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Summary. The random-cluster model on a homogeneous tree is defined and 
studied. It is shown that for 1 < q < 2, the percolation probability in the maxi- 
mal random-cluster measure is continuous in p, while for q > 2 it has a discon- 
tinuity at the critical value p = pc(q). It is also shown that for q > 2, there is 
nonuniqueness of  random-cluster measures for an entire interval of  values of  p. 
The latter result is in sharp contrast to what happens on the integer lattice Z d. 
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1 Introduction 

The random-cluster model is a two-parameter family of  processes !iving on 
the edge set of  a (finite or infinite) graph. It generalizes independent bond 
percolation, uniform spanning trees, and Ising/Potts  models. It was introduced 
by Fortuin and Kasteleyn in the early 70s in a series of  papers [10, 8, 9]. After 
a period of  relative silence, the random-cluster model has enjoyed a revival 
since the late 80s, some of  the most influential papers being [1,7, 14]. A nice 
introduction to the model is given in [13]. 

Study o f  the random-cluster model has so far essentially been confined to 
finite graphs and to graphs embedded in the cubic lattice Z a. The purpose of  
the present paper is to find out what happens if we let the process take place 
on an infinite homogeneous tree. It turns out that the most immediate way to 
define the random-cluster model on such a tree yields nothing new. We find a 
different way of  defining it, viewing the tree as being "connected at infinity", 
which does lead to interesting phenomena. The main problems we attack are 
the nature of  the onset of  an infinite cluster as the parameters vary, and the 
question of  (non-)uniqueness of  random-cluster measures for given parameters. 

* Research partially supported by a grant from the Royal Swedish Academy of Sciences 
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The definition of  a random-cluster measure is easiest for a finite graph, so 
we begin with this case. Let G be a finite graph with vertex set V and edge 
set E. By a subgraph of  G we here mean a graph with the same vertex set V 
as G and an edge set which is a subset o f  E. A subgraph of  G is identified 
with an element of  {0, 1 }E, where a 1 indicates that an edge is present and a 
0 indicates that it is absent. 

Definition 1.1 Let 0 =< p < 1 and q > O. The random-cluster measure tt~ 'q 
is the probability measure on the set of  subgraphs of  G given by 

1 {e~tP~(e)(1--p)l-~(e)}qk(~) = 

for all t /E  {0, 1} E. Here k(r/) is the number of  connected components of  t / and  

Zg "q = E ~e~tPrl(e)(1-- p)l-"(e)} q k(*l) 
qC{O,1}E ( cE 

is the normalizing constant. 

When q = 1, the factor qk(~) disappears and all edges become independent; 
this corresponds to independent bond percolation. The Ising model corresponds 
to q = 2 and Potts models to the cases q = 2 ,3 , . . .  (see [7, 13]). A uniform 
spanning tree measure is obtained by letting p, q ~ 0 in such a way that q/p -~ 
0 (see [15]). 

In the special case where G itself is a tree, #P'q reduces, for any p and q, 
to the q = 1 situation where all edges are independent. To see this, note that 
for any */E {0, 1 }e we have 

k(r/) + m(q) = I VI = 1 + IEI, 

where re(t/) is the number of  edges present in t/. Hence, for any t/, 

l m'rl) p)[el-m(~)qk07) 
/*~'q(r/) = Z ~  p ' ( 1 -  

(1 - p)IEjql+IE] ( _p __X]m(~) 
Z p'q \ ( 1  - p)qJ 

so that/2P'q(q) is simply product measure with edge density 

P 
p + ( 1  - p)q 

Definition 1.1 cannot be applied immediately to infinite graphs, but there 
are natural generalizations, so called thermodynamic limits. Consider first the 
nearest-neighbour graph on Z d, i.e. the graph whose vertex set is Z d and where 
there is an edge between x and y if and only if  their (Euclidean) distance 
is 1. Write (with some abuse of  notation) Z d for this graph and E d for its 
edge set. 

Again pick p and q such that 0 =< p < 1 and q > 0. For a finite set 
S C E d, let S I denote the set {v c Z d : Be E S such that e is incident to v}. For 
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a configuration ~ ~ {0, 1} U \ s  of  edges off S, let the random-cluster measure 
#P'q "on S with boundary condition ~" be given by 

l{e~sP'7(e)(1--p)l--~(e)}qk(~'~) 
for all r / c  {0, 1} s, where Z p'q is the appropriate normalizing constant as in S,~ 
Definition 1.1, and k(t/, 4) is the number of  connected components which in- 
tersect S I in the configuration which agrees with t/ on S and with ~ on Ed\S. 
Definition 1.2 A probability measure # on {0, 1} U is called a random-cluster 
measure with parameters p and q if its conditional probabilities satisfy 

~(~l~) P'q 
= ~s,~ (~) 

all finite S C E d, all r /E {0, 1} s and #-a.e. ~ c {0, I } E a \ S .  

This is analogous to the Dobrush in-Lanford-Ruet le  definition o f  a Gibbs 
state (see [11]). Notice that this defines a consistent set o f  conditional proba- 
bilities, and that the same conditional probabilities hold for finite graphs. Given 
any 0 < p < 1 and q > 0, there exists at least one random-cluster measure 
for Z d with these parameters (see [14]). The question of  whether there is in 
fact a unique random-cluster measure is a very intricate one; we refer to [14] 
again. 

We now turn to the case where the graph on which the random-cluster 
model takes place is a homogeneous tree. Let T~ be the homogeneous tree 
of  order n, i.e. T~ is the (unique) infinite graph which is connected, has no 
circuits, and has n + 1 branches emanating from every vertex. We will always 
assume that n > 2; the tree obtained with n = 1 is simply Z, and most o f  
our results do not apply to this case. Write V~ and En for the vertex set and 
the edge set, respectively, of  T~. Designate one of  the vertices of  T,~ as the 
root, and denote it 0. For an edge e C En, let ]el denote the length of  the 
shortest path starting with e and ending at 0. For two edges el and e2 we 
write el < e2 if e1 =t = e2 and el is located on the shortest path from e2 to 
0, otherwise we m i t e  el ~ e2. I f  el < e2 we call e2 a descendant of  el. I f  
el < e2 and le21 = ]ell + 1, we call e2 a child of  el, and el a parent o f  e2. 
Finally, call two edges siblings if either they have the same parent or they are 
both incident to 0. 

Now we could define a random-cluster measure on T~ in the exact same 
way as a random-cluster measure on Z a. It is easy to see, however, that such a 
measm'e will inherit the independence property of  random-cluster measures on 
finite trees. Thus, this would only be a complicated way of  defining independent 
bond percolation on a tree, and we would lose the "essence" of  the random- 
cluster model. To capture this essence, we propose a different definition of  a 
random-cluster model on Tn. 

Given S c En, define S I C V~ analogously to the Z d case. For a configu- 
ration ~ E {0, 1} En\s, let 

l { e~S  } #ff,,q(l,i) = ~ prl(e)( 1 __ p)l--t/(e) qk*(rl,:) (1) 
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for all t /~  {0, 1} s, where k*(t/) is the number of finite connected components 
which intersect S t in the configuration which agrees with t/ on S and with 
on En\S, and Z p~ of course again is the right normalizing constant. 

Definition 1.3 A probability measure # on {0, 1} En is called a random-cluster 
measure with parameters p and q if its conditional probabilities satisfy 

= 

for all finite S C E,, all t /E {0,1} s and #-a.e. ~ C {0,1} E"\s. Here #P'qs,r " ~ is 
given by (1). 

This set of conditional probabilities is also consistent. This different way of 
counting connected components is equivalent to viewing all infinite components 
as a single component connected at infinity. I f  we were to apply this definition 
on Z d, we would most likely retrieve the usual random-cluster model, since it 
is believed that any random-cluster measure on Z ~ has a.s. at most one infinite 
cluster (if we restrict to translation invariant measures this is certainly the case, 
by an application of the Burton-Keane uniqueness theorem [5]). 

The first thing we would like to prove is the existence of at least one 
random-cluster measure for this model (given p and q). Some care is needed, 
as the usual compactness argument used to prove existence of Gibbs measures 
(see [11]) does not quite work here. To see what can go wrong, consider the 
following example. Let Sb $2 . . . .  be an increasing sequence of finite subsets of  
E ,  converging to E,  in the sense that each e E E,  is in all but finitely many 
Si. For each i, let #i,~ Op'q be the random-cluster measure on Si with boundary 

condition 40 z 0 on E~\Si. Since there will then be no infinite clusters, we 
get, as for finite trees, 

P'q ( ) q ( e ) ( ( l - - p ) q )  l-n(e) 
#i,~o(~) = 11 (P- p )q]  p 

eCSi P ~- T ~ ~ p)q J 
for all t /~  {0, 1} s~. We get weak convergence (in the usual product topology) 
to a limiting measure /~ which will be product measure with edge probability 
p(p  + (1 - p)q)-~. Now pick p and q such that 

p 1 

p + (1 - p)q n 

A simple branching process argument then shows that # will assign positive 
probability to the event that a given edge e C E~ lies in an infinite cluster C 
in such a way that C falls apart into two infinite clusters if  e is removed. It 
is now easy to see that # cannot satisfy Definition 1.3 when q#: 1. 

Fortamately, we have existence nevertheless, as stated in the following 
Proposition, which will be proved by a method quite different from the com- 
pactness arguments referred to above. 

Proposition 1.4 Given p E [0, 1], q > 0, and a homogeneous tree Tn, there 
exists at least one measure # on {0, 1} E" which satisfies Definition 1.3. 

When q => 1, certain monotonicity and correlation inequalities are in force 
(see Sections 3 and 4) so that it makes sense to speak of a maximal mea- 
sure #P'q, which dominates all other random-cluster measures with the given 
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parameters, and which is also invariant under graph automorphisms of Tn. 
Such a measure is obtained as a weak limit, as above, with boundary condition 
41 ~- 1. This approach to the random-cluster model on trees was first suggested 
by Chayes et al. [6]. Let O(p,q) denote the probability, under #P'q, that the 
root 0 lies in an infinite cluster. We will prove the following theorem (in which 
n is suppressed; all quantities of course depend on n also). 

Theorem 1.5 Given q > 1, there exists a critical value Pc(q) E (0, 1) such that 
O(p,q) = 0 when p < Pc(q) and O(p,q) > 0 when p > pc(q). For 1 <= q < 
2, 

Pc(q) -- q n + q - I  

while .for q > 2, 
q 

Pc(q) < n + q - 1  

We will also show that Pc(q) for q > 2 can be characterized as the unique 
value of p E (0, 1) for which the polynomial 

has a double root in (0, I). For n = 2, this implies that 

{ ~ q  i f l  < q < 2 ,  q + /  = = 

Pc(q) = 2 qx/~S-1 
1 + 2 ~  i f q  > 2. 

The next theorem, in which q should be thought of as fixed and O(p,q) as 
a function of p only, gives further qualitative description of O(p, q). 

Theorem 1.6 For q > 1, O(p,q) is nondecreasin9 in p. For 1 < q < 2, 
O(p,q) is continuous for all p. For q > 2, O(p,q) is continuous for all 
P 4 = Pc(q), while at p = Pc(q), O(p, q) is continuous from the right but not 

from the left. 

Hence, 
= 0  f o r l  < q < 2 ,  

O(pc(q),q) > 0 for q > 2. 

In physics language, we say that we have a first order phase transition for q > 2 
while only a second order phase transition for 1 < q < 2. This phenomenon 
was observed in [6] for n = 2. It is interesting to compare our results with those 
in [4], where a critical phenomenon at q = 2 is also reported; this time in the 
asymptotics of random-cluster models on large (but finite) complete graphs. 

The next issue we would like to address is the question of uniqueness of 
random-cluster measures. Let Pc(q) be as in Theorem 1.5. We will prove 

Theorem 1.7 Let q > 2. Then there is more than one random-cluster measure 
for every value of  p in the interval 

n + q - - I  
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This is in sharp contrast to the situation on the integer lattice Z d, where it is 
known that for each q > 1, there is nonuniqueness for at most countably many 
values of p, as shown in [14]. Perhaps the unexpectedness of  this contrasting 
behaviour drops a little bit if one considers the following. The method used 
in [14] to prove uniqueness for all but at most cotmtably many p is the same 
type of convexity arguments which Were used in [17] to show that the Ising 
model on Z d with non-zero external field has a unique Gibbs measure. This 
latter result turned out to fail on a tree (see [20]) and Theorem 1.7 might be 
viewed as an analogous phenomenon. 

We can also show uniqueness for some parameter values. The next Theorem 
tells us that, given q, picking p sufficiently small guarantees a unique infinite 
cluster. The reason is simple: if p is sufficiently small, then there will not be 
enough edges around to create an infinite cluster, and we will be back in the 
i.i.d, situation. 

Theorem 1.8 There is a unique random-cluster measure i f  either 

q > 2  and p < p~(q) 

o r  q 
q < 2 and p <  

n §  

There is a big gap between Theorems 1.7 and 1.8 where we can neither 
establish uniqueness, nor nonuniqueness. We believe that Theorem 1.7 is sharp, 
i.e. that we have uniqueness for all values of (p, q) in this gap: 

Conjecture 1.9 For q < 2 there is a unique random-cluster measure for  any 
p. For q > 2 there is a unique random-cluster measure whenever 

Pff- P ~ ( q ) ' n + q - 1  

The main technique used in this paper is the construction of a kind of tree- 
indexed Markov chain, which can be embedded into certain random-cluster 
measures. The random-cluster measures themselves are very non-Markov, be- 
cause the conditional probability that an edge e is present given the config- 
uration on En\{e} may depend on edges arbitrarily far away from e. The 
embedded process will contain enough extra information as to yield a Markov 
structure. This technique will provide a very explicit way to construct random- 
cluster measures. 

A few other references, not mentioned above, deserve to be pointed out 
here due to the close connections between the random-cluster model and Ising 
/ Potts models (and also percolation). Some papers, in addition to [20], where 
the Ising model on trees is studied are [16, 18,3]. An analysis of  the q = 3 
Potts model on a binary tree can be found in [21]. Two of the main references 
for percolation on trees are [12, 19]. 

The rest of  this paper is organized as follows. Our tree-indexed Markov 
chain is constructed in Sect. 2 and used in Sect. 3 to prove Proposition 
1.4, Theorems 1.5-1.8, and a small result in support of Conjecture 1.9. 
In Sect. 4, we discuss what happens to the FKG inequality in our con- 
text, and in Sect. 5, we show that under the conditions of  Theorem 1.7 
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there are uncountably many (non-translation invariant) extremal random-cluster 
measures. 

2 The tree-indexed n a r k o v  chain 

In this section we introduce a special type of  tree-indexed Markov chain which 
will be shown to be closely related to random-cluster measures. Our Markov 
chain will differ slightly from those discussed previously in the literature (e.g. 
[2, 20, 21]) in two respects. First, it is indexed by the edge set En of  Tn (rather 
than tfie vertex set). Second, it exhibits a kind of  sibling dependencies which 
were not allowed for in earlier studies. 

The Markov chain has two parameters b, c E (0, 1) which will determine a 
probability measure M b'~ on {0', 1 ' ,2 '}  E'. Here {0', 1 ' ,2 '}  is the state space of  
the Markov chain. The relation between M ~ and random-cluster measures is 
via the function ~:  {0', 1 ' ,2 '}  --+ {0, 1} given by 

4,(0 ')  = 0 ,  

@(1') = i ,  

~ ( 2 ' )  = 1. 

We interpret ~ :  {0', 1 ' ,2 '}  E" --~ {0, 1} E" as pointwise ~, and let ~b also denote 
the induced mapping from probability measures on {0', 1 ' ,2 '}  En to probability" 
measures on {0, 1} En. Proposition 2.2 below states that tp(M b,c) is a random- 
cluster measure. 

We write { C {0', 1', 2'} E" for a realization of  the Markov chain. For e C E~, 
we call {(e) the value of  e. The state space should be thought of  as follows. 
The value 0' at e means that e is absent in the random-cluster model, while 
both 1' and 2' mean that the edge is present. The difference between 1' and 2' 
is that a 2' signifies that there is an infinite path of  present edges starting at 
e and after that using descendants of  e only (in other words, the path should 
"radiate outwards" from e as seen from the root). A 1' signifies that there is 
no such path of  present edges. 

In order to describe M b,c more precisely, the following definition is con- 
venient. 

Definition 2.1 Let X be a random variable taking values on {0, 1 , . . . ,  n} for 
some n. We say that X has the modified binomial distribution with parameters 
n, p E [0, 1] and 0 C [0, 1], and write X ~ Bin*(n, p, 0) i f  {0w 0 (:) 

X = i w.p. 1-0 p)n- i  ~-(1-p),~ Pi( 1 - fo r i  E {1 , . . . ,n} .  

In other words, a coin with heads-probability 0 is tossed, and if heads comes 
up, then X = 0, while if  tail comes up, X gets the binomial (n, p )  distribution 
conditioned to be non-zero. 
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The chain is started from the root 0. There are n + 1 edges leading out o f  
0. Of  these, Y2 edges take the value 2/, where 

( (1 ~--c)(l--~ b)(l- 7- (-1 ~ ~ )~  
Y 2 ~ B i n  * n + l , b ,  c b + ( 1 - b ) ( 1 - ( 1 - b )  ) J " 

These are drawn uniformly from the n + 1 edges. Among the n + 1 - I12 re- 
maining edges, each one gets the value 1' with probability a, defined by 

b(1 - b )  n-1 
a - -  

1 - (1  - b )"  ' 

and 0 ' with probability 1 - a, independently of  everything else. 
The rest of  the realization is built up inductively as follows. The children 

el . . . . .  en of  an edge e are assigned values in such a way that, conditionally 
on the value of  e, they are independent of  the values on the set {e ' :  e ~ e'}. 
Conditional on { ~ ( e ) =  0'} (resp. { ~ ( e ) =  V} and { ~ ( e ) =  2'}),  the number 
of  children which take the value 2' is given by Y02 (resp. 1112 and Y22), where 

while 

and 

Y02 ~ Bin*(n,b, 1 - c), 

YI2 = 0 a.s. 

Y22 ~ Bin*(n, b, 0 ) .  

These are drawn uniformly from the n children. Each of  the remaining children 
is independently assigned the value 1 / with probability a and 0 / with probability 
1 - a. This defines (uniquely) the measure M b,c on ~ E {0', 1',21} E". 

We are now in a position where we can motivate the interpretations given 
above of  the values 1 / and 21 at an edge e. It follows from the distribution 
of  I122 that i f  ~(e) = T ,  then a.s. at least one child of  e takes the value 2/, 
and this child must in turn have a child with value 2/, and so on. Hence there 
a.s. exists an infinite path of  edges whose value is 2 / starting at e and moving 
outwards as seen from the origin. 

On the other hand, suppose ~(e) = 11. Then a.s. no children of  e has value 
2 / by the distribution of  Y12. Therefore the decendants of  e that are connected 
to e via present edges all have value V. These edges form a branching pro- 
cess whose offspring distribution is binomial (n, a). We need to show that this 
branching process is subcritical, i.e. that na < 1. To see this, note that 

( t  - b )  ~ 1(1 + ( n  - 1 ) b )  __< (1  b )"  ~(1  + b )  " -~  = ( 1  - b 2 )  n - 1  < 1 

so that 

whence 

1 - ( l - b ) "  > n b ( 1 - b )  ~-1 

nb(1 - b)  n-1 
n a -  < 1. 

I - ( 1  - b )"  

Hence, an edge e for which ~ ( e ) =  1' is not connected to infinity via its de- 
scendants. 
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It is easy to see that the projection of  M b'~ onto a single self-avoiding path 
from 0 to infinity is an ordinary (Z-indexed) Markov chain. The ambitious 
reader may check that this Markov chain is stationary (although this follows 
directly from Proposition 2.2 below). 

The following two Propositions relate our Markov chains to random- 
cluster measures, and are central to our analysis of  random-cluster measures in 
Section 3. A graph automorphism of  T~ is a bijection ~ : V~ --+ Vn such that 
for v, w E V~ there is an edge between ~z(v) and ~(w) if and only if  there is 
an edge between v and w. 

Proposit ion 2.2 tp(M b,c) is a random-cluster measure with parameters 

b(1 - ( 1  - b )  ~) 
P = b(1 - (1 - b)")  + (1 - b)(1 - (1 - b)~-l)c (2) 

and 
( 1  - ( 1  - b ) " ) O  - e )  

q = (1 - b)~e (3) 

Moreover, 0 ( M  b,c) is invariant under graph automorphisms of  T~. 

Proposit ion 2,3 Let t~ be a probability measure on {0, 1} E~. Suppose # is 
a random-cluster measure (for some p and q) and furthermore that # is 
extremal among all random-cluster measures for those parameters. I f  # is 
also invariant under graph automorphisms of  T,,  then either 

(i) # is i.i.d, measure, in which all edges are independently present with 
probability p ( p  + (1 - p ) q ) - l ,  
O f  

(ii) # = 0 ( M  b'c) for some choice of  b and c. 

The rest o f  this Section is devoted to proving these results. The following 
lemma is useful for the proof  of  Proposition 2.2. Given an edge e C En, let Ce 
denote the event that both endvertices of  e are connected to infinity via paths 
not involving e, and let ~Ce denote the complement of  this event. 

L e m m a  2.4 Let p E (0, 1) and q > O, and let # be a probability measure 
on {0, 1} E". I f  for all e E En and #-a.e. configuration ~ E {0, 1} End{e} on the 
event Ce we have 

#(e is presentl~ ) = p 

and for #-a.e. ~ E (0, I} E"\{e} on ~Ce we have 

#(e is presentI~ ) - P 
p + (1 - p)q ' 

then # is a random-cluster measure with parameters p and q. 

In other words, i f  we want to check that # is a random-cluster measure, then 
it suffices to check the conditional distributions prescribed by Definition 1.3 for 
sets consisting of  a single edge. 

Proof of  Lemma 2.4. Suppose the assumptions of  the lemma hold. For e E E~, 
introduce a Markov process ~ on {0, l }E~ as follows. The starting configuration 
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~ is chosen according 
(~(e) flips (changes its 

~e ~( ,)--  

to #. For e t #:e, ~ ( e ' )  is kept fixed for all time, while 
value) at intensity ~ 7 ( t )  given by 

p on Ce M {e is absent},  

1 - p on Ce M {e is present},  

P on ~Ce N {e is absent} 
p+(1 - -p )q  

(l--p)q {g is present} p §  on ~ C  e N 

We think of  the dynamics as a clock which rings according to a Poisson 
process with intensity 1. Each time the clock rings the value at e is forgotten 
and chosen again according to the conditional probabilities prescribed by the 
Lemma. Hence, (~ preserves # for all t. 

Now let S C E ,  be a finite edge-set�9 Introduce another Markov process ~s t 
on {0, 1} E" by choosing ~s according to # and letting each e E S update in 
the same way as ~ above, and in such a way that the underlying Poisson pro- 
cesses are independent. We see by induction over the total number of  Poisson 
occurencies that ~s preserves # for all t. 

We now condition the process on the configuration off S, writing (s,~ for 
the process conditioned on ~S(En\S) = 4. We can view ~s,~ as a finite state 
continuous time Markov chain taking values in {0, 1} s. It is easy to see that 
this Markov chain is irreducible, whence it has a unique stationary distribution. 
We are done if we can show that this stationary distribution is given by #sP'~ 

P'q is reversible for (t s'r (see Definition 1.3). For this, it suffices to show that #s,r 

i.e. that for all ~/, tfl C {0, 1 }s, 

p,q  t p ,q  t t #s,~ (~)~(~, ~) (4) ~s,~(~)~(~, ~ )=  

where 7~(q, t//) denotes the rate at which t/flips to ~/i. First note that 7{(t/, ~//) = 
7r t/) = 0 unless t/ and t/t differ in exactly one e C S. So pick e E S and 
r/0, ql E {0, 1} s such that q0 and t/1 are equal except at e, where q0(e) = 0 and 
t/l(e) = 1. If  Ce holds for the configuration which equals ~ on En\S  and t/0 
on S, then 

�9 P, q l . .  1 7~(t/0,~/1) _ p _ ~s,~' t  ) 
1 - p  

If  Ce does not hold for this configuration, then 

7~(t/0, ~1 ) _ p _ 
7~(t/1,r/0) (1 - p)q 

and in either case we have verified (4). [] 

#;'g(.1) 
#g'g(.0) 

Proof  o f  Proposition 2.2. Let # = ~t(Mb'c). We start by proving that # is a 
random-cluster measure. By Lemma 2.4, we only need to study the conditional 
distribution of  the value ~/(e) at an edge e given r E {0, 1} E"\{e}. Pick e C En 
and denote its two endvertices v and w in such a way that v is located on the 
shortest path from w to 0 (in the case where e is incident to 0 we get v = 0). 
Given a configuration ~ E {0, 1} En\{e}, define K~ to be the set of  vertices that 
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can be reached from v via paths using edges in the set {e' E En\{e}:  ~(e ' )  = 1} 
only. Define Kw analogously, and note that K~ and Kw are disjoint. We will 
compute #(t/(e) = 1 t4) in the four cases which arise depending on whether K~ 
or Kw are finite or infinite. 

Note first that i f  { (En\{e})  and r/(e) are both known, then we can recon- 
struct the {0', l ' , 2 '}~ , -va lued  configuration corresponding to ~ and r/ (we only 
need to check, for each present edge, whether it has a path of  present edges 
leading outwards to infinity). Write 4" for this {0', 1', 2'}E"-valued configura- 
tion. 

Case 1. K~ and Kw both finite. In this case, we can determine 4" on En\{e} 
without knowledge of  t/(e), because presence of  e does not yield any paths out- 
wards to infinity. As a consequence of  this, we only need to consider transition 
probabilities from the parent of  e to e and from e to its children in order to 
calculate the conditional distribution of  the value at e. We have that ~*(e) = 0' 
(resp. 1;) when t/(e) = 0 (resp. 1). Let Le denote the set of  all edges except 
for e and its descendants, i.e. L~ = {e; E En : e + e ' , e  ~ e '}.  It follows from 
the transition probabilities o f  M b'~ that 

M<C(~*(e) = l ' l~*(Le)) _ a 
Mb'c(~*(e) = 0;[~*(Le)) 1 - a (5) 

for any ~*(Le) as long as either o f  the conditional probabilities is non-zero. 
Another look at the transition rules shows that the conditional distribution of  
{*({e' :  e < e '} )  given {*(e) depends on {*(e) only through the indicator func- 
tion o f  the event that none of  the children of  e takes the value 2 ;, which is 
equivalent to the event {K~ is finite}. We have 

Me'~({K~ is finite}[{*(e) = i) = { 1 - c for i = 0 ' ,  
1 for i =  1 ' .  (6) 

Multiplying (5) and (6) yields 

Mb'~(g*(e) = l ' [ ~ ( E , \ { e } ) )  a 
(7) M<c(~*(e) = 0 ' l~(En\{e})  ) - (1 - a)(1 - c) 

so that 

#(t/(e) = l [ { ( E n \ { e } ) ) =  Mb'C(~.*(e)= 1;l~(En\{e}) ) 
a 

a + ( 1  - a ) ( 1  - c )  
(8) 

Case 2. Kv infinite, Kw finite. By exactly the same reasoning as in Case 1, we 
obtain the expression (8) for p(~(e) = l l~ (E , \{e})  ). 

Case 3. K, finite, Kw infinite. This case is slightly more complicated than the 
previous ones, because now 4" cannot be completely determined on E,, \{e} 
without knowledge of  t/(e). Let (el,e2 . . . . .  em, em+l . . . . .  e,;+k,e) be the edges 
of  the shortest path from 0 ending with e. Here em is the last edge of  this 
path whose value is 0 ( i f  no edge of  this path has value 0, then we take 
m = 0). So m is random, but in the following computations era+3 . . . . .  em+k 
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will be viewed as a fixed edges. I f  t / ( e ) = 0 ,  then ~*(em+l)= {*(era+2) 
. . . . .  ~*(em+k)= 11 and { * ( e ) = 0 '  while if t / ( e ) =  1, then {*(em+~) 
= {*(era+2) . . . . .  {*(em+k) = { * ( e ) =  2'. For all other edges e' ,{*(e 1) is 
known (in particular, {*(e')q= 2' for all other children o f  em . . . .  , era+k). Hence, 
in order to compute the conditional distribution o f  the value at e, what we 
need to take into account are the transition probabilities from e, , , . . . ,  em+k and 
e. For an edge e', let D(e')  denote the event that none of  the siblings o f  e / 
take the value 2',  and note that given the value o f  its parent, e ~ depends on 
its siblings only through the indicator of  D(e').  Suppose first that k > 0. The 
transition rules o f  M b'c imply that for m > 0 

(b(1-b~-i) 
Mb'c(~*(em+l ) = 2',D(em+~ )l~*(e,~) = 0') c \ 1 (1-b)~ c 

(9) 
Mb'C(~*(em+l) = l',D(em+l)]~*(em) = 0 ' )  (1 - c)a 1 - c 

while for m = 0 we get 

/ (1-c)(1-b)(1-(l-b)n) ) ( b(1-b) n ) 
Mb'C(~*(el) = 2 ' ,D(e l ) )  t, 1 - bc+(1-b)(1-(1-b) n) J ~ l - ( I - b )  n+l/  e 

Mb,~(~*(el ) = V,D(el  )) (l-c)(I-b)O-O-b)") ~ 1 -- c ' 
bc+(l_b)(l_(l_b)n) u 

(lo) 
where the last equality follows from trivial algebraic manipulation. For i = 
2 , . . . , k  we get 

b(l_b)n I 
Mb'C(~*(em+i) = U,D(em+i)[~*(em+i-1) = 2 ' )  i_(l_b)n 

Mb, C(~*(em+i) = 11,D(em+i)l~*(em+i_l) = 1') 
- - -  ~ (11) 

while 

and 

b(l_b) n-~ 
Mb'C(~*(e) = 2',O(e)l~*(em+k) = 2/) _ 1-0-b)" _ a 

Mb, c({*(e) = O',D(e)l~*(em+k ) = 1') 1 -- a 1 -- a 
(12) 

Mb'C({Kw is infinite}l~*(e) = i) = { c for i = 0' 
1 for i = 2' (13) 

similarly to (6). Combining ( 9 ) - ( 1 3 )  we get the same expression (7) as in 
Case 1, (except that the 1 / in (7) is replaced by a 21) so we have (8) again. The 
same thing follows when k = 0 after the necessary modifications of  (9 ) - (12) .  

Case 4. Kv and Kw both infinite. As in Case 3, we cannot determine 
~*(En\{e}) without knowledge of  r/(e). Let (el, e2, . . . ,  era, em+l  . . . . .  era+k, e) be 
the edges o f  the shortest path from 0 ending with e, where this time em is 
the last edge of  this path which has a child outside the path whose value is 
2' (this can be determined without knowing r/(e)). We may have k = 0. I f  
t/(e) = 0, then ~*(em+i) = 1 / for i = 1 . . . . .  k and ~*(e) = 0', while if q(e) = 1, 
then ~*(em+i)= 2 / for i = 1 . . . . .  k and ~ * ( e ) =  2'. For all other edges, 4" 
can be determined without knowing t/(e). Hence, it is the transitions from 
em, em+l,...,em+k and e we need to consider. Suppose first that k > 0. Note 
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that ~*(em) = 0 ~ or U, and in either case 

mb'c(~*(em+l) = 2  I~ (Le,n+t)) b 

Mt',c(~*(em+l) = l'l~*(Lem+l) ) (1 - b)a 
(14) 

by the transition probabilities for Mb'q  For the transitions from em+l . . . .  , em+k 
and e we recover (11 ) - (13 )  fi'om Case 3. Hence, by combining (11 ) - (14 )  
we get 

Mb'e(~*(e) = 2 ' l~(E~\{e}) ) b 

Mb'c(~*(e) = 0'l~(EnX{e}) ) (1 - b)(1 - a)c 

whence  

#(~/(e) = 1[ ~(E~\{e})) = Mb'~(~*(e) = 2'l~.(E~\{e })) 

b 

b + (1 - b)(1 - a)c " 

Similarly, we get the same conditional probability that q(e)=-  1 in the case 
k = 0. This concludes Case 4. 

Summarizing Cases 1-4,  we have that 

#(t/(e) = l [ ~ ( E ~ \ f e } ) ) =  b+(l-b)(1-~)c a 
~+(t 7)0-c) 

so that # is a random-cluster measure with 

p 

and 

if Kv and K~ are both infinite, 

otherwise, 

b b(1 - ( 1  - b )  ~) 

b § (1 - b)(1 - a)c b(1 - (1 - b) ~) + (1 - b)(1 - (1 - b)~-t)c  

q = 
b 

(~ -b ) (~ -~)~  = (1 --  (1 --  b ) ~ ) ( 1  - -  c )  

It remains to show that # is invariant under graph automorphisms (M b,c . 
is not, obviously). For this, it suffices to show that # is invariant under those 
graph automorphisms ~z which map v on 0, where v c Vn is a nearest neighbour 
o f  0. Write ~z# for the measure on (0, 1 }E, induced by choosing a configuration 
according to # and then moving the configuration according to ~. What we need 

t o  show is that 7r#(C) = #(C)  for all cylinder events C; a cylinder event C is an 
event which depends on only finitely many edges. For w ~ Vn, let 0B~,,m denote 
the set o f  vertices whose distance to w is exactly m, and note that any finite 
edge-set is surrounded by OBw, m for all sufficiently large m. Furthermore, since 
# is a random-cluster measure, the probability of  a cylinder event surrounded 
by OB~,m is determined by the distribution o f  6w(OBw,,~) E {0, 1} oSw,m where 
for u ~ c3B . . . .  

6w(U) = ~ 1 if u is connected to oc without using edges inside OBw, m, 

l 0 otherwise. 
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Hence, all we need to check is that for all ~/E {0, 1}eB0, m, 

~ ( a 0 ( ~ B 0 , , . )  = al) = ~(&(0B0, , . )  = Y )  (15)  

and for this we only need to check the case m = 1 due to the Markov chain 
structure of M b'c and the fact that when we move outwards from v, we also 
move outwards from 0 except possibly at the first step. The m = 1 instance of 
(15) is verified by tedious but straightforward calculations for M b'c. [] 

Proof  o f  Proposition 2.3. The extremality o f / t  implies that the existence of 
infinite clusters has probability 0 or 1. If this probability is 0, then we have 
(i) by the definition of random-cluster measures. We proceed to prove that if 
kt(3 infinite clusters) = l, then we have (ii). 

Let ~h -1 : {0, l} En -+ {0/, 1/,2'} E" be the inverse mapping of ~9 yielding a 
configuration which is consistent with M b,c (by the second paragraph in the 
previous proof, this is well-defined). Pick e E En. What we first need to show 
is that any two cylinder events C1 and C2 defined on {e ' E E, : e < e ~} and 
on {e / E E, : e ~: e/, e / =t= e}, respectively, satisfy 

]A(CI IC2, ~t-l(~(e)))  = # (e l  ]~- l ( t / (e)) ) .  (16) 

Let OBo, m and ~5o(OBO, m) be as in the previous proof, and let Bo, m C F~n be 
the set of edges surrounded by ~Bo,m. The conditional distribution of tl(Bo, m ) E 
{0, 1}B~ given (~o(Bo, m) is a finite graph random-cluster measure with edge set 
Bo, m and a vertex set obtained by identifying all u E OBo, m for which 6o(u) = 1. 
Write gin,Co for this measure. 

Pick m so large that C1 and C2 are defined in terms of rl(Bo, m ). It follows 
from the consistency of conditional probabilities for random-cluster measures 
that 

#m,5o( C2lC1, o-l (g/ (e)) )  = #m,5o( C2t@-l(tl(e) ) ) 
because C2 can only depend on C1 through the indicator function of the event 
that e is connected to oo via its descendants. Hence C1 and C2 are conditionally 
independent given o-l(*/(e))  and 60, so that 

#m, a0(C1 IC2, 0 - t (q (e ) ) )  = gm, a0(C11~9-1(r/(e))) �9 

Notice that Em+l,6o(l~m,6o(C1)) =/~m+l,~0(C1), where Em+I,ao denotes expecta- 
tion with respect to #m+1,6o, and similarly for other cylinder events. Letting 
m ~ ec and using the backward martingale convergence theorem we obtain 
(16), because by extremality of/~ the limiting probabilities are a.s. constants. 

This shows that ~,- l(#)  has a Markov chain structure. The invariance under 
graph automorphisms implies that the transition probabilities are the same at 
every v E V~\{0}, and also exchangeable with respect to the children. It re- 
mains to show that the transition probabilities are exactly those given for M b,~. 
We will just sketch how this is done, as the details are similar to computations 
we have already seen, and somewhat cumbersome to write down. We proceed 
as above by considering #re,a0, letting m ---+ oc, and using the backward mar- 
tingale convergence theorem. The Bin*-distribution of the number of siblings 
with value 21 is implied by the observation that the probability that e percolates 
outwards to infinity, given that k( > 1) of its siblings does, must be indepen- 
dent of k. The fact that the remaining edges get values 0' and 1' according 
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to i.i.d. Bernoulli trials follows similarly. The value o f  a (in terms of  b) is 
necessary to make the ratio in (11) equal 1; otherwise / l ( t / (e )=  l l q (E , \ {e} )  ) 
would depend on Kv in a way that would ruin the random-cluster structure. 
The value o f  0 for the Bin*-distribution at 0, finally, is necessary to get the 
right conditional probabilities in Cases 3 and 4 in the proof of  Proposition 2.2 
when 0 E K> [] 

3 Proofs  of  main results 

The keys to proving Proposition 1.4 and Theorems 1.5-1.7 are Propositions 
2.2 and 2.3, which reduce many of  our questions to that o f  finding b and c 
which solve (2) and (3) for given p and q. Solving for c in (2) and (3), 
respectively, yield 

b(1 - (1 - b)n) 1-p 
p 

c = (1 - b)(1 - (1 - b) n - l )  (17) 

and 
1 - ( 1  - b )  n 

c = ( 1 8 )  
1 + ( r  1)(1 -b)n 

We can then solve for b by setting the right hand sides of  (17) and (18) equal. 
A glance at (18) reveals tha tonce  we have a solution b E (0, 1), we also have 
c C (0, 1 ). It turns out to be more convenient to set x = 1 - b and solve for x 
instead o f  b. We get 

fp,r = O, (19) 

where 

i---7 q + + 1  x - - 1 .  

We see that x = 1 solves (19) ,  whence fp, q(x) factorizes into 

fp, q(X) = (X -- 1)gp, q(X), 

where 
gp, q(X) (q 1)X n P~(X n-I + X  n-2 = - - 1  p~ + . . . + x ) + l  

whence we may alternatively solve 

gp, q(X) = 0 (20) 

(note that we are not interested in the solution x = 1 to (19), because we need 
to have b strictly between 0 and 1). 

Proof of  Proposition 1.4. We may assume p E (0, 1), since otherwise the result 
is "trivial. Suppose first that p(p  + (1 - p)q)-I  < rt-1. Then the i.i.d, measure 
on {0, 1} ~" with edge probability p(p  + (1 - p)q) ~ is a random-cluster mea- 
sure with parameters p and q by the observation that this measure has no 
infinite clusters (which follows from a branching process argument). 

On the other hand, suppose p(p  + (1 - p)q)-I  > l/n, so that q < (n - 1) 
p(1 - p ) - l .  We then have gp, q(O) = 1 and gp,  q ( l )  = q -- (n - 1)p(1 -- p ) - I  
< 0. Hence, there must be some x c (0, 1) which solves (20). Let b = 1 - x 
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and let c be given by (18). Proposition 2.2 now tells us that Ip(M b'c) is a 
random-cluster measure with parameters p and q. [] 

Before proceeding with the remaining proofs, we need to give a more 
precise definition of  the maximal random-cluster measure #a p'q for p E [0, 1] 
and q _>_ 1. For S C E~ and two configurations t/,q ~ E {0,1} s, write q < 11 ~ if 
rl(e) < ~l'(e) for every e E S. For two probability measures # and #~ on {0, 1} s, 
we write # < # '  i f  there exists a measure v on {0, 1} s • {0, 1} s whose first 
and second marginals are # and #/ (i.e. v is a coupling of  # and #~) such that 

v((r/ , t / )  : t/ < ~/) = 1.  

For finite S C En and two configurations ~ and r on E . \ S  such that ~ < ~ 
we have 

# ; ' ~  = < #S,~' p'q (21) 

for q > 1. This is well known for Z d and can be shown either using the FKG 
inequality (see next Section) or by the method used to prove Lemma 2.4. Let 
Bm C En be as in the proof  of  Proposition 2.3, and let P'q #1,m be the measure on 

{0, 1} En which assigns probability 1 to the configuration 41 - 1 on E~\Bm and 
whose projection on B,~ is P'q We can view #P'q P'q #Bm,~l" l,m as #1,m+i conditioned on all 

edges in Bm+l\Bm being present. It then follows from (21) that #l,m+lP'q =< #a,m,P'q 
whence by monotonicity the limiting measure 

# P ' q =  lira #P'q (22) 
m---r e~ l ,m 

exists. 

L e m m a  3.1 #P'q is a random-cluster measure with parameters p and q. More- 
over ,  

# ~ # P ' q  ( 2 3 )  

for any other random-cluster measure # with the same parameters. 

Proof We have #P'q > #P'q > > #f 'q  whence we can find a measure v 1,1 = 1,2 -~- " ' "  = 

on ({0, 1}E"){l'2'"}u{~} with marginals #P'q,#P'q, .,#P'q satisfying 1,1 1,2 ' �9 

Y(( / ' ] l ,  ~ 1 2 , - . . ,  t ] )  ' t ] l  ~ t]2 ==- . . .  ~ ?]) ---~ 1 

and 
v((th,~2 . . . . .  t/) �9 ~(e) = lim ~m(e) for all e E En) = 1 . 

m ~ o G  

Pick e E En, let the events Ce and ~Ce be as in Lemma 2.4, and note that 
t 1 c Ce if  and only if rh E Ce for all i while on the other hand ~/E ~Ce if  and 
only if rli E ~Ce for all sufficiently large i (both statements should be read 
v-a.s.). It follows that #P'q satisfies the assumptions of  Lemma 2.4 and hence 
is a random-cluster measure. To get (23), note that (21) implies that 

# < pP, q 
= 1,m 

for all m. Combining this with (22) finishes the proof. [] 
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It follows from Lemma 3.1 that #P'q is invariant under graph auto- 
morphisms and also extremal in the set of  all random-cluster measures. 
Hence, by Proposition 2.3, #1 p'q is either i.i.d, measure with edge prob- 
ability p ( p + ( 1 -  p ) q ) - l ,  or equals tp(M b,c) for some choice of b and 
c. In the former case we have O(p,q) = 0  while in the latter case 
O(p, q) > O. 

Next, we present two easy comparison results. 

Lemma 3.2 For q > 1 and 0 < pl < P2 <= 1, 

In particular, O(pbq)  < O(p2,q). 

Lemma 3.3 For q > 0 and 0 < p < 1, define rl = m i n { p , p ( p + ( 1 - p ) q )  -1} 
and r2 = m a x { p ,  p ( p + ( 1 - p ) q ) - l } .  We then have 

~ < ~('q < Urn, 

where ktrl and ~2 are i . id  measures with edge probabilities rl and 1"2, 
respectively. 

We omit the proofs, which are immediate adaptions of the corresponding 
results on Z d (see [1, 14]). 

Proof  o f  Theorem 1.5. By Lemma 3.2, there exists Pc(q) E [0, 1] such that 
O(p,q) = 0 for p < Pc(q) and O(p,q) > 0 for p > Pc(q). To show that 
Pc(q) > 0, pick p < n 1. Lemma 3.3 now implies that O(p ,q)= 0, because 
the critical value of independent bond percolation on T~ equals n -1. (This in 
fact shows that Pc(q) > n-1.)  

I f  we instead pick p so large that p ( p  + (1 - p)q)-~ > n -1, (so that in 
other words p > q(n + q -  1)-1), then we have, again by Lernma 3.3, that 
O(p,q) > 0, whence 

Pc(q) < q (24) 
n + q - 1  

We go on to study what happens when p = q (n  + q - 1) -~.  For 1 ~ q < 2 
we get gp, q(O) = 1, gp, q(1) = 0 and, for all x E (0, 1), 

g;,q(X) = n(q - 1)x ~-1 lPp(1 + 2x + 3x 2 + . . .  + (n - 1)x ~-2) 

< ( n ( q - 1 )  1-p p ~O,y_~__~) ) x"-  1 

= n ( q - - 1 ) x  "-1 

< 0  (25) 

whence gp, q(x)+O for all x E (0,1). Hence, (20) has no solution x E (0,1), 
so O(p ,q )=  0. Combining this with (24) gives Pc(q)= q(n + q -  1) -1 for 
l < q = < 2 .  
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I f  instead q > 2 and p = q(n + q - 1) -~, then g p, q( O ) = 1 and g p, q(1) = 0 
as before, but 

gp, q(1) = n(q-  1) p n(.-1) 
1--p 2 

-1) 
> 0  

so that gp, q(1 -- ~) < 0 for sufficiently small e > 0. Now pick 6 > 0 so small 
that we still have gp, q(1 - 8 )  < 0 if  we let p = q(n + q -  1) -1 - -6 .  We still 
have gp, q(O) = 1 for this value o f  p, so (20) must then have a solution x E 
(0, 1 - e). Hence, 

so that Pc(q) < q ( n + q -  l )  -1.  [] 

Proof of Theorem 1.6. It is immediate from Lemma 3.2 that O(p,q) is non- 
decreasing. The continuity for p < Pc(q) is trivial, while the case p > Pc(q) 
takes some more work. 

Let s q) be the smallest nonnegative x which solves (19), and note that 
O(p,q) > 0 if  and only ifs < 1. Given p and q, we have that b and c are 
continuous and strictly decreasing in x. Furthermore, the percolation probability 
is continuous and strictly increasing in b and c, whence it is also continuous 
and strictly decreasing in x. Hence, #~'q = $ ( M  b,C) where b = 1 - 2  and c is 
given by (17). Noting also that O(p,q) --+ 0 as 2--~ 1, we have that continuity 
o f  O(p,q) is equivalent to continuity o f  s Hence, a discontinuity can 
only occur when gp, q(X) has a local minimum or maximum for x = s When 
1 =< q < 2 and p > Pc(q), we have @,q(X) < 0 for all x E (0, 1) by (25) 
(with the = in the third line replaced by < ), so s q) is a continuous function 
o f  p,  whence the same thing holds for O(p, q). This settles the case 1 __< q < 2. 

Moving on to the q > 2 case, we see that s 1 for p < Pc(q), 
and s < 1 for p = Pc(q), whence O(p,q) is discontinuous from the 
left at p - - - p c ( q ) .  To see that this is the only discontinuity, note first 
that 

f~,a(X)=nxn-2 ((n+ l ) (q -1)x  + ( n -  e) ( 1 1-pP q)) 

is zero only for x = 0 and 

( n -  1) ( q +  l@fi - 1) 
x =  > 0 ,  

(n + 1)(q - 1) 

and that fp, q(X) is negative for sufficiently small x > O. It follows that f ; , q ( X )  
is first concave and then convex on (O, cx~). Since f (O)  < 0 and f ( 1 )  = 0 we 
thus have that (19) (hence (20)) has at most two solutions in (0, 1). Since for 
fixed x E (0, 1) and q we have that 9(x) is strictly decreasing in p, there 
will be exactly two solutions when p = Pc(q)+ ~ for sufficiently small e, 
and s e, q) can be made arbitrarily close to s q) by picking e 
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! 
sufficiently small. For p > Pc(q) we get gp, q(X) < 0 for x =2(p ,q ) ,  hence 
continuity of Y(p ,q)  and O(p,q). [] 

By the same reasoning as in the above proof, we have, for q > 0, that 
pc(q) is the unique value of  p for which (19) has a double root in (0, 1), 
justifying the remark after Theorem 1.5. 

Proof o f  Theorem 1.7. By Theorems 1.5 and 1.6 there exists, for q > 2 and 
p > Pc(q), at least one random-cluster measure for which the root percolates 
with positive probability. I f  in addition we have p < q(n + q -  1) -1,  then 
the i.i.d, measure with edge probability p ( p +  ( 1 -  p ) q ) - i  is concentrated 
on the event that there is no infinite cluster (by the usual branching process 
comparison) whence it is a random-cluster measure. We thus have at least two 
different random-cluster measures. [] 

In connection with Theorem 1.7 it is also worth noting that for p in the 
open interval (pc(q),q(n + q - - 1 ) - 1 ) ,  there are in fact even two solutions to 
(19) in (0, 1), so that O(M b,c) is a random-cluster measure with parameters p 
and q for two different choices of  (b, c) in addition to the i.i.d, measure. 

Proof o f  Theorem 1.8. For q > 1 and p < Pc(q) we have that no random- 
cluster measure assigns positive probability to the existence of  an infinite clus- 
ter, and the same thing holds when 1 < q ~ 2 and p = Pc(q) = q(n + q -  
1) -1 by Theorem 1.6. For q < 1 and p < q ( n + q -  1) -1 we are led to the 
same conclusion by  Lemma  3.3 and a branching process comparison. In both 
cases we have, for any e E E~, that the conditional probability that e is present 
given the configuration on E~\{e} a.s. equals p ( p  + (1 - p ) q ) - l .  Hence i.i.d. 
measure with edge probability p ( p  + (1 - p)q) - I  is the only random-cluster 
measure. [] 

We end this section by proving the following result, which provides some 
support for Conjecture 1.9. 

Proposition 3.4. For any q > 0 and p > q ( n + q - 1 )  -1, there is exactly 
one choice o f  b and c such that O(M b,c) is' a random-chtster measure with 
parameters p and q. 

Recall that i.i.d, measure with edge probability p ( p  + ( 1 -  p)q) - I  with 
q=# 1 and p >= q(n + q - 1) -1 is not a random-cluster measure with parameters 
p and q. Putting together this fact with Theorem 1.8 and Propositions 2.3 and 
3.4, we can rule out the possibility o f  having more than one random-cluster 
measure which is extremal and invariant under graph automorphisms whenever 
q < 2 or p ~  [ p c ( q ) , q ( n + q -  1)-1]. 

Proof o f  Proposition 3.4. Consider first the case q < 2. Then gp, q(O) = 1, 
gp, q(1) < 0 and gp, q(X) < 0 for all x c (0, 1) by (25) (again with < instead 
of  = in the third line). This implies that there is exactly one x ~ (0, 1) which 
solves (20). 

For q > 2, we have from the proof  of  Theorem 1.6 that f p  q(x) = 0 for at 
most one x C (0, 1). We also have fp, q(O) = - 1  and fp, q(1 ~' e) > 0 for alt 
sufficiently small e > 0, because gp, q(1) < 0. This is sufficient to guarantee a 
unique x C (0, 1) which solves (19). [] 
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4 The FKG inequality 

One of the most useful properties of random-cluster measures is the well-known 
FKG inequality (see e.g. [13]), which is valid if and only if q > 1. 

Let G be a finite graph with edge set E. A function f : { 0 ,  1}E---~ R 
is called increasing if for any t/,qt E {0,1} E such that t/ < tff we have 
f ( q )  __< f (q ' ) .  Write Eu for expectation with respect to a measure ~t. The 
FKG inequality asserts that for increasing f~, f2  : {0, 1 }e _~ R, 

E~, ( f l f 2 )  > E ~ , q ( f l ) G ~ , q ( f 2 )  (26) 

whenever q > 1. In other words, any two increasing functions are positively 
correlated. 

It is natural to ask whether something similar holds for the random-cluster 
model on Tn. We restrict to functions f : { 0 ,  1} E" which are cylinder, i.e. 
which depend on finitely on finitely many edges only. 

Proposition 4.1 Let # be a random-cluster measure for T, with parameters 
p E [0, 1] and q > 1. Suppose Iz is extremal in the set of all random-cluster 
measures. Then 

E~( f l f2)  > E,( f l )E~(f2)  (27) 

for any two increasin9 cylinder functions f l and f 2. 

Proof We proceed approximately as in the proof of Proposition 2.3. Pick m 
so large that f l  and f2  are defined in terms of edges in Bo, m. Then 

E~( f  i It/(En\B0,m)) = E~( f  l t(~O(~BO, m)) 

and similarly for f2  and f l f 2 .  We have seen that the conditional measure in 
the right hand side is a finite graph random-cluster measure, whence by (26) 

E~(f  l f  2]6o(~Bo, m)) >= E~(f  lt60(OBo, m))E~(f 2160(?BO, m)) 

for any 60 C {0, 1 }~B0,~. We also have 

E~(EI~(f1160(0B0,m))]O0(0B0,m+I )) = Eg(f  l ]~0(~B0,m+l )) 

and again similarly for f2  and f l f 2 ,  so we get (27) by the backward martin- 
gale convergence theorem as m ~ c~. [] 

Our next question is whether (27) still holds if the assumption that p is ex- 
tremal is dropped. The answer is no, and we will now show, given any p and 
q in the region {(p, q) : q > 2, p E [pc(q), q(n + q - 1)-1]} where nonunique- 
ness is established, how to construct a random-cluster measure # for which 
(27) fails. We will obtain # as a convex combination (#t + #")/2 of two other 
random-cluster measures #' and ~ ' .  

Let e E En be any edge, and construct #~ as follows. Let the descen- 
dants {e 'E  E,  :e  < e ~} of e be distributed according to the projection on 
{0, 1} {e'EEn:e<e'} of the measure on {0, 1} E" obtained by conditioning #f'q on 
the event that t/(e) = 0. Let the rest of the edges be i.i.d, with edge probability 
p(p § (1 - p )q ) - l .  
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Let ~z be a graph automorphism of Tn which maps the two endvertices of  
e on each other, and let #" = n#' (i.e. #" is the measure induced by picking 
a configuration according to #'  and moving it according to re). 

It is easy to see that #1 is a random-cluster measure with parameters p 
and q (just check that it has the single-site conditional probabilities of Lemma 
2.4), and that the same thing holds for #i, and # = (#'  + #")/2. Now let el 
be a child of  e, let e2 be a sibling of e, and let f l  = t/(el) and f2  = ~(ea). 
f l  and f2  are obviously increasing and cylinder. 

We have Eu,(J ' l)  > Eu,( f2) ,  because #P'q assigns positive probability to 
the event that e is absent while both endvertices of el are connected to infinity 
without using el. By the construction of /~', we also have that E u , , ( f l ) =  
E~, ( f2 )  and Eu,, ( f2 )  = Eu, ( f l ) .  Furthermore, f l  and f2  are independent under 
#1 (and hence under #2 as well), because under #1, t/(e2) is independent of all 
other edges. We get 

E ~ ( f ~ f 2 )  - E ~ ( A ) E ~ ( f 2 )  

= � 8 9  - 1 ~ ( E s ( f l  ) + E~,,(fl ))(ES (f2)  + E . , , ( f 2 ) )  

= �88 + E~, ,(A)e~, ,(A) 

-- E1~'(fl )Eu"(f2) - E p , ( f 2 ) E . , , ( f l  )) 

= � 8 8  - ? E y ( f 2 ) E u , ( f l )  - (E~,(f l ) )  2 - ( E y ( f 2 ) )  2) 

= - l ( E u , ( f  1 ) - Eu,(f2))  2 

< 0  

so (27) fails for this choice of # , f l  and f2. 

5 How bad is the non-uniqueness? 

Once we have established non-uniqueness of random-cluster measures for cer- 
tain p and q, the next question which comes naturally to mind is: how many 
different random-cluster measures are there? The answer must be infinity, be- 
cause whenever #1 and #2 are random-cluster measures with parameters p and 
q we have the same thing for any convex combination of #1 and #2. A more 
subtle issue is the number of extremal  random-cluster measures. In the region 
of the parameter space where we have established non-uniqueness, the answer 
is still infinity, as stated in the following strengthening of Theorem 1.7. 

Theorem 5.1 Let  q > 2. Then there is a continuum o f  ex tremal  random- 
cluster measures for  every p in 

n + q -  1 

P r o o f  The idea is to generalize the construction of #1 in the previous Section. 
Fix p and q in the prescribed region of the parameter space. Let S C E~ 
consist of  the edges of  an infinite simple path starting at 0. There are coumably 



252 o. Hfiggstr6m 

many edges e E En \S  incident to S. Enumerate these edges e~, e2,.. ,  in some 
arbitrary way. For i = 1,2 .... let S / =  {ei} U {e E En : ei < e}, i.e. Si consists 
of  ei and all its descendants. Note that {S, SI ,S2, . . .}  is a partition o f  E~. Now 
pick an arbitrary infinite sequence B = (bl,b2 . . . .  ) E {0, 1} N of  binary digits, 
and construct the random-cluster measure #~ as follows. 

Let all edges in Ui~N:bi=oSi be i.i.d, with edge probability p ( p  + ( 1 -  

p ) q ) - l .  Then we want the remaining edges to be distributed according to the 
#1 p'q measure conditional on the event that rl(ei ) = 0 for all i such that bi  = O. 
This is fine as long as the set {i : b i = 0}  is finite, but when this set is infinite 
we have some problem because we are conditioning on an event o f  measure 0. 
To make sense o f  this anyway, consider the following way of  constructing #~ 
on E~\  Uicy:bi=0 Si. Let Tn,B be the tree obtained from T~ by "chopping off" 
all branches starting with an edge e i for which bi = 0. Now we can construct a 
maximal random-cluster measure for T,,B in precisely the same manner as we 
did for Tn in Section 3 (strictly speaking we have not defined what a random- 
cluster measure on T~,, is, but it is clear how to adapt Definition 1.3). This is 
tantamount to conditioning ~ f ' q  o n  t / (8 i )  : 0 for all i such that bi  : O. 

As with /~1 in Section 4, it is now easy to check that ~B satisfies the 
one-dimensional conditional probabilities of  Lemma 2.4, so that it indeed is a 
random-cluster measure. Clearly,/1,  4#B '  for B + B  I, so to finish the proof  we 
just need to show that #B is extremal. Suppose #B = c~#' + (1 - e )#"  for some 
c~ E (0, 1) and random-cluster measures #/ and #Ii. In order for #/ and #"  to 
satisfy the right one-dimensional conditional probabilities, we must have, under 
both/11 and #//, that each edge of  [JicN:bi=0 Si is independently o f  everything 

else present with probability p ( p  + ( 1 -  p ) q ) - l .  Hence it suffices to show 

that # ,  projected on {0, 1}E"\uz~N:b/=~ is an extremal random-cluster measure 
for the truncated tree T~,B. This, however, follows in the same way as the 
extremality o f  #P'q established in Section 3. [] 
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