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Summary. Let D be an open, bounded set in euclidean space IR" (m = 2, 3, ... ) 
with boundary OD. Suppose D has temperature 0 at time t = 0, while c3D is 
kept at temperature 1 for all t > 0. We use brownian motion to obtain 
estimates for the solution of corresponding heat equation and to obtain 
results for the asymptotic behaviour of ED(t), the amount  of heat in D at time t, 
as t ~ 0 +. For  the triadic yon Koch snowflake K our results imply that 

c - l  t 1-(l~176 ~ Etc(t) < c t  l-(l~176 0 ~ t _< c -1, 

for some constant c > 1. 
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1 Introduction 

Let D be an open set in euclidean space lg ~ (m --- 2, 3, ... ) with finite volume 
IDIm and with boundary ~D. Let v :D • [0, 0o ) ~ R be the unique solution of 

~V 
A v = - ~ ,  x E D ,  

v = O ,  x e D ,  

v = 1, xeQD,  

t > o, (1.1) 

t = o, (1.2) 

t > o, (1.3) 

where A is the Laplace operator; v(x; t) represents the temperature at time t at 
a point x e D when D has initial temperature 0, and OD is kept at temperature 
1 for all t > 0. Let 

Eo(t) = f v(x; t)dx (1.4) 
D 

represent the total amount  of heat contained in D at time t. 
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The asymptotic behaviour of Eo(t) for t --+ 0 + has been investigated in 
a variety of situations [-4, 7, 8]. For  example if OD is compact  and of class C a, 
then there exists a constant C > 0 such that for all t > 0 

[ED(t ) -- 2(t/rc)l/2[cqD[m_l + 2-1(m -- 1)t f H(x)dx[  < Ct  3/2, (1.5) 
3D 

where 13D [,,- a is the (m - 1)-dimensional measure of OD and H(x) is the mean 
curvature at a point x ~ 0D, where OD is oriented with a smooth, inward unit 
normal vector field N. For  the proof  of(1.5) we refer to [7]. For  refinements of 
(1.5) and extensions to riemannian manifolds with a compact  C ~~ boundary we 
refer to [2, 5, 6]. 

In this paper we consider open sets D in IR" (m = 2, 3, ... ) with finite 
volume ID I,, which do not necessarily satisfy the smoothness conditions on OD 
which were assumed in [-2, 5-8].  Instead we assume that the boundary satisfies 
a uniform capacitary density condition. This condition on one hand enables 
us to obtain a non-trivial pointwise lower bound for the solution v of 
(1.1)-(1.3) near the boundary. On the other hand this condition is satisfied by 
many open sets D in IR m with a non-smooth boundary, and is always satisfied 
if D is open, bounded and simply connected in IR 2. For  example if K is 
a triadic von Koch snowflake [11, pp. 120-121] then there exists (by Corol- 
lary 1.5) a constant c > 1 such that for 0 < t _< c-1 

c -  * t 1-0og 2)/~og3 =< E~(t) <= c ?  -Oog 2)/log3. (1.6) 

Denote by Cap(A) the newtonian capacity of a compact  set A c IR '~ 
(m = 3,4, ... ) or the logarithmic capacity of a compact  set A c IR 2. For  
x c IR m, and r > 0 we define 

B(x;r) = {y ~ lRm: ] y -  x[ < r}, (1.7) 

and for a non-empty set G c 1R m 

diam (G) = sup{[xa - Xzl: xl ~ G, x2 e G}. (1.8) 

Definition 1.1 Let D c IR m (m = 2, 3, ... ) be an open set with boundary OD. The 
capacitary density of  OD is bounded away from zero if there exists a constant 
Co > 0 such that 

Cap(ODc~B(x; r)) > Co Cap(B(x; r)), x e ~D, 0 < r < diam(D). (1.9) 

Definition 1.1 has been introduced in [-9] in a study of the partition function of 
the Dirichlet laplacian on open sets with a non-smooth or fractal boundary. 
Note  that if (1.9) is satisfied for some Co > 0 then there exists a constant k > 0 
such that the Dirichlet laplacian - A o  for D satisfies a quadratic form 
inequality - A o  > k/d2(x), where d:D -+ IR denotes the distance function 
defined by 

d(x) = inf{]y - x[: y ~ ~D}. (1.10) 

See [1, 3] for details and applications respectively. 
Brossard and Carmona  [9] showed in their study of the asymptotic 

behaviour of the partition function that the relevant measure of roughness of 
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the boundary is based on the Minkowski dimension and on Minkowski 
contents. Motivated by Definition (2.3) in [9] we define the function 
#:IR + --+ IR + by 

#(~) = ]{x e D: d(x) < e}l,,. (1.11) 

Note  that # is monotone  increasing, and its behaviour near 0 determines the 
interior Minkowski dimension d of OD: 

d = inf{u > 0: l imsupe"-m#(e)  = 0}. (1.12) 
e - - * 0  

We recall that 0D has finite upper Minkowski content if 

M](c~D) = l imsup~a-"#(e)  < oo, (1.13) 
~-~o 

that OD has positive lower Minkowski content if 

M a  (~D) = lim sup e a-"#(r > 0, (1.14) 
tl --+ 0 

and that OD is said to be d-Minkowski measurable if 

0 < M a ( a D )  = Ma(c~D) = M](6~D) < oo. (1.15) 

It  is elementary that d e [m - 1, m] for any open, bounded set in D in IR". 
However, in general, open bounded sets D need not have a Minkowski 
measurable boundary. For  example for the triadic von Koch snowflake K we 
have dK = (log 4)/log 3, and 

0 < M L ( a K  ) < M~K(OK ) < oo. (1.16) 

The bounds on the heat content ED(t) will be expressed in terms of # rather 
than the upper and lower Minkowski contents of OD. This allows for more 
general situations where #(~) is not bounded within multipticative constants of 
gm-a. For  example Theorems 1.2 and 1.3, 1.4 below still give bounds of the 
same order if Co > 0, m -  1 < d < m, c~ ~ IR, and for some go > 0 

#(g) = e ' -a{ log(2  + l/g)} ~, 0 < 8 < go, (1.17) 

even though M 2  (OD) = oo for e > 0 and M 2  (OD) = 0 for e < 0. 
The main results of this paper  are the following. 

Theorem 1.2 Let D be an open set in IR" (m = 2, 3 . . . .  ) with finite volume IDIm. 
Then for  all t > O, 

ED(t) < 2 ~" 2)/2t- ~ f e -=~/(st) e#(e)de. (1.18) 
o 

Theorem 1.3 Let D be an open, bounded set in IR 2 and suppose that (1.9) holds 
for  some Co > O. Then for  all t > O, 

ED(t) > (4 -- 47~(log Co)/log 2)- i #((~t)a/2/(24 _ 24re(log Co)/log 2)). (1.19) 
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Theorem 1.4 Let D be an open, bounded set in IRm(m = 3,4, ... ) and suppose 
that (1.9) holds for  some Co > O. Then for  all t > O, 

ED(t) > (2/3)m co#( (2/3)m co(rCt)l/z/72 ). (1.20) 

We have the following immediate  Corol lary to the Theorems 1.2-1.4. 

Corollary 1.5 Let D be an open, bounded set in lRm(m = 2, 3, ... ). Suppose that 
(1.9) holds for  some Co > 0 and there exist constants cl > 1 and ~o > 0 such that 

c ~ l e  m - a < l ~ ( O < c ~  m-a, O < e < ~ o .  (1.21) 

Then there exist constants Cz > 1 and to > 0 such that 

c21 t  ~m-d)/2 < E~)(t) < cat ~m-d)/2, 0 < t < to. (1.22) 

Proposition 1.6 Let D be open, bounded and simply connected in IR 2. Then (1.9) 
holds with 

Co = 2 -  3/~z~ (1.23) 

Note  that  (1.16) implies (1.21) with m = 2, d = dK. Moreover  since K is open, 
bounded  and simply connected the capaci tary density of OK is bounded  away 
from zero (by Proposi t ion  1.6). Then  Corol lary 1.5 implies estimate (1.6) for 
the heat content  of the von Koch  snowflake. 
The asymptot ic  behaviour  of EK(t)t (l~ Z/log 3)--1 as t --4- 0 + has been investig- 
ated by Fleckinger et al. [12]. They  proved the existence of a log 9 periodic 
function ffK:IR --+ IR + such that  for t --+ 0 + 

EK(t) = ~K (log t) t 1 -0og 2)/log 3 (1 + o(1)). (1.24) 

However,  it is still an open quest ion whether  or not  ~x is a constant  function. 
Below we give an example of an open, planar  set Fs, with finite volume [Fs Iz 
and Minkowski  dimension ds E (1, 2) for which Ee~(t)t ~ds-2)/2 is a non-constant  
periodic function of log t. 
Define for n = 0, 1, 2 . . . .  , m = 0, 1, 2, ... 

Urn,, = (m+")3"2m+2, (1.25) 

and for 0 < s < (1 + , ~ ) / 7  
a,,,, = s "+1 ((1 -- s)/2) m. (1.26) 

The set Fs consists of the union over m = 0 , 1 , 2 , . . . ,  n = 0 , 1 , 2  . . . .  of 
Nm,, disjoint open squares of sidelength am,,. The  volume of Fs is finite and is 
given by 

~ ~ 2 8sZ 
[gs]z = Nm n am, n - . (1.27) 

m=o,=o ' 1 - 7s 2 + 2s 

The length of OF~ is given by 

I6F, h = 4 ~ ~ Nm, n am,, = + oo, (1.as) 
m=O n=O 
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and the interior Minkowski  dimension d~ of F~ is given by the unique positive 
real root  of (see [10, Chapter  8.3]) 

3s d + 2((1 - s)/2) a = 1. (1.29) 

For  positive integers p and q we let (p, q) be the greatest common divisor of 
p and q. Fur thermore  let 

I = {s e (0,(1 + xf8)/7): log((a - s)/Z)/logs = p/q, p e Z+ ,q  e 2~ +, (p, q) = 1}. 

(1.30) 

Theorem 1.7 (i) Let s ~ I. Then there exists a constant ~ > (2 - ds)/2 such that 
f o r t  --*0 + 

sd~ 
EFt(t) = 3qsa ~ + 2p((1 -- s)/2) a~ 

t (2-a~)/2 ~ S (2-d~)(y+j)/q E(s-2(y+J)/q) + O(t~l), 
je:g 

(1.31) 

where E(t) is the heat content of  a square in ]e 2 with volume 1 given by 

E(t) = 16re -4 ~ ~ {1 - e t~:{(Zk+~)~+(2~+l):}}(2k + 1) 2(2l + 1) -2, 
keTZ {~Z 

and 

and p, q are 
(p, q) = 1). 

(1.32) 

q logt  (1.33) 
Y - 2 log 1/s'  

the positive integers corresponding to the choice of  s ~ I (so 

(ii) Let s e  (0,(1 + ~ ) / 7 ) \ I .  Then f o r t  ~ 0 +, 

1 - s  a, 2 -1 2 7 ( s ~ a s l - - ~ F ( d ~ / 2 ' t ( 2 - a s ' / 2 { 3 s a s l o g ! + 2 ( ~ - )  log (~2~_ s)} 
E F t ( t )  = 2 - 

�9 ~ ~, (2k + 1 ) -2{ (2k  + 1) 2 -{- (21 + 1)2} -ds/2 -[-- o(t(2-ds)/2). (1.34) 
keZ l~7/ 

Note that  the set I is dense in (0,(1 + x//8)/7), and that  for s e I, EFst (a~-2)/2 is 
a periodic function of logt  (as t --* 0 +) with period (2/q)log(1/s), while for 
s e (0,(1 + ,~/8)/7)\I,  EFs(t)t (d~-2)/2 converges to a constant  as t ~ 0 +. 

We defer the proof of Theorem 1.7 to Sect. 3. The set F~ is not  connected. 
In Sect. 4 we construct an open, bounded, simply connected set Gs, 0 < s <= �89 
such that  

EG,(t ) = EF~(t ) + 0(tl/2), t - -  0 +. (1.35) 

Remark 1.8 Let s e(0, (1 + x/8)/7). Then F~ is Minkowski  measurable if and 

only if s 6 I. Moreover, for s e (0, (1 + ~/8) /7) \ I ,  

Ma~(OF~)=25(s/2)a~{d~(d_l)(2_d~)} l { 3 s a q o g ! + 2 / / 1 - s ' ~ a ' l  2 ~-1 

(1.36) 
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The proof  of Remark  1.8 is very similar to the proof  of Theorem 1.7(ii). We 
will not  give its details. 

2 Proofs of Theorems 1.2, 1.3, 1.4 and Proposition 1.6 

The proofs in this section (and in Section 4) use the probabilistic solution of 
the ini t ial-boundary value problem (1.1)-(1.3). Let  (B(t), t > 0; lPx, x e IR m) be 
a brownian mot ion  associated to - A + O/&. For  x e D we define 

To = inf{t > 0: B(t) ~ ]Rm\D}. (2.1) 

Then the solution of (1.1)-(1.3) is given by 

v(x; t) = lPx[To < t]. (2.2) 

Proof of Theorem 1.2 Let 

B~ = {y e IRm: lY - xl < d(x)}. (2.3) 

Then by Levy's maximal  inequality ([17, Theorem 3.6.5]) 

Fxer  = q _-< =< t] =  'o1 max IB(s)] > d(x)] 
[_O<_s<_t A 

Hence 

< 2Po[lB(t)[  > d(x)] = 2(4~t) -m/z f e-lyli/(4~ 
{y ~ 1R':ly 1 => d(x)} 

2(m+ 2)/2 e -dz  (x)/(80. (2.4) 

Eo(t) <= f dx 2 (m + 2)/2 e-  a2(x)/(8') 
D 

= 2 (m + 2)/2fe- ~2/(80 d/,t(g), (2.5) 

and (1.18) follows after an integration by parts. 
The ideas in the proofs of Theorems 1.3 and 1.4 below are due to Ca rmona  

and Brossard. Their  Lemma  3.5 in [9] is the first step in obtaining a lower 
bound  for the condit ional  probabil i ty of a brownian bridge hitting the 
boundary  (Lemma 3.6). Since we only require a lower bound  for the uncondi-  
tional probabil i ty IPx[TD __< t], Lemma 3.5 suffices. 

We closely follow its p roof  of pp. 117, 118 in [9], keeping careful t rack of  
the numerical constants involved, and in part icular  of the dependence of the 
lower bound  on Co. See in part icular  the estimate (2.23)-(2.24) and 
(2.34)-(2.36) below for the cases m > 3 and m = 2 respectively. 

Proof of Theorem 1.4 For  any closed set C c ]R m, x ql C, we define the first 
entry time Zc by 

~c = inf{t > 0: B(t) ~ C}. (2.6) 

Let  m = 3,4, ... and define 

9(x, y) = 4-17c-m/2V((m - 2)/2)[x - y[2-,, .  (2.7) 
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The newtonian capacity of a compact  set K is defined by 

Cap(K)  = inf f f # (dx ) l~ (dy  ) 9(x, y) , (2.8) 
#eP(K) 

where P(K)  is the set of all probabil i ty  measures suppor ted  on K. For  compact  
sets K1, K2 with K1 c K2 we have by (2.8) 

Cap(K1) _-< Cap(gz) ,  (2.9) 

and in part icular  ([16, Proposi t ion  1.91) that  

Cap(B(x;  r)) = 4~ m/2 (F((m - 2)/2))- 1 r " -2 .  (2.10) 

Let  #c be the equilibrium measure of C (i.e. the unique minimizer in the right 
hand  side of (2.8)). Then  

lPx['r c < co ] = f g(x, y),uc(dy), (2.11) 
c 

and one can show that  (see [16]) 

Cap(K)  = f#K(dy) .  (2.12) 
K 

We have the following estimates: 

IPx[TD < tl >= Px[ZOD~B(x; 3a(x)) < tl 

>-- IPx[zOe~B(~; 3d(~)) < TB~ 9~(~))1 -- IP~[TB~ 9d(x)) > t]. (2.13) 

Let  H be an open half  space, containing B~ 9d(x)), such that  ~H is tangent  
to ~3B~ 9d(x)). Then  

IP~[T,o(x; 9d(~)) > t] < IPx[Tn > t] 

= ( m ) -  1/2 f e-~Z/(*t) du < 9 d(x)(rct)- 1/2. (2.14) 
[o, 9a(x)) 

By the strong Markov  proper ty  we obtain a lower bound  for the first term in 
the right hand side of (2.13). 

]ex[T'ODnB(x; 3a(x)) < (30 ] : ]Px[T, OOc~B(x; 3d(x)) ~ TB~ 9a(x))l 

+ ]Px[zoo~B(x; 3d(x)) > T,~ 9d(x)), %Dn,(~,; 3d(x)) < ov] 

= ]PxE'CODnB(x; 3d(x)) N Tno(~; 9a(x))l 

"IV ]Ex[]PB(TBo(x;9a(~),)["CODc~B(x; 3d(x)) < O011. (2.15) 

Let  y be such that  [y - x] = 9d(x) and let z be such that  [z - x[ = 3d(x). Then 
Iz - Yl > 21z - xl. Hence by (2.7) and (2.11) 

= Z 2 -m IPy[zoD~B(x; 3d(x)) < o0 ] < 4-1rc-m/2F((m -- 2)~2)f ly  -- #eo~B(~; 3a(x))(dz) 

=< 4-  art-"/222-"F((m - 2)/2)f1 x - z I 2 -"#oD~m~; 3a(~))(dz) 

<= 2 -  1px[ZODc~B(x; 3d(x)) < (30 ].  (2.16) 
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By (2.15) and (2.16) 

]Px[ZODnB(x; 3a(x)) < TB~ 9d(x))] ~ - 1 2 IPx[Z~DnB(~;3a(x)) < o0]. (2.17) 

By (2.7), (2.11), (2.12) we obtain 

lP~[zoonB~x; 3a(~)) < oo ] = 4-1rc-"~/ZF((m - 2)~2)fix 2-,, -- Yl tZoO,~B(x; 3a(:o)(dY) 

>= 4- ~.~-m/2 r(  (m - 2)/2)(3d(x) ) 2-m f € 3a~))(dy ). 

> 4-1~-  m/2F((m_ 2)/2)(3d(x)) 2- m Cap(ODc~B(x; 3d(x)). 

(2.18) 

Let  w e 0D be such that  Iw - x] = d(x). Then B(w; 2d(x)) ~ B(x; 3d(x)) and 
by (2.9) 

Cap(OD c~ B(x; 3d(x))) > Cap(0D ~ B(w; 2d(x))). (2.19) 

Note  that  for any x e D, 2d(x) < diam(O). Hence by (1.9), (2.10) 

Cap(OD cn B(w; 2d(x))) > Co Cap(B(w; 2d(x))) 

= 4CoTr"/Z(F((m - 2)/2))-l(2d(x)) m-2. (2.20) 

F r o m  (2.17)-(2.20) we have 

]Px[TODc~B(x; 3d(x)) < TB0(~; 9ar > 2-1(2/3)m- %o. (2.21) 

Finally by (2.13), (2.14) and (2.21) we obtain for any x e D 

]Px[TD =< t] => 2-1(2/3)m- 2C o -- 9d(x)(zrt)- i/2. (2.22) 

Let  x e D be such that  
d(x) < (2/3)mCo(rCt)~/2/(72). (2.23) 

For  x e D satisfying (2.23) we have by (2.22) 

]P~ [To < t] > (2/3)%0. (2.24) 

Integrating (2.24) over the set of x e D satisfying (2.23) yields (1.20). 

Proof of Theorem 1.3 Let m = 2 and define 

g(x, y) = - (2re)- ~ loglx - y[. (2.25) 

The equilibrium measure on a compact  K = ]R 2 is the unique probabil i ty 
measure #K, concentrated on K for which 

uK(x) = f g(x, y)#K(dy) (2.26) 
K 

is constant  on the regular points of K. Define the logarithmic capacity for 
a compact  set K by 

C a p ( K ) = e x p { - i n f  f f p(dx)p(dy)g(x,y)}, (2.27) 
I~eP(K)K K 
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where P(K) is the set of all probability measures supported on K. Let 

R(K) -- - logCap(K), (2.28) 

be the Robin constant for K. Then one can show that [161 

R(K) = f g(x, y)#K(dy), (2.29) 
K 

on the regular points of K. Moreover, for compact sets K1, K2 with K1 c K2 
we have by (2.27) 

Cap(K1) < Cap(K2), (2.30) 

and in particular ([16, Proposition 4.11, Chapter 31) 

Cap(B(x; r)) = r 1/~2~). (2.31) 

We have the following estimates: 

lPx[To <= tl >_ ]P~['coD~B(x; 2d(x)) < t] 

= I P x [ Z t 3 D c ~ B ( x ;  2d(x ) )  < TB~ 6 d ( x ) ) l  - -  ]Px[TB~ 6 a ( x ) )  > t ] .  (2.32) 

Let H be an open half space containing B~ 6d(x)) such that OH is tangent to 
0B~ 6d(x)). Then 

]Px[T~o(~; 6d(x)) > /1 ~ IP~[T.  > t] 

= (Tzt)- 1/2 f e-"2/~4t) du < 6d(x)(;rt)- 1/2. (2.33) 
[o, 6a(x)) 

Let x e D be such that 

d(x) < (24 - 24re(log Co)/log 2)- 1 (~t)1/2. (2.34) 

For x e D satisfying (2.34) we have by (2.32), (2.33) 

IP~[TD < t-] > ]Px[z0OnB(~; 2d(x)) < TB~ 6d(x))l  - -  (4 - 4;z(log Co)/log 2)-1. (2.35) 

We will show that for x e D satisfying (2.34) 

lPx [z0onmx; 2a(~)) < TB~ 6d(x)) l  ~- (2 -- 2;r(1og C0)/1og 2)- 1. (2.36) 

This proves Theorem 1.3 since by (2.35) and (2.36) 

ED(t) >>= f dxlP~[T, < t] 
{x E D: d(x) < (24 - 247r(lOg Co)/log2)- lOzt) 1/2} 

>= f dx (4 - 47z(log Co)/log 2)- 1 
{x E D: d(x) < (24 -- 24n(log eo)/log 2)-  i(Tzt) 1/2} 

= (4 -- 47r(log Co)/log 2)- a ll(rct)l/2/(24 _ 247z(log Co)/log 2)). (2.37) 

It remains to prove (2.36). Let we  OD be such that I w -  xl = d(x). Then 
B(x; 2d(x)) ~ B(w; d(x)) and by (2.30), (1.9) and (2.31) 

Cap(~D c~ B(x; 2d(x))) _> Cap(0D c~ S(w; d(x))) 

> Co Cap(B(w; d(x))) = co(d(x ) )  1/(2~). (2.38) 
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By (2.28) and (2.38) 

R(OD c~ B(x; 2d(x)) < - (27r)-1 log(d(x)) - Co, (2.39) 

and by (2.28) and (2.30) 

R(SD c~ B(x; 2d(x)) > R(B(x; 2d(x))) = - (2re)- a log(Zd(x)). (2.40) 

Moreover  by (2.25) and (2.26) 

sup{uoD~mx; 2d(x))(Y): Y ~" c~B(x; 6d(x))} 

< - (2r0- 1 log(4d(x)) f m/~n,<x; 2d(x))(dy) 
3DnB(x;  2d (x)) 

= - (2r0-1 log(4d(x)). (2.41) 

Fol lowing the proof  of Lemma 3.5 for n = 2 in [9] we define for r > 0 

re(r) = - (2rc)- 1 log(4r). (2.42) 
Note  that  

sup{ueo~(x; 2r)(Y): Y ff OB(x; 6r)} < re(r) < R(3Dc~B(x; 2r)). (2.43) 

Define h : lR m ~ IR by 

h(y) = (R(OD c~ B(x; 2d(x))) - m(d(x) ) ) -  l (Uoo~mx; 2a(x))(Y) - m(d(x) ) ). (2.44) 

Then  h is superharmonic,  harmonic  on B(x; 6d(x))\(OO ~B(x;  2d(x))), equal 
to 1 on the regular points of 3D c~ B(x; 2d(x)), and negative on OB(x; 6d(x)). 
Hence 

IPx[%o~B(~; 2d{~)) < TB~ 6a(x))] ~ h(x) > (log 2)/((log 4) -- 2~zlogco), (2.45) 

by (2.39), (2.42) and the trivial estimate 

Ueo~m~; 2a(~))(x) > - (2rc)- 1 log(2d(x)). (2.46) 

Proof of Proposition 1.6 Let Xo e a D  be arbi t rary and let r e (0, diam(D)) be 
arbitrary. Since D is simply connected there exists a one to one cont inuous 
map 7 : [ 0 , 1 ] - - + 0 D  such that 7 (0 )=Xo,  l y (1 ) -Xo[  =r/2  and Image 
(7) ~ B(xo;r/2). Let L be the line through Xo and 7(1). Then  the or thogonal  
projection of Image(7) on to  L contains the closed line segment [Xo, y(l)] .  By 
(2.4.4) on p.173 in [15], (2.30) and (2.31) 

Cap(~3D n B(xo; r)) > Cap(Image(y)) 

IX1 - -  X 0 

= 2-3/(2=)Cap(Bo(x; r)). 

= 2 - 1 / ~ ( r / 2 ) 1 / ( 2 ~ )  

(2.47) 

3 Proof  of  Theorem 1.7 

Let Qa, a > 0 be a square in ~ 2  of sidelength a. By definition of the function 
E we have E(t) = EQI(t ). The solution of (1.1)-(1.3) for D = Q1 can be obtained 
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by separation of variables. Integration of v with 
well-known expression (1.32). For the square Qa we have by scaling 

Eo.o(t ) = aZ E(t/a2). 

Since the squares in F~ are disjoint we have by (3.1) 

Ev~(t)= ~, ~, U , , , , a ~ , , E ( t / a 2 , ) .  (3.2) 
n=0 m=0 

Proof  o f  Theorem 1.7 (i). Let s ~ I and let p and q be the corresponding 
positive integers. Then 

and hence 

Define for j e Z 

respect to x yields the 

(3.1) 

where 

C j =  + ~+ (m + n)  3 " 2 m + 2 , n  (3.7) 
{(m,n)ET/0 x7Z0: mp+nq=J) 

and Z + = {0,1,2 . . . .  }. 

am,, = s(s1 /q)  mp+nq. (3.4) 

aj = s 1+J/s, (3.5) 

a n d  we can rewrite (3.2) as follows: 

= 

j=O 

2 2 Cjaj  E( t /a j ) ,  (3.6) 

Lemma 3.1 There exist constants Js ~ (0, ~ ) and js > 0 such that 

[Cj - 4{3qs ds + 2p((1 - S)/2)d~}-~S-dSJ/q[ < Jss (j~-d~)j/q. (3.8) 

Proof  Define 
zs = s ~lq, (3.9) 

and compute the generating function of C/  

( )  zJCj = 4 zmp+,q m + n 3"2 m 
j = 0  =On= n 

= 4 ~ (2zP)m(1 - 3 : )  - ' - 1  = 4(1 -- 2 :  -- 3zq)-~.(3.10) 
rn=0 

We note that by (1.29) and (3.9) 

2z~ + 3z~ = 1, (3.11) 

and the generating function in (3.10) converges for ]zl < zs. Define 

fv,q(Z) = 1 - 2 :  - 3 : .  (3.12) 

Thenf~,q(z~) < 0. Hence z~ is a simple zero offv,q. Let z0 # z~ be a zero offp,q. 
Suppose Zo = ei~ where 0 < 0 < 2n. Then 

1 = 3z~e qi~ + 2z~e pi~ (3.13) 

l m s  
- s p /q ,  (3.3) 

2 
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Taking real parts in (3.13) gives 

1 = 3z~cos(qO) + 2zfcos(pO) < 3z q + 2z{ = 1, (3.14) 

and hence cos(q0) = cos(p0) = 1. So qO = 2mzc, pO = 2nrc, for integers m, n. 
Then 0 < m < q, 0 < n < p, and p/q = n/m. We conclude (p, q) > 1, contradic- 
tion. Hence lZol > z~. Invert ing (3.10) gives 

2 
C~ = ~i f dzz-l-J{fP'q(Z)}-i (3.15) 

?; 

where 7 is the contour  parameter ized by 7(0) = z f ~  0 < 0 < 2~. It follows 
that 

c j  = - 4 2 residue { fv~  (z) z-1 -~ }, (3.16) 

where the sum is taken over all zeros o f f  The main contr ibut ion comes from 
the residue at zs. This proves (3.8) for some constantsj~ > 0 and 0 < J~ < oo. 

Lem ma  3.2 For ~ ~ (0, �89 there exists a constant C(c 0 e (0, oe ) such that for all 
t > 0  

E(t) < C(~)t ~, (3.17) 

E(t) < 16(2~zt) 1/2. (3.18) 

Proof. For  x >__ 0, 1 - e x < xL Hence by (1.32) we conclude (3.17) with 

C(a) = 16re z~-4 ~ ~ {(2k + 1) / + ( 2 / +  1)2} ~ (3.19) 
k~z l ~  (2k + 1)2(2/+ 1) 2 

The double sum in (3.19) converges for 0 < a < �89 Moreover  for the unit 
square in IR 2, #(~) __< 4e for all e < 0. Estimate (3.18) follows by Theorem 1,2, 
To  prove Theorem 1,7(i) we choose 

~1 = min{1 - d~/2 + j J4, 1/2}. (3.20) 

By Lemma 3.2 and (3.5) 

s(j~-a~)j/qa2E(t/a2 , J,=< Cl(a~)sa-2~t ~, ~ sj~2-2~t+~ a~)/q, (3.21) 
j = O  j = O  

where Ca(aa) is given by 

fC(el) ,  el  < �89 (3.22) 
Cl(~l)  = (16(2n)1/2 c~ 1 = �89 

The sum in the right hand  side of (3.21) converges by (3,20). The following 
estimate is the key for the proof  of the periodicity in log t. See also [ 14, Section 
II.B]. By (3.5) and (3.18) 

~, s-a~j/qa~. E(t/a~.) <_ 16s(2~t)l/2 sj(a~ -1)/~. (3.23) 
j =  - o ~  j = l  
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The  sum in (3.23) converges  since d, > 1. By (3.6), (3.8), (3.21), (3.23) we 
conclude 

Er,(t) = 4{3qs a" + 2p((1 - s)/2)d'} -1 ~, sI2-~')Jlq+2E(ts -2-2j/q) + O(t ~)  
je2~ 

= 4sd'{3qs d` + 2p((1 - s)/2) a'} -1 t(2-d,)lz 

�9 ~ s~2-a')(Y+J)IqE(s-2(Y+J)Iq) + O(t~), (3.24) 
jETr 

where y is given by (1.33). 
The  p roof  of  T h e o r e m  1.7(ii) relies on Ikehara ' s  theorem which we state 

here wi thout  p roof  (see [19, pp. 127-130]).  

Ikeha ra ' s  theorem. Let e : [0, ~ ) ~ [0, ~ ) be a continuous, monotone increas- 
ing function and let 

~(y) = f t r - l e ( t ) d t  (3.25) 
0 

converge for Yl < R e y  < Y2- Let  ~(y) - A (y  - y l )  -1 converge uniformly over 
compact sets of  the line R e y  = Yl to a finite limit as R e y  ~ y +. Then for t ~ 0 + 

Proof  of  Theorem 1.7(ii). 
Then  by (3.2) 

ff~v~(Y) = ? tY- 1 EFt(t) dt 
0 

n = O  m = O  

e(t) = A t  -r '  + o(t-Y'). (3.26) 

Let  /~F,(Y) denote  the Mellin t ransform of Er~(t). 

oo 

2 f t y - l E ( t / a 2 ) d t  Nm, nam, n 
o 

: :i i; ==..<a=,./"+' 1=' 
n = 0  m = 0  0 

- -  4s2 ,+2{1  - 3s - 2((1 - -1 f u , - 1 E ( u ) d u ,  (3.27) 
0 

for (ds - 2)/2 < R e y  < 0. Let  s ~ (0,(1 + x/-8)/7)\I .  Then  {1 - 3s 2r+2 - 
2((1 - s)/2} -1 has one (simple) pole at Ya = (d~ - 2)/2 on the line R e y  = Yl. 
Let  

= u(~s-4)12E(u)du. (3.28) As 2s as 3sdslog + 2((1 - s)/2)aqog ~ o 

Let  K be a compac t  subset  of  the line R e y = y l .  The  function 
Y ~ ~ o u r -  1E(u) du is analytic in the strip - 1 < Re y < 0 and hence does not  
have any singularities in a compac t  ne ighbourhood  of K. The  function 
y ~ { ]  - -  3S 2 r + 2  - -  2((1 - s ) / 2 )  2 y + 2 }  is analytic on 112 and hence its zero set 
does not  have limit points  in rE. So there exists a compac t  ne ighbourhood  N of 
K on which /~F~(Y)-  A s ( y -  y l )  -1 is continuous.  This  implies the uniform 
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convergence of/~vs(Y) -- A~(y - Yl)- 1 to a finite limit as Rey ---, y+. Theorem 
1.7(ii) follows by Ikehara's theorem. 

Note that for s ~ I there are simple poles at Yk = (ds - 2)/2 + kq~i, k ~ :g, 
which gives rise to the periodic behaviour obtained in (i). The remaining poles 
have real part strictly less than (d~ - 2)/2. 

4 Heat content asymptotics for a simply connected set 

In this section we construct for 0 < s __< �89 an open, bounded, simply connec- 
ted set Gs satisfying (1.31). However, first we construct an open, bounded set 
Hs in IR 2 with a ffactal boundary 0H~. The set H~ consists of the squares of the 
set F~ patched together with one additional square of sidelength 1. The 
construction is as follows: Let Qo be the open square in IR 2 with sidelength 1, 
centre (0, 0) and its boundary parallel to the x, y axes respectively. We attach 
four open squares Q1, . . - ,  Q4 with sidelength s, onto the middles of the four 
sides of Qo. We call the boundary of Qo w ... •Q4, the "outer boundary" of 
generation one. This "outer boundary" is polygonal and consists of 12 line 
segments of length s and 8 line segments of length (1 - s)/2. We attach 12 open 
squares of length s 2 onto the middles of the 12 line segments of length s, and 
8 open squares of length s(1 - s)/2 onto the middles of the 8 line segments of 
length (1 - s)/2. The outer boundary of generation two consists of 100 line 
segments. To each of these line segments we attach an open square of 
sidelength s times the length of the line segment to which it is attached. Let H~ 
be the induction limit of this process. We conclude that Hs consists of the 
square Qo together with the Nm,, squares of sidelength a . . . .  m ~ 2g~, n ~ Z~ ,  
and hence 

End(t) = E(t) + Evs(t). (4.1) 

The condition 0 < s < �89 is necessary and sufficient to guarantee that the open 
squares in the set H, are disjoint. 

Next we construct Gs. Consider any square Q in H~ different from Qo. 
Then Q has precisely one edge which is part of the boundary of a larger square 
in H~. Let am,, be the length of this edge. We enlarge Hs by adding in the 
middle of this edge a relatively open interval Ira,, of length em,,a . . . .  where 
0 < e .... < 1. We do this for all squares in H, except for Qo- Let 

G~ = Hsu  {Ulm,,: m ~ 7/~-, n ~ ;go~ }. (4.2) 

The set Gs is an open, simply connected, bounded subset of IR 2, with 
IGsl2 -- 1 + IF~Iz. The Minkowski dimension of Q is equal to its Hausdorff 
dimension, and is equal to ds. Moreover, 

[0H~\~G~II=8 ~m=o,,=o ~ ( r e + n )  3"2m~m"am" 'n  . , (4.3) 

The main result of this section is the following. 
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Theorem 4.1 Let a > 5, 0 < s < �89 and 
--(a m+n ) 

8m, n = e  , m e Z g ,  n e Z g ,  (4.4) 

then there exists a constant 0 < fl < oo such that for 0 < t <_ 1 

fit 1/2 ~ EFt(t) -- Eo.(t) > O, (4.5) 
so that 

lim EF.(t)/Eo~(t)= 1. (4.6) 
t ~ . O  + 

Proof. By Lemma 3.2 E(t) ~ 16(27rt) w2. So it is sufficient to prove that for 
O_<t_<l 

fit ~/2 > End(t) - EGg(t) > O. (4.7) 

The right hand side of (4.7) is trivial since OG~ ~ 0H~ and H~ c Q.  Let T, and 
be as in Section 2. Then 

Ens(t ) = f 1Px[TH~ <= t] dx 
H~ 

Note that 

<_<_ f {IP~ [T~ < t] + IP~ [T~ > t, T~, < t] } dx 
Gs 

= EG,(t) + f IP~ETGs > t, TH~ < t] dx 
G~ 

<-_ EG~(t) + f lPxEz U .... =< t] dx 
Gs 

__<E~(t)+4 ~m:o,=o ~ < r e + n )  3"2m f lPx[z" '"= (4.8) 

f IPx [z~m, ~ < t] dx 
~2 

is precisely the expected volume of the Wiener sausage associated to the 
compact set fro,, up to time t. Let I be a closed line segment of length 1. Then 
by (1.6) in [8] 

4tl/2 
f lPx [zI < t] dx = ~ (1 + o(1)), t --, 0 +. (4.9) 

IR 2 

Hence there exists a constant kl < oo such that 

f P~[~I _-< tJdx < kl  tl/2, 0 --< t < 1. (4. i0) 

Furthermore, since I has positive logarithmic capacity we have by Theorem 
2 in [18] for t ~ oo 

4~t 
f IPx[z~ <= t]dx = ~2-;_, (1 + o(1)). (4.11) 

lug/. 
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Hence there exists a constant k2 < oo such that 

k2t 
f ~xD, < t]dx <log(1 + t) '  t > 1. (4.12) 

]R 2 

Finally we recall the scaling property. Let I~ be a line segment of length e. Then 
for all t > 0 

f IPx [z,~ < t] dx = ~2 f lPx [zi < t/e 2] dx. (4.13) 
~ 2  N 2  

So by (4.10), (4.12) and (4.13) 

f lP~[r~m,.<t]dx< fklb~{intl/2' t<--b2"" (4.14) 
~2 = = ( k2 t  og(1 + t/b 2 ~ - i  2 / m , n l j  , t > b in ,  n ,  

where b,.,. = e,.,.a,.,.. We have the following estimates for 0 < t < 1: 

(m+n)g"2m f dxlP~[zL,.<=t] 
{m,n: bm, n >= x/~ } l'l N 2  

< 
m = O  n = O  /~/ 

= t 1/2, (4.15) 
m = O  n = O  Y/ a - -  

{re, n: b,u,n <= t} I~ 

< y, 
{re, n: bm, n ~ t} 

< 2 
{re, n: bm, n ~ t} 

m + n)3n2mk2t{log(1 + tb2,,~)}_ 1 
n 

(m + n)3n2mk2t{log(l + m, nl, b-1~t-1 
/ I  

~ (m -~- g/) { (g@.n)} -1 -< 3"2mk2 t log 
m = O n = O  r/  

and finally 

y, 
{re, n: t < bm, n < t t/2} 

< Z 

a a 

- a -- 5 kzt < a - 5  k2t*/2' (4.16) 

(m +  )3"2mi n dX x m 

tb - 2 ~ -  1 
{m,n: t <bm, n <t  I/2} 
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(ra, n: t < b m , n < t  t/2} I'~ 

<__ ~ (m + n)3"2mk2t/(log2) 
{m,n:t<bm, n} n 

<= ~ (m + n)3n2mkfl/(log2) 
{m,n: t <em, n} 

<= ~ (m + n)3n2mk2t/(log2) 
{re,n: a m n<log~} H 

( m  + n )3 .2 , ,  t l o g }  k2 < 

~,~,.:am+.<log§ \ n J " a "+"  " l o g 2  

~ (re+n)(!)" ( ! ) m  k2t log~  a 5 (k2tl/2)/log2, < _ _ <  
m=o,=o n l o g 2  = a -  

which proves  (4.7) by  (4.8), (4.15-4.17). 

(4.17) 
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