

(log n)nf(g)2jl) max{ -c2 ,  max --C 2 -~ ps~Sn} --  K (log n) - ~  
ZT/, 2 < s < k  7% 

I --co 
(l~ m i n { - c l ,  min - c l  + p~5~} + K ( o g n )  

Zn 2<s</c  n 

with an appropriate K > 0. To complete the proof of (4.3/) we have to show that 
(4.4) holds if ( r a t , . . . ,  rak) E AAk,,~(.jt , . . . ,  Jk ,P2 , . . .  ,Pk, z) and 

(log n)~)f(g)2jl) m a x { - c 2 ,  max --C 2 q - p s ( ~ n }  -}- K (l~ n ) - ~  
Z ~  - 2 < s < k  n 

< R lmzl 
f(gz(m~)) 

< (log n)0f (~2j l )  m i n { - c l ,  min - c l  + p,~,~} - K (log n) - ~  
Z?Z 2 < ~ < k  'D, 

with a sufficiently large K > 0. Under these conditions relations (4.5)-(4.5") hold 
again, and they imply together with the last relation that 

c~ Imal (log n)f/f (q02j, 
R -}- - ~  < - -  -1- ) ( - -C 1 --~ ps(Sn)  

f ( ~ ( m , ) )  zn  

(log n) ~ f(g)2jl ) K (log n)-co [ms l 
+ c t  < 

zn  2 n f (~ (m~))  

for all s = 1 , . . . , / c .  The other inequality in relation (4.4) can be proved similarly. 
We can write 

/ ) n  # 

E L ( k , f ) =  ~_~ ~ BL( f ,  j l , . . . , j k ,  z) (4.6) 
0~ j l  <J2 <""  <Jh <P(2n) z=An#  

with 

B c ( f ,  j l , . . . , j k ,  z) = 
[ps[<Dn ~ 
8=2,...,k 

E ( x { m s  E O R ( f )  for all s = 1 , . . . ,  ]c}), 
(ml ,...,mk)CJMk,2n(jl ,...,jk,p2,...,pk,z) 

(4,6') 

where the dependence on L is present, s ince/~ is uniformly distributed in the interval 
[atL, a2L]. (We recall that 2 '~ _< L < 2n+l.) To see the validity of  the above relations 
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one has to observe that the condition Ps < D n  ~ is not a real restriction in formula 
(4.60, since the expectation of all events 

{ X ( • s  ~ @ R ( f )  for all s = 1 , . . . ,  k} 

is considered in it which are non-empty if the constants A , / ?  and D are sufficiently 
large. We want to estimate the terms B L ( f ,  j i , . . . ,  j k ,  z) .  Let us first observe that 

a 2 L n  ~7 ~ . . . .  

if z > --~JtqO2jl)tJ + Kn -~) 
BL(f, jl,..-, jk, z) = 0 (4.7) 

a l L n  9 ~, ,,, 
or z < ~ g - t ~ 2 k ) t ~  - K n - ~ ) ,  

with some appropriate K > 0, since by formulas (4.3) and (4.3') (with their appli- 
cation for 2 '~) the event ms. E �9  can occur in this case only for such /{  which 
are outside of  the interval [a lL ,  a2L]. To estimate B L  in other cases introduce the 
quantities 

._}_ . 
/ C ~ 0 1 , . . . ,  j ~ , p > . . .  ,pk, z) 

= sup E{x(rn8 E @R(f) for all s = l , . . . , k }  , 
( m l , " - , i n k )  E'AA k,2 n ( J l , ' "  ,Jk ,P2, '" ,Ple,, z) 

K ] ~ ( j l , . . . ,  jk, P 2 , . . . ,  P~, z) 

= inf E { x ( m s  E OR(f )  for all s = 1 , . . . , k }  , 
( m l , . . . , m k ) C J g 4 k , 2 n  (Jl , ."  ,Jk ,P2,... ,P!c ,z) 

Because of  the Proposition we have 

(1 - e~)z22'~n - ~ - ( k - l ) ' 7 - 2 ' ]  I I  f 2 ( ~ 2 j s )  

8.=2 

E K~Z(jl , . . .  , j l ~ , p 2 , . . .  , p k , z )  <_ B L ( f ,  j l , . . .  , j k , z )  
[psl<Dn n 
8.=2 ..... k (4.8) 

k 
< (1 + Cn)Z22nrt -l~c~-(lr 297 ~ I  fa(qO2J~) 

8=2  

+ ](Tn (31,... , jI~, P2, . . . , Pk, z)  
Ips[<Dn v 
8.:2,...,k 

for almost all functions f( . )  with respect to a probability measure with Property A, 
where en --4 0 uniformly for ( J r , . . - , j k , P a , . . .  , pk ,  z)  E Sk,2~ as n -+ oo. Introduce 
also the following notation: Given some interval A = [a, b], integers p2, . . . ,  p~ and 
some number 0 < < 1, define the interval 

k 

J (p2 ,  . . . , pk ,  ) : -  [a, b] n n [a + p , (b  - a), b + ps.(b - a) ] ,  
8 : 2  

and let g ( A ( p 2 , . . .  , P k , ) )  denote its length. It follows from formula (4.3) and (4.3') 
(with their application for 2 '~) that 
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1 + . 
] C n ( ) l , . . -  , j k  , P2,  . . . , P k ,  Z) - -  [g( A ( p 2 ,  . . . ,Pk, )) + O ( 2 - ~ n - ' ~ ) ]  

(a2 a l ) L  

1 
K ~ n ( J l , - . . ,  j k ,  P2: . . . , P k ,  Z) - -  [ g ( A ( p 2 , . . . ,  io/~, )) -l- O ( 2 - n n - w )  1 

(a2 a l ) L  
(4.9) 

f ( ~ 2 j l  ) ~ /  f ( ~ 2 j l  ) rL~ ~.~- r] 
with A = [a,b],  a = - c 2  , b = - c l  and - - -  if 

z2 '~ z2 ~z e2 - Cl 

(/7~1, - �9 . , i n k )  ~ J ~  k,2 n ( j l ,  �9 �9 �9 , j k ,  P2,  �9 . . ,  P k ,  z )  ; 

a l L n  # . . . . .  a 2 L n  ~7 o 
and if - ~ g - - J V P 2 j l ) U  + K n - " ~  < z < ~ - f ( q o a j l ) ( 1  - K n - ~ ) .  We have to 

observe that in this case the interval of R for which me E OR(f ) ,  s = 1 , . . . ,  k, 
is contained in [ a t L ,  a2L] .  Moreover,  the right-hand side of the first line in formula 
(4.9) is an upper bound for tC + for arbitrary z. 

We need the following Lemma 4, which is a version of Lemma 3 in [9]. 

L e m m a  4. L e t  a n  i n t e r v a l  A = [a, b] a n d  s o m e  n u m b e r  0 < < 1 be  g i ven .  Then ,  

u s i n g  the  n o t a t i o n  i n t r o d u c e d  a b o v e ,  the  r e la t i on  

--oC<ps<CC 
s=2, . . . ,k  

/~(A(p2,  �9 ,Pk , ) )  = ( b -  a) 1-k + O ( ( b -  a) 2-k)  

ho lds .  

Since only those terms g ( A ( p 2 , . . ,  p~, )) are non-zero in the sum appearing in Lemma 
4 for which !P~I < const. -~, 2 < s < k, and there are only const, l - k  such terms, 
hence the following estimate holds. By Lemma 4 and (4.9) 

Z • . 
]C~ (31, . . . , j k ,  p2,  . . . , p k ,  z )  

Ip s l<Dn v 
s=2, . . . ,k  

= (ca - c l ) k n ~ 7 + ( ~ - l ) v f ( P 2 j l )  (1 + O ( n - ~ ) )  

L ( a 2  - a l ) 2 ' ~ z  

and by (4.8) 

k 
B L ( f ,  j l , . . .  , j k ,  z )  = (1 + e n )  2 n ( e 2  --  e l ) k n - ~ - k c ~ f ( ~ 2 J i )  I - [  f2(~92Js)  

L ( a 2  - a l )  
8~2 

(4.10) 

with some c,~ = e n ( j l . ~ . . .  , J k ,  z )  ---+ 0 uniformly for all 

a l L n  ~ 

2 ~ 

a 2 L n  ~ 
f(g)2jl)(1 + / ( n  -W) < z < - ~ - f ( ~ 2 j t ) ( 1  -- K-n -W) 

a n d 0 _ < j l  < ' "  < j k _ < P ( 2  ~ ) ,  

for almost all functions f( . ) .  Moreover,  the right-hand side of (4.10) is an upper bound 
for all z. Hence (4.7), (4.10) and (4.6) imply that 
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EL(k, f) = (c2 -- c,1) k ~ (1 -~ en)  
o_<jl <J2 <'"<Jk_<p(2n) 

~2 ~ f(~2~ 1 )n o 2nn_  ~ k 

C(a2 -- as)  f (~2 j l  )7~-c~ 1 - I  f2(~2Js)?z-c~ 
z=al 2L_ff f(~2Jl )r~f/ s=2 

k 

= (1 + e~)(c2 - ci) k Z H f2 (~2J ' ) n -~  
O_<jl <j2<,..<jk <_P(2 n) s=l 

(4.11) 

/ O. The right-hand side of  for almost all functions f(-)  with some r --4 0 and c n -~ 
(4.11) tends to the integral 

(c2-el)kfo~ fo ~ k! . . -  f 2 ( ~ l ) . . . f 2 ( g ) k ) d W 1 . . ,  d~gk 

A(f) k 
as n --+ oo. These relations imply that the limit of  EL(k, f) is ~ for all k > 1 

for almost all functions f(.).  Hence relation (3.3) and the Theorem hold. 

5. Proof  of  the L e m m a s  

Proof of Lemma I. The cardinality of the set 

const. 22n(n -c~ q- nc~-/3). Hence 

(1) 22n(r--c~ ?']L ~ const. + n ~-;~) 

< const. (n - ~  + n ~-;~) , 

p(2 n ) 
U CJ(2~) ;) Z2 is less than 

j=0 

max P (m E On(f) )  
2nA<_lm[<2nB (5.1) 

since in the case m E OR( f )  for 2~A _< Imt _< 2nB the variable R must be in an 
interval of  length const. 2 -~ .  Its probability is less than const. 2 -2n if R is uniformly 
distributed in the interval jaiL, a2L] with 2" _< L < 2 ~+~. Relation (5.1) implies 
Lemma 1. [] 

Proof of Lemma 2. For fixed m E Z 2 define the set 

A~(f) = {rh, (m, rh) E An(f )}  �9 

We claim that 

EIA'~(f)I < const. (log n) ~(~-2~ if A n  < Im[ < B n .  

First we show that (5.2) implies Lemma 2. Indeed, it follows from (5.2) that 

E{An(f) l < const, ha(log n) ~(~'-2~, 

(5.2) 

hence 
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( P IA2,~(f) I > nc~(2_r)/2j --< const, n-c~(2-r)/2. 

Since ~ n - c~(2 - r ) /2  < (30, the last relation together with the Boml-Cantelli lemma 
imply Lemma 2. 

To prove (5.2) fix some small number a > 0 and introduce the sectors 

{ a(s + 1)} 
g~ = u~,,~(m) = x ~ R 2, as <_ ~o(x) _ ~o(m) < - , 

n ?'b 

s = O, +1, :1:2,... 

We show that for ~h E A T ( f ) N  U~ there exists some R = K(K,  A, B, b~, b2, b3) such 
that 

I I~ l -  Imll < aR(Isl § l). 
Indeed, in this case 

I lmi-  Imtl < gf(qo(rh))+n I f(~o(,a))f(qo(m))-f(~~ Iml 

K' K"~(tsl + < __ + 1)Ira I < a/q(is I + 1) 
n n 

by the Lipschitz one property of the functions f(-) we are considering and the fact 
that Iml is of order n. The set 

c:s = us  n { I t < -  Imll --- af42(isl + 1)} 

has no more than const. (Isl + 1) elements, and the sets (7o and 0 - i  are empty if 
An <_ link <_ Bn.  The first statement is clear, and the second one holds for the 
following reason. If there is some rh E (7o or rh E (7-1, and m, ~ are lattice points, 
then 

1 _< I~r~ -- ml 2 = ( l m l -  Ir~l) z + 21.~lteal(1 - cos(~o(m) - ~(~))) 

and 

Since Iml > An, Irhl > An,  the above relations imply that 

( a )  a2R2 l_<2A2n 2 1 -COSn  § -< (3A2 § R)a2 i f n > n 0 .  

But this is impossible if a > 0 is sufficiently small, hence (7o and (7_1 are empty. 
We can write 

rL 

E "~ IA~ (f)l -< const, s sup 
s = l  rn@ffsN(f-s--I f (~ (m) )  f(~(rh)) 

To estimate the above sum observe that by Part 2a) of Property A the probability 
(n .~-  

density of the random vector (f(qo(m)), f(~o(rh))) is less than ~,s) if ~ E (Ts U 

(7-s-i,  and the Lebesgue measure of the set 

( (f(~o(m)), f(~o(r~))), 
' f ( ~ ( m ) ~  f (~o (~ ) )  < 
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is less than const, fb -2,  since m and rh are of order n. Hence, 

p( ]m, ]r~] <~) <const. (~)" Z2 
f (~o(m))  f(qo(r~)) _ ~ if ra E n (/, N 0--~_1 , 

and (5.3) implies that 

E7 [A~(f) [  <_ const. 

r~ 

7ff-2 
Z s ~ -~  < const. (log n) ~<-2) 
8 = 1  

as we claimed. Lemma 2 is proved. [] 

Proo f  o f  L e m m a  3. The proof of  Lemma 3 is similar to that of  Lemma 2. For all 
m E Z 2 define the set 

B ~ k ( f )  = { (~ ,  m l , . . . ,  m~), (m, rTz, m l , . . . ,  ink) C B,~,k(f)} �9 

Similarly to Lemma 2, to prove Lemma 3 it is enough to show that 

E t B ' ~ k ( f ) l  < const . ( logn)  ~('--2) if A n  < Iral < B n .  (5.4) 

To prove formula (5.4), let us introduce for all integers S l , . . . ,  sk and ~ the set 

U ( s l , . . . , s k , ~ ) =  {(rh,  m l , . . . , m k ) ,  m j E U j v  , l < j <_l% r h E U a } ,  

where Us is the same as in the proof of  Lemma 2. Let s T _< s~ _< . . .  < s~+ 2 be 
/ ' be the monotone ordering of the numbers s ~ , . . . ,  sk, a and 0, and let m l , . . . ,  ink+ 2 

the monotone ordering of the lattice points m ~ , . . . ,  ink ,  ra, ~ by their angles, i.e. let 
' ~ * * for 1 < j < k + 1. Introduce qo(m/i) < qo(m~) < . . .  < g)(mk+2). Put 8 j  : S j +  1 - -  8 j  __ __ 

the set 

O ( s ~ , . . . , s k , a )  = {(rh, m l , . . . , m k )  ~ U ( s l , . . . , s k , a ) ,  

m '  a K ( s j  + 1), j =  1 , . . . , k + l } .  

We get, similarly to the argument in the proof of  Lemma 2 that 

U ( s l ,  . . . , sk ,  ~) n B~, ,k ( f )  C ( f  ( s l ,  . . . , sk,  5) , 

and 

' = 0 f o r s o m e  1 < j < k + l  ( 7 ( s l , . . . , s k , ~ ) = ~  i f s j  _ _ 

k+l 

f T ( s l , . . . ,  sk, 5)1 < const. I I  s} .  
j=l  

' l < j < k + l ,  Let us also observe that we have to consider only such sequences s j ,  _ _ 

for which minl<_O<_k+1 s} <_ n ( l o g n ) - %  since Ip(ra) - qo(rh)[ <_ ( l o g n ) - %  A similar 
argument to that in Lemma 2 gives that 
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K sup p ]m[ [rh[ < - - ,  

(~,~i ..... ~k)~(~i  ..... ~,~) f ( ~ ( m ) )  f0P(m))  n 

- - ,  (5.5) 
f ( ~ ( m ) )  f (~ (m~) )  n 

<_ const, n -2~-2 

j = l  

Indeed, we have to integrate a density function bounded by const. [ I  on 
j = l  

a set of  Lebesgue measure const, n -2k-a  to calculate a probability term appearing 
in (5.5). The above estimates yield that 

k+~ 1 n 
<  onst. Z 1-I; t 

l<stj<n, for all l_<j</c+i j = l  
sj <_ ~ for some j 

k n 

< const. -- 
-- Tt n \$/ 

\ s = l  s= l  

< const. (log n) ~('~-2). 

Lemma 3 is proved. [] 

Proof o f  Lemma 4. The relation 

((b - a)) (k 1) ~ g(A(p2, . . .  ~pk, )) 
--oC<ps<OO 
s=2.-,k 

= f A(k~'b)(x2,..., xk) d x 2 . , ,  dx~ + 0 ((b - a)) 

holds with 

(5.6) 

),(k~'b)(X2, � 9  X~) = A [a, b] N [a + xs, b + x~] , 
8=2 / 

where A(-) denotes Lebesgue measure. This relation holds, since the left-hand side of 
(5.6) is an approximating sum of the integral at the right-hand side, and O ((b - a)) 
is the error of the approximation. To complete the proof of Lemma 4 it is enough to 
show that 

/ '  . ( a  b)~ 
Jk(a ,b)  = A k ' t x 2 , . . .  , x k ) d x 2 . . .  dx~ = (b - a) k. (5.7) 

To prove (5.7) observe that 

~(~'b)(x2,...,  zk-1,  x~) + A(k~'b)(x%..., z~_~, xk + (b - a)) 

= A(k~2b~(x2,..., Xk-1) if xk E [a -- b, 0] 
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and 

Hence,  

ilk(a, b) = f 
J 

/•(a,b)[•,• k ~z ,  " ' ' , x k - ~ , x k ) = 0  i f ] x k ] > b - a .  

{a--b<xk<O } 

[~~ ~ )  + a~~ ~ + (b - ~))] 

dx2. . ,  dxk 

(b a) j ,(a,b)r . . . .  ---- -- Ak_ l~z , . . . ,Xk- -1 )dx2 . .  dXk-1 = (b-a) f lk_l (a ,b)  

The last relation implies (5.7) by induction. Lemma 4 is proved. [] 

6. R e d u c t i o n  of  the  proof  of  the  Propos i t ion  

Let us introduce the following notation: 

f~Jl+~ flf~o2js+l 
7 - [ n ( f  , j l ,  . . . , j k )  = 1 dcfl f2(~)  d ~ .  

~~ s=2 ~P2js 

We shall prove that 

[[3tt k,n(f, j L, �9 �9 �9 jk, P2,. �9 -, Pk, E z)[ 
k (6.1) (z+ �89 ]2 ~t u n CMr~_____~ 4 

-- (log n) 2~ 7 ~ n ( f ,  j l , . . . ,  jk)  < (log n )  M 

for all ( j l , . . -  , j k ,P2, . . .  ,Pk, z) E Sn,k and arbitrarily large M > 0. 
We make some comments about the content of formula (6.1). The second term 

at the left-hand side is an estimate of the volume of the domain in ]~2k where the 
k-tuples from .AJk,~ must fall. This is a better approximation of this volume than that 
given in the discussion after the formulation of the Proposition. The second moment 
of I.h.4k,,~t is of order n 4 divided by some power of logn which depends on the 
parameters % ~/ and c~ appearing in the definition of A.4k,n. The expression at the 
left-hand side of (6.1) is much smaller, since in its estimate on the right-hand side 
we can divide by an arbitrary large power of log n. Such an estimate holds only if 
the second term at the left-hand side is appropriately chosen, i.e. if the volume of 
the domain where the points of A//k,~ must fall is computed with a sufficiently good 
accuracy. Let us also remark that we have only gained a logarithmic factor on a large 
negative power by making an appropriate centering of [A,4k,n[ on the left-hand side 
of (6.1). 

First we show that formula (6.1) implies the Proposition. For this aim we introduce 
the events 

An(j1, . . .  , j k ,P2 , . . . , pk ,  z ) =  {f ( ' ) ,  [.Mk,~(f, j l , . . .  ,jk,p2, . . . ,Pk,Z)[ 

~log-~, } 
(z + _~) ~ _ 1  ,3~) ~2 

- (log n) 2# 7-t,~(f, j l ,  �9 �9 > 
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in the space of continuous functions. By (6.1) 

P ( A ~ ( j l , . . . ,  Jk, P 2 , . . . , P k ,  Z)) < 

and since M > 0 can be chosen arbitrary large 

n = i  O<_jl<J2<...<jk<P(2n) 

Among the events 

Z 
Ipsl<D6n 
s = 2 , . . . , k  

Bn'% 

z=An~ 

c o n s t .  

(log n)M/3 ' 

P (A2~ ( j l , . . . ,  j k ,  P 2 , . . . ,  Pk, Z)) < OC . 

(6.2) 

A2~(Jl , . . .  , j k , P 2 , . . .  ,Pk, z) 

for some ( j  1 , . . . ,  j k , P 2 , . . . , P k ,  Z) C S2~,k only finitely many one will occur with 
probability one by the Borel-Cantelli lemma and relation (6.2). On the other hand, 
because of the continuity properties of the functions f(-) we are considering, and 
since z has a value of order n ~ the relation 

k 

s = 2  

holds. The last relation together with the fact that only finitely many events A2n occur 
with probability one imply the Proposition. 

Relation (6.1) follows from the following two lemmas: 

Lemma  5. For arbitrary M > 0 and ( j l , . . .  , j k , P 2 , . . .  , p k , z )  E Sn,k we have 

E { IAdk ,~( f ,  j l , . . .  , j k , P 2 , . . .  ,Pk, z)l 2 } 

= ( z + g j  . o ~  E { ~ n ( f ,  j l , . .  , j k ) 2 } + O  (logn) M (log n) 4~ ' ' 

where the 0 ( . )  is uniform in j l , . . .  , j k ,  P 2 , . . .  ,Pk and z. 

Lemma 6. For arbitrary M > 0 and ( j l , . . .  , jk,P2~.. .  ,pk,z)  E Sn& we have 

E l 3 d k , n ( f  , j l ,  . . . , Jk ,Pz,  . . . ,Pk, z ) l ~ n ( f  , Jl ,  . . . , j k  ) 

= (logn)2~ E { ~ n ( f ,  j l , . . . , j k )  2 } + O  (logn)~l , 

where the 0 ( . )  is umform in j l , . . .  , j k ,  P 2 , . . .  ,Pk and z. 

First we give an informal explanation about the proof of Lemmas 5 and 6. The 
second moment at the left-hand side of the formula in Lemma 5 can be expressed 
as the sum of the probabilities that two pairs of k-tuples m = ( r a l , . . . , m k )  and 
ga = (~1 , .  �9 �9 ~ k )  fall simultaneously into the set A-'lk,~. This statement is expressed 
in formula (6.4). All terms in this sum can be written as an integral of the density 
function (introduced in Part 2 of the definition of Property A) 
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p 2 h ( X l , . . . ,  Xt~ ~ X k + l , . . .  , X 2 k l ~ ( m l ) , . . . ~  (p(Tl~k) , ~9(T~1)~  . . . ~ ~ ( f ? b k )  ) (6.3) 

of  the random vector ( f ( ~ ( m l ) ) , . . . ,  f(~(mk)), f ( ~ ( r h l ) ) , . . . ,  f(9~(m~))). The sum 
of these integrals can be considered as the approximating sum of an integral in an 
appropriate domain. As the subsequent calculation will show, this integral equals the 
main term of the right-hand side of  the formula in Lemma 5. Lemma 5 gives a bound 
on the error which is committed when the integral expressing E ~  2 multiplied with 
the constant appearing in Lemma 5 is replaced by the sum by which we expressed 
the left-hand side. 

This error is small, because by Part 2b) of  Property A the density function 
(6.3) depends continuously on its arguments Xl , . . . ,Xzk  and ~ ( r a l ) , . . . , ~ ( m k ) ,  
~(~l), .. �9 9~(~k). But this property supplies a good estimate only if all differences 
between the angles 9~(ms) and 9~(rhs) are not too small. The difference between p(ra~) 
and 9~(ra~,) or 9~(m~,) is bigger than l o g n  -~ ,  if s @ s I because of  the existence of  
the buffer zones Cj,  and the same statement holds for 9~(rh~). But ~(rns) - ~(ms)  
can be very small. Hence we fix some large positive number 7 and split the sum 
(6.4) which expresses Adk,~ into two parts. The first sum contains all pairs such 
that I~(m~) - ~(rh~) i > l o g n  -~  with some fixed 7 > 0 for all s = 1 , . . .  ,k. This 
sum can be approximated by an appropriate integral very well because of  Part 2b) of  
Property A, and this is the content of  Lemma 7B. The remaining sum can be bounded 
sufficiently well for our purposes because of  Part 2a) of  Property A, and this is done 
in Lemma 7A. The integral appearing in Lemma 7B is not equal to the main term 
at the right-hand side of the formula in Lemma 5, because the domain of integration 
was diminished by not taking all terms in the sum (6.4). But we show with the help 
of formula (6.11) that this change of  domain of  integration causes only a negligible 
error. These estimates together imply Lemma 5. The proof of  Lemma 6 is analogous. 
Here Lemmas 8B and 8A give the estimate of  the main and the error term if we split 
the sum expressing the left-hand side of  the formula in Lemma 6 in an appropriate 
way. 

To carry out the above program we introduce for fixed numbers k, j l  . . . . .  j k ,  
P2 . . . . .  Pk and z the notation f14~ = Adk,~(f, j 1 , . . . ,  jk, P 2 , . . . ,  Pk, z), where A.4k,n 
was defined in (4.1). Let Z = Zk denote the set 

Z = Zk = {m = ( m i , . . . , m k ) ,  m ~ E Z 2 f o r a l l s = l , . . . , k } ,  

and put 

Clearly, 

E {IA.4~,~(f,j~,... , jk,p2,. . . ,pk, z)l 2} = ~ ~ P((m,iii) E 5c'~). 
mEZ ~EZ 

(6.4) 

To prove Lemma 5 we have to estimate the sum at the right-hand side of  (6.4). 
We shall split this sum into two parts and handle differently those pairs (m, m), 
m = (ml , .  �9 �9 ink) and m = (~1 , .  �9 rhk), for which 19~(m~) - ~(ms)[ is very small 
for some 1 < s < k and those pairs for which all these differences are not too small. 
To formulate this statement in a more explicit way we introduce some notations. 

Let us fix some very large 3' > 0 which may depend on k, but not on n or on 
j l , . . .  , j k ,  P2,... ,Pk and z. (This number will be chosen much bigger than u, /3, ~? 
and ~?.) Define the set 
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G n = { ( t ~ , . . . , t k , { ~ , . . . , [ ~ ) ,  t ~ , [ ~ e R  ~, 

~ 2 j s  ~ t s ,~s  < ~2 j s+ l ,  S : l , . . . , ] C }  ; 

and split it into two disjoint sets G~ ) and G~ ) in the following way: For ~j~ < ~ < 
~2j~+1 define g(Q, 0 < ((t) < n~-% as the integer 1 for which ~2j~ + In -'Y ~< ~ < 
~?2j~ + (1 + 1)n-% Put 

c ~  ) = {(t~,. . . ,  t~, L , . . . ,  ~ )  ~ On, Ig(t~) - g(h)l > 1 for an 1 < s </~} 

and 

a(~  ) ~-- { ( t b . . .  ~ t k ,  ~ 1 , . . . ,  ~k) e Gn,~ le( ts)  --  g(~)l -< I for some 1 < s < ]~}. 

Clearly, 

Given some measurable B C ~2~ define the integral 

1(/~) = / x~.. : - 2 .  . x k x 2  . .  ~ 2  
. J  

( h  , . . , t ~ , ~  , . . . , ~ ) ~ B  
<x~,..,:%,~...,~)~2~ (6.5) 

p(z~, . . . ,  x~, ~ , . . . ,  ~ I h , . . . ,  t~, h , . . . ,  h:) 
dx~.., d ~  d2l . , ,  d2~ d h . . .  dt~ d~ . , .  d~ . 

S i n c e  fo r  f ixed  ( t l  , . . . , t k ,  ~1 ,  . . . , ~]c) 

J•(xl.. ,xk,~ 1 ...,SZk)~R2/c 

hence 

X~ 2 -2 . ...xkx 2 ..~ 

P ( X I , ' ' . , X k , : ~ I , . . , X k l t l ,  . . . , t k , ~ l , . . . , ~ k )  

dx l . . ,  dx~ d2q .. dSck 

= E f2 (h ) . . .  f2(tk)f2(~2).., f2(~k), 

(6.6) 

Put 
Z ( < )  = ~ ~ P((m, ffO E ~ )  

mEZ ~ Z  
(6.9) 

E {~n( f ,  J l , . . . ,  3k) - } I(Gn) (0 �9 ~ = = [ ( G  n ) + I ( G ( ~  )) . (6.7) 

Let us also observe that since the right-hand side of (6.6) is bounded, hence (6.5) 
and (6.6) imply that 

I(B) < const, t ( B ) ,  (6.8) 

where A(B) denotes the Lebesgue measure of the set B in ]~2k 

We split the set ~r,, into two disjoint sets 5c~ and 5c-~ in the following way: 

Y~ = {(m, fn) = ( ( m l , . . . ,  ink), (?~1,.. . ,  ~k)) ~ ,~un; 

(~ (ml ) , . . . ,  ~(m~), ~(ra~), . . . ,  ~(r~.k)) ~ C~! )} , 
5rn 2 = {(m, Ill) = ( (ml , . . . ,mk) ,  (~ l , - . . , ( nk ) )  ~ 5Vn; 

(~)(?Tbl), . . .  , (p(m/~), ~:)(T~I), . . .  , ~:?(T~]c)) ~ C(~ 2)} . 
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and 
Z(S~) = ~ ~ P((m,m)E ~). (6.9') 

mEZ mEZ 

Then we have 

E {IX~k,~(f, j~,. . .  ,Jk,m,... ,pk, z)l ~} = Z(J~) + Z(J~).  (6.10) 

It follows from (6.8) and the observation that A(G~)) < const. Clog n) -~  that for 
sufficiently large 7 = ~/(M, k) 

I ( G ~  )) < const. (log n) -7 < const. (log n)  - M .  (6.11) 

Lemma 5 follows from formulas (6.7), (6.10), (6.11) and the following Lemmas 7A 
and 7B. 

Lemma 7A. I f  7 = 7( M, k) is sufficiently large, then 

Z ( f ~ )  < const, n4(log n) -M 

f o r  arbitrarily large M > O. 

Lemma 7B. For  all 7 > 0 

(z + 
log n 4~ < const, n3(log n) K 

with some appropriate K = K ( 7 )  > O. 

(In our problem the upper bound const, n3(log n) K in Lemma 7B can be replaced by 
the weaker estimate n4(log n) - M  with a sufficiently large M > 0.) 

We reduce the proof of Lemma 6, similarly to Lemma 5, to two Lemmas 8A 
and 8B. To formulate them we introduce the following quantities. Given some m = 
( m l , . . . ,  mk) E 2: = Zk define the sets 

G~)(m) = { ( t l , . . . ,  tk) E ]~k, (~fl(m;),..., (p(rnk), t l , . . . ,  tk)  E G(~ ) } 

and the integrals 

J(G(~)(m)) = ff(G~)(m), f )  = f (~) f2(t2). . ,  f z ( t k )d t l . . ,  dtk 
J(t I ,...,tk)EG ~ (m) 

f o r / =  1,2. 
The identity 

E.Adk ,~ ( f  , j l ,  . . . , j k ,P2 ,  - . . ,Pk,  Z ) ~ ( f  , j l ,  . . . , j k )  

= Z E x ( m  E .A/t~),f(G~)(m)) + E x ( m  E A4~)J(G~)(m)) (6.12) 
mEZ 

holds. Hence Lemma 6 follows from formulas (6.7), (6.11), (6.12) and the following 
lemmas. 

Lemma 8A. I f  7 = 7 ( M ,  k) is sufficiently large, then 
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E)~(m E A d ~ ) J ( G ~ ) ( m ) )  < const, n2(log n) - M  
mEZ 

for arbitrarily large M > O. 

L e m m a  8B. For all ~ > 0 

Ex(m E A4~)J(a~)(m)) - 

mEZ 

451 

log n2~ < const, n(log n) K 

with some appropriate K = K(~/) > O. 

7. Proof of Lemmas 7A and 8A 

Proof of Lemma 7A. Fix the numbers j l  . . . . .  Jk. Let us split the sets Dj~ into smaller 
n 

sectors Us,t, 1 = 1 , . . . ,  ( logn)  ~ defined by the formula 

1 - 1  l }  
U s .  l = x :  x E D j s  , ~2 j s  -~- - -  ~ ~ ( x )  < ~)2js -t- - �9 

�9 7z ?% 

Fix some positive number K > 0, and define the set 

N l i , . . . , l k , i l , . . . , ~ k )  = N l l , . - . , I k , l l , - - . , l k , j l , . . . , j k ,  f )  

~(m,  lh) = ( ( m l , . . . ,  i nk ) ,  (rhl~ . . .  , i n k ) )  C Z • Z ,  
( 

ms  C Us&,  ms  E Us,~, 

, f ( 9 ( m l ) )  f(~(rn~))  

f (~ ( rh l ) )  f (~ ( rh , ) )  

s = 1 , . . . , k ,  

K 

< - - ,  s = 2 , . . . , k  . 

Introduce the random variables 

r  lk, I 1 , . . . ,  Ik) = I ~ ( l l , . . . ,  lk, Z 1 , ' . . ,  lk)l �9 

The estimate 

z(f ) < Z 
O < l s , [ s < _ ~  for all s=l, . . . ,k ,  

] l s - Z s [ _ < ~  for some l < s < k  

. , l ~ , l l , . . . , I k )  (7.1) 

holds. We prove some bounds on the expressions Er . . ,  l~, 11,... ,  lk). The cases 
when Ils - i s ]  > L for all s = 1 , . . . , k  and when l l s - l s l  < 1 for some 1 < s < k 
will be handled differently. First remark that all sets Us,z contain less than const, n 
lattice points. We also show that 
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I l f(g)(m~)) f(cp(m~)) I ~ 1 -  Im~l + Ira, ~ I~[,f(~(rn~)) < const.([/~ -is[ + 1) 

for a l l s = 2 , . . . , k ,  i f ( m , l ~ ) ~ ( / 1 , . . . , l ~ , I ~ , . . . , l ~ )  

(7.2) 

holds with m = ( m ~ , . . .  ,m~)  and ga = (rh~,... ,rhk). 
Indeed, we have 

I f(~(ms)) _ f(~p(rhs)) r~ 
Im*]-lm~lf(~p(m~)) l r g ~ l + l m ~ / ~  < - - n  

and 
irh~ I f(~(r~r [ f (~ (m~) )  

.f(qo(rht)) Irhl ~ < const. (ll~ - 7, l 4- i ) ,  

since the function f ( . )  is Lipschitz one. The last two relations imply (7.2). 
The inequalities 

f(~(m~)) ~ C -- f(~p(ml)) < n2 
s = 2 , . . . , k  (7.3) 

f(pO~s) ) -- ~-~f(~p(7"~l) ) < n~ 

are also valid if (m, l~l) C ~(11 , . . . ,  lk, 11 , . . . ,  lk). Let us fix l~ , . . . ,  l~ and l ~ , . . . ,  l~. 
Take some m = ( m ~ , . . . , m ~ )  and r~ in such a way that m~ ~ U~&, s = 1, . . . ,k ,  
and ~ ~ U~, h respectively. Introduce 

B m ' r ~ ( / 1 , . . . , l k , l l , . . . , I ~ )  = {rh = ( ~ , . . . , r h ~ ) ,  

(m, l'il) ~ ~ ( / 1 , . . -  ,Ik,ll , . . .  ,Ik), ffz = rYZl} 

and 
C " ' ~ ( l ~ , . . . ,  lk, l ~ , . . . ,  Ik) = [ ~ " ~ ( l ~ , .  - �9 lk, Z l , . . . ,  7~)1 �9 

We estimate the expected value of ~m,~. First we consider the case when lib - l ~  ] > 1 
for all s = 1, . . . ,  k. 

Fix the values of f ( c p ( m l ) ) , . . . ,  f(~p(rak)) and f (cp(~l ) )  and estimate conditional 
expectation 

E ( ~ m ' ~ ( / 1 , . . . , l k , l l , . . . , I k )  I 

f(g)(ml)) = x l , . . . ,  f(qo(mk)) = xa,  f(~o(rhl)) = 21) .  

Because of  (7.2) we can determine with the help of  the values of  f(~p(ml)) . . . . .  
k 

f(~p(m~)) and f ( ~ ( m i ) )  a set consisting of at most const. 1--I [l, - 7~1 vectors ga in 
8=2 

such a way that only the vectors (m, m) with these m can be in the set 

]Bm ' r~ ( /1 , . . . , l k , l l , . . . , l k )  - 

Let us estimate the conditional probability of  the event that such a vector 1~ really 
belongs to this set. 

The conditional density of  the random vector f ( (p(m2)) , . . .  ,-f(~(rT~k)) with re- 
spect to the condition fOp(m~)) = x~ . . . . .  f(~(mk)) = xk, f ( ~ ( ~ ) )  = ~ can be 
bounded by 
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]g -c 

lI --7 j 
~=~ . ( 7 . 4 )  C(log n ) ( k - 1 ) ~ p ( x l , .  . . , z k ,  ~ c 1 1 ~ ( m l ) ,  . . . , p ( m k ) ,  ~ ( m a ) )  

We shall show that this conditional density function has the above estimate for all 
f(~(Ka2)) = :~2, �9 --,  f (~(rhk))  = -~k. Relation (7.4) follows from the inequality 

p(xl,..., xk, J:1,..., ~kl~(ml),..., ~(mk), ~(rhG..., ~(r-r~k)) 

8 = 1  

The last inequality holds because of Part 2b) of Property A and the following o b -  

servations: ]p(ms) - ~(rhs)l > , and all other terms I ~ ( m ~ )  - ~(m~,)l, 
% 

I~(rh,) - ~(ms,)l and I~(rhs) - #~(rhd)] which appear in the upper bound of the 
density we are considering are greater than (log n) -;~. (This statement holds, because 
there is a sector Cj between these points.) 

We claim that 

P( l ' i l  ~ ]~m'TT~(ll, . . .  , l k : i l , . . .  ,~k)l 

f (~p(ml) )  = x l , . . . ,  f ( cy (mk) )  = xk~ f(~(vhl))  = 5:1) 

k (  )7 (7.5) 
n-2~+2 I-I 

8=1 iz~ l~l < C(log n) (k- 1)fl~ 
p ( X l : . . . ,  Xk, :211~(mi),. �9 �9 , (p(mk), ,~(f7~1)) ' 

and the conditional expectation of (,n,~ satisfies the inequality 

/~ ((m'~(ll,..., l~, 71,..., Zk)l 
f ( ~ ( m l ) )  = x l , . . . ,  f ( ~ ( m ~ ) )  = x~,  f(~(rh~)) = ~1) 

~ ( n ) ~ -  ~ (7.5') 

8 = 1  < C(log n) (~-l)fl~ s=2 
p ( x l , . . . ,  x ~ ,  ~cl I~(m~),.. �9 ~(m~), ~(rhl)) 

Indeed, to calculate the conditional probability in (7.5) we have to integrate the 
conditional density which was bounded in (7.4) with respect to the variables Yc2,.. �9 Y~k 
by the Lebesgue measure on an appropriate set. But by the second line of  formula 
(7.3) this set is contained in the set 

G - - ~ - ~ I x ~  < ~ ,  s = 2 , . . . , ~  , 

which is a set with Lebesgue measure less than const, n -a~+2. This fact together with 
our bound on the conditional density imply the bound on the conditional density, and 
the estimate on the conditional expectation is obtained if we remark that it is the sum 

of the conditional probability of  at most const. I-I II~ - l~ I terms. 
s = 2  

Finally we show that 
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k "r-1 

/~(m'rh( l l , ' - ' ,  lk, l l , ' ' . ,  lk) < C(log n)(k-1)Srn 3-3k H Its - -  i s  I (7.6) 
s=l 

for all pairs (m, rh ) .  

To prove (7.6) we make the following observations: The expectation of (m,~ can be 
obtained by integrating the left-hand side of  (7.5 ~) with respect to the measure 

p ( x l ,  . . . , x k ,  YJ11g)(ml), -- .  , q)(rak), cp(rh~)) dXl  . . .  d x k  d21  

on a subset of  

= { ( X l , . . . , X k , E 1 ) ,  121 ~ Xx __~ C2, A 

lifts C Cll 1 - i1[ / 
- }ml xl < --n~, s = 2 ,  . . . ,  k ,  and {X 1 -- Xl[ < --n f ' Xs 

where C > 0 is some appropriate constant. The first inequalities in the definition of 
the set A appeared because of  the definition of  ~ ( I i , . . . ,  lk, 7~ , . . . , Ik ) ,  and the last 
one, since 

Ih - 7~1 [f(~p(rhl)) - f (~( ra l ) ) l  _< b31cP(rhl) - ~(mi)[  _< 2b3 
T~ 

because of the Lipschitz one property of  the function f( .) .  Now formula (7.6) fol- 
lows from (7.Y) and the fact that the Lebesgue measure of  the set A is less than 
const, n 1-2k Ill - 711. 

Let us now consider the case when there are p > 1 indices s such that Ils-Ts I -< 1. 
We claim that in this case 

mrTz n E~ ' ( /1 , . . .  , I k , l l , . . .  ,Ik) < C(logn)  (k-1)flTn-3k+p+3-e I I  t 

for all pairs (m, rh) 
(7.6') 

2 - r I1'  with e -- , where denotes product with indices s E V with 
7- 

V = { s ;  l < s < k a n d l l , - l ~ l _ > 2 } .  

We prove (7.6') with some refinement of  the proof of (7.6). We may assume that 
1 r V, i.e. 1ll - 711 _< 1 with the help of  the following observation. The set 
11~(ll,..., lk, 71 , . . . , l k )  becomes smaller if we make an arbitrary permutation of the 
indices s and choose K / 2  instead of K in its definition. On the other hand, the or- 
der of  the angles ~ (ms)  has no importance in the subsequent arguments. We shall 
consider the following two cases separately: 

a) I~ (m~)  - ~ ( m i ) l  > n - l - %  
b) ]~(ra l )  - ~(~1)1 -< n - ~ - ~ -  

In case a) we bound the conditional expectation of ( re'e" under the condition 
f ( ~ ( m l ) )  = X l , . . . ,  f ( ~ ( r n k ) )  = x k ,  f (~ ( rh l ) )  = a:1 similarly to the already inves- 
tigated case. Because of (7.2) we can determine a set of  vectors aa with cardinality 
const. 1-Y ll, - l s ]  in such a way that only the pairs (m, r~) with these ga can be in the 
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set s  [ k , l l , . . . , I 1 c ) .  Arguing similarly as before, with the difference that 
now the conditional density of  the vector ((p(f(r?zs)), s @ V) is estimated, we get that 

E ( ~ m ' r ~ ( / l ,  . . . , l k , l l , . . . , I k ) l  

f ( ~ ( m l ) )  = X l , . . . ,  f(cp(mk)) = xk, f ( ~ ( m l ) )  = Y:I) 

C(log n )  ( ~ -  1)/3rTt--2k+2p H '  TL [ 1  -7,1 
< - 

p ( x l ,  . . . , x k ,  5cl [g~(mi),.. �9 c p ( m k ) ,  qo ( rh l ) )  

Now we get similarly to the previous case by integrating the conditional expectation 
with respect to the distribution of the condition 

f @ p ( m l ) )  = x t , . . . ,  f ( ~ p ( m k ) )  = x k ,  f (~( rh l ) )  = Xl 

that 

E~m'ga(/1, �9 . . ,  l k ,  [ 1 , . . . ,  lk) < C(log 72)(k--1)~'rn2--3k+p 

H ' ( , /  n - ~ s , ) ~ - - 1 , ~ ( m l ) - ~ ( ~ l ) i  1-~ 

for all pairs (m. ~ ) .  

We only have to observe that in the present case the Lebesgue measure of the set 
where we integrate the conditional expectation is less than 

const, n - 2 k + 2 l g ~ ( m l )  -- ~(ff21) I . 

Indeed, it is contained in a set defined analogously to the set A defined in the previous 
case, only the last inequality in its definition must be replaced with the inequality IX I -- 
:c~[ < C l ~ o ( m ~ )  -~o(r?zl)t. This estimate implies (7.6'), since lqo(ml) -  (p(rhl)l 1-~- > 
n * - e  in case a). 

In case b) we show that 

E(r  m'':" (11, . . . ,  lk, 11 , . . . ,  lk)[f(qo(ml)) = X l , . . . ,  f ( ~ ( m k ) )  = x k )  

]1x1' II~ - 7~1 ( 7 . 7 )  T~-2k+2p+ 1-z  

L I  < C(log n) (k-1);~ 
p ( X l ,  . . . , x k I g ) ( m l ) ,  . . . , g ) ( m k ) )  

In this case we estimate the conditional expectation when the value of f(~o(r~i)) is 
not prescribed in the condition. Nevertheless, the value of f(g)(ml))  can be determined 
by means of the conditioning terms appearing at the left-hand side of (7.7) with a 
precision of const, n -1-~ because of the Lipschitz one property of the function f(-). 
Hence we can determine, with the help of relation (7.2), const. 1-[' ll8 - l , I  elements 
rn in such a way that under the conditioning at the left-hand side of (7.7) the event 

(m, rh) 6 B m ' ~ ( / l , . . .  , lk, I1 , . . . ,  lk) 

can take place only with these elements l~. 
To prove relation (7.7) we remark that the conditional density function of the 

vector {f(g)(rhs)) = ~:,, s E V} with respect to the condition 
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{ f ( ~ ( m l ) )  = x l , . . . ,  f (cp(mk))  = xk  } 

is bounded by 

C(log n) (k-  1);~ 
p ( x l , .  .. , x k l ~ ( m ~ ) , .  . ~o(mk) )  ' 

(7.8) 

and for any It~ m,~ 

P(ria ~ Bm'r~(/1, . . .  , lk, 1 1 , . . . , / k ) l f ( ~ ( m 0 )  = x l , .  , f ( ~ ( m k ) )  = x k )  

Tt--2k+2p+l--~ H Tb 

< C(log ft) (k- i)/3~- 
p ( x l  , . . . , x k  l g g ( m l ) ,  . . . , ( f l ( m k ) )  

(7.8') 

The estimate (7.8 ~) follows from the estimate (7.8) on the conditional density 
and the following observation. To calculate the conditional probability of  the event 
li'l C Bm 'm( l l , . . .  ~ l k , l l , . . .  , lk) one has to integrate the conditional density bounded 
by formula (7.8) on the set 

A* = A * ( x ) =  (yc~, s E V) ,  I [2s* < - -  
Tb2 

for all s E V and :cs* ImP* Ix1 } - ir~l  I < C n  - 1 - e  

with an appropriate constant C > 0 and arbitrary s* E V. (We may assume that V 
is non-empty, i.e. p < k. In the case p = k relation (7.8 ~) obviously holds, since the 
right-hand side of (7.8 ~) in this case is more than n 1-~ divided by a power of  log n. 
To see this, observe that the denominator in (7.8 ~) is less than a power of  log n.) The 
last inequality may be imposed in the definition of A*, because 

x~ -I~*l lxl  < ~ .  ]~*l~ll Xl ~_ I~*11~11 I~1- xll < C~ -~-~ 

in case b). Now (7.8 ~) follows from the bound in (7.8) and the fact that the Lebesgue 
measure of  the set A* is less than const, n-2k+2p+1-% Relation (7.8 ~) implies (7.7), 
since there are [I / I I~ -L] possibilities for choosing lb. Formula (7.6 ~) follows from 
(7.7) and the observation that we have to integrate the conditional expectation on a 
subset of the set 

Xs Xl C } ]m~ < s 2, k, 
( x l , . . . , z k ) ,  c 1 < _ x 1 < c 2 ,  I m l  n 2 '  " ' "  ' 

which is a set of  Lebesgue measure less than const.  Tb -2k+2. 
Since m = ( m l , . . . , m k )  and ga can be chosen with their coordinates rn~ in 

prescribed sectors U~,t in const, n k+l ways, formulas (7.6) and (7.6 ~) imply that 
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k )7---1 

E~( l l , .  �9 lt~, I I , . . . ,  lk) < C(log n) (k-1)~'n4-2k H lls ~ s l  
8:1 

if II~ -i~l > 1 for all s = 1 , . . . , k ,  (7.9) 

< C(log lZ)(k--1)~r?Z 4-2k+p-e H ~ ls 

if there are p > 1 indices s such that I I~ - Z~ I -< 1 . 

Let us remark that for all l the equation l~ - Is = }" has less than n solutions. 
Hence relations (7.1) and (7.9) imply that 

S(5 v2) _< C(log n) (k-l)~- ( Z  (~ 

Z (0) : 724_ k 

with 

and 

We have 

and 

p=l ] 

I Z ~ l < ~  for some l<s<k 

k-p 7-1 
Z (p) : TL4-k§ e Z H ( ~ )  

l < l ~ s l _ < ~ ,  s=t ..... k--p s=l 

n k--1 n ((1~ ~ (p/7"--]) (logTa)'T (p/7"-- 1 
~ ( 0 ) <  const, n4-~ 

p=l p=l 

< const, n4(log n) - 'y(z-r) 

~ ( P )  _< const. < const, n 4-e Tl4--k+p--e 

\ p=l 

for 1 _< p _< k. Hence 

Z(.U, 2) < C(logn)(k-1)*~-n4 (log n-(2-~)'r + n -e) <_ n4(logn) - m  

if 7 > 0 is sufficiently large. Lemma 7A is proved. [] 

Proof of Lemma 8A. Since An < I m ,  I < Bn for all s = 1 . . . . .  k if m = 
( r o t , . . . ,  m~), and there are less than const, n 2k vectors m E Z satisfying this condi- 
tion, it is enough to show that 

E x ( m  E Ad,~)J(G~)(m))  < const, r~-2k+2(log rt) - M  

for all m E Z if "y > "~(M, k) 
(7. lO) 
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to prove Lemma 8A. Let us introduce the notation is = ~p(m,)), s = 1 , . . . ,  k. We 
can rewrite the expression in formula (7.10) in the following form: 

E x ( m  ~ Jt4~)J(G~)(m)) = l X 2 . . .  03 2 

(~h , . . . ,5ck)~D 
(Xl ,...,xk)GR k 

(tl , . . . , t k ) ~ G ~ ) ( m )  

p ( z l , .  . . , x ~ , & , .  . . , ~ h , .  . .  , t ~ , % , .  . . , ~ )  

d h  �9 dt~ d x ~ . . ,  d x k  d~ca. . ,  dYc~ 

with 

D = { ( ~ l , . . . , 5 7 k ) ,  Xl E [z ,  ,ms,js8 tm-l'xl E [PJs }  " 

Let us first fix t l , . . . ,  tk and YCl,..., Yxk, and integrate with respect to the variables 
x l , . . . , x k .  Because of  the Lipschitz one property of the function f(-),  the density 
P('I') is concentrated on the set ]x~ - Y~i] _< b3le~ - hi,  and Ix~l < b2. Hence we get 
after integration with respect to the variables x a , . . . ,  xk that 

k 

j~4,~)J(G~)(m)) < const. / H [~s - Z~ [ E x ( m  c 

(ycl,. . . ,~zk)6 D s=l  
a 

(tl ,...,tk)cG~)(m) 

sup p(x~,... ,zk,~:~,... ,~kh, . . .  , tk ,~, . . .  ,~k) 
X 1 ~ . . . , X  k 

d h . . .  dt~ d ~ . . .  d~c~ . 

Then integrating with respect to the variables ~s, s = 1 , . . . ,  k and exploiting that the 
Lebesgue measure of D is less than n -2~+2 (this is so, because for fixed 5:~, Y:s is in 
an interval of length const, n -2 for all s = 2 , . . . ,  k if (Xl,. �9 �9 Yck) E D) we get that 

k P 

E x ( m  E JVl ,dJ(G~)(m))  < const, n - 2 k + 2  / II It, I 
(t i ..... t/~)eO~)(m)S= 1 (7.1 1) 

a 

sup p ( x ~ , .  . . , z k , ~ , .  . . , ~ k l t l , .  . . , t k , h , .  . . , t k ) d h  . . . d t k  �9 

2~ 1 w . . ~ X k  
ff:l ~" ",5:k 

Part 2a) of  Property A implies that 

p ( x l ,  . . . , Xk,  ~ l  , . . . , Y:klh , . . . , t k ,  t l ,  " " " , t k )  

2k k (7.12) 
-< 1-I Irc(ts) - rV(ts_,)[-" _< C ( l o g n )  ( k - l ) e r  1- I  Its - ~sl -'~, 

s=2 s=2 

where {re(h), . . . ,~r(t2k)} is the monotone ordering of the numbers h . . . . .  tk, ~1, 
. . . .  tk. The last inequality in (7.12) holds, because Its - t,,], It, - t , ' l  and Its - t , ' l  
are greater than (log n) -/~ if s @ s'. (There is a sector Cy between them.) Relations 
(7.11) and (7.12) imply that 
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E x ( m  c AAn)J (G~) (m) )  < const, n-2/~+2C(log n) (/~-l)flr 

f t t  ..... tk)cG~)(m) sI~_l '~s - ~sll-rd~l " ' " d~k " 

Since min ]G - t ~  ] < (log n) - v  by the definition of the set G~)(m),  the last inequality 
implies that 

E)c(m E A d ~ ) J ( G ~ ) ( m ) )  < const, n-2/c+2(log n) - M ,  

if 7 > 7(k, M).  Lemma 8A is proved. 

8. The proof of Lemmas 7B and 8B 

Proof of Lemma 7B. Let us first observe that 

(log n) K 
I P ( : ~ I ,  - - -  , X 2 k  I ~ l ,  . - .  , ~ 2 h )  - -  p(Xl,... ,  X2k I t l ,  �9 �9 . , ~ 2 k ) l  < const. - -  

n 

C C 
if ( t~ , . . .  $2k)c G (I)n , and 15:~- x~] < - - ,  It~ - GI < - ,  s = 1, . . .  ,2k, 

(8.1) 

with some K = K(7 ,  C). This statement follows from Part 2b) of Property A and 
the fact that 7 r ( G ) -  ~r(G 2) > ( logn)  - v ,  if ( t l , . . . , t 2 ~ )  E G~ ). (Here 7r(G), s = 
1 , . . . ,  2k, denotes again the monotone ordering of the sequence G, s = 1 , . . . ,  2k.) 

The relation m = (ml ,  �9 �9 �9 m~) E A/In holds if and only if 

f(cy(m~)) E I (ms,  ms ,  f(p(ml))) 

I ,1 
= Imll + ( p J s + l ) 6 n  ' Imll 

[_f(F(ml)) lint] f (p(ml))  f (~(mO) 

s = 2 , . . .  ,k ,  cr C [ ~ 2 j s ; ( , / 9 2 j s + l ] ,  

and Irall c ?z �9 

imsl 

- -  + ~ f(~p(ral)) 

s =  l , . . . , k  , 

(8.2) 

Since ] in  < Imll < B n  and 0 < bl < f(cp(ml)) < b2 < oo, hence the interval 
[(ml, me, f(~(ml))) can be non-empty only if Im~l is of  order n for all s = 1 , . . . ,  n. 
Using this fact, we get with the help of  standard calculation that 

I (ml, me, f(~p(ml))) 

= I ~ f ( ~ ( m l ) ) - - ( P j s + l ) S n ~ f 3 ( ~ ( m l ) ) - t - O ( - ~ ) ,  

ITYtS] I'YF~sl 3 ( ~ ) 1  
imil f (~(ml))  - p j s 6 ~ m - ~ f  (~(mO) + O 

We claim that 
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P((m, rh) ~ 5 vl) 

J' ( Ira2] Imklx, s:, l~2l_ ,r~kl~ 
= p x, i -~l lX, . . . ,  irnl) ~ - ~ x , . . . ,  irhx [ 

~(mO,..., ~(mk), ~(#nD,..., ~(r'ak)) (8.3) 

(( log n) K ~3(k-1)z,3(k--1)A~,4z,,q2(k--1) Im~ll<sl +O \ 
. . . . . . .  ,~ 1-I Im1131~13 / 

s = 2  

if (~r ~o(mk), ~p(rh~),..., qo(~))  ~ G~ ) and Im~t, Iraqi ~ L .  Otherwise, this 
probability equals zero. Indeed, we get the above probability by fixing first the values 
f(~p(ra~)) = x and f(g)(rhl)) = ~c, integrating the density function 

p(x, Y2, . . . , Yk, x,  92 , . . . ,  Yk tg)(ml), -.. , g)(mk), g)(r7%),..., ~P(~k)) 

on the set 

(Y2,... ,Yk,Y2,..-,Yk) 
E I (ml , rn2 ,  x) x . . .  x I ( m l , m k , z )  x I(rY~l,r7~2,~) • . . .  • I ( rh l ,<k ,~ )  

and then integrating with respect to x and :~. 
It follows from (8.1) and the definition of the interval I (m l ,  ms,  f (~(rnl)))  that we 

( (log n) K ~ [ms [ 
commit an error of order O \ n4-gK25-_3 / by replacing the argument Ys by ~ T x  and 

9s by ~ - ~ x ,  the length of the intervals I (ml ,  m~, x) and I(~1,  ~ , ~ )  by (5,~ Im*l x 3 

and o , ~ x  when integrating with fixed x and 5:. (Observe that we may assume 

that bl <_ x,3c < b2, otherwise the density function P('I') equals zero. Let us also 
observe that the density p(.I.) in the integrand of (8.3) is less than a power of log n, 
because of Part 2a) of Property A and the fact that the difference between the angles 
~(ms) and g)(rh~) is greater than (log n) -'r. We need this observation to show that 
the approximation of the length of the intervals I (ml,  ms, x) and I(rY~l, r~s, x) we 

(log n) K "~ . 
have made causes an error of order O n 4 ~  ] .) In such a way we get formula 

(8.3). 
Fix some m C D k n Z 2 and rh C Djl A Z 2. Relations (8.1) and (8.3) imply that 

~-~('~ '~) P ((m, m) ~ 5~) 

-~ak-~) f Iwltg~l... Iwll~ki 
{~o(ml),~o(y2), �9 d,o(yk)/.p(rhl),(p(92) ..... ~o(9k)}CG O) 

(8.4) 
p ( x ,  lY2I, " " , fYk l ,  ~c, ]921,..., [flkll 

I ~(m), qo(y2),..., ~(Yk), ~(<) ,  qo(92),..., ~(gk)) 

d y 2 d g a . . . d y k d g k d x d f : + o ( ( l ~  
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where y~, ~)~ E IR 2, for s = 2 , . . .  ,]~, x,.~ E R 1 and ~ ( ' ~ , ~ )  denotes summation for 
such pairs (m, 1~) E 5�88 m = ( m i , . . .  , ink),  ffi = ( r h l , . . .  ,rhk) for which ml  = m 
and rhj = rh. (We remark that the dependence of the last integral on m and rh appears 
only in the dependence of the density function p(-I') on ~p(m) and ~p(rh).) 

Indeed, let us estimate each term of the sum at the left-hand side of (8.4) with the 
help of the integral (8.3). Let us fix the values x and ~ in these integrals and consider 
the sum of the integrands at the right-hand side of (8.3). This is an approximating 
sum of the integral on the right-hand side of (8.4) with fixed (x and :~) on a lattice 

of  span 0, x 0, , and the difference between the sum and 

the approximating integral is O ( ( l ~  n)5: ) by formula (8.1). Then integrating with 

respect to the arguments x and 5: we get formula (8.4). 
Summing up relation (8.4) for m and rTz we get with the help of relation (8.1) that 

~4 f ~(.~--1) = ~'2<k--1) / 
-n  (log n)4@ ~ lY2il92] " '  !y~[lgkl 

{(z,yf ,...,yk,"2,#l ..... #~)6Dk} 

p(x, lY2[, '-. ,  lY/cl,X, l~)2l, ' ' '  , [YklI(P(Yl), "-" , qo(y/~), ~@1) , - - . ,  ~@k)) 

dyl . . .  dg~ dz d~ + 0 (n3(log n)K) ,  
(8.5) 

where the set Dk is defined as 

D k =  {(x,  y l , . . . , yk ,~c ,~ l , . . . , f Jk) ,  Z, ~'E'!R1, Ys,9~ C R2, S =  1 . . . . .  ,k 

(~(Yl) , - . .  ,~(yk),~O(~l), . . .  ,~(z)k)) E G(~ ), ly~l, 19~1 c [z,z + 1]~ . 

Here we exploit that I(5c~) is the sum of the expressions at the left-hand side 

of formula (8.4), and (log n) 4~ n ~  times the sum of the integrals at the right-hand side 

of (8.4) is an approximating sum of the integral at the right-hand side in (8.5) on 

[ ( l~  �9 Rewriting the integral in (8.5) in polar coordinate a lattice of span 0, n 

system, i.e. making the change of variables % = lY~I, ~ = ~(Y~) and ~ = t0~1, 
~ = ~(~Js) for all s = 1 , . . . ,  k and then integrating with respect to rl  and f l  we get 
that 

(log ?Z) 4 ~  Z -[- I(G~ )) + 0 (r~3(log n ) K ) .  

The last relation implies Lemma 7B. [] 

The proof of  Theorem 8B is similar, hence we only give a brief sketch of it. We get, 
arguing similarly to the proof of formula (8.3) that 

E x ( m  E M ~ ) J ( g ~ ) ( m ) )  
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J ( Ir 21 Imkl 
: p i llx, l ll, 

x C N  1 ( y l , . . . , y k ) E R  k 

(t2,..-,tk)cJ(G(2n)(nl)) 

~ ( m ~ ) , . . . ,  ~(mk) ,  ~ , . . . ,  t k )  x3(k-1)l~)212... ]gk ] 2 dx dg~..,  dgk 
l 

k ( ( l o g n ) K  ~ 
�9 " \ ] 

8=2 

To prove Theorem 8B first we sum up this formula for all m = ( r a l , . .  , ink) with 
prescribed m~ then for 0 1  and observe that these sums approximate well certain 
integrals. In such a way we get formulas analogous to (8.4) and (8.5). Then rewriting 
the formula analogous to formula (8.5) in polar coordinate system (in the variables 
corresponding to the points m) we get Theorem 8B. 

9. On  the p roof  of the S t ronger  version of the T h e o r e m  

We have used Part 1) of Property A in the proof of Lemmas 7A, 8A and in Lemmas 2 
and 3. If  only its weaker version Part 1') is satisfied, then the following observations 
help us to prove the Theorem. 

If  the estimate I f (~2) -  f(~l)] _< Dl~a - ~11 log n holds with some D > 0 instead 
of the inequality [ f ( ~ J  - f ( ~ l I  -< const. 1~2 - ~1 l, then the bounds we get are worse 
with a multiplying factor which is a power of  log n. Such estimates are appropriate 
in the proofs of  Lemmas 7A and 8A, if the exponent 3' is chosen sufficiently large in 
them. Hence we make the following approach. Let us consider the event 

/ If(q~ -- f(~~ } F(D,n) = sup < D l o g n  , 
[0_<~1<~2_<0 1~1 - ~21 

where D = D(k) may depend on the number k appearing in Lemmas 7A and 8A. 
We get the necessary bound on this set and show that the contribution of the com- 
plementary set is negligible. 

In Lemma 7A we have to bound the sum (6.9'). There are only const, n 2k non-zero 
terms in this sum, and each of them can be bounded well by means of formula (2.1) 
on the complementary set of  F(D, n). Hence, it is enough to estimate the sum 

Z E P({(m'~)Ejz~}NF(D'n)) 
m E Z  fflCU-. 

with sufficiently large D > 0. The estimates given in the proof  of Section 7 work in 
this case too, the only difference is that now an additional multiplying factor (log n) ak 
appears. But this term causes no problem if 3" > 0 is chosen sufficiently large. The 
same argument works in the proof of  Lemma 8A and Lemma 2, but in the proof  
of  Lemma  3 we have to be more careful. The problem which arises in this case is 
that although c~ can be chosen large in the definition of the sets 1Dj (n), but it cannot 
depend on the number k appearing in this lemma. We have to bound the expression 
in formula (5.4) more carefully. Actually, it is enough to bound the expression 

ElB~,k(f)lx(F' (ek, D~)) (9.1) 
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with some appropriate ek > 0 and Dk > 0, where 

F~(e'D)= { f; sup (l~ < [f(~pl)- f(~2)] } 
0~o1<~2<0 - -  I~I - ~P21 < D l o g ~  . 

The estimate on the complementary set of F~can be done by modifying the argument 
of the proof in the same way as it was done in the case of Lemma 7A. 

We estimate the expression in (9.1) with the help of the Schwarz inequality and 
the following observation: 

m ~ (2k q- 2~ 2k+1 
< \ + 1 / X; IBL(f)t  (9.2) 

The estimate (9.2) holds, since at the left-hand side we have counted the number 
of pairs (rh, mi,..., ink) E B~,,k(f) and 07d, mt l , . . . ,  ra~) E B~k(f), the union of 

(2k + 2"~ 
these two sets is contained in one of the sets B~s(f), and at most \ k + 1 J different 

pairs can give the same union. 
In such a way we get the inequality 

m ] ~ I ( 2 s  2/c+1 ) ]1 /2  
E[B~,k(f)[x(F (~k, Dk) < ~ E ( [ B ~ ( f ) [  X(F'(ek, Dk) 

s = k  

( [ f ( ~ l )  -- f ( ~ 2 ) '  )1/2 
P sup > (log n) ek 

k,0<v~<~2<0 lgh -- ~2[ 

< const. (log n) ~+l exp {-A(log n) ~k }. 

The right-hand side estimate of the last inequality holds. Indeed, the argument of the 
proof of Lemma 3 yields that the first term of the right-hand side is an upper bound on 

If(~l)  - f(~a)[ the sum of expectations, since < Dk log n on the set F'(ek, D~). On 

the other hand, formula (2.1) gives the bound exp{-.X(log n)~  } on the probability in 
the middle term. Since this is the dominating term in the expression at the right-hand 
side, we have got a sufficiently good upper bound on the expression (9.1). In such a 
way we can prove Lemma 4 under the weal(er condition Part 1') instead of Part 1) 
in Property A. 
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