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Summary. Strassen's original functional law of  the iterated logarithm for par- 
tial sums and Brownian motion examined convergence and clustering in the 
sup-norm. Here we address what happens if  we use the much larger H-norm. 
We provide the answer to a query which appeared at the end of  Strassen's 
original paper, and also present several contrasting results which are shown to 
be essentially best possible. 
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1 Introduction 

At the very end of  his seminal paper on the law of  the iterated logarithm 
[S], Strassen mentions a couple of  things he would find interesting to know. 
One of  these seems to have gone completely unnoticed, and our Theorem 1 
provides the answer for this question. We also present some contrasting results 
motivated by more recent work. 

Throughout X,X~,X2,...  denote i.i.d, random variables with E ( X ) =  O, 
E(X2) = 1, S o = O a n d & = X t + . . . + X ~ f o r k > l .  I f { a n : n > O } i s a  
strictly increasing sequence of  integers with a0 = 0, we define for n > 1 the 
processes 

(1.1) 
~ Saj(2anL2an) 1/2 t = ak/an, k = O, 1 , . . . ,n  , 

t/,(t) = [ linearly interpolated elsewhere on [0, 1]. 
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In (1.1) and elsewhere L2x =L(Lx)  with Lx =max(1,1og e x). Of course, 
{qn} depends on {an: n > 0}, but we suppress that to simplify notation. 
Let 

{ : , } (1.2) H =  f ( t ) -=  a ( s ) d s : O  < t < l,  f [ e ( s ) 1 2 d s  < ec  , 
o o 

with norm given by the inner product 

1 

(1.3) ( f i ,  f2)H = f f~ (s) f ; (s)  ds.  
o 

Then H is a Hilbert space with unit ball 

(1.4) K = t)  = f f ' ( s ) d s :  0 < t <_ 1, f l f ' ( s ) l  2ds  < 1 , 
0 0 

and when an = n, Strassen's fundamental result is that {t/n } converges to K 
and clusters throughout K in the sup-norm topology with probability one. It is 
an easy calculation when an = n to show that 

(1.5) lim(t/~,t/n). = o c  w.p.1, 

and Strassen questioned what the situation might be for other strictly increasing 
sequences. More precisely, if {an: n > 0} is a strictly increasing sequence of 
integers with ao = 0 and limn an+l/an = 1, Strassen pointed out that it would 
be interesting to know for which sequences does {t/n} cluster throughout K in 
the H-inner product norm. 

The answer is given in Theorem 1 below, and Theorem 2 is motivated by 
Theorem 1 and some recent work in [GK, G91 and KLT]. Theorem 3 clarifies 
the assumptions used in Theorem 2, while Theorem 4 provides a contrasting 
result to Theorem 1 in a related situation. 

If {fn} is a sequence of functions, we let C(( fn} )u  denote all subsequential 
limits of {f~} in the sup-norm, and C({ f , } )H is the corresponding cluster set 

for the H-norm. We write {fn} ~ ~K if both 

( 1 . 6 )  C({f,})~ = K 

and 

(1.7) lim inf Ilfn - hl}zr = 0.  
n hGK 

Thus {fn}~--,K denotes convergence to K and throughout K by the sequence 

{ f , }  when distances are computed in the H-norm. If {fn}u--~K denotes the 

analogue for the sup-norm, then Strassen's result can be expressed as 

(1.8) P({~n}~K)  = 1, 

where in (1.8) we are assuming an = n and {rln} is as in (1. l)  
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Theorem 1. Let  {an: n > O} be a strictly increasin 9 sequence o f  integers with 
ao = O, and assume {~/n} is defined as in (1.1). Then, 

(1.9) 

o r  

(1.10) 

and (1.10) holds iff 

(1.11) 

P(C({rln})H = q~) = 1 

P(C({rln})H = { 0 } ) =  1,  

lim(L2an)/n = oo.  

Remark.  ( I ) I f  limn an+l/an = p < 0% then p > 1 and eventually an < (2p) n. 
Hence (1.11) fails for such {an}, and (1.9) must hold. Thus in the setting of  
Strassen's question we always have 

P(C({*/n})H = ~b) = 1. 

Of  course, we never have P(C({q,})H = K ) =  1, regardless of  the sequence {a~}. 
(II)  Lemma 2 below shows that i f  {an} is such that L2an < n~ for some fi E 

(0, 1), then (1.5) holds, and hence we do not have (1.7) for the related {~/n}. 

2 Proof of Theorem 1 

First we establish several lemmas. Lemma 1 is an elementary observation to be 
used later. Its proof  follows almost immediately fi'om the central limit theorem, 
and hence will not be included. 

L e m m a  1. I f  X, XI,X2 . . . .  are i.i.d, with E ( X )  = 0, E ( X  2) = 1, a n d &  = X1 + 
�9 .. + X k  fo r  k > 1, then 

lim inf  E((Sk/x/k)ZI(tSk/v/k[ ~ ) . ) ) =  1,  
2---+oo k >  1 

(2.1) 

and 

(2.2) infP(l&/~/kl  => 1 ) =  e > 0 
k>__l 

L e m m a  2. Let  {an: n >= O} be as in Theorem 1, and 

(2.3) I = {n > 1: 2L2an <= n ~} 

where 0 < fl < 1. I f  card ( I )  = o~, then with probability one 

(2.4) lira (~/n, ~n)B = oo ,  
nEI 

and hence 

(2.5) P(C({~/,: n c I})H = qS) = 1. 

Proo f  Let Ni = ( S o i - - S a i _ l ) / ( a i - - a i - 1 )  V2 for i >_ 1. Then N1,N2, . . .  are in- 
dependent with E(Ni)  = 0, E(Ni 2) = 1, and 

n 

(2.6) (~/n,~/,)H = ( 2 L z a n ) - l ~  N 2 . 
i=1 
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Since a,  "f oc and card(l)  = 0% Kolmogorov's  ze ro -one  law implies that 

(2.7) lil~(t/,,,t/,)u = oc w.p.1, 

or  

(2.8) lina(t/,,t/,)~r < M ,  w.p.1 
nEI 

(2.9) 

Now let 

where M is a finite constant. Hence if (2.8) holds we have 

) P < M ( 2 L 2 a , )  i.o. i n n E I  = 1, 

and by the Borel-Cantelli lemma this implies 

O= ~ P N-~ 2 < M(2L2an) = o o .  
nEI k , i = l  

(2.10) pn = P  < Mn ~ . 

Then the definitions o f  I and 0 imply that 

(2.11) ~ p .  = c o .  
nEI 

Furthermore, for 2, = 0 

(2.12) p ,  = < E exp - 2 ,  + 2"MnP} ) = e~"Mnr f i  E(e-~"x~ ) 

Since e - x  < l - x / 2  i f 0 - < x - <  1, a n d e  - x  _-< 1 f o r x  > 0, w e h a v e  

(2.13) E(e -&N~2) <= E ( ( 1 -  )cnNi2/2)l(2nNi 2 <= 1 ) + I ( 2 , N i  2 > 1)) 

= 1 - @E(N2I(2nNi 2 < 1)) 

I f  2, --+ 0, 2, => 0, then (2.1) implies that for all n > no 

(g g (2.14) i n f E  I(2,  =< 1)) > 5 '  
i> l  

Thus for n > no (2 .12)-(2 .14)  combine to show 

e2nMn'~ ~I e2nMn~ e--n2n/4 p ,  < (1 - 2 , /4)  < 
i=1 

since 1 - x  < e -x for x > 0. Taking 2n = n -/~ we get for all n > no that 

p .  =< exp { M  - 

so (2.11) fails as 0 < fl < 1. Thus (2.4) holds w.p.1. 
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I f  f E C({t/n: tt C I})H,  then limn~ 111t/n - NllH = 0 and hence limn~ 1 
(r/n,t/~}H < oo. Thus (2.4) holding w.p:l implies (2.5), and the lemma is 
proven. [] 

L e m m a  3. Let  {an: n > 0} be as in Theorem 1 and 

(2.15) J = {n > 1: 2L2an > n fi} , 

where 0 < fl < t. I f  card(J)  = oo and II " l[oo denotes the sup-norm, then 

~ll,lnlloo --0 w . p . 1 ,  (2.16) 

and hence 

(2.17) P(C({,I~: n E J } ) u  = {0}) = 1. 

Proof. Let Yl, Y2 . . . .  be independent centered Gaussian random variables with 

E ( Y  2 ) = a  2 2 r < j  < 2r+1 

where 
02 = E ( X 2 1 ( X  2 <= 2 r ) ) -  ( E ( X I ( X  2 =< 2 r ) ) )  2 ~ 1 

for r 0, l, 2 , . . .  Hence with To 0 and T~ k = " = = ~ j = l  YJ for  k > 1, we define 
the polygonal processes 

TaJ(2anL2an) 1/2 t = ak/an, k = O, 1 , . . . , n ,  
(2.18) On(t) 

linearly interpolated elsewhere on [0, 1]. 

Then by [M] there is a probability space on which we can define copies of  
{Xj: j  > 1} and {Y j : j  > 1} such that 

(2.19) lion -- t/nl[oo = o((L2an) -1/2) w.p.1 . 

Hence (2.16) will follow if we show that 

(2 .20 )  l im[10nl]~  = 0 w.p.1 . 
nEJ 

Using Levy ' s  inequality we have 

P(llOnl[~ > e) < 2P(ITanl > (2a~L2a,,)l/2e), 

and since Tan is centered Gaussian with E(T~n ) < an we see for G~N(O, 1) 
that 

P([]0nHoo > g) <= 2P(IG] > 8(2L2an) 1/2) <= 2exp{-g2nf i /2}  

for n E J .  Hence 
~P(HOn[[~ > ~) < oo 
nEJ 

for any e > 0, and thus (2.20) holds with probability one by a standard ap- 
plication of  the Borel-Cantelli  lemma. Now (2.17) follows immediately, so 
Lemma 3 is proven. 



216 P. Griffin, J. Kuelbs 

Proof  o f  Theorem 1. Let A be any infinite subset of the positive integers. Since 
the H-norm is larger than the sup-norm, we have pointwise (and hence w.p. 1) 
that 

(2.21) C({t/n: n < A}),/ C C({qn: n E A})u �9 

Let {an: n => 0} be given. Fix 0 < fi < 1 and define I and J as in Lemmas 
2 and 3, respectively. By Lemma 2 

(2.22) C({t/n: n => 1})H = C({qn: n ~ J})~r, 

while by Lemma 3 

(2.23) c({~.: n c J})v <_ {0} 

with equality in (2.23) iff card (J) = oc. Combining (2.21)-(2.23) shows that 
precisely one of (1.9) or (1.10) must hold. 

Now 0 E C({t/,})H w.p.1, iff lira, (q,,r/,)~ = 0 w.p.1. Applying Fatou's 
lemma we have 

lim E((t/n' '/~)H ) >  n E ( ~ ( r l n ' r l ~ ) H )  ' 

and since E((t/,, t/n)H) = (n/(2L2a~)) we have 

(2.24) lira (t/,,t/n)H = 0 w.p.1 

whenever (1.11) holds. Since (1.9) and (1.10) must hold, it follows that (1.11) 
implies (1.10). It remains to be shown that the converse implication holds. 

If (1.10) holds, then 
n 

(2.25) lim~_~N2/(2L2a,) = 0 w.p.1, 
n i=1 

and hence if (1.11 ) fails we have 
n 

(2.26) l im~N,2/n  = 0 w.p.1. 
n i=1 

Now N/2 > I(Ni 2 >= 1), so if (2.26) holds we have 

(2.27) l i m ~ I ( N ,  2 > 1)/n = 0 w.p.1. 
n i = l  

Let Vn = ~ = I I ( N  2 > 1) for n ~ 1 and fix s > 0. Then independence of 
NbN2, . . .  and Chebyshev's inequality implies 

(2.28) 
~ P(IV2r - E(V2r)t > e2 r) <= ~ (gU)-2Var(V2 ~) 

r_>_l r ~ l  

2 r 

= ~ (sU) -2 ~ Var(I(N/a > 1)) =< s -2 
r & l  i=>l 

since Var(I(N/2 = > 1)) = < 1. Hence 

(2.29) lim[V2r -E(V2~)[/2 ~ = 0 w.p.1, 
r 
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and for all r >- 1 
2 r 

(2.30) E(V2~/2 r) = E P ( N i  2 >= 1)/2 r >_ c > 0 
i=1 

where c > 0 is given as in Lemma 1. Combining (2.29) and (2.30) we have 
that 

limV2~/U > c > 0 w.p.1. 
r 

I f 2  r < j  < 2 r+~,then 

and hence 

(2.31) 

Vj/j > V2~/2 r+l > 2 1V2~/2r 

lim Vj/~/ > c/2 w.p. 1. 
J 

Now (2.31) contradicts (2.27), and hence ( l .11) must hold. Thus Theorem 1 
is proven. [] 

3 Some contrasting results 

I f  lim_,~an+l/an > 1, then it is fairly immediate that C({t/~})u is a strict sub- 
set o f  K, and since C({t/~})H C_ C({rb~})u, this is why Strassen assumed 
limn an+t/an = 1. Of  course, the remark following Theorem 1 implies that in 
this case we always have C({t/n})H = r w.p.1, but we will see from our next 
theorem that this can be drastically changed if  we perturb {t/n} ever so slightly. 
We only consider the case an = n in Theorem 2, as we apply the intricate re- 

sults in [deA] and [EG]. When liman+l/an = 1, one still has { q , }  ~ ,K w.p.1, 

but the rates at which this takes place have not been determined. They un- 
doubtedly depend on the sequence {a~}, so not to be taken too far afield, we 
restrict our attention to an = n in the remainder of  the paper. Now we need 
some additional notation. 

Let C0[0, 1] denote the continuous fimctions on [0, 1] which are zero at 
zero, and for g C C0[O, 1] and e > 0 let 

(3.1) I(9, ~) = inf (h,h)H. 

We naturally assume (h, h)H = oc for h ~ H and, o f  course, 

z(o ,0)  = <o,~>~, 

which is finite iff g E H. Furthermore, H is dense in C010, 1] so if  e > 0, then 
I (g ,e  ) < cc for all 9 c C0[0, 1], and by Lemma 1 in [G91] we know there is 
a unique function h ~ H such that 119 - hll~ _-< e and 

(3.2) z(o,~) = (h,h),_,. 

We will denote this fimctional relationship by writing 

(3.3) h = (g)~, 
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Theorem 2. Let an = n for  n >= 0 and assume {~/n} is given as in (1.1). Let 
{en} be a positive sequence such that en = d/(L2n) where d > O, and for  
n > _ l l e t  

(3.4) f ,  = (~/,)~", 

where (qn) e" is given as in (3.2) and (3.3). Then, for  0 < p < 1, with prob- 
ability one 

(3.5) C({fn})H D pX  

provided d > �88 - p2)-1/2. In particular, i f  we replace the constant d in 
en = d/(L2n) by d, where {dn} is such that 

(3.6) limen = 0 and lim(Lzn)~n = co ,  
n 

then with probability one 

(3.7) C({fn})H = K .  

Furthermore, i f  (3.6) holds and 

E(X2(L2IXI)) < c~, (3.8) 

then we also have 

(3.9) lim inf IIfn - hltH = 0 w.p.1. 
n h c K  

Remarks. (I) Theorem 2 follows rather easily once one has the intricate results 
in IdeAl and [EG], but it is somewhat surprising in view of Theorem 1. Of 
course, Theorem 2 was the result of trying to improve the lack of convergence 
and clustering in the H-norm established in Theorem 1. The integrability con- 
dition on X used to establish (3.9) can perhaps be weakened slightly (see lEG] 
and [EM]), but for ease of exposition we have used the above. 

(II) If one perturbs the sequence {r/,} in the H-norm by taking 
H-neighborhoods of radius gn instead of sup-norm neighborhoods, then for 
t/n4=0 and e, sufficiently small f ,  = ( 1 -  e,)q,. Hence en-+ 0 implies 
lim,(fn, f~)H = limn(~/,,t/,)H = OO w.p.1 and C({f~})H = q5 w.p.1 (recall we 
are assuming an = n). Of course, (3.9) also fails. 

(III) If one sets wn(t) = B(nt)/(2nL2n) 1/2 for n > 1 and 0 < t -< 1, where 
{B(t): t > 0} is a Brownian motion, then wn ~ H  w.p.1 and hence (W,,Wn)H = 
OC w.p.1. However, the e,-perturbations of {wn} reside in H provided gn > 0, 
and if {g,} satisfies (3.6), then the proof of Theorem 2 and the results in [deA] 
for Brownian motion combine to show that 

{(Wn)8,} H_~ K w.p.1. 

Proof  o f  Theorem 2. To verify (3.5) fix p, 0 < p < 1, take h E pK, and set 
en = d/(L2n) where d > 4(t - p2)-i/2. Then by Corollary 1-(a) of [EG] we 
have a random subsequence n" such that 

(3.10) II~,- - hll~ < d/(Lzn') wp.1 .  
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Hence for f~l given by (3.4), 

(3.11) Ilfn" - hlt~ < 2d/(L2n") 

and 

(3.12) (fn",f,~");4 <--<_ (h,h)H < p2. 

Thus by applying the following lemma we have 

(3.13) lim I]f~" - hllH = 0 w.p.1 
nil 

provided d > �88 - p2)-U2. 

Lemma 4. Let {f~}, f be absolutely continuous on [0, 1] with f~(O)= 
f(O) = 0 and such that 

(3.14) 

i f  

(3.15) 

then 

(3.16) 

lira Ilfn - fHoo = 0.  
n 

1 1 

lim of If'n(s)l 2 ds ~ f If'(s)l 2 ds < ec,  
o 

1 

lim f [f~(s) - f ( s ) ]  2 ds -= O. 
n 0 

Proof Since (3.15) holds, there exists g ~ L2[0, 1] such that for some sub- 
sequence {nk} of  {n} we have 

L'~ we.kly g 

in L2[0, 1]. Thus for 0 _< t < 1 

1 1 
I I Lk(t)  = f to, ,l(s)f;k(s) ds ~ f IEo, ,l(s)g(s) ds,  

0 nk 0 

and hence t 

lira f~k(t) = f g(s) ds 
nk 0 

for all t E [0, 1]. Hence (3.14) implies that 

t 

f ( t ) =  f g(s)ds (0 < t <_ 1),  
o 

and f ' =  g a.e. on [0, 1]. Furthermore, the previous argument shows that 
fn! weak ly  , . ,  f /  ---+ J in L2[0, 1] since every subsequence of  { n} has a further sub- 

sequence which converges to f / .  Expanding the square in (3.16), and using 
(3.15), we have, 

1 

lim f ( ] f l ( s ) 1 2  - -  2 f~(s )S ( s )  + If~,(s)l 2) ds = O. 
n 0 

Thus (3.16) holds, and Lemma 4 is proven. 
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Returning to the proof of Theorem 2 we have (3.13) for every h C pK provided 
d > �88 - p2)-i/2. Hence if {hj: j > 1} is a countable dense subset of pK 
in the H-norm (H is separable), then 

P ( ~  [[fn - hjtlic = O for all j >= 1 ) = 1 .  

This implies that 
P(C({f~})~ D_ {hi} )=  1, 

and since C({f~})H is closed (by definition), we have C({f~})H 2 pK 
w.p.1. Furthermore, if e, satisfies (3.6), then the previous argument implies 
(3.5) holds for all p, 0 < p < 1, with probability one. Hence (3.6) implies 
P ( C ( { f , } ) ~  _D K ) =  1, and since 

C({f~})Lr C_ C({f~})~, 

with 
C({fn})v = K w.p.1 

by Strassen and lim~ e~ = 0, (3.7) holds w.p.1. 
To prove (3.9) we observe that when E(X2(L2[XI)) < ec, then the strong 

invariance result in Theorem 2 of [E] implies that it suffices to prove 

lim inf [l(w~) ~" - hllH = 0 w . p . 1 ,  
hCK 

when wn(t)= B(nt)/(2nL2n) 1/2, 0 _< t < 1, and {B(t): t > 0} is a standard 
Brownian motion. This follows from (4.3) in Theorem 3 below. Hence Theo- 
rem 2 is proven. [] 

4 S o m e  results for Brownian  m o t i o n  

In this section we will examine how close to necessary the assumption (3.6) 
is in the setting of Brownian motion. We will show that (3.6) is near best 
possible in that (3.7) and (3.9) both fail when en = d/(L2n) and d > 0 is 
sufficiently small. For further details see the remarks following Theorem 3. 

T h e o r e m  3. Let {B(t): t > 0} be a sample continuous Brownian motion with 

wn(t) = B(nt)/(2nL2n) 1/2 

for n > 1 and 0 < t <_ 1. Let I ( . ,  . ) be defined by (3.1), d ( f , K ) =  
infgcK [lf -- glib, and set 

J ( f  , 6) = inf (h,h)yr 
II/-hH2<6 

where II �9 112 denotes the usual L2-nornl on Co[0 , I]. Then; 

(4.1) 0 < lim L2nd(wn,K) < 7z/8 w.p.1, 
n 
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and for each M > 0 there exists 7 > 0 sufficiently small so that 

(4.2) limmJ(wn,~/L2n) > M w.p.1. 
n 

Furthermore, for each M > 1 there exists 7 > 0 sufficiently large such that 

(4.3) lira I(wn, 7/L2n) < M w.p.l.  
n 

Remarks. (I) It is known from [G92] and [T], and the earlier lower bound in 
[GK], that 
(4.4) 0 < l~m(L2n)Z/3d(w~,K) < ~ w.p.1. 

Hence (4.1) is the lim inf analogue of (4.4). Of course, the functional form of 
Chung's LIL given in [deA], Theorems 6.1 and 6.2, implies that 

(4.5) inf lim L2nllw, - h[]~ = ~z/4 w.p.1. 
h c K  n 

Thus (4.1) implies that taking the inf inside the liminf in (4.5) reduces the 
constant, but does not change the rate. Finally, if one combines (4.3) and 
(4.4) it follows that for y > 0 sufficiently small 

(4.6) lira I(wn,7/(L2n) 2/3) = 1 w.p.1. 
n 

Thus the analogue of (4.2) fails when M > 1 if 7/L2n is replaced by y/(L2n) 2/3, 
even though (4.4) holds. 

(II) Since [[fl[~ > [lfl[2 for all f E C0[0, 1], it follows immediately that 
I ( f , 6 )  > J ( f , 6 ) ,  and hence (4.2) holds i f J  is replaced by I. Similarly (4.3) 
holds if I is replaced by J.  With a bit more thought one can also obtain (4.6) 
for J as well (see [GK, pp. 305-309]). 

(III) By the strong approximation in Theorem 2 of [E], ifE(X2(L2IX[ ))<cx~ 
and an = n, then (4.1)-(4.3), and (4.6) hold with wn replaced by r/n. 

(IV) The statement in (4.1) with the right-hand side equal to 7z/4 was 
obtained earlier in [G91]. We provide a smaller upper bound, and the lower 
bound is achieved by applying the more delicate result in (4.2). Our approach 
also implies the same sort of result when one computes the distance from wn 
to K in the L2-norm. Then the upper bound will be 1/8, rather than re/8. 

Proof o f  Theorem 3. Using rescaling ideas which are now fairly standard (see 
[GK] for details and other references), it suffices to prove analogues of (4.1), 
(4.2), and (4.3) for i.i.d. Brownian motion samples B, B1, B2 . . . .  with continuous 
sample paths restricted to [0, 1]. That is, we prove 

(4.1') 0 < lira Lnd(Bn/(2Ln) l/2, K) < ~z/8 w.p.1, 
n 

(4.2') lira J(Bn/(2Ln)t/2,7/Ln ) > M w.p.1 
n 

for each M > 0 provided 7 > 0 is sufficiently small, and for M > 1 

(4.3') lira I(B~/(2Ln)l/2,y/Ln) <= m w.p.1 
/ /  

provided y > 0 is sufficiently large. 
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The first step of  the proof  will be to verify the right-hand side of  (4.1~). 
After that we proceed to the proof  of  (4.U), since by taking M > 1 it easily 
follows from J < I and the definition of  I that the left-hand side of  (4.1 r) 
holds. 

Let Pn = P(d(Bn/(2Ln)I/2,K) < 7/Ln). Then 

Pn = P(B E (2Ln)1/2K + (*/2y/(Ln)l/Z)u) 

where U is the closed unit ball o f  Co[0, 1] in the sup-norm. Hence the iso- 
perimentric property of  Gaussian measures implies 

Pn > ~(c~n § (2Ln) 1/2) 

where 
�9 (~n) = P(B c (v27/(Ln)I/2)c~) 

and ~b(t) = (2n) -1/2 ft_o ~ e-X2/2dx. Now as e + 0 

P ( B E e U ) ~ e x p  - e 2 , 

so as n --+ oc, an ---+ - e c ,  and 

((2~)1/2 I ~  I)-1 exp{-c~2/2 } ~ 4 e x p { - ~ 2 L n / ( l @  2)}. 
7~ 

Hence as n ~ oc 
O: n ~ - Tc( L n  ) l/2 / ( 81 /2y  ) , 

and 2~p~ = ec if (~/(81/27) - v22)2/2 < 1. Thus taking 7 > ~/8, the Borel -  
Cantelli lemma easily implies the right side of  (4.1 ~) with limiting value at 
most ~/8. 

Turning to (4.2 r) we fix M => 1, and point out this suffices for the general 
result. Now {B~(t): 0 < t < l} can be written as 

(4.7) Bn(t) = ~ 2kgk,~k(t), 
k>O 

where {9k,,: k > 0} are i.i.d, sequences of  i.i.d. N(0,  1) random variables, and 

(4.8) 2 k = 2Qr(2k + 1)) -1, @k(t )  = 21/2 sin((2k + 1)~ct/2) 

for k > 0 and 0 -< t < 1. Then for each x E C0[0, 1] and 6 > 0 the arguments 
in Lemma  1 in [G9I]  can be used to show that there exists a unique h C H 
such that Ilx - hll2 < 6 and 

J(x,  ~) = (h, h)M. 

Lemma 1 in [KL] provides a general result o f  this type, so we do not include 
details. To determine h we use the method of  Lagrange multipliers as applied in 
[GK, pp. 305-306] to a somewhat similar problem. That is, i f x  E C0[0, 1], then 
with Wiener measure one x = Eke0 XkOk, where the series converges uniformly 
and in L 2 [0, 1 ]. Thus as in [GK] we have 

(4.9) J(x, 6) = inf ~ (xk + bk)Z/2k,2 
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where 

(4.1o) 5~ = -x~/(1 + ,~t), 

and t = t(6) satisfies 

(4.11) ~ 2 ;,~t)2 82 x J ( 1  + = . 

k>O 

Hence 

2 2 (4.12) J(x ,~ )  = t 2 ~ ,t~xk/(1 + 22t) 2 . 
k>0 

Thus (4.7) implies that 

(4.13) j (Bn/(2Ln) l /2 ,6  ) tz /(2Ln) ~ 4 2 2 2 = . 2kg , , , j ( 1  + 2kt~) , 
k>0 

where 6, = t,(cS) satisfies 

2 2 = ~52 (4.14) ~ 2292, j ( (2Ln)( l  + 2kt,) ) 
k>0  

for a l l n  >_ 1. 
Now take 6 = 7/Ln and let J~ = J(Bn/(2Ln)I/2,y/Ln ). Then for c > 0 

(4.15) P(J~ <= M )  = P(Jn <= m, tn >= (Ln/c) 2) 

q- P(Jn <= M, tn < (Ln/c) 2) 

Thus 

(4.16) 

- . r ,  + I I , .  

p( 42 ,2 ) = Zkyk, n / ( ( 1 / t , ) + Z k )  < 2MLn, tn >= (Ln/c) 2 

<= t) (k~>=O,)~;g2,n/((c/Ln)2 + A2)2 < 2 M L n )  

= gk, n <= 8MLn 

since infx2_>a2 x4/(a 2 @X2) 2 = 1/4. To estimate the last term in (4.16) we di- 
gress to a iemrna which also is used to estimate [In. 

Lemma 5. I f  gl,g2 . . . .  are i.i.d. N(0, 1), then for  all m >= 1 and for  ~ small 
enough so that 0 < T < e -3 
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Remark. Perhaps the bound in (4.17) looks strange, but it applies only for 
> 0 small, namely 0 < z < e -3. This is adequate for our purposes; a sharper 

bound appears in the proof. 

Proof First observe for u > 0 

) / / P g} =< zm < E e-Us ~lg2+ucm 
j=l  

= exp{u~m - (m/2)log(1 + 2u)}.  

1 log(1 + 2u) for u > 0 we take u = (1 - z)/(2z),  so Minimizing f (u) = ~u - -~ = 

P < zm =< exp{m(1 - ~ - l o g  l / z ) /2} .  

Hence 0 < z < e 3 implies (4.17) for all m > 1, and the lemma is proven. 
[] 

Returning to the proof of  (4.2') we apply Lemma 5 to (4.16). Let [ �9 ] 
denote the greatest integer function and fix ~, 0 < ~ =< e -3. Hence since 2 2 = 
4(~(2k + 1)) .2  we have 2 2 > (c/Ln) 2 iff k < Ln/rcc - �89 Therefore, for c > 0 

sufficiently small so that [Ln/rcc - �89 > (SMLn)/z we have (by applying (4.17) 

with m = [Ln/~rc - �89 § 1) that 

/[Ln/=e--�89 2 < 8MLn) 
(4.18) In <= P [ g~=o k,n = 

= < e x p { - ( l + v / 2 ) [ L ~ c - ~ ] }  

< exp{ - (1  + z/2)Ln}. 

Thus ~ n > l  In < OO for c > 0 sufficiently small, so it suffices to prove ~.>=l 
IIn < O0. 

Now 

(4.19) 

IIn <= P 

= P  

<_P 

) 
2 ) 

2 2 2 2 2k gk,,,/((1/tn) + 2k) < 272/Ln,(1/&) > (c /Ln)  2 

"22( ~< • )22glc, n <= 8Y 2/Ln,17->=tn (e/Ln)2) 
\ k=tn 

a 2 1 
since i n f - -  

x2<=a (a §  2 4 
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= /~k gk, n = 
)2 <= (c/Ln)2 

< P  ( ~ 4 ( ~ ( 2 k +  -~ 2 ] 1)) -gk, n <: 872/Ln 
\ Ln ] / k > ~ - ~  

= g ~ , n  = ( ~ / d )  , 

<_k<~ 

where d > 0 is taken such that ( l / d )  - ( I / c )  = 2. Now fix 0 < z < e -3. Then 
for 7 > 0 sufficiently small so that 16 (w/d )  ~ < 2z, we have from Lemma 5 
that 

IIn < e x p { - ( 1  + z/Z)Ln} 

for all n sufficiently large. Hence we also have En>=l[I~ < oo, and (4.5) and 
the Borel-Cantelli  lemma together imply (4.2'). Hence it remains to prove 
(4.3'). 

To verify (4.3') fix M > 1 and recall U = { f :  I I f ] l~  < 1}. Then 

(4.20) P(I(Bn/(2Ln)  ~/2, y/Ln) > /1 / / 2 )  

= P(Bn/(2Ln) 1/2 CMK + 7U/Ln) 

= P(B CM(2Ln)1/2K + v ~ y ( L n ) - l / 2 U )  

< 1 - @(M(2Ln) 1/2 + ~n) 

by the isoperimetric property of  Gaussian measures, where 

�9 ( ~ )  = P(B E x /27 (Ln ) - l /Zu )  ~ 4 /~exp{-~2Ln/ (1672)}  

as in the proof  of  (4.1'). Thus as before ~ ~ -7c(Ln/8~2) 1/2 as n ---+ oc. Hence 
(4.20) implies that 

P(I(Bn(2Ln)t/2,7/Ln ) > M 2) =< P(Z  > (Ln)l /2(Mx/2 - ~/(27)))  , 

where Z is N(0,  1). Since M > 1, by taking y > 0 sufficiently large we have 

p( i (Bn / (2Ln) l /2 ,  y /Ln)  > ~ i2 )  < OO. 
n>l  

Thus the Borel-Cantelli  lemma implies (4.3'), and Theorem 3 is proven. 

5 Convergence and clustering in H-norm via interpolation 

Our next result shows that non-trivial H-convergence and clustering can be 
obtained for independent Gaussian samples when they are suitably interpolated. 
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As before we assume B1,B2 .... are i.i.d. Brownian motion samples with contin- 
uous paths restricted to [0, 1]. Let p~ be a non-decreasing sequence of  integers 
such that lim~p~ = co, lim~p,/Ln = 0, and let 

(5.1) Y~(t) = ~ B~(k/pn)/(2Ln)I/2 t = k/pn k = 0, 1 , . . . , p ~ ,  

[. linearly interpolated otherwise. 

Theorem 4. Let BI,B2 . . . .  , {p, :  n > 1}, and {Y,: n > 1} be as above. Then 

(5.2) {Y~:n ~ 1} H K w.p.1. 

Proof Let 

{ f(k/pn) t = k / p ,  k = 0 , 1 , . . . , p , ,  
lrn(f)(t) = linearly interpolated elsewhere. 

Then for f E K,  when f /  is L ip( l )  on [0, 1], we have by the mean-value 
theorem that 

Pn k/pn 

l l f  - rc~(f)[[ 2 < E f (S(s)  - S(Ck,~)) 2 ds 
k = l  k - - 1  

Pn k/p~ 
_-< E M s  f I -ck, ol2ds, 

k=l (k-I) 
Pn 

where ( k -  1)/p~ < ck,~ < k/pn for k = 1 , . . . ,  p~. Hence for such an f we 
have 

lim l i t  - 7c~ftl 2 = 0.  
n 

Thus 

{Yn:n > 1} ~ K  w.p.1 

if we show for all e > 0 that 

(5.3) lim IIY II  _-< 1 
n 

and 

(5.4) 

w.p.1, 

lim IIY,, - fllLr = 0 w.p.1 
n 

for all f E K when f l  is L ip ( l )  on [0, 1]. That (5.4) suffices follows from the 
fact that these f are dense in K in the H-norm.  

Fix e > 0. Then 

qn --P(IIYnl[~ > 1 + e )  

=p(~__l (B , (k /p , ) -Bn( (k - l ) /pn) )2pn> 2(1 + e)Ln)  

= P > 
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where  {g<,:  k == 1 , . . . , p , }  are i.i.d. N(0 ,  1) for n > 1. Thus by  M a r k o v ' s  in- 
equal i ty,  for  any u > 0 

f p~ 
q.  < exp { - 2 ( 1  + e ) u L n  - log(1 - 2u) } 

= , T ) 

f P n  ) 
= exp < ~ - � 8 9  + g)Ln - p~) - ~ -  l og (pn / (2 (1  + s)Ln))~ 

) 

b y  set t ing u = �89 - p . / ( 2 ( 1  + s)Ln)). Hence  

qn < exp Pn + Pn log = n(l+e) 

1 1 
- -  n(T~) exp{ i(Ln)g(n) - (Ln)g(n) log g(n)) , 

where  g(n) = p~/Ln --+ 0 as n ~ oc. Thus ~n>__l q~ < 0% and (5.3)  holds.  

To ver i fy  (5 .4)  first observe  that  

[[Yn - f l i r t  < [ti1,, - ~ f l I H  + !lTcnf -- f l t ~ -  

I f  f C K and f '  is L i p ( l )  on [0,1],  we have l i m ~ , t l ~ n f - f H H  = 0. Hence  
it suffices to p rove  lira n l i Y n -  ~z,,flIH = 0 for f o K .  Set Yk = ( f ( k / p ~ ) -  
f ( k -  1/p, ,)) /p2 ~/2, k = 1,. . . ,  p~. Then 

P" { ((Bn(-ffT) - B n ( ~ i ) ) ) / p ;  1,'2) 

k = l  

-- QQf (~pn) - - f  ( ( k~pn l ) ) )  / p n l / 2 )  } 2 

pn 
= ~(glc, n/(2Ln) 1/2 - yk) 2 ' 

k = l  

where  gk,~ are i.i.d. N ( 0 , 1 )  for k =  1 . . . . .  Pn, n > 1. Also  observe  that  
Pn k/ pn ! 2 - 1 pn k/ pn I 2 ~k=t  7 2 P~ = 2k=l ( f ( k - i ) f  (s)ds)  / p .  < 2k=~ f l k - l~ ( f  (s)) ds < 1. Us ing  the 

pn Pn 
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Cameron-Mart in  formula in IR pn we see 

7"C 2 P(IIY~- . f l lH  ~ ~) 

= P \k=l  ( ~  (gk'n/(2Ll'l)'/2--7k)2 ~ g) 

{ Pk~=l}  { Pr } = exp -2Ln 72/2 f exp - 9k,,Tk(2Ln) '/2 
.f2 pn g2n<_2eLn } t k=l , - -  

-.~ ~2}p 2 > e x p { - L n  ~ 9k, n = < 2eLn , 
k=l 

dP 

where the inequality follows from the symmetry of  the Ganssian measure and 
Jensen's inequality. Now pn 92 2eLn) < P(~k=l  k,n > = pn/(2eLn) --+ 0 as n --+ cc so 

Gk=I p" ?)kz =< 1 implies for n sufficiently large 

1 
P(I IYn-  rcnfH 2 < e) > - -  

= = 2n 

Applying the Borel-Cantelli  lemma, we thus have for all f C K, with f '  being 
Lip(1 ), that 

lim IIYn - f t [  2 = 0 w.p.1. 
/ /  

Thus the theorem is proven. 

Remark. As before, assume {Pn} is a non-decreasing sequence of  positive 
integers. I f  {p~} is bounded, then eventually p ,  = d, a positive integer, and 

it is easily seen that {Y,} ~ zaK w.p.1. Thus (5.2) fails in this case. On 
the other hand, suppose that lirn~ pn/Ln > fi > 0. Fix e > 0 and 0 < a < 1. 
Then it follows from (6.20) of  [GK] that for some absolute constant C1 > 0 

P(llY~[]~ > l +e)=P(~Y2,n > 2(l +e)Ln)  

> p 2 x-" 0.292 = 9~,n + z_, k,n > 2(1 + 8)Ln 
2 

> G e x p ( - ( 1  + e)Ln + (p~ - 1)L(1 - 0"2) -1/2) 
-- (2(1 + e)Ln) 1/2 

provided 

(5.4) 2( l+e)Ln  
2 5 ( 1 + p n 0 -  2) 

1 m 0-2 

Thus first choose 0- so that equality holds in (5.4), hence 

0-2= 2 ( 1 + ~ ) L n - 2 5  = L n / p n + O ( 1 / P n )  
25pn + 2(1 + e)Ln C~ + Ln/pn 
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where C~ = 25/(2(1 + e)). In  part icular 

1 - ~2 _ C~ + O ( 1 / p n )  

C~ + Ln/ pn 

which means  that 

(1 + e)Ln - (pn - I)L(1 - a2) -1/2 

1 

\ c;Tb(-TPZ );j �9 

Since l imp , jLn  > fi > 0, this enables  us to choose ~ > 0 so that 

C l e x p ( - L n )  
P(ilg,  II 2 > 1 + e )  > (2(1 +8)Ln)~/2 

for all large n. Hence  by  the Borel-Cantel l i  l emma 

limHYnjlH > 1 w.p.1. 

Thus Y~ does not  converge  to K,  and again (5.2) fails. This  shows that the 
assumpt ions  in Theorem 4 are relat ively "sharp". 
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