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Summary. Strassen’s original functional law of the iterated logarithm for par-
tial sums and Brownian motion examined convergence and clustering in the
sup-norm. Here we address what happens if we use the much larger H-norm.
We provide the answer to a query which appeared at the end of Strassen’s
original paper, and also present several contrasting results which are shown to
be essentially best possible.
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1 Introduction

At the very end of his seminal paper on the law of the iterated logarithm
[S], Strassen mentions a couple of things he would find interesting to know.
Ore of these scems to have gone completely unnoticed, and our Theorem 1
provides the answer for this question. We also present some contrasting results
motivated by more recent work.

Throughout X, X, X;,... denote i.id. random variables with F(X =40,
E(X*)=1, S;=0and Sy =X +...+X for k 2 1. If {g,;n = 0} is a
strictly increasing sequence of integers with ag = 0, we define for n > 1 the
processes

S, /[(2a,L 12y = W/, k=0,1,... 1,
(1.1) ﬁn(t):{ ak/( anloay) ar/a, n

linearly interpolated elsewhere on [0, 1].
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In (1.1) and elsewhere L,x = £(Lx) with Lx = max(l,log, x). Of course,
{n.} depends on {a,: n = 0}, but we suppress that to simplify notation.
Let

(1.2) H= {f(t) = ftg(s)ds: 0<:=1, fllg(S)Ist < oo},
0 ]

with norm given by the inner product

!
(13) S/ 2)m = E)ffﬁ(S)fé(S)a’s.

Then H is a Hilbert space with unit ball
¢ 1

(1.4) K = {f(t): ff’(s)ds: 0<1r<1, f|f’(s)|2ds < 1} ,
0 0

and when a, = n, Strassen’s fundamental result is that {r,} converges to K
and clusters throughout K in the sup-norm topology with probability one. It is
an easy calculation when g, = n to show that

(1.5) M {tn, fa)ir = 00 Wp.1,

and Strassen questioned what the situation might be for other strictly increasing
sequences. More precisely, if {a,: n = 0} is a strictly increasing sequence of
integers with ap = 0 and lim, @,.1/a, = 1, Strassen pointed out that it would
be interesting to know for which sequences does {#,} cluster throughout X in
the H-inner product norm.

The answer is given in Theorem 1 below, and Theorem 2 is motivated by
Theorem 1 and some recent work in [GK, G91 and KLT]. Theorem 3 clarifies
the assumptions used in Theorem 2, while Theorem 4 provides a contrasting
result to Theorem 1 in a related situation.

If {f,} is a sequence of functions, we let C({f,,})v denote all subsequential
limits of {f,} in the sup-norm, and C({f,})x is the corresponding cluster set

for the H-norm. We write {f n}—fg—ﬂ( if both

(16) C{fihun =K
and
(17) Tim inf |/~ hlla = 0.

Thus {f n}i{»K denotes convergence to K and throughout X by the sequence

. . U
{fn} when distances are computed in the H-norm. If {f,}»K denotes the
analogue for the sup-norm, then Strassen’s result can be expressed as

(1.8) P} SK) =1,

where in (1.8) we are assuming a, = # and {#,} is as in (1.1)
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Theorem 1. Let {a,: n = 0} be a strictly increasing sequence of integers with
ag = 0, and assume {n,} is defined as in (1.1). Then,

(1.9) P(CU{n )m =) =1
or

(1.10) P(C({m P ={0}) =1,
and (1.10) holds iff

(L1 lim(Laay )/n = 00 .

Remark. (I) If lim, @, /a, = p < oo, then p = 1 and eventually a, < (2p)".
Hence (1.11) fails for such {a,}, and (1.9) must hold. Thus in the setting of
Strassen’s question we always have

P(CH{mPm =¢)=1.

Of course, we never have P(C({1,})y =K)=1, regardless of the sequence {a,}.
(I1) Lemma 2 below shows that if {a,} is such that L,a, < n* for some f €
(0, 1), then (1.5) holds, and hence we do not have (1.7) for the related {#,}.

2 Proof of Theorem 1

First we establish several lemmas. Lemma 1 is an elementary observation to be
used later. Its proof follows almost immediately from the central limit theorem,
and hence will not be included.

Lemma 1. If X, X1,X,,... are i.id with E(X)=0, E(X*)=1, and Sy = X; +
o+ Xy for k = 1, then

(2.1) Bim inf E(Se/VEPI(1S:/VE < 1)=1,
and B
(2.2) Iir;flP(lSk/\/la >1)=c>0.

Lemma 2. Ler {a,: n = 0} be as in Theorem 1, and
(2.3) I={n = 1:20a, < n*}
where 0 < B < 1. If card (I) = oo, then with probability one

24) tim (1 )t = 00,
and hence
25) PCUninelNu=¢)=1.

Proof. Let N; = (Sy, — S;,_,)/(a; — ai—1)"? for i = 1. Then Ny, Ns,... are in-
dependent with E(N;) = 0, E(N?) = 1, and

(26) <7’]n7 ’7n>H = (2L2an)*1i]vi2 .

i=1
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Since a, T oo and card(!) = oo, Kolmogorov’s zero—one law implies that

27 Lm (p, i)y = 00 wp.l,
nel

or

(2.8) m i)y < M, wp.l
nel

where M is a finite constant. Hence if (2.8) holds we have

n
P <ZN,.2 < M(2Lza,) i.0.inn e]) =1,

i=1

and by the Borel-Cantelli lemma this implies

(2.9) 6=> P (ZN,? < M(2L2a,,)> =
nel i=1
Now let
(2.10) pn=2P (zN,? < Mnﬁ> .
i=1

Then the definitions of /7 and 0 imply that

(2.11) 3 pp=o00.
nel

Furthermore, for 4, = 0

i=

@12 py £ (o { i TN+ bt ) = o faety.
é

Since e™ £ 1—x2if 0 £x £ 1, and e~ 1 for x = 0, we have

(213)  E(e™) £ E((1 = N2 /2 (NP £ 1)+ 10aN2 > 1))
= - PERIGN? £ 1)),

If 4, — 0,4, = 0, then (2.1) implies that for all » = ng

(2.14) inf ENZICGWNE £ 1) 2 5

Thus for n = ny (2.12)—(2.14) combine to show

t "
pn < P T(1 = 7y/4) < P el
i=1

since 1 —x < e~ for x = 0. Taking 4, = n~# we get for all n = ny that

Pn = €Xp {M 1 n'” ﬁ}
so (2.11) fails as 0 < < 1. Thus (2.4) holds w.p.1.
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If feC{n:necll)y, then lim,lln, — flz =0 and hence lim,,
(s My < co. Thus (2.4) holding w.p.l implies (2.5), and the lemma is
proven. [J

Lemma 3. Let {a,:n = 0} be as in Theorem 1 and

(2.15) J={n 2z 1:20La, >’}

where 0 < f < 1. If card(J) = 0o and || « || denotes the sup-norm, then
(2.16) lim,floo =0 wp.,

and hence

(2.17) P(CHnenely={0})=1.

Proof. Let Yy, Y,,... be independent centered Gaussian random variables with

E(YJZ) — (7_? or é ] é 2r+1 ,

where
or = E(XI(X* £ 2)) — (EQXI(X* £ 27)P < 1

for r =0,1,2,... . Hence with Ty =0 and T} = ZleYj for k = 1, we define
the polygonal processes

Tak/(zal’leaVl)l/z t= ak/al'h k :09 13""”7
linearly interpolated elsewhere on [0,1].

(2.18) Ou(t) = {

Then by [M] there is a probability space on which we can define copies of
{X;:j =z 1} and {Y;: j = 1} such that
(2.19) 16, = Anlloo = 0((L2an)™*) wp.l.

Hence (2.16) will follow if we show that

(2.20) £1é1} 10nllcc =0 wp.l.

Using Levy’s inequality we have

P(|6ulloc > &) < 2P(|T,,| > RanLaa,) ),

and since T, is centered Gaussian with E(Tgn) < a, we see for GLN 0, 1)
that
P([|0allco > &) < 2P(|G| > &(2L2a,)'?) < 2exp{—e’n?/2}

for n € J. Hence
ZJP(IIHnHoo > &) < 00
ne

for any ¢ > 0, and thus (2.20) holds with probability one by a standard ap-
plication of the Borel-Cantelli lemma. Now (2.17) follows immediately, so
Lemma 3 is proven. [
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Proof of Theorem 1. Let 4 be any infinite subset of the positive integers. Since
the H-norm is larger than the sup-norm, we have pointwise (and hence w.p.1)
that

(2.21) C({nnedP)y CC{npunecAl)y .

Let {a,: n = 0} be given. Fix 0 < f < 1 and define / and J as in Lemmas
2 and 3, respectively. By Lemma 2

(2.22) C{wn 2 1Ny =C({ninebm,
while by Lemma 3
(2.23) C({ny: n € J})y € {0}

with equality in (2.23) iff card (J) = co. Combining (2.21)—(2.23) shows that
precisely one of (1.9) or (1.10) must hold.

Now 0 € C({n,})xr w.p.l. iff lim, (4, 7,)m =0 w.p.1. Applying Fatou’s
lemma we have

li_rn_E(<’7n=77n>H) g E (.l_lm <7’n; 77n>H) s

and since E({n,Mn) i) = (n/(2La,)) we have

(224) lim <77m '7n>H =0 Wpl

whenever (1.11) holds. Since (1.9) and (1.10) must hold, it follows that (1.11)
implies (1.10). It remains to be shown that the converse implication holds.
If (1.10) holds, then

(2.25) lim S™ N?/(2L2a,) =0 wp.l,

n =1

and hence if (1.11) fails we have

(2.26) LIm > N?/n=0 wp.l.
n o i=1

Now N? = I(N? = 1), so if (2.26) holds we have

(227) lim

7

Let V, =57 I(N} 2 1) for n 2 1 and fix ¢ > 0. Then independence of
Ni,M,... and Chebyshev’s inequality implies
(2.28)

ST P(|[Vyr — E(Var)| > €27) £ 30 (e27) *Var(Var)

rz1

rz1

IN? 2 1)/n=0 wp.l.

RGE

=3 ()7 }2:3 Var(I(N? 2 1)) £ ¢72

r=1 izl
since Var(J(N? = 1)) < 1. Hence
(2.29) lim|{Vor — E(V2)}/2" =0 wp.l,
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and for all » = 1

(2.30) E(Vy/2') = 2ZP(N;’- >1)/2=2c>0
i=]

where ¢ > 0 is given as in Lemma 1. Combining (2.29) and (2.30) we have
that
l_iszr/Zf' =zc>0 wpl.

If 27 < j < 2% then ,
Vilj 2 Vo /2% z 2727,
and hence

(2.31) m7Vi/j z ¢/2 wp.t.
J

Now (2.31) contradicts (2.27), and hence (1.11) must hold. Thus Theorem 1
is proven. [

3 Some contrasting results

If lim, a,41/a, > 1, then it is fairly immediate that C({#,})y is a strict sub-
set of K, and since C({n,})y C C({n,})y, this is why Strassen assumed
lim, a,.1/a, = 1. Of course, the remark following Theorem 1 implies that in
this case we always have C({#,})s = ¢ w.p.1, but we will see from our next
theorem that this can be drastically changed if we perturb {#,} ever so slightly.
We only consider the case a, = n in Theorem 2, as we apply the intricate re-

sults in [deA] and [EG]. When lim a,1,/a, = 1, one still has {nn}—L>/~—>K w.p.1,

but the rates at which this takes place have not been determined. They un-
doubtedly depend on the sequence {a,}, so not to be taken too far afield, we
restrict our attention to a, = n in the remainder of the paper. Now we need
some additional notation.

Let Cp[0,1] denote the continuous functions on [0, 1] which are zero at
zero, and for g € Cyf0,1] and & > 0 let

(3.1) I(g.e)= inf  (hh)y .

llg—hllco <&

We naturally assume (4,4)y = oo for & ¢ H and, of course,

1(9,0) = {9,9)x ,

which is finite iff g € H. Furthermore, H is dense in Cp[0, 1] so if ¢ > 0, then
1(g,8) < oo for all g € Cy[0, 1], and by Lemma 1 in [G91] we know there is
a unique function # € H such that ||g — &||o, < ¢ and

(3.2) 1(g,e) = (h,h)u
We will denote this functional relationship by writing
(33) h=(g).
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Theorem 2. Let a, = n for n = 0 and assume {n,} is given as in (1.1). Let
{&.} be a positive sequence such that e, = d/(Lyn) where d > 0, and for
n=1let

(34) fn = (Wn)s" ’

where (n,)% is given as in (3.2) and (3.3). Then, for 0 £ p < 1, with prob-
ability one

(3:5) CH{Sfa}r 2 PK

provided d > Z(1 — p*)™Y2. In particular, if we replace the constant d in
&, = d/(Lyn) by d, where {d,} is such that

(3.6) lime, =0 and lim(Lyn)e, = oo,
n n

then with probability one
(3.7) CH{f/au =K.

Furthermore, if (3.6) holds and

(3.8) E(X*(La|X])) < o0,
then we also have

(3.9) Ilzrl}}g]f; | fu —Allg =0 wpl.

Remarks. (1) Theorem 2 follows rather easily once one has the intricate results
in [deA] and [EG], but it is somewhat surprising in view of Theorem 1. Of
course, Theorem 2 was the result of trying to improve the lack of convergence
and clustering in the A-norm established in Theorem 1. The integrability con-
dition on X used to establish (3.9) can perhaps be weakened slightly (see [EG]
and [EM]), but for ease of exposition we have used the above.

(II) If one perturbs the sequence {7,} in the H-norm by taking
H-neighborhoods of radius g, instead of sup-norm neighborhoods, then for
#,+0 and &, sufficiently small f, = (1 —e¢,),. Hence & — 0 implies
lim,, ( f5, fu)g = lim, (s, 1a)r = 00 w.p.1 and C({f2})y = ¢ w.p.1 (recall we
are assuming a, = n). Of course, (3.9) also fails.

(IIT) If one sets w,(t) = B(i1t)/(2nL2n)1/2 forn =2 1and 0 £ ¢t £ 1, where
{B(t): t = 0} is a Brownian motion, then w,, € H w.p.1 and hence (Wp, Wp)ir =
oo w.p.1. However, the &,-perturbations of {w,} reside in H provided &, > 0,
and if {e,} satisfies (3.6), then the proof of Theorem 2 and the results in [deA]
for Brownian motion combine to show that

{wa)™} Sk w.p.l.

Proof of Theorem 2. To verify (3.5) fix p, 0 < p < 1, take & € pK, and set
&, = d/(Lyn) where d > Z(1 — p?)~Y2. Then by Corollary 1-(a) of [EG] we
have a random subsequence n” such that

(3.10) 77 — hlloo < d/(Lan") w.p.l.
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Hence for f, given by (3.4),

(3.11) S = hlloo < 2d/(Lon")
and

(3.12) (fors Fw)u S (BohYy = p7
Thus by applying the following lemma we have
(3.13) Igln Wfor —hllg =0 wp.l

provided d > Z(1 — p?)~12,

Lemma 4. Let {f,}, f be absolutely continuous on [0, 1] with f£,(0)=
F(0) =0 and such that

(3.14) m || f — flloo = 0.

If

(3.15) Efl |fas)Pds = f1 |f'($)Pds < o0,
then O 0

(3.16) lin Of fu8) = f1(®)P ds = 0.

Proof. Since (3.15) holds, there exists g € L[0, 1] such that for some sub-
sequence {n;} of {n} we have

;  weakly

103 — g

in L2[0,1]. Thus for 0 < ¢ < 1

1 i
S () = gf[o,t](s)f,fk(s)db” > 6fl[o, 1(s)g(s)ds,

and hence p
lim (1) = [ 9(s)ds
; 0

for all # € [0, 1]. Hence (3.14) implies that
t
F@) = [gls)ds (0=t=1),
0

and f'=g ae. on [0,1]. Furthermore, the previous argument shows that

M ek S in L’[0,1] since every subsequence of {/’} has a further sub-
sequence which converges to f’. Expanding the square in (3.16), and using
(3.15), we have,

1
lim [(S'OF =27,/ ) + £y ds = 0.

Thus (3.16) holds, and Lemma 4 is proven.
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Returning to the proof of Theorem 2 we have (3.13) for every 4 € pK provided
d > Z(1— p?)~12. Hence if {h; j = 1} is a countable dense subset of pK
in the H-norm (H is separable), then

P(Hm | fu = hjllg =0 for all j = 1) =1.

This implies that
P(CHfuddw 2{n}H =1,

and since C({f,})y is closed (by definition), we have C({f,})w 2 pK
w.p.1. Furthermore, if ¢, satisfies (3.6), then the previous argument implies
(3.5) holds for all p, 0 < p < 1, with probability one. Hence (3.6) implies
P(C{f,})r 2 K)=1, and since

CH{fuhu CCUfubu s
with
CH{faPv=K wp.l

by Strassen and lim, &, = 0, (3.7) holds w.p.1.
To prove (3.9) we observe that when E(X?(L;|X|)) < oo, then the strong
invariance result in Theorem 2 of [E] implies that it suffices to prove

lim inf ||(w,)" ~Allz =0 wp.1,
when w,(1) = B(nt)/(2nlyn)?, 0 <t < 1, and {B(¢): t = 0} is a standard

Brownian motion. This follows from (4.3) in Theorem 3 below. Hence Theo-
rem 2 is proven. [

4 Some results for Brownian motion

In this section we will examine how close to necessary the assumption (3.6)
is in the setting of Brownian motion. We will show that (3.6) is near best
possible in that (3.7) and (3.9) both fail when ¢, = d/(Lpn) and d > 0 is
sufficiently small. For further details see the remarks following Theorem 3.

Theorem 3. Let {B(t): t = 0} be a sample continuous Brownian motion with
wa(t) = B(nt)/(2nLon)'

for n 21 and 0 <t < 1. Let I(-,-) be defined by (3.1), d(f,K)=
infyex |f — glloo, and set

J(f,0)= inf (k).
(f:0)= L i

where || + || denotes the usual L*-norm on Cy[0, 11. Then:

(4.1) 0 < lim Lynd(wy,K) £ n/8 wp.l,
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and for each M > 0 there exists y > 0 sufficiently small so that

4.2) lim J(w,, y/Lon) 2 M wp.1.

Furthermore, for each M > 1 there exists y > 0 sufficiently large such that
(43) Gm I(w, p/Lan) < M wp.l.

Remarks. (1) It is known from [G92] and [T], and the earlier lower bound in
[GK], that

(44) 0 < im(Lyn)Pd(w,,K) < o0 wp.l.

Hence (4.1) is the liminf analogue of (4.4). Of course, the functional form of
Chung’s LIL given in {deA], Theorems 6.1 and 6.2, implies that

(4.5) 216111; I_1£_n_ Lonllwy, — bl = /4 wp.l.

Thus (4.1) implies that taking the inf inside the liminf in (4.5) reduces the
constant, but does not change the rate. Finally, if one combines (4.3) and
(4.4) it follows that for y > 0 sufficiently small

(4.6) lim T(wa, p/(Lon)*) =1 wp.l.

Thus the analogue of (4.2) fails when M > 1 if y/Lyn is replaced by y/(Ln)*>,
even though (4.4) holds.

(I) Since || flloo = [[f12 for all f € Co[0,1], it follows immediately that
I(f,0) 2 J(f,9), and hence (4.2) holds if J is replaced by /. Similarly (4.3)
holds if 7 is replaced by J. With a bit more thought one can also obtain (4.6)
for J as well (see [GK, pp. 305-3097).

(IIT) By the strong approximation in Theorem 2 of [E], if E(X*(L,1X|))<co
and a, = n, then (4.1)—(4.3), and (4.6) hold with w, replaced by 7.

(IV) The statement in (4.1) with the right-hand side equal to n/4 was
obtained earlier in [G91]. We provide a smaller upper bound, and the lower
bound is achieved by applying the more delicate result in (4.2). Our approach
also implies the same sort of result when one computes the distance from w,
to K in the L?-norm. Then the upper bound will be 1/8, rather than 7/8.

Proof of Theorem 3. Using rescaling ideas which are now fairly standard (see
[GK] for details and other references), it suffices to prove analogues of (4.1),
(4.2), and (4.3) for i.i.d. Brownian motion samples B, By, B,, ... with continuous
sample paths restricted to [0, 1]. That is, we prove

4.1 0 < lim Lnd(B,/(2Ln)'?, K) £ /8 wp.l,
n
(42 lim J(B,/(2Ln)?, y/Ln) = M wp.]

for each M > 0 provided y > 0 is sufficiently small, and for M > |
(4.3) lim I(B,/(2Ln)"?,y/Ln) < M wp.l
[

provided y > 0 is sufficiently large.
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The first step of the proof will be to verify the right-hand side of (4.1").
After that we proceed to the proof of (4.2'), since by taking M > 1 it easily
follows from J = I and the definition of I that the left-hand side of (4.1")
holds.

Let p, = P(d(B,/(2Ln)'?,K) < y/Ln). Then

pu = P(B € 2Ln)' 2K + (V2y/(Ln)"*)U)

where U is the closed unit ball of Cy[0, 1] in the sup-norm. Hence the iso-
perimentric property of Gaussian measures implies

Pn = O(0 + (2Ln)'?)

where
(o) = P(B € (V2y/(Ln)*)U)

and &(t) = (2n)~ 1 [* e 2dx. Now as & | 0

4 72
P(BceU)~ — ——g 2
(B eel) 7Texp{ 86 },
SO as n — 00, o, — —o0, and

() o)™ exp{—03/2} ~ = exp{~Ln(167)}

Hence as n — o
o ~ —ni(Ln)'?/(8"%)

and Y, p, = oo if (n/(8"%y) — v/2)?/2 < 1. Thus taking y > 7/8, the Borel-
Cantelli lemma easily implies the right side of (4.1') with limiting value at
most 7/8.

Turning to (4.2") we fix M = 1, and point out this suffices for the general
result. Now {B,(¢): 0 < ¢ < 1} can be written as

(4.7) Bn(l) = kzo )ykgk,nlﬁk(t) N

where {gi . k£ = 0} are i.i.d. sequences of i.i.d. N(0,1) random variables, and
(4.8) e = 2(n2k + 1)L, Yie(1) = 22 sin((2k + 1)mz/2)

fork =2 0and 0 £ ¢t £ 1. Then for each x € Cy[0, 1] and ¢ > 0 the arguments
in Lemma 1 in [G91] can be used to show that there exists a unique 2 €
such that ||x — &> < 6 and

J(x,8)= (hh)y .

Lemma 1 in [KL] provides a general result of this type, so we do not include
details. To determine 4 we use the method of Lagrange multipliers as applied in
[GK, pp. 305-306] to a somewhat similar problem. That is, if x € Cp[0, 1], then
with Wiener measure one x = Yy Xx &, Where the series converges uniformly
and in L?[0,1]. Thus as in [GK] we have

(4.9) Jx,8)=__inf S G+ )/,

k2082262 k20
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where
(4.10) S = —xi/(1 + 731),

and ¢t = #(0) satisfies

(4.11) S a1+ 2Rt =&
kz0
Hence
(4.12) J(x,0) =1 Py AR
=

Thus (4.7) implies that
(413)  J(B.(2Ln)'2,8) = 13/(2Ln) - 30 AHgi /(1 + )
k=0

where £, = £,(0) satisfies

(4.14) Z 20/ (L)1 + A2t,)?) = &
kz

for ali n > 1.
Now take § = y/Ln and let J, = J(B,/(2Ln)"?,y/Ln). Then for ¢ > 0

(4.15) P(J, £ M)=P(J, £ M,t, = (Ln/c)*)

+ P(J, < M,t, < (Lnjc)?)

=L +1,.
Thus

(416) I,=P (Z G nl (Uta) + 22V < 2MLn,t, = (Ln/c)2>

k20

HIA

P ( /“égin/((c/}ln)z +iY < 2Mer>

kz0

lIA

Pl X gi,<8MLn
2> (c/ln)?

since 1nfxz>azx /(a® +x*)* = 1/4. To estimate the last term in (4. 16) we di-
gress to a lemma which also is used to estimate 77,.

Lemma 5. If g1,9,,... are i.id. N(0,1), then for all m = | and for v small
enough so that 0 < 7 < e73

A

(4.17) P (i g]2- rm) < exp{—(1 +1/2)m}.
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Remark. Perhaps the bound in (4.17) looks strange, but it applies only for
7 > 0 small, namely 0 < t < e73. This is adequate for our purposes; a sharper
bound appears in the proof.

Proof. First observe for u = 0

P (2’”: gjz' = ‘L'm) <E (gﬂ‘ el (]]2‘+urm>
j=1

= exp{utm — (m/2)log(1 + 2u)} .
Minimizing f(u) = tu — %log(l + 2u) for u = 0 we take u = (1 — 7)/(27), so

p<j

Hence 0 < ¢ < e implies (4.17) for all m = 1, and the lemma is proven.
]

M=

1

i

gjz- = rm) < exp{m(1 — 1 —log 1/7)/2}.

Returning to the proof of (4.2') we apply Lemma 5 to (4.16). Let [ - ]
denote the greatest integer function and fix 7, 0 < t < e~3. Hence since A7 =
4(n(2k + 1))"2 we have 22 > (c/Ln)* iff k < Ln/nc — % Therefore, for ¢ > 0
sufficiently small so that [Ln/nc — %] > (8M Ln)/t we have (by applying (4.17)
with m = [Ln/nc — %] + 1) that

[Ln/nc—%]
(4.18) LsP| Y gi,<8MLn
k=0
In 1
< — ==
< exp{ (1+1/2) [nc 2} }
< exp{—(1 + /2)Ln} .

Thus p>14, < oo for ¢ > 0 sufficiently small, so it suffices to prove X3
1, < oo.
Now

(4.19)

£z0 \n
1
<P i < 8 /Ln,— 2 (c/Ln)2>
22 < 1 n
k= tn
2
. . a 1
since inf

lza(@ 22 4
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<P S gi. < 8Y/Ln
B S(e/Ln)?

<Pl Y 4mQk+ 1)) g, < 8 Ln
kz -}

<P Gon S 167°(y/dYLn |
sl

where d > 0 is taken such that (1/d) — (1/c) = 2. Now fix 0 < 7 < e*. Then
for y > 0 sufficiently small so that 16(ny/d)’ < 21, we have from Lemma 5
that

I, < exp{—(1+1/2)Ln}

for all # sufficiently large. Hence we also have 3, II, < oo, and (4.5) and
the /Bore1~Cantelli lemma together imply (4.2’). Hence it remains to prove
S verify (43') fix M > 1 and recall U = {f: || /]|l < 1}. Then
(4.20) PI(B,/(2Lr)'? y/Ln) > M?)
= P(B,/(2Ln)'? ¢MK + yU/Ln)
= P(BEMQ2Ln)V2K + V2y(Ln)2U)
< 1 — &(MQLn)? + o)
by the isoperimetric property of Gaussian measures, where
() = P(B € V29(Ln)"2U) ~ 4/mexp{—n*Ln/(167%)}

as in the proof of (4.1"). Thus as before a, ~ —n(Ln/&*)/* as n — co. Hence
(4.20) implies that

P(I(B,(2Ln)"?,y/Ln) > M*) < P(Z > (Ln)""(MV2 - n/(29))),
where Z is N(0,1). Since M > 1, by taking y > 0 sufficiently large we have

S P(I(B,/(QLn)%, y/Ln) > M?) < co.

nzl

Thus the Borel-Cantelli lemma implies (4.3'), and Theorem 3 is proven.

5 Convergence and clustering in //-norm via interpelation

Our next result shows that non-trivial H-convergence and clustering can be
obtained for independent Gaussian samples when they are suitably interpolated.
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As before we assume By, B,, ... are 1.i.d. Brownian motion samples with contin-
uous paths restricted to [0, 1]. Let p, be a non-decreasing sequence of integers
such that lim, p, = cco, lim, p,/Ln = 0, and let

By(k/ pn)/2Ln)'? t =k/py k=0,1,..., pn,
linearly interpolated otherwise .

(5.1) Yo(t) = {

Theorem 4. Let By, By,...,{p;:n = 1}, and {Y,;: n = 1} be as above. Then

(5.2) (Yunz1} 25K wpl.
Proof. Let
f(k/pn) t:k/pnkzoala--wpn,
() =1 7. :
linearly interpolated elsewhere .

Then for f € K, when f” is Lip(1) on [0,1], we have by the mean-value
theorem that

5 Dn &/ pn 2
If =l Ol = kZ_:l kL (f'(s) = f'(ckn)) ds
Pn ' k/Prz
< S0y | I —cunP ds,
k=1 *k—1

Pn

where (k — 1)/ pn < cxn < k/p, for k=1,..., p,. Hence for such an f we
have

lim [|.f — o f {7 = 0.

Thus
(Yunz 1} 25K wpl

if we show for all ¢ > 0 that

(53) m ||Y,|5 <1 wpl,
n
and
(54) m|Y, — flla =0 wp.l
n

for all f € K when f” is Lip(1) on [0, 1]. That (5.4) suffices follows from the
fact that these f are dense in K in the H-norm.
Fix ¢ > 0. Then

4 =P(|Valfy > 1+¢)

=P (;é(Bn(k/pn) — By((k — 1)/pn))2pn > 2(1 + E)L”>

Pn
—p (£, > 20+0m).
k=1
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where {gi, k=1,..., p,} are i.i.d. N(0,1) for n = 1. Thus by Markov’s in-
equality, for any u > 0

g < exp {—2(1 +eyuln — % log(1 — 2u)}

= oxp {—%(2(1 +6)n = pn) — S log(pa/(2(1 + &)ln))}

— po/(2(1 + g)Ln)). Hence

1 1 | Ln
qll = (1_‘_3)exp 'z'pn + pﬂ Og E

1
e exp{ L(Ln)g(n) — (Ln)g(n) log g(n)},

by setting # =

where g(n) = p,/Ln — 0 as n — oo. Thus ¥,z 9, < oo, and (5. 3) holds.
To verify (5.4) first observe that

1Ye = flln S [ Yn — mf il + lmn f - fla-

If f€K and f' is Lip(1) on [0,1], we have lim,||n,f — fix = 0. Hence
it suffices to prove lim, |[|Y, — 7, f||lz =0 for f € K. Set v = (S (k/pn) —

fUe—=1/p)) o, k=1,..., ps. Then

e (B =B (S
HYH 7Inf“H - Z (2Ln)1/2

2
YR <k41>>> 0\
(r(£)-1(%2)) /o)
o [ (Bu(£) = Bo(Eyy ')
:k};{ I

(G52 /)

Pn
= kzl (Gren/ QL) — 2,

where gi, are iid. N(0,1) for k=1,...,p, n = 1. Also observe that
S =5 ( f{Z”;‘) T(s)dsy/pyt < £ i (f/(s))? ds < 1. Using the

(k 1)
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Cameron—Martin formula in RP" we see
P(|Yy — o fll7 < &)

e (ﬁ? (Gin/ QL) — 3 < a)

k=1

Dn Pn
= exp {—ZLn > y,%/2} J exp {-Z gk,,,yk(ZLn)l/z} dP
{

k=1 ]fi] gingth} k=1
Pn 5 Pn 5
= exp{—LnkZ:1 Ve }P kzlgkm < 2ln),

where the inequality follows from the symmetry of the Gaussian measure and
Jensen’s inequality. Now P(Z1" gkn > 2eln) £ py/(2eLn) — 0 as n — oo so

P 92 < 1 implies for n sufficiently large

1
P(I% = muflly £ 0) 2 5

Applying the Borel-Cantelli lemma, we thus have for all f € K, with f’ being
Lip(1), that

lim|Y, — flf =0 wp.l.

Thus the theorem is proven.

Remark. As before, assume {p,} is a non-decreasing sequence of positive
integers. If {p,} is bounded, then eventually p, = d, a positive integer, and

it is easily seen that {¥,} A ngK w.p.1. Thus (5.2) fails in this case. On
the other hand, suppose that lim, p,/Ln > f > 0. Fix ¢ > 0and 0 < o < 1.
Then it follows from (6.20) of [GK] that for some absolute constant C; > 0

Pn
P(|Yully > 1+e)=P (Zgin > 2(1 +e)Ln)
1

Pn
> P (gin + Zazgin > 2(1+ s)Ln)

Clexp( (14 e)n+ (p, — DL — a?)~1?)
(Lt &)l

provided

25(1 2
(5.4) 21 +&)ln = —(Jr—p;”—).
-0
Thus first choose ¢ so that equality holds in (5.4), hence

»  20+e)ln—25 _ Ln/p,+ O(1/Pn)

© 25p, +2(1 +¢&)ln C. + Ln/p,
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where C, = 25/(2(1 + ¢)). In particular

g GO
C. + Ln/p,

which means that

Since

(1 +&)ln —(pp — DL — g%~

1/ pp—1 Co + Ln/ pn
:Ln[(1+8)_§< In )L(CﬁO(l/pn))}'

limp,/Ln > f > 0, this enables us to choose ¢ > 0 so that

Ciexp(—Ln)
2 > 16Xp

for all large n. Hence by the Borel-Cantelli lemma

lim|| Y {g > 1 wp.l

Thus ¥, does not converge to X, and again (5.2) fails. This shows that the
assumptions in Theorem 4 are relatively “sharp”.
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