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1 Introduction and statement of results 

This paper is a sequel to [P1] where we studied the random walk on O(N) 
whose step distribution is uniform measure on the set of reflections. Here we 
extend our results for "random orthogonal reflections" to the complex and 
quaternionic cases. We suggest suitable analogues to the orthogonal case for 
the unitary group U(N) and the symplectic group Sp(N) and prove precise 
estimates on the distance to stationarity with respect to total variation dis- 
tance (Theorems C1-2 and Theorems Q1-2) for these random walks. The 
results show that, in the large N limit, the so-called cut-off phenomenon 
occurs (see Remark 1.1). Since Sp(n) C U(Zn) we henceforth use the notation 
Sp(n) and U(N) for these groups. 

By a complex (quatemionic) reflection we mean a norm preserving auto- 
morphism of C ~v (H n) that leaves exactly one hyperplane pointwise fixed. We 
denote the set of complex (quaternionic) reflections of C/v (H n) by ,~c ~ (.~u~). 

i This paper is based on parts of the author's doctoral dissertation written at The Johns 
Hopkins University 
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Notice that the sets .~cN and ~H" are unions of  conjugacy classes: 

~cN = {Bdiag(e ie, 1, . . . ,  1)B*: B E U(N), qo E [0,2~)} 

and 
NH, = {Bdiag(h; 1 . . . . .  1)B*: B C Sp(n), h ~ Sp(1)} .  

The one-step distributions for the random walks we consider are certain delta- 
functions on -~c N and NH' .  

It can be shown that ~ c  N and NH" generate U(N) and Sp(n), respectively. 
In fact, each element in U(N) (resp. Sp(n)) can be written as a product o f  
at most N (resp. n) complex (resp. quaternionic) reflections. We omit the 
proof. 

Random complex reflections: As a natural analogue to random orthogonal 
reflections, we choose the following random walk on the unitary group U(N). 
The random walk starts at the identity I E U(N) and takes steps according to 
the following step distribution #. # is concentrated on the set Nc;V and induced 
by the product of  Haar measure 0 on U(N) and the probability measure on 
[0,2~z) with density proportional to (sin(cp/2)) N-1. In [P1] we considered a 
random walk on O(N) which, at even times, can be viewed as a random walk 
on SO(N). This random walk on SO(N) has step distribution concentrated on 
the 2-dimensional rotations and induced from Haar measure on SO(N) and the 
probability measure on [0, 2re) with density proportional to (sin ((p/2)) N-2. See 
Remark 1.4 in [P1]. 

Notation: We denote the distribution of  a random walk (with step distri- 
bution #)  after k steps, i.e., the k-fold convolution power of  #, by #k. 

Theorem C1 Let # be the probability measure on U(N) defined above. There 
exist universal positive constants c~, fl, co such that .for any integer N > 16 
and any positive number e > co, we have: if  k = 1 __ ~N log N + eN is an integer, 
then 

] ]#~-  OIlTV < ee -r 
\ 

Theorem C2 Let # be the probability measure on U(N)  defined above. For 
any integer N > 6 and any positive number c, we have: i f k  = � 8 9  - cN 

is an integer, II#k - OIIrg > 1 - 6e -2c . 

Random quaternionic reflections: We further extend the notion of  "random 
reflections" to the quaternionic case. In order to explain how our random walk 
on the symplectic group Sp(n) proceeds, we start out by defining a probability 
measure (call it e) on Sp(1). 

For any h E Sp(1)  the eigenvalues are e ii~~ for some Oh E [0,2~) (we 
identify Sp(1)  with SU(2)) .  We take the probability measure e to be the mea- 
sure of  mass 1 that has density proportional to (sin(qoh/2)) 2"-2 with respect 
to Haar measure on Sp(1). 

Our random walk on Sp(n) starts at the identity I E Sp(n) and takes steps 
according to the probability measure r/ which is concentrated on ~ n "  and 
induced from Haar measure 0 on Sp(n) and the measure e on Sp(1). 

Theorem Q1 Let t 1 be the probability measure on Sp(n) defined above. 
For any integer n > 8 and any positive number c => 11.6, we have: i f  
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k = �89 log n + cn is an integer, then 

II'Ik - Ollrv < 3.6e-C/5 - 

Theorem Q2 Let  ~ be the probabili ty measure on Sp(n)  defined above. For 
any integer n >= 2 and any positive number c, we have: / f k  = � 8 9  cn 
is an integer, then 

log n 
II~lk -- OllrV > 1 -- 6e -4c -- 75 nl/3 . 

The constants appearing in the statements of Theorems C2 and Q1-2 are not 
sharp. The methods of proofs for our main theorems rely on previous work by 
Diaconis, Rosenthal, and others and are similar in spirit to the ones used in 
[P1]. Our main tool throughout will be Fourier analysis. 

Remark.  1.1. Together, Theorems C1 and C2 (and Theorems Q1 and Q2) show 
that the cut-off phenomenon occurs: For large N (n), there exists a critical 
number k0 depending on a size parameter for the group (here, k0 = �89 log N 

for U ( N )  and/co = �89 for Sp(n) )  such that k0 steps are both necessary 
and sufficient to be close to stationarity (Haar measure 0). 

For background on the cut-off phenomenon see, for example, [AD]. 
Together with Rosenthal's example on S O ( N )  [R] and "random orthogonal 
reflections" in [P1], the random walks here considered are, to the author's 
knowledge, the only existing examples of random walks on the classical com- 
pact  Lie  9roups for which the occurrence of a cut-off phenomenon has been 
proved. 

Remark.  1.2. It turns out that the speed of convergence of a random walk 
depends rather sensitively (at least with respect to L2-distance) on the step 
distribution chosen: If we change the step distribution # by changing the prob- 
ability measure on [0,2~z) from density proportional to (sin((p/2)) N-1 to uni- 
f o r m  on [0,27r), k needs to be at least of order N 2 for the k-fold convo- 
lution power of this new step distribution to have an L2-density. The proof 
involves some delicate but interesting multiplicity problems in representation 
theory (see [P2], Example 2(a) in Sect. 4, for details). On the other hand (and 
as the proof of Theorem C1 will show), the L2-norm of #k is already close 
to 1 for k = �89 logN + cN and c > co, where co is some universal positive 
constant. As a possible explanation for this discrepancy in convergence behav- 
ior, note that ~cN is a manifold with a conic singularity at the identity I. Our 
probability measure #, as opposed to the one with uniform measure on [0, 2rr), 
obviously "sufficiently smoothens out" this singularity. We do not know how 
to make this rigorous, however. 

Also, see Example 4 in Sect. 4 in [P2] for a different example of "random 
quaternionic reflections" on Sp(n)  with rather "slow" (if at all) convergence to 
stationarity with respect to L2-distance. 

Organization: This paper is organized as follows. In Sect. 2 we present 
basics on random walks and Fourier analysis used throughout. The necessary 
background on the representation theory of U ( N )  and Sp(n) ,  together with the 
computation of the required Fourier coefficients, are presented in Sects. 3 and 
5, respectively. We prove Theorem C1 in Sect. 4 and Theorem Q1 in Sect. 6. 



184 U. Porod  

The proofs of  Theorems C2 and Q2 are very similar; they are both presented 
in Sect. 7. 

2 Random walks  and Fourier analysis 

A random walk on a group G is determined by its one-step probability distribu- 
tion #. The random walk starts at the identity (say) and takes steps according 
to the measure #. Thus at time t -=- 0 the distribution of the walk is the measure 
concentrated at the identity, at time t = l it is #, and at time t = 2 it is the 
convolution of # with itself: 

#2(S) = (# * #)(S) = f #(g- iS)  dp(g) 
G 

for any Borel set S E ~ (G) .  In general, at time t = k the distribution is #k, 
the k-fold convolution # * # , . . . * #  of #: 

#k  = # * # k - 1  �9 

Our focus of  interest is the speed of convergence to stationarity (Haar measure) 
with respect to total variation distance (and L2-distance) for the random walks 
under consideration. We recall the definition of total variation distance: 

Definition 2.1 Let # and 0 be two Borel probability measures on a topological 
space M and let ~ ( M )  be the Borel sigma-field of  M. The total variation 
distance is defined by 

1 
I1#- Ollrv := sup I#(S)-  o(S)l = OI(M) �9 

Sc,~(M) 

If  # has density f with respect to O, we have 

rl#- lf v i f  
= 2 M I f - - l l d O .  

(notice that 0 < I I# - 01[rv < 1.) 

We now present basic background on Fourier transforms and the Upper 
Bound Lemma of Diaconis and Shahshahani [D]. For background on repre- 
sentation theory see, for example, [BtD, FH, Z]. Let G be a compact Lie 
group; Po, PbP2,... its irreducible unitary representations; and X0, Z1, Z2,... the 
corresponding characters. 

Definition 2.2 Let v be a finite measure on G. 
(a) The Fourier transform of v at Pi is defined by 

v(pi) := f Pi(g) dv(g). 
G 

(b) The Fourier coefficient of  v at Pi is defined by 

f(Zi) := trace f(Pi) = f Zi(g) dv(g). 
G 
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Fourier transforms convert convolution to multiplication: 

v~.---~2(p~) = ~ ( p i )  �9 v~(pi) .  

If v is conjugate-invariant, i.e., if v(gSg -1)  = v(S) for all measurable sets 
S c_ G and for all g E G, a simplification occurs: v(pi) commutes with Pi(g) 
for all g E G. By Schur's lemma, V(p i )  = riI for certain ri for any irreducible 
representation Pi, i = 0, 1,2,. . .  Clearlyr r / =  f(Zi)/di where di  denotes the di- 
mension of the irreducible representation Pi. Furthermore, we have 

Vk(Pi) = r~I = ( 9 (Z i )~k l  
\ d i J  

and 

9k(Zi) = dirki = di . (1) 

A fundamental property of the Fourier transform is the following theorem. 

Theorem 2.3 A finite positive measure v on a compact Lie group G is uniquely 
determined by its Fourier transform (9(pi), i = 0, 1,2,...). 

As an immediate corollary we have 

Corollary 2.4 I f  a finite positive measure v on a compact Lie group G 
is conjugate-invariant, it is uniquely determined by its Fourier coefficients 
(9(Zi), i = 0,1,2, . . .) .  

For a given irreducible representation Ps of G, let 

q~(,) jk, j, k = 1 ,2 , . . . , ds ,  

denote the entry functions, i.e., Ps(g) = (~bJ~)(g)). The Schur orthogonality rela- 
tions assert that, with respect to the usual inner product in L2(G), the functions 
~b(~) jk are orthogonal to each other and of norm d s  q2, i.e., 

f ~(s) . ,~(0 dO = ~st~jl~lands 1 jk "~ lm 
G 

where O is normalized Haar measure on G and the bar denotes complex 
conjugation. It follows that the irreducible characters Zo, Zb Z2,... form an or- 
thonormal set of functions in the Hilbert space L2(G): 

f ZiZj dO = c~ij. 
G 

The following version of the Upper Bound Lemma can be found in [R]. 

Lemma 2.5 (Upper Bound Lemma) Let  G be a compact Lie group, g its 
normalized Haar measure, and v a conjugate-invariant probability measure 
on G. Set  l i :=  r Then 

1 - 1 )  . 
I[V--1,9112V ~ 4 (i=~o/[i[ 2 



186 U. Porod 

3 Fourier analysis on U(N) 

We briefly summarize, without giving proofs, basic facts from the representa- 
tion theory of U(N) to the extent necessary for our computations. For back- 
ground see [BtD, FH, Z]. The main goal of  this section is to compute the 
eigenvalues of  the Fourier transforms for each irreducible representation of 
U(N) (Proposition 3.3). 

Recall that the irreducible representations of  a compact connected Lie group 
are in one-to-one correspondence with the integer lattice points in a ffmdamental 
Weyl chamber (the highest weights). The set of  possible highest weights for 
U(N) can be chosen to be 

co E Z N with  031 < (O 2 < < (2) N 

We can thus index the irreducibles of  U(N) by N-tuples 2 = o9 + q /o f  strictly 
increasing (pos. or neg.) integers for N = 2n + 1 odd, and of strictly increasing 
half-integers (odd multiples of  �89 for N = 2n even. Here ~ stands for 

_1 ~ f ( - n , - n + l ,  . . . .  - 1 , 0 , 1 , . . . , n )  f o r N : 2 n + l ,  

~ =  ~ = l ( - n +  �89  -- , 1 1  1 2 ~cR+ ~, ~ , . . . , n -  3) for N = 2n, 

where R + denotes the (chosen) set of  positive roots of U(N) and can be 
taken to be R + = { e j -  el: 1 < i < j <- N} (el denotes the ith basis vector 
(o . . . .  , 0 ,1 ,0 , . . . , 0 ) ) .  

We will need the dimension of each irreducible of  U(N). 

Proposition 3.1 Let d,~ denote the dimension of  the irreducible representation 
p2 of  U(N) corresponding to the index 2 = (21,22,...,2N). Then 

d), = Hl__<r<s=<N(2~ -- 2r) (2) 
0 ! I ! . . . ( N -  1)! 

Proof We use the Weyl dimension polynomial: 

H 
aCR + 

(3) 

Here ( �9 , �9 ) denotes the usual Euclidian inner product and R + and ~ are as 
given above. An easy calculation yields (2). We omit the details. [] 

The Weyl character formula allows us to compute the irreducible characters 
of  a compact connected Lie group at any element in the (chosen) maximal 
torus T. For U(N), the standard choice for maximal torus is the subgroup of 
diagonal matrices. 

The Weyl character formula for U(N) 

Let Z~ denote the character of  the irreducible representation p~ of U(N) cor- 
responding to the index 2 = (21,22 . . . .  ,)~X)- The value of the character X2 at 
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the element diag(e iq~l . . . .  , e ioN) is 

( , N 2w~sNsgn(w)exp i ~j=l,t~(j)qoj 
X;~(diag(ei~~ ei~N )) = 

H1 <=~<s<=N 2i sin (�89 -- q~r)) 

Here SN denotes the symmetric group and sgn(w) denotes the sign 
permutation w. 

Proposit ion 3.2 Fix the reflection B = diag(e i~ 1, . . . ,  1 )C  U(N). Let ). = 
(21,22, . . . ,  2N) be the index of an irreducible representation of U(N). Then, 

N eiO~j 
1 ~ ( -  1 )N- j  ' N 1 d(~N- l) (5) 

z~(B) -- (2i) m-1 j=l (sAn(0/2)) - ;~j " 

(4) 

of  the 

Here d ~  -1) denotes the dimension of the irreducible representation of 
# 

U ( N -  1) of index (-~1,..., ; , . . . ,  2N) (the hat symbol means deletion). 

Proof Use formula (4) and set 91 = 0. Eventually we will let cp~ ~ 0 for 
2 <_ s < N. We can rewrite the numerator in (4) as 

~ ( - 1 ) J - l e x p ( i O 2 j )  �9 ~ sgn(o-)exp i~2o( , ) (p~  
j= l  aCSN_ 1 s = 2  

where, for brevity, we have written SN-1 for the set o f  maps from {2 . . . .  ,N} 
onto { 1 , . . . , ] , . . . , N } .  We can view such a map o- as a permutation 
of  { 2 , . . . , N }  under the order preserving identification of { 2 , . . . , N }  with 
{1, . . .  ,] ,  . . . .  N},  and sgn(o)  denotes the sign of  this permutation. Furthermore, 
we can rewrite the denominator in (4) as 

[ I  2is in (p ,  - 0) l ]  2isin ((ps - q~) . 
s = 2  2<_r<s<~N 

Taking the quotient of  these two expressions and letting (Ps -+ 0 for 2 _< s -< N 
yields (5). [] 

Notation: From now on we will write a!! for a(a - 2)(a - 4 ) . . .  1 (a odd). 

Proposit ion 3.3 (a) For N = 2n + 1 and any index 2, 

fl(Z,t ) __ (--1)N-i-n(n! ) 2 
dz ns,il; s I / f  2i = 0 (6) 

and 

f i (Z~)_O i f 2 j + O f o r  a l I j = l , 2 , . . . , N .  
d~ 

(b) For N =  2n and any 2, 

~(z~) 
dz 

( ( 2 n -  1)!!) 2 

2N. ny_,; j �9 ( - 1 )  ~ . ( 7 )  
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Proof By Propositions 3.1 and 3.2, 

~Y=I (-- 1 ) N - j  exp(i2jO) IIl_<r<s~N (2s - 2r) 
r, s4:j 

0!1! . . .  (N - 2)[(2i) N- l (s in(0 /2) )  N-1 
z;~(o)  = 

We need to compute 

fi(Z~) = CN f (sin o)N-Iz2(20 ) dO 
0 

where CN = ((N - 1)(N - 3 ) . . . 2 ) / ( ( N  - 2) (N - 4 ) . . .  1) ( l /n)  for N = 2n § 
1 odd and CN = ( ( N -  1 ) ( N -  3 ) . . . 3 ) / ( ( N - Z ) ( N - 4 ) . . . 2 ) ( 1 / 2 )  for N = 
2n even. 

(a) In case N = 2n + 1, the 2j ' s  are integers and we have 

fei~j 20dO= 0 for 2 j ~ 0 ,  
o n for ')~j ~- 0 .  

This, together with (2), yields (6). 
(b) In case N = 2n, the 2j 's  are half  integers and we have 

7~ 

f el# 2~ dO = - 1 for all 21. 
o i,)~j 

Therefore, 

Since 

fi(Z,~) _ ((N - 1)!!) 2 N r~l<r<s<N( .~s  --  ,~r) 
d2 ~/-7~- E (-- 1 )N--j+1 r, s•j 

j=l "~j I I l  <r <s<=N( ~s --  "~r ) " 

N 
U ()~s -- ~r) = E ( - - l )  j - ]  U "~i " I~ (,)us -- ~r) 

l<=r<s<=N j=l i4=j l<-_r<s<N 
r, s+j 

(this is the Vandermonde determinant expanded along the first column), we 
get (7). [] 

4 Proof  of  Theorem C1 

By Lemma 2.5 and (1) it suffices to show that there exist positive constants 
~,/~ such that for any integer N > 16 and any positive real number e larger 
than some universal constant co, 

~(zi) 2k 
i=0 di d 2 - 1 <= ae -~c (8) 

for k = � 8 9  + cN. 
For simplicity we restrict the proof o f  Theorem C1 to the case N = 2n § 1 

odd. For the case N = 2n even the proof  is extremely similar, so we can safely 
omit the details. 
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From now on we will always assume N = 2n + 1. We therefore need to esti- 
mate 

~ (n ! )  2 ) 2 k  

~.:~,=o \ns+,l~jl d~ (9) 
for some i 

where k = n logn + cn and the 2 's  are N-tuples o f  strictly increasing integers. 
This will be done in two parts: In Part I we estimate 

( ( n ! )  2 ) 2 k  

2:2i=0fo . . . . . .  , \ n j * * l # l  d~, (9a )  
8n<21, )'N <8n 

and in Part II we complete the proof of  Theorem C1 by estimating the tail 
s u m  

( ( n ! )  2 ) 2 k  

~.:;,=0eo . . . . .  ~ \ n ; , ~ l ; . ; I  d~ .  (9b)  
21 _<--Sn or ,l N >8n 

Pa~ I 

Write )x instead o f  2 if 21 < 22 < . . .  "~ "~x < 2xq-1 = 0 to indicate the number 
x < 2n of  negative integers in the N-tuple. Set 

/s ) 2k 2 Sex:= ~ ~ d;~= 
--8n<21, 2N <8n 

Clearly, Yx = ~ 2 . - x  for 0 _< x _< 2n. 
Therefore, (9a) equals 

n--1 
2 ~ 5 P x + Y n .  

x=0 

In the following we will estimate 

(x!(2n--x)!) 
~x:=\  (n!)  2 J x =  

2k 

\ IIi,x+~ I/~il ' 
--8n<21 , 2 N <8n 

( x ! ( 2 n - - x ) ! ~  2k 2 

8n <)q, ;'N <8n 

(10) 

for each x, 0 < x _< n, separately and then use (10) in order to estimate (9a). 
Consider 2 x = (21,22 . . . .  , ,~x, 0, 2x+2,..., ,~N) with 2i < 0 for 1 _< i _< x and 

2i > 0 for x + 2 - <  i _ < N .  Set 2 ~ : = ( - x , - x + l  . . . .  , - 1 , 0 , 1 , 2 , . . . , 2 n - x )  
and 2 x - 2~ = :  b = ( - b l , - b 2 , . . . , - b x ,  O, bx+2,... ,bx). 

Proposition 4.1 There exist  two universal positive constants K and a such 
that f o r  any x with 0 <- x <_ n we have Jor all indices 2 x with - 8 n  < 21 and 
2N < 8n 

x ' (2n  Z x) '  ) k 
IIi ,x+l[2il d;~ <= (Ke--"c)bl+bz+'-+bN(7n) ('~-x)+(n-x-l)+-+l " 

Proo f  We need the following two lemmas. 
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Lennna 4.2 Let  d ( T ) : =  d;~ with 2 x = ( - x  . . . . .  
Then 

d ( T +  1) T +  1 + x  

d ( T )  T + 1 + x -  2n " 

- 1 , 0 , 1  . . . . .  2 n - x -  t ,T) .  

(11) 

Lemma 4.3 Set r(T) x!(2n--x)! with 2 x " -  IIi,x+a [All as in L e m m a  4.2. Then 

r (T  + 1) _ 1 1 < e_i / ( r+l) .  
r (V)  r + 1 - 

We now split the proof of  Proposition 4.1 into three parts. In Part A we 
prove the statement for all 2 x for which b = (0 . . . .  ,O, bN), in Part B we prove 
the statement for all ~x for which b = (0 , . . . ,  0, bx+2 . . . . .  bN), and in Part C 
we prove the full statement. 
(A) First we analyze 

r ( T  + 1)ed(T  + 1) 

q :=  r ( T ) k d ( r )  

From the above results we have 

T_+_I _+x e (1/(T+l))(n logn+cn) q <  = 
= T + l + x - - 2 n  

T + l + x  T + l - n _  
q 

T + l + x - 2 n  T + l + n  

T + l - n  ~ 

T +  1 + x - 2 n  q 
< 
z 

with 

q =  ( l + T + l _ n 2 n ) e - ( I / ( T + l ) ) ( n t ~  

We have already essentially estimated ~ in the proof  of  Proposition 4.1, Part A 
in [P1] and will therefore not repeat the details here. From there, changing 
b ~ = T + ~ - n  to b* = T + l - n  we get 

__< 5e -c/9 f o r n  __> 8 .  

Now start with the index 2~ (for which T = Tbeg = 2 n - - x )  and, step by 
step, increase the last number in this N-tuple by 1 until the desired T = 
Tend = AN is reached. Clearly, we have picked up a factor less than or 
equal to 

I Tbeg + 1 - n . (Tbeg § 1) + 1 -- n . . .  

Tbeg + 1 + X -- 2n (/'beg + 1 ) + 1 + X -- 2n 

( T e n  d - 1) + 1 - n 1 
(Tend -- D 7 i q - - x - - 2 n ]  (5e c/9)bN (12) 

in going from r(Tbeg)kd(Tbeg) to r(Tend)kd(Tend). This yields the desired result 
for x = n. We now investigate the expression in square brackets in (12) more 
closely for the case 0 < x < n - 1. Each factor (T + 1 - n) / (T  + 1 + x - 2n) 
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(where  Tueg < T < Tend) in this  express ion  can be  wri t ten as 

T + l - n  T - n  T + 2 + x - 2 n  

T - n  T - l - n  T + l + x - 2 n  

so that  the whole  express ion  becomes  

Tend --  n Tend --  1 - -  n 

Tbeg --  n rbeg -- 1 -- n 

Tend + 1 + X --  2 n  

Tbeg -~- 1 + X --  2 n  

Since we a s s u m e  Ten d "~ 8n and Tbeg = 2n - - x ,  we see that  this p roduc t  is less 
than or equal  to (Tn) ~-x. In total  we have p icked  up a factor  o f  at mos t  

(5e-C/9)b N (7n ) " -x  . 

It fo l lows that the s ta tement  o f  Propos i t ion  4.1 holds  wi th  K = 5, a = 1/9, and 
the last factor  reduced  to (Tn) ~-x, 
(B)  Fo r  2 x wi th  b = ( 0 , . . .  , 0 , b x + 2 , . . . , b N ) ,  repeat  the p rocedure  in Part A for 
the ( N -  1)st number  in 2 x until  the des i red  2N-1 is reached,  and so on. W e  
now est imate  the total  factor  p i cked  up in this procedure .  
W e  use the fo l lowing  nota t ion for i > x + 1: 

x! (2n  - x)!  
~(T~) . -  II j ,~+~16;I ' d ( r~ )  : =  & ~ ,  

where  3 x = ( - x , . . . ,  - 1, O, 1 , . . . ,  i - x - 2, Ti, 2i+1 . . . .  , AN). W e  now have 

r(T,. + 1) 1 
- - 1  

r (T/)  T~ + 1 

and 

d ( T ~ +  1) 

d(T~) -- (j=i~I~l (2j 2 ( T i +  T-ii) J 

T i + l + x  < 
= T i - ( i - x - 2 )  

. ( T i + l - ( i - x - 1 ) ) . . , ( T i + l + x )  

(Ti - (i - x - 2 ) ) . . .  (Ti + x )  

(13) 

For  n + x + 2 _< i < N - 1, the same ideas as used  in Part  A can be  appl ied  
here wi th  T rep laced  by  T,.. Fo r  example ,  we  can easi ly  see that  for  i = N - 1 
we p ick  up a total  factor  o f  at mos t  (5e-C/9)bN-l(7n)  ~-x-1 in going f rom 

( - x  . . . . .  - 1 , 0 ,  1 . . . . .  2n - x -  1,2N) 

t o  

( - x  . . . .  , - 1 , 0 ,  1 , . . . , 2 n  - x  - 2 , 2 N _ I , A N )  

and for  i = n + x  + 2 we p ick  up a factor  o f  at mos t  (5e  c/9)G+x+2(7n) in 
going  f rom 

( - x , . . . ,  - 1,0, 1 . . . .  ,/'/-~- l ,  2n+x+ 3 . . . . .  2 N) 
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t o  

( - x , . . . ,  - 1, 0, 1 , . . . ,  n ,  Z ~ n + x + 2 ,  . . . , /%N ) �9 

F o r x + 2  <_ i < n + x +  l, use 

r(Ti + l )  1 1 
- 1 - - - < l -  

r(Ti) T , - + I  - T i + l + ( n + x + l - i )  

and an upper bound for d(Ti + 1)/d(T,.) as in (13). We wish to estimate 

r(Ti + 1)kd(h + 1) 
qi : =  r(Ti)kd(Ti ) 

Again, our previously performed estimate in the proof  of  Proposition 4.1, Part A 
in [P1] goes through with b~ replaced by b T := (T, + 1) - (i - x  - 1). In each 
step we pick up a factor qi ~ 5e-C/9" 
We summarize: In going from 25, for which ((x!(2n - x)! )/(IIi ,x+ I [)oi] ))~d~x = 
1, to 2x with b = (0, . . . ,0 ,bx+2 . . . . .  bN) we have picked up a factor o f  at most 

( 5 e - c/9 )bx+2 + ... +bN (7n)(n-x)+(n-x- 1 )+ ... + 1 . (14) 

(C) We now also allow negative numbers to occur in b. Again, start with the in- 
dex 2~ and now successively decrease the first number - x  in steps by 1 until the 
desired 21 is reached. The total factor picked up in this procedure is the same 
as the one picked up in starting with 22n-x= ( - ( 2 n - x )  . . . .  , - 1 , 0 , 1 , . . . , x )  
and successively increasing the last number x in steps by one until [21[ is 
reached. From Lemmas  4.2 and 4.3 (with x replaced by 2n - x )  we see that 

r ( T +  1 ) k d ( T +  1) T +  1 +2n- -Xe_k / (T+ l  ) < T +  1 +ne_k/(T+l ) 
q := r (T)kd(T)  < = T + l - x  - T + l - n  

for 0 < x < n. Thus we get the same estimate for q as in Part A, namely 
q <= 5e-C~ 9. 

We can now see that, after having decreased all the negative numbers in 
25 in steps by 1 to reach 21, then ,~2, and so on, until we have reached the 
index (21,22 . . . . .  2x,0, 1 ,2 , . . . , 2n  - x ) ,  we have picked up a factor less than or 
equal to 

(5e-C/9)hi + ... +bx . ( 15 ) 

We can now complete the proof  of  Proposition 4.1 by taking the product of  
(14) and (15) to yield 

x!(2n - x)! ,~k ,, (5e-dg)bl++bze(7n) (~-x>(~-~-1>+1 
n-777,. 1  ) =< 

for all 2 x with - 8 n  < 21 and 2N < 8n. Indeed, taking the product is valid for 
the following reason: 

The dimension d2x is the same as the dimension of  the irreducible repre- 
sentation of  U(N)  corresponding to the highest weight ( - b l , - b 2 , . . . , - b ~ , 0 ,  
bx+2,. . . ,bN).  Therefore, by Lemma 7.2, dx, is less than or equal to the product 
o f  the dimension of  the irreducible representations of  U(n) corresponding to 
the highest weights ( - b l , . . . ,  -bx,  0 . . . . .  O) and (0 , . . . ,  O, bx+2 . . . . .  bN).  
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But the dimension of  the irreducible representation of  highest weight 
( - b b . . . , - b x ,  O . . . .  ,0)  is the same as the dimension of  the irreducible rep- 
resentation of  index (21, . . . ,2x,0,  1,2 . . . . .  2 n - x ) ,  and the dimension of  the 
irreducible representation o f  highest weight (0 . . . .  ,0, bx+2 . . . .  , bar) is the same 
as the dimension of  the irreducible representation of  index ( - x , . . . , - 1 , 0 ,  
& + 2 ,  �9 . . ,  ;~N). 

This completes the proof  o f  Proposition 4.1. D 

Writing Q for ( K e - ~ )  2, we can apply the same argument as in the proof of  
Theorem 1.1 in [P1] to yield 

and 

5~n < (1 + 3Q) = 1 q- 75e -c/45 

2 
,i: 2i=0 for some i 

--8n <21, 2 N <8n 

5~x < (1 + 3Q)(7n) O+~-:~)('-x~ 

= (1 + 75e-C/45)(7n)~ for 0 -< x _< n - 1 , 

provided we take c larger than some universal constant Co. 
We therefore have 

Hj+i l#  I d] = 2 x=O ~ \ x ! ( 2 n  - x)! fPx + fP,, 

2x=0 ~ \ x [ (2n  - - x ) [ J  (1 + 75e-C/4s)(7n) O+n-x)(n-x) 

+ 1 + 75e -e/4'5 . (16) 

We now take a closer look at the expression 

[ n l ~  2 \ k  
, ,~  -2-~'Z- , , }  (7n) O+"-x)(~-x)/2 for 0 _-< x _< n - 1 . (17) 

x~tzn - x)~ / 

An upper bound for (17) is easily obtained: 

e-((n-x)2 /(n+(n-x) ) )~( 7n )( l +n-x)(n-x)/2 

= e-(n-x)2(nlogn+cn)/(n+(n-x))(7n)(l+n-x)(n-x)/2 . ( lg )  

Set s :=  (n - x ) ,  so that 1 _< s -< n. For s = 1, there exist two constants ci 
and c2 (not depending on c) such that 

e (nl~ < cle -c2c 

For 2 _< s _< n, we will now show that 

r log n+cn)/(n+s) e-C (7n)S+s2/2 < _ _  
/7 

To do so, we only need to show that 

s2(n logn + cn) s + s 2 
- + (2 + l o g n ) - ~ - -  + l ogn  < - c  (19)  

n~c_S = 
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for 2 < s _< n (we have used log7 < 2). Rewriting (19) yields 

( l ogn ) ( - s2n  + s 3 + sn + s 2 + 2n + 2s) 

+ 2(--s2cn + s 3 + sZit q- sit + s 2 q- ell @ es) ~ O, 

from which one can verify that (19) holds for all 2 < s < n provided we take 
c larger than some universal constant. 
This estimate, together with (16), proves that there exists a universal constant, 
call it B, such that 

E = 2:2i:0for some i \ r l j , i l a v l /  d2 < l+Be-C/45 
--8n < 2 1 , 2  N <8n 

for c larger than some universal constant co. 

Part II 

We now need to find an upper bound o f  similar form for the tail sum 

E :  
2 : 2 i = 0  for some i 
2 l < - 8 n  or  2 N > 8n 

n /+ ,12 / I /  " 

From now on we will  denote the m-tuple (21, 2 2 , . . .  , 2m) with 2i = 0 for some 
1 ~ i -< m by 2 (m) for 2 < m < N. Accordingly,  we will  use the notation 

and 

Ill  <r<s<m(.~s - 2r) 
d;.(,,) :=  O ! l ! . . . ( m -  1)! 

"u-'2 i f m = 2 u + l  
n / , + l # l  

r;#,) : =  u ! ( u -  1)! 
i f  m = 2 u .  

The following lemma will  complete the proof  o f  Theorem C 1. 

L e m m a  4.4 We have 

(r2(m))Zk(d2(m)) 2 ~ 1 q - B e  -c/4"5 
2(m) 

for  3 <= m < N, m odd, and k = n l o g n  + en, where B = B + l with B f rom 
Part I. 

Proo f  We use induction on m. For m = 3, 

� 8 9  for 2 (3) = ( - x , O , y ) ,  
d~(3) 

� 8 9  for 2 ( 3 ) = ( - y , - x , 0 )  or 2 ( 3 ) = ( 0 , x , y ) ,  

1 
r 2 ( 3  ) ~ - -  . 

x y  
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Therefore, 

(r;.o~)2k(d~o) )2 
2(3) 

= ~ (xy(x + y))2 
( xyF  ~ x, y=l 

1 ao y - I  1 

@ 2 y~=2 x~=l ~ (Xy(y-X))2" (20) 

The first sum on the right hand side o f  (20) is less than or equal to 

oo 

x,y=l (xY) 2k-4 

and the second sum is less than or equal to 

1 a~ y-1 1 1 oo oo 1 

9 y~=2= ~= (xY ) 2k-~ ~ ~ =v~=2 x~=l (X.Y ) 2k-4 

Both double sums can be estimated by double integrals. From this it is obvious 
that an upper bound for (20) can be chosen much smaller than the statement 
of  Lemma 4.4 requires. 
Notice that in order to prove Lemma 4.4, we need only show that 

(r.l(.O)2k(d2(m)) 2 ~ e -c/4"5 
2(~n): 41 < -8n or 2m > 8n 

for 3 =< m G N ,  m odd. 
Indeed, the first part of  our proof clearly goes through with r s )  replaced 

by r~(m) (the statement of  Lemma 4.3 is unchanged) and d;~(N) replaced by d2(m) 
(the right band side o f  (11) in Lemma 4.2 clearly becomes smaller). 
Also, we can apply the very same analysis used in the proof of  Proposition 
4.1 to show that 

2(m):--8n<2,,.~.,~<Sn \ IIj*il~J[ (d2(r~))2 <= 2 + B e  -c/4"5 

f o r 3  < m < N ,  m even, and k = n l o g n + c n .  
From the definitions of  d2(o o and rx(,.) we also see that 

1 

and 
u + l  

F2(m+l )  mE ---~F2(m) 

for m = 2u + 1, m ~ 3. Here 12[ :=  max{j21 [, 12m+~]} and 2 (m) is the remaining 
m-tuple. 
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We now have 

2 2k 2 2k (~(~+,)) (d;,(~+,)) __< 2 ~ (2},~1) ~ 

21 =< 8n or),m+l >8n 

• ~ (r2(m))Zk(dx(m)) 2 (21) 
2(m) 

for m = 2u + 1 odd. By our induction hypothesis, 

(r;~(m))2t(d2(~))2 __< 1 + Be -c/4~ _-< 2, say (for c > c0).  
2(m) 

Thus the left hand side o f  (21 ) is less than or equal to 

2k 24n+2rt2 k f 1 
4 ~ (2Y) 4n ~ y2k-4n dy.  

y>=8n 8n--1 

Since 2 k - 4 n = 2 n l o g n + 2 c n - 4 n  > 4 for c > co, 

oo 
24n+2F/2 k f 1 24n+Xn2k I ( 8 n - -  1) -2k+en+l 

an-1 y2k-4n dy = 2k - 4 n  - 1 

< 24nn2k(8n_ 1)-2k+4n+1 

= exp [ - 2 n  log n-  log(8 - 1/n) + 4n log n + 4n log 2 

+ 4n log(8 - 1/n) + logn + log(8 - 1/n) 

- 2nc log(8 - l /n) ] .  

Since 2.06 < log(8 - l /n)  < 2.08 for n > 8, we get 

LHS(21) < exp[-0 .12n logn + 12n + logn + 2.08 - 4.12nc] < e -c/4"5 

for c > Co, n > 8. 
This proves that 

2k 2 J~e - c/4.5 (r~(.,+~)) (d2(,.+l)) < 2 + =< 3, say.  
j(m+l) 

Since we are interested in the case m + 2 odd, we need to perform this same 
step once more, which turns out to yield 

2k d 2 ~e-C/4.5 (r,~(~+2)) (,i(~+2)) G 1 + 
,~(m+2) 

This concludes the proof  o f  Lemma 4.4 and, by setting m = N, the proof o f  
Theorem C1. [] 

5 Fourier analysis on Sp(n) 

The main goal o f  this section is to compute the Fourier transform for each 
irreducible representation o f  Sp(n) (Proposition 5.3). First, we briefly recall a 
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few basic facts from the representation theory of  Sp(n). For more details see 
[BtD, FH, Z]. 

From now on we will identify elements in Sp(n)  with (2n) • (2n) unitary 
matrices (via the natural representation). Thus the element diag(h, 1 . . . . .  1) E 
M , ( H )  corresponds to 

Z 1 0 . . .  0 Z2 0 . . .  0 

0 0 

I , -1  0 , - 1  
0 0 

for h = Zl 4 -z2 j ,  (22) 
-Z2 0 ...  0 2:1 0 ...  0 
0 0 

On-I In--1 
\ o  o 

where I ,_  I is the (n - 1) • (n - 1) identity matrix and On 1 is the (n - 1) • 
(n - 1) zero matrix. The standard choice for maximal torus T C Sp(n)  is the 
subgroup of  diagonal matrices 

diag ( ei~~ , . . . , e io', e-i~l , . . . , e -iv" ) (23) 

and the following is a set of  positive roots: 

R + = { e j  4- e~" 1 <= i < j <= n} U {2ej: 1 < j <= n } .  

The irreducible representations of  Sp(n)  can be indexed by strictly increasing 
n-tuples of  integers greater than or equal to one. We call such an index 2. 
Then 2 = co + ~ with ~ = (1,2 . . . . .  n) (half the sum of  the positive roots) and 
co being the highest weight o f  the irreducible representation p,~. The weight co 
is thus an n-tuple of  nondecreasing, nonnegative integers. 

The Weyl  character formula  f o r  Sp(n)  

Let Z;. denote the character of  the irreducible representation p;. of  Sp(n)  corre- 
sponding to the index 2 = (21, 22, . . . ,  2,).  For every element t E T of  the form 
(23), the value of  the charecter X;~ is 

~o~s, Z~m=• sgn(a)(I~n=l~/)exp (i~j=lgj2a(j)~gj) 
Z~(t) = (24) 

rll <=r<s<=n 2i sin(�89 • ~pr)) I l l  <,.<~ 2i sin q~r 

Here S, denotes the symmetric group, sgn(r denotes the sign of  the 
permutation a, and 2~m=• indicates summation over all choices of  
~1 = z z E l , . . . , g n  = i l .  

Proposit ion 5.1 Le t  dx denote the dimension o f  the irreducible representation 
p;. o f  Sp(n)  corresponding to the index 2 = (21 , . . . ,2 , ) .  Then 

1 n 

d;~ = 1!3! ( 2 n -  1) [ ~I )~jj=l I ]  ()~s 2 - ) ~ ) .  (25) 
�9 " "  = 1 < _ r < s < .  
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Proof Use the Weyl dimension polynomial (3) quoted in the proof of 
Proposition 3.1 and ~ and R + as given above. We omit the details. [] 

We need to evaluate )~2 at the specific element 

t~o = diag(e i~~ 1 . . . .  ,1, e -ie, 1 . . . . .  1 ). 

Notation: From now on we will write Z~(~o) for X~(tc0). 

Proposition 5.2 For any index 2, 

)~2((P) = ~ ( _ l ) j _  1 sin(2jcp) d~_a) (26) 
j=l 22n-Z(sin(cp/2))2n-2 sin ~o q 

where d~ -1) denotes the dimension of the irreducible representation of  
# 

Sp(n - 1 ) of  index (21,. . . ,  2j . . . .  ,2n) (and the hat symbol indicates deletion). 

Proof Use (24) and set (Pl = ~o. Eventually we will let ~or ~ 0 for 2 _< r _< n. 
We can rewrite the numerator in (24) as 

(-- l)J-1 [exp(i)~j(p) exp(--i2j qo)] ~ (s__I)2 s ) ( i r ~ = 2  r) -- sgn(o-) e exp e~2~(~)(p 
j=l ~ESn 1 

where we have used the same notational convention as in the proof of 
Proposition 3.2. Furthermore, we can rewrite the denominator in (24) as (, ) (1 ) 

2isinqo IF[ 2isin ~((ps4-~0) I ]  2isin ~((0z• 
2<_s<_n 2 < k < l < n  

x I ]  2i sin qok. 
2<kGn 

Taking the quotient of these two expressions and letting (0r ~ 0 for 2 _< r _< n 
yields (26). [] 

Next, let us cite a necessary tool for the computation of the Fourier transform 
~00~) for each irreducible representation p~. 

The Weyl integral formula 

Let G be a compact connected Lie group, T a maximal toms, and f a con- 
tinuous function on G. The adjoint representation Ad acts on the Lie algebra 
g of G. We can choose an inner product on g that is invariant under the 
action of Ad. The Lie algebra t of  T is a subspace of g and we denote its 
orthogonal complement by L(G/T). This vector space L(G/T) is isomorphic 
to the tangent space of G/T at eT. We now restrict the adjoint representation 
from G to T. The resulting representation resG(Ad) of T decomposes into two 
subrepresentations according to the decomposition 

g =- L(G/T) �9 t .  

The representation of T on the first summand is denoted by 

AdG/T : T --~ GI(L(G/T)). 



Random reflections II 199 

We are now able to state the Weyl integral formula: 

I Wc[ �9 f f (g )  do(g) = f [det(IG/r -- ado/r( t  1)) f f (gtg-1)  d0G(g)] dOT(t) 
G T G 

(27) 

where Io/r denotes the identity map on L(G/T), 0o and v~r denote Haar measure 
on G and T, respectively, and [WG] denotes the order of the Weyl group Wc 
of G. For Sp(n), the Weyl group is the hyperoctahedral group (permutations 
and sign changes). 

Proposition 5.3 Let 2 be an admissible index and q as defined in Sect. 1. 
Then 

Rz := tl(X2) = (2n)(2n + 2 ) ( ( n -  1)!) 2 (28) 

for 2 = (1,22,...,Zn) and R;~ = 0 otherwise. 

Proof Write Z~(h) for Zz (diag(h, 1 . . . .  ,1)). We need to compute q(Z;~)= 
fspO)Z;~(h)ds(h). Now Z,~, regarded as a function on Sp(1)~  SU(2) in this 
way, is a class function and is thus determined by its values on elements of 
the form (e ~ o) 

t ~ . , 

e-Z~o 

(These elements form a maximal toms T in Sp(1).) For any h c Sp(1), let 
e :kith with (Ph E [0,27c) be the eigenvalues of h. Let 0 ~ denote Haar measure 
on Sp(1). Then, from the definition of e, we have 

// (Ph "~ 2n--2 
r~(7~;.) = f Z;~(h)d~(h)= c~ f Z;~(h)~sin-~) dtg~ (29) 

spo ) Sp(1) 

with c~ a normalizing constant. 
We will compute the right hand side in (29) by using the Weyl integral for- 
mula: Z,~(h)(sin(qoh/2)) 2n-2 is a continuous function on Sp(1), and the order 
of the Weyl group of Sp(1) is 2. Thus we get 

2 f zx(h) (sin 
~gh ) 2n--2 
~ - /  dO~ 

Sp(1) 

I det(Isp(1)/r - Adspo)/r(t -1 )) f 
T L 

• f Z;,(hth-l)(sinq~ 2n-2 ] SpO) - 2 dO~ dOl(t), (30) 

where 01 denotes Haar measure on T. 
The integrand in the integral over Sp(1) on the right hand side of (30) is 
eonjugacy-invariant and therefore (30) becomes 

fr det(lspo)/r - Adspo)/r(t 1));G(t) (sin 2-](Pt)2"-2 dOl(t) . (31) 
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Recall that Adsp(1)/r is the representation of T on the tangent space of Sp(1)/T 
at eT (where e is the identity element in Sp(1)) derived from the adjoint 
representation. Now, the tangent space of Sp(1) at e (i.e., the Lie algebra of 
Sp(1) ~ SU(2)) is a 3-dimensional real vector space spanned by 

i 0 1 i 
( 0 - 0 i ) '  ( - I  0 ) '  (0i 0 )  

(i.e., the skew-Hermitian 2 • 2 matrices of trace 0). Therefore, the tangent 
space of Sp(1)/T at eT is isomorphic to the 2-dimensional real vector space 
with basis 

( _ ~  ~ ) a n d  (0  0 )  . 

The complexification of this vector space is the 2-dimensional complex vector 
space with basis 

(: O) and (~  00) �9 
Set 

We then can verify that 

t ~ e_Z~o �9 

Thus we get 

and 

Adsp(1)/r(t-1)((~ ~ ) ) =  ( ~  e;2i~~ , 

Adsp(1)/v(t-1)((O1 00)) = ( 0 ; )  
e2i( p 

Isp(ii/r_ Adsp(1)/r(t_l)= (10 01)_(e-~i(P e 2i~~ ) 

det(Isp(1)/r) - Adsp(1)/r(t -1 )) -: 2 - 2 cos 2(8 = 4 sin 2 (8. 

We can now rewrite (3 1) as 

2~ ( ~o) 2.-2 
2 f sin2 (8 sin ~-/ Zx((8)d(8 (32) 
7"C o 

with Z;~((8) given by (26). To compute (32), we first note that for integer 
a > l  

27c { 0  i f a = l ,  f sin q0. sin(a(8) d(8 = 
0 otherwise. 
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Altogether, we now have from ( 2 9 ) - ( 3 2 )  and (26) that 

e ~ 1  d(n-1) for 2 w i t h ) ~ l = l  
t l (Z2)  = n 2 2 n - 2  Zl 

0 otherwise. 

The normalizing constant e~ can be computed from 1 = O(Z~0) (where 2 o = 
(1 ,2 , . . . ,  n) is the index of  the trivial representation) and turns out to be 

4 n l ( n + l ) / ( 2 n )  . 

Finally, with the use of  (25) we get 

(2n - 1)!4n-l(n + 1) 1 
. 

22"-2 �9 (22) I F  r /=2~ j - 1) 

(2n + 2)(2n)((n - 1)!) a 
z 

n 2 s[ij=2(;.j  - 1) 

[5 for 2 with 21 = 1 and R2 = 0 otherwise. 

6 Proof of Theorem Q1 

We will follow very closely the proof of  Theorem 1.1 in [P1] and need to 
make only a few adaptations. By Lemma 2.5 and (1) it suffices to show that 
for any integer n > 8 and any positive real number c > 11.6 

0() (2)  2k e -c/2"5 
1 ___ 51  (33) 

I log n + cn. for k =  2n 
By Proposition 5.3, we only need to consider indices 2 for which 21 = ! 

in order to estimate (33). From now on, we will assume this condition on 2. 
Set 2 ~ :=  ( 1 , 2 , . . . , n )  and b :=  2 -  20 . 
We can see that 

Set 

0(Zx) _ (2n + 2)(2n)((n - 1)!) 2 < (n!) 2 

d 2 8 [Inj=2 ()~j2. _ l )  = ~ = 2  4 " 

F)~ : =  n 2 " 
N=2, j 

Proposition 6.1 For n >= 8 and all indices )~ with 2. < 9n, we have 

(r;~)gd~ < (5e-C/5)b2+b3+...+b~. 

Proof  We need the following two lemmas. 
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Lemma 6.2 Let d ( T ) : =  d;~ with 2 = (1,2 . . . .  , n -  1, T). Then 

d(T  + 1) 2n - 1 2n 
- - 1 +  < 1 +  

d(T)  T + l - n  - T + l - n  

L e m m a  6.3 Let r(T)  :=  r~ with 2 = ( 1 , 2 , . . . , n  - 1, T). Then 

r( T + 1) _ T 2 < e-2/(T+I). 
r ( r )  ( T + 1 ) 2  - 

From this point on we can almost duplicate the proof  of  Proposition 1.1 in 
[P1]. The only two changes are as follows: 

(1)  We have a slightly different definition for the b*'s:  here we use b[ :=  
T §  f o r 2 _ <  i_< n. 
(2) In (c) o f  Part A o f  the proof, take 0.Sn < b* < 9n. [] 

Using the same argument as in the proof  o f  Theorem 1.1 in [P1], we can now 
conclude that 

2k 2 (r~.) d~ - 1 < 2(5e-C/5) 2 = 50e -c/z5 
2: 2n <= 9n 

provided that c => co, some universal constant. (An estimate for co yields co = 
11.6; we omit the details.) 
We still need to bound the tail of  the sum in (33). Indeed, we will show that 

E 2k 2 = e-C/2.5 (r~) d;~ < 
2: 2n > 9n 

for c > 11.6 and k = �89  

From now on we will denote the m-tuple (21, 22 , . . . ,2m)  with 21 = 1 by •(m) 
for 1 =< m =< n. Accordingly,  we will use 

1 m 
d2(m) : =  l - I2j  H (2~ - 22) (34) 

1!3~ . . . ( 2 m  - 1)! j=l l<r<s<m 

and 
( 4 )  m-1 (m]) 2 

r2(m) :=  iim 2 " 
j=2 "~J 

The following lemma completes the proof  of  Theorem Q 1. 

Lemma 6.4 We have 

rr  ~2kd2 < 1 + 51e -c/z5 I 2(m) ) ),(m) = 
2(m) 

I l og  n + cn. for  1 < rn < n and integer k -= 7n 

Proof  We use induction on m. For  m = 1: 

(35) 

(36) 

d;~o) = 1, r),o) = 1 



Random reflections II 203 

and 
2k 2 (r;.(1)) d~(l) = 1 . 

2(1) 

Notice that in order to prove (36) for m > 1, we need only show that 

(F2(m))2kd~(=) ~ e -c/2"5 . 
2(m): 2m >9n 

Indeed, we can apply the very same reasoning as in the proof of  Theorem 1.1 
in [P1] to show that 

(r2(m))2kd~(m) <= l - f - 5 0 e  -c/2"5 
2(m): 2m <9n 

follows from the first part o f  our proof. 
From (34) and (35) we get 

and 

: /~m u}~(rn- 1) 

4 m 2 

r)o(m) = ~ t 2 n  r2(m-1) 

for 2 _< m < n. We now have 

"~2k.42 <~ / '4  m ~ "4m--2 "~2k42 

).(m): 2m >9n 2 n )o(m- 1 ) 

(37) 
By our induction hypothesis, the sum over 2 (m-l) on the right hand side o f  
(37) is less than or equal to 1 + 51e -c/zS, which is smaller than (say) 2 for 
c >_ 11.6. Then 

2k 2 ( 4  m 2 ~ 2k 
(r2(m)) d~,(m)<= 2 ~ \3~mm] 24mm-2 

2(m): 2m >9n 2m >9n 

< 2 n 2 x4k_-4n+2 dx .  (38) 

This integral can easily be evaluated, and by estimates extremely similar to the 
ones used in the proof of  Theorem 1.1 in [P1] we see that (38) is less than 
or equal to e -c/z5 for n > 8, c > 11.6. We omit the details. [] 

7 Lower bounds 

Recall that [l#k - 0l[rv = supse~(G) I#k(S) -- 0(S)[. We will construct a suit- 
able test set S to prove our lower bound results (Theorem C2 and Theorem 
Q2). Briefly, under Haar measure 0, Re ZI, where Z1 is the character of  the nat- 
ural representation, is with high probability close to 0 (in fact, Re)~l is almost 
distributed as a standard normal random variable for large N).  On the other 
hand, we show that under #k with k = �89 l o g N -  cN, with high probability 
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Re ZI is still large (close to N). For a suitable positive value B, our test set S 
can then be chosen to be S = {g E U(N): - N  < ReZl(g)  < B}. The idea of 
this proof is not new. It has been developed by Diaconis and has been applied 
since then by various authors ([D, P1,R,S-C]). 

Proof  o f  Theorem C2. Here we can choose S to be S = {g E U(N)  Rezl (g)  
< eC/v/3}. Recall that by the orthonormality of the irreducible characters for 
any compact Lie group we have 

Eo(Re Zl ) = Re(Eo0~I )) = 0 ,  

E~((Re Zl) 2) < Eo(IZll 2) = 1 

and hence Varo(Rezi)  < 1. 

Proposition 7.1 For N > 6 and integer k = n logn  - cn, where c > O, 
(a) E~k(Re)~i ) => (2/v/3)eC; 
(b) Varm(Rez1 ) =< 1. 

Proof  (a) The natural representation Pl has highest weight co = (0, . . . ,  0, 1). 
Thus we can assign the index 2 = ( - n , - n  + 1 , . . . , - 1 , 0 ,  1 , . . . , n - 1 , n  + 1) 
to Pl for N = 2 n + l  odd, and the index 2 = ( - ( 2 n - 1 ) / 2 ,  1 1 �9 . . ,  2 , 2 ~ . - . ~  
(2n - 3)/2,(2n + 1)/2) to Pl for N = 2n even. The dimension dl of  Pl is 
of course N, and thus, by Proposition 3.3, 

#(XI ) gt 
- - - -  f o r N = 2 n + l ,  

dl n + l  

]~(Z1 ) 2/'l - l 
- - - -  f o r N = 2 n ,  

dl 2n + 1 

and therefore 

E~k(Rez1 ) = ( 1 - -  
\ 

n + l  ( 2 n + 1 )  2> 1 -  

E~k (Re zl ) = 1 2n +1  2n >= 1 -  2n 

N o w  

for n > 2 since 1 - x  < e -x f o r x  < 1. Also, 

( ~ )  1 1 1 1 
log 1 -  - - > - -  

n 2n 2 3n 3 -- n 

It follows that 

(39) 

2n f o r N - - - 2 n + l ,  

for N = 2n. 

~.  n e l o g ( 1 - 1 / n ) , n l o g n  2> n e  ( n / ( n - 1 ) ) l o g n  z n - l / ( n - 1 )  . 
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But f ( x ) =  x -l/(x-~) is strictly increasing for x > 3, with f ( 3 ) =  l/v/3. It 
follows that E~k(Rez1 ) > (2/x/3)e C for N > 6. 

(b) We now consider Pl | where Pl is the complex conjugate represen- 
tation which assigns to each g ~ U(N) the complex conjugate of  its defining 
matrix. Pt @/51 is a new representation of  U(N) of  dimension N 2 and with 
character IZ1 ]2. We can easily establish the decomposition of  Pl | into its 
irreducible constituents with the use of  the following lemma (see [BtD, FH]). 

Lemma 7.2 Let Z~ denote the character of  the irreducible representation cor- 
responding to highest weight 7. Then 

where the sum is over co < 7 + v with respect to the usual ordering of  weights 
and the coefficients n~o are all in No. 

Since Pi- has highest weight ( - 1 ,  0 . . . .  ,0),  by Lemma 7.2, Pl | P i  contains 
exactly one copy o f  the irreducible representation, call it P2, of  highest weight 
( - 1 , 0  . . . . .  0, 1). We assign to P2 the index 

2 = ( - n - 1 , - n + l  . . . . .  - 1 , 0 , 1  . . . . .  n - l , n + l )  f o r N = 2 n + l  odd 

and 

2 = (  2 n + l  2 n - 3  1 1 2 n - 3  2 n + 1 )  
2 ' 2 . . . . .  2 ' 2  . . . .  ' 2- ' 2 f o r N = 2 n  even.  

By using the dimension formula (2) we can verify that P2 has dimension 
d2 = N 2 - 1. 

Furthermore, from Eo(IZlt 2) = 1 and the orthonormality of  the irreducible 
characters it follows that Pl | ~ contains exactly one copy of the trivial rep- 
resentation Po. 
We thus have established the decomposition 

Pl | = P0 @ P2 

into irreducibles, and hence 

IZl[ 2 = 1 + Z2, 

G~(Iz l l  2) = 1 + Ga(z2) �9 

Remark Z3. Pl @/51 is in fact the adjoint representation of  U(N) on its 
complexified Lie algebra. 

From Proposition 3.3 we get 

~(Z2) ( /"/ ) 2 
d 2  - -  ~ for N = 2n + 1 and a(Z2 ) - ( 2 n  - 1 ~2 

\ 2T+-; i for N = 2n. 

(40) 
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Therefore, by (39) and (40), 

( // ~2k ( iv/ )2k 
Varuk(Rez1 ) < 1 +  \ ~ /  ( (2n+  1)2-- 1) - ~ (2nq- 1) 2 

( n 
= l - \ n - - ~ - ] -  j < 1 f o r N = 2 n + l  

and similarly 

( 2 n - -  1~ 2k ( 2 n - -  1~ 2k 
Var~k(Rezi) = 1 + \ 2 n +  l /  ((2n) 2 - 1 ) -  \ 2 n +  1 ]  (2n)2 

( 2 n - -  1~ 2/c 
= l - \ 2 n + l j  < 1 f o r N = 2 n .  [] 

We can now conclude the proof of Theorem C2. Using Chebychev's inequality 
we get 

( --1 eC'~ <3e-2~  P~ Re ~1 > v/~ j = 

and 

SO 

(Re)~l < --1 ee'~ < 3e -2c Poe \ , 

1 ( --1 e~ ( --1 e~'~[ 
= --P0 Uez1 > v/-5 j -  P~k Re Z1 < v# 5 J l 

>_ 1 - 6e -2c . [] 

Proo f  o f  Theorem Q2. We will use the same overall outline of proof as for 
the complex case. 

Let )~1 denote the character of the ((2n)-dimensional) natural representation 
of Sp(n).  Notice that Z1 is a real-valued function. We will choose S to be 
S = { 9  E S p ( n ) : Z l ( 9 ) <  e2C/v#3}. Again, by the orthonormality of the irre- 
ducible characters we have Eo(zI ) = O, Eo(Z 2) = 1 and hence Varo(zl) = 1. 

Proposition 7.4 For integer k = l n l o g n -  cn with c > O, 

(a) E~k(ZI) _--> (2/v~)e  2c if n > 3; 

(b) Var~k(Zl ) < 1 +25e4Clogn/n 1/3 if n _>-- 6. 

Proo f  (a) The natural representation Pl has highest weight co = (0 . . . . .  0, 1) 
and dimension d l =  2n. We assign the index 2 = (1, . . . ,n  - 1,n + 1) to Pl. 
By Proposition 5.3, 0(Z1)/dl = (n z - 1)/((n + 1)2 _ 1), and therefore (n21 )k ( )2k ( )nlogn2cn 

Enk(Z1)= ( n ~ l - ~ - - I  2n > 2 n =  2n. 
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In the proof  of  Proposition 7.1(a) we have shown that 

( !)ntogn--cn 2 
1 -  2n > - - e  c 

= xf3 ' 

from which the statement of  Proposition 7.4(a) directly follows. 
(b) Var~k (X1) = E~k ( X~ ) - (E~ ( Z I ) )a. 
We now consider the representation Pl | Pl, which is of  dimension 4n 2 and 

has character t5 2 , and study its decomposition into its irreducible constituents. 
By Lemma 7.2, Pl <9 p~ contains exactly one copy of  the irreducible represen- 
tation, call it P2, of  highest weight (0 , . . . ,  0, 2). P2 corresponds to the index 
2 = (1,2 . . . .  ,n - 1,n + 2) and is of  dimension d2 = 2n 2 q- n. Secondly, from 
E~(15 2) = 1 it is clear that Pl | Pl contains exactly one copy of  the trivial 
representation P0. We will determine the third and last irreducible constituent 
o f  Pl | Pl with the use o f  the following lemma (see [BtD, FH]). 

Proposi t ion 7.5 Let  Zy denote the character o f  the irreducible representa- 
tion correspondin9 to dominant weight y. Let  c~ be a simple root. I f  (7, :~) 
and (co, ~) are both not zero, where (7, c~):= ~ j : l  ~ then y + c o -  e( is a 
dominant weight , 

Z,~ " 2~o~ = 15~+o~ + Z~+o~-~ + others , 

and Z~+~o-~ occurs with multiplicity 1. 

For Sp(n),  our choice for a system of  simple roots S is S = {ej+l - ej: 1 < 
j < n} U {2e~}. Clearly, ~ = ( 0 , . . . , 0 , - 1 ,  1) fulfills the condition of  Lemma 
7.5 when 7 = co = (0 , . . . ,  0, 1). Thus we conclude that Pl | Pl contains exactly 
one copy of  the irreducible representation, call it P3, corresponding to high- 
est weight (0 . . . .  ,0, 1, 1). P3 corresponds to the index 2 = ( l, 2 . . . . .  n - 2, n + 
1, n + 2) and is of  dimension d3 = 2n 2 - n - 1. 
We thus have established the decomposition 

Pl | Pl : PO @ P2 @ P3 

into its irreducibles and hence 

Z~ = 1 + Z2 + Z3, 

E~/k(Z 2) = 1 + E~k(Z2) + E~/k(Z3 ) . 

From Proposition 5.3 we get 

O(Z2) _ n _ _ -  1 and /~(Z3) __ n - 2 
d2 n + 3 d3 n + 2 

Therefore, 

Var~k(Z~ ) = 1 + (~_~_~)n -- 1 
k 

(2n 2 q- n) 

( n _ 2 ~ k  I n2 1 )2k 
+ \ ~ j  (2n 2 - n - l ) -  ( n + l )  2 - 1  4nZ 

1 q- \n~] (2n2 q- n) q- ~ (2n 2 -- n) -- 4n 2 
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SO 
pv~ ( g2c'~ ( e2CX 

> 1 6e -4c log n 
_ - - 7 5 n - - T ~ -  f o r n  > 6 .  [] 
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