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Abstract 

Patient monitoring at the bedside is an inherently parallet job, best handled by multiple individual tasks 
running concurrently. Cost and diffusion considerations strongly favor the use of PC's at the bedside, but 
their most widespread operating system, DOS, is not built for multitasking. Hence, a software platform in C 
language has been prepared, allowing the intermediate programmer to easily write independent modules 
which will then run simultaneously without conflicts. 

Such a platform aims at allowing effortless sharing of data among concurrently running processes, while 
providing strong insulation between tasks, enough to allow multiple copies of any one task to run simultane- 
ously unknown to each other. A cooperative, memory sharing multitasking paradigm has been chosen, which 
offers fine granularity of timeslicing and low execution overhead at the price of some loss in generality of 
design. 

Speed, data exchange capability and number of stackable windows are greater than with commercial 
packages like Windows or LabWindows. Dynamical reprioritization of tasks is built in, allowing the comput- 
erized monitor to focus its attention and resources on urgent tasks. 

Introduction 

Computerized patient monitoring and instrument 
control necessitate an easy, inexpensive and effec- 
tive computing platform in order to spread from 
the research laboratory to the clinical setting. 

The usefulness of microcomputers in the clinical 
monitoring setting was recognized early [1-3], and 
there are more and more applications in which 
computing power is necessary for patient control. 
Several such applications have been described in 

the on-line respiratory monitoring of the intensive 
care patient [4-6], other applications have been 
described which greatly expand the scope of simple 
ECG monitoring [7, 8], such as continuous imped- 
ance cardiometry [9, 10]. Newer applications re- 
quiring additional computing power at the bedside 
could be renal function monitoring [11], or voice- 
mediated user interaction [12]. Whereas expert sys- 
tems already exist in the intensive care setting [13, 
14], a forthcoming necessity will be to have them 
running continuously on the latest patient's data. 
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Also, meaningful interpretation of acquired data 
must be preceded by computationally expensive 
signal conditioning [15, 16]. 

While massive computing power is available, it 
often comes at a steep price. Since Personal Com- 
puters are widely available, come at a relatively 
small cost, and are quickly increasing in power, 
they appear to be a natural choice if each bed must 
be equipped with a computer and if standard sup- 
porting software is still in the definition phase [17- 
19]. From a pure computational speed point of 
view, PC's are not too bad: a Toshiba 5200 (386 at 
20 MHz) with a 387 coprocessor clocks at 5500 
Dhrystones/sec, about the same as a VAX 785. 
Some practical problems have to be solved, how- 
ever, before PC's can become effective tools in 
intensive care. 

A bedside computer faces an inherently parallel 
job, where distinct tasks or processes have to be 
given attention to by the CPU: different instru- 
ments communicating at different rates, the user 
interface to be kept active, background computing 
processes like on-the-fly statistical analyses and ex- 
pert system interrogations, disk updates, and other 
housekeeping chores. Other authors have already 
proposed parallel architectures for clinical mon- 
itoring systems [20, 21]. 

The purpose of the present work is to describe 
the Hydra platform developed at UCSC in Rome. 
This C-language software skeleton allows an inter- 
mediate level programmer to quickly create as 
many separate processes as he deems fit and as the 
hardware will tolerate, making them run on an 
IBM-PC compatible machine under MS-DOS. An 
application of this platform, currently monitoring a 
calorimetric chamber, is described. 

Materials and methods  

The Hydra multitasker is a Microsoft C large mem- 
ory model template for the development of C pro- 
grams consisting of several independent but freely 
communicating tasks. 

The programmer is supplied with a header file 
(multitsk.h) containing the definitions of the global 
symbols used in the template, an object file (multi- 

rou.obj) corresponding to the compiled set of rou- 
tines which handle the transitions between the 
pieces of code written by the programmer himself, 
and a manual. He then tackles each task separately 
as if it were an isolated program to be run alone, 
writing the relative code in standard C language. 

In other words, if the computer programmer is 
able to write single small programs that execute the 
things he wants done one at a time, Hydra will run 
them simultaneously, each in its own window on 
the screen. If desired, the small programs (the sep- 
arate tasks) will be able to call each other, ex- 
change data and influence the behavior of one an- 
other in a very simple and powerful way. On the 
other hand, if insulation between tasks is desired, 
Hydra will make them so unaware of one another's 
workings that even arbitrarily many copies of the 
same task will run concurrently without conflict. 

The separate programs are merged into a final 
source according to the following criteria. A task is 
logically divided into three components: 
1) directives, pragmas and declarations; 
2) a task body; 
3) service routines (functions). 
Directives, pragmas and declarations for all tasks 
are collected at the external level or at the begin- 
ning of the main () function of the final merged 
source file. A call SETUP_MULTITASK is placed 
after the declarations under main (). All task bod- 
ies, delimited by 
label: BEGIN-TASK; 

< statementblock > 
END-TASK; 
are then added to the merged main () function. 
Accessory functions can be placed in the main file 
or in separate modules; legible coding practice sug- 
gests that most of the work be delegated from the 
task bodies to accessory functions. 

At run-time, control is passed to the task bearing 
the label 'main-task'. From it, other tasks may be 
forked or chained as needed, by means of instruc- 
tions like 

fork (< task label >, 'task name', < task priority >); 

Whereas chaining a child task suspends execution 



149 

HYDRA ORGANIZATION 

begin-task l 
1112 A 

end-task 
f 

begin-task 

end-task 

begin-task 

end-task 

begin-task 
.=,,= 

end-task 

B 

/ / � 9  / 

j , /  

�9 / /  
J � 9  

D 

j "  
/ "  

S --~-~ ~ 

CODE USER LOGIC 

R 

A 

M 

Fig. 1. To each Hydra task there corresponds a screen window and keyboard buffer, making it a separate virtual computer program. All 
such programs share all data in the host computer's RAM. 

of the parent  task until the child has terminated 
running, forking a child does not suspend execu- 

tion of the parent. 
The merged code can then be compiled and link- 

ed, together with the multirou.obj file, to produce a 
program in which each task runs independently in 
its own window. 

Under  Hydra,  to each task is associated its own 
screen window (Fig. 1). Each task's window is up- 
dated independently of all others, even when it is 
completely or partially in the background, so that 
leafing through the windows on the screen brings 
up instantaneously the current window's contents. 

To each task is also associated its own keyboard 
buffer and echo, so that the user talks to the fore- 
ground window. The user can leave the current 
input incomplete, bring some other window to the 
foreground, work on that, then come back later 
and restart from where he or she left off. 

Appropriate  input functions are provided, which 
act in a non-suspensive way: while the user com- 
pletes input to a window, all the rest of the system 
continues working unimpeded. Windows are 

moved and restacked independently of any ongo- 
ing input process. 

Task priorities are not fixed: supervisory tasks 
can be written that modify the system priorities on 
the basis of current variable values. 

Extended memory is used to store large arrays, 
freeing conventional memory for counters and 
control variables. Appropriate  functions are pro- 
vided to handle transparently extended memory 
arrays. 

At runtime multiple copies of the same task can 
be called and made to run concurrently and inde- 
pendently of each other. There  is no fixed limit to 
the number of replicates of each task, which may be 
determined at runtime on the basis of the available 
data. This feature is useful when writing shared 
servers that are forked or chained by several other 
tasks. For instance, multiple copies of an inference 
engine can simultaneously roam the same rule base 
with different goals. 

The multitasking kernel on which Hydra  oper- 
ates works under the cooperative and memory 
sharing paradigms. 
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As a cooperative multitasker, Hydra does not 
use a clock interrupt signal to stop task execution 
and delimit timeslices. Instead, it depends on each 
task generating an appropriate 'end-of-timeslice' 
signal, by calling the function preempt (), This 
arrangement has both advantages and disadvan- 
tages: on one hand it provides for task-defined 
timeslices allowing greater flexibility and easier da- 
ta integrity maintenance. It also makes for faster 
context switching, finer granularity and smoother 
operation. On the other hand the whole system 
becomes only as robust as the worst task running 
under it, and task design requires some careful 
consideration on the part of the programmer. 

Hydra is also based on a shared-memory as op- 
posed to a message-passing architecture. In memo- 
ry sharing all 'common data' among different tasks 
are simply declared at the external level and are 
indifferently accessible by everybody in the system. 
Such an arrangement makes condivision of infor- 
mation easier, but makes code encapsulation more 
difficult; it is more efficient and produces less over- 
head than a message-passing system, but it is not as 
easily upward scalable, does not enjoy as much 
generality of design and must be somewhat tailored 
to the application at hand. 

Results 

One current implementation of the Hydra multi- 
tasker is at the calorimetric chamber of the Depart- 
ment of Gastroenterology and Metabolic Diseases, 
Catholic University, Rome. This is a somewhat un- 
usual patient monitoring application, where the 
object is to continuously measure metabolism, 
movement and heart rate in order to estimate real 
life energy expenditure and related factors. How- 
ever, there is no difference in either concept or 
software between this application and a more tradi- 
tional intensive care situation: all that would vary 
would be the type of some of the connected in- 
struments. In the following description, the overall 
metabolic monitoring job is split into the several 
different concurrent tasks composing it. The rela- 
tionships between some of these tasks are also 
sketched. 

One of the several tasks running in this applica- 
tion talks to the user and modifies accordingly the 
computing environment (length of sampling brack- 
ets, depth of data smoothing, measured urinary 
Nitrogen Excretion, frequency of disk data saves, 
and other similar keyboard-input information). 
Another task polls the 16 channel A/D converter, 
to which 0 2 and CO 2 concentrations within the 
chamber, flow through the chamber, patient's heart 
rate, radar output, temperature, humidity, pressure 
and other signals are brought; this task also stores 
smoothed data onto a large circular buffer. A me- 
tabolic computations task sleeps the allotted peri- 
od of time, then wakes up, performs the computa- 
tions, displays the results, stores them on disk, 
clears the buffer of the used data and goes back to 
sleep. There is a task which monitors a treadmill 
through an RS232 port and which records and 
shows speed, miles run, and slope. A radar motion 
detector task is being implemented, relying on a 
simple neural network simulator to gauge the 
amount of actual patient movement from the out- 
put of two ultrasound detectors; for the moment 
this task only adds the motion signals for the two 
detectors and averages them out relative to the 
chosen time period. There are also a system clock 
task and a fleeting (self-terminating) instrument 
calibration task. Invisible to the user, there is the 
windower task (part of the kernel). 

Figure 2 shows the time tracing of some of the 
measured and on-line computed variables from an 
obese diabetic patient examined in the calorimetric 
chamber. It must be appreciated how the derived 
parameters of interest, like metabolic rate, are 
computed using information coming in from differ- 
ent instruments (flowmeter, oxymeter, temper- 
ature and humidity probes) as well as from the 
keyboard (Nitrogen Excretion). This integration of 
different sources of information is as easy as writ- 
ing the formulae including the variables of interest, 
provided that the multitasking environment is in 
place. 

Now that the skeleton works reliably, adding 
further tasks is very easy: a small library of them is 
being built and they can be plugged effortlessly in 
the main module. A case in point is the Siemens 
900C Servoventilator, which outputs sixteen differ- 
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Fig. 2. Time tracings for a 33yr old male type i diabetic patient studied in the Calorimetric Chamber. Time is expressed in hours from 
beginning of the experiment (at 8:00 A.M.). VO2 and VCO2 are expressed in ml/min. RQ is the respiratory quotient (VO2/VCO2), which 
varies from 0.7 (when the subject burns only lipids) to 1.0 (when the subject burns only carbohydrates). Metabolic Rate (mr: Kcal/24hr) 
has been divided by 10,000 in order to superimpose its graph to that of RQ. Each graphed point is the average value of half an hour 
recording at five samples per second. 

ent pieces of information through analog 0-10 Volt 
lines (Table 1): with the A/D board already in place, 
adding a ventilator task is a matter of merely de- 
claring to the system the meaning of the sixteen 
pieces of information and the rate at which the user 
wants them polled from the ventilator. 

Another example of the kind of problems which 
Hydra solves is the following: the physicians in our 
team perform euglycemic hyperinsulinemic clamp 
studies, where high doses of insulin are infused to 
stop hepatic gluconeogenesis and a continuous in- 
fusion of glucose must be maintained at varying 
rates in order to keep glycemia constant. A simple 
BASIC program was used to perform the clamp 
computations for the physician, indicating the nec- 
essary rate of glucose infusion for the next five 
minutes, given the target glycemia, current glucose 
infusion rate, size of the patient, etc. A decision was 
then made to associate metabolic monitoring, with 
a Deltatrac Metabolic Cart (Datex, Finland), to the 

clamp study. Hydra runs the clamp computations in 
a window, automatically acquires data from the 
Deltatrac in another window, corrects raw metabo- 

Tab& L Data available on-line from the Siemens 900C Servoven~ 
tilator as 0-10V analog signals. 

Airway flow 
Tidal volume (inspired) 
Tidal volume (expired) 
Airway pressure (waveform) 
Airway pressure (peak) 
Airway pressure (mean) 
FiO 2 
Respiratory rate (set) 
Respiratory rate (real) 
SIMV rate (set) 
Expiratory time 
Inspiratory time 
Pause pressure 
Expired minute volume 
PEEP level (set) 
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lic measurements in a third window, and time- 
stamps and saves together the clamp and (correct- 
ed) metabolic data in a fourth. In a fifth window the 
user is invited to express possible dissatisfaction 
with the current state of things, so that corrective 
measures can be taken. 

With the above architecture running an on IBM 
PS2 System 80 computer (386 at 20 MHz, 6 MB 
RAM, 120 MB HD, no coprocessor), more than 200 
task switches per second have been observed. 

Discussion 

A sizeable amount of effort has been expended in 
making it possible for a PC to perform in a reason- 
ably efficient way as a parallel controller for bed- 
side operation under the standard MS-DOS oper- 
ating system. The rationale is that in most institu- 
tions big workstations are not cost-effective, and 
that PC's perform acceptably many functions with 
widespread cheap software. The same computer 
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used to monitor a critical patient for a few days can 
then be used to draw diagrams, analyze historical 
data, do word processing or develop some more 
software. 

Whereas the described windowing behaviour is 
more artfully implemented in commercial multi- 
tasking packages like Microsoft Windows or Quar- 
terdeck Desqview 386, Hydra adds painless data 
condivision among tasks and dynamic, software 
controlled task reprioritization: for instance, the 
user interface can be slowed down in favor of in- 
strument control processes when no keypress has 
been detected for ten seconds, to be accelerated 
again at the first keypress. A clinically more in- 
teresting example is that in which a physiologic 
abnormality in one organ system, say circulation, is 
detected; Hydra then increases the priority allocat- 
ed to expert system interrogations referring to that 
specific organ system. This feature provides an 
analogue for attention focusing in information pro- 
cessing [22]. 

Faster PC's, like 486's, can run this system faster, 
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Fig. 3. Data items from several physical instruments and from the keyboard, after possible processing, are represented in the window 
dedicated to the control of one physiologic situation, realizing a computerized Virtual Instrument monitoring that physiologic situation. 



and a physician's real time is usually slow enough to 
obviate the need of a dedicated, high performance 
workstation. What is more important, the availabil- 
ity of programmers versed in the standard PC lan- 
guages is far greater than that of programmers able 
to quickly produce code for workstations, and soft- 
ware customization is thereby greatly facilitated. 

Using the memory sharing parallel features of 
this software it is very easy to set up what may be 
called a 'Virtual Instrument' to operate at the pa- 
tient's bedside (Fig. 3). A Virtual Instrument looks 
to the operator like a single isolated instrument, its 
frontpiece consisting of one window on the screen 
on which switches and dials are present. In the 
background, the Virtual Instrument task collects 
from shared memory whatever ingredients it 
needs, causes dependent tasks to be activated if 
necessary and displays as a finished product the 
computed quantities. In the foreground, it prompts 
for and accepts instrument-specific input. 

Commercial software packages for process con- 
trol, like LabWindows or Asyst, also provide tools 
for building virtual instruments, with much better 
graphical displays and semi-automated connection 
to vendor-specific hardware (which, however, does 
not eliminate the need to write programs). On the 
other hand, Hydra allows stackable instruments 
(more instruments than can fit in a single screen), 
native C programming, dynamically reprioritizable 
concurrent execution and multiple simultaneous 
copies of servers. 

A Virtual Instrument in the anesthesiologic set- 
ting could be, for instance, a collection of comput- 
ing routines specifically designed for PEEP optimi- 
zation in the ventilated patient. This optimization 
could be brought about by recording simultaneous 
Cardiac Index and Effective PEEP values from an 
impedance cardiometer and the ventilator respec- 
tively, and by periodically calling a numerical fit- 
ting routine to find the point at which an increase of 
PEEP has relatively larger negative effects on CI. 

In our application, such a Virtual Instrument is 
the Metabolic Computer, which updates in real 
time the fuel mix and rate of metabolism of the 
patient, accepting such keyboard inputs as the daily 
average nitrogen elimination and finding, in shared 
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memory, the necessary chamber gas concentration 
and flow data. 

In the preparation of this software, a deliberate 
course of action has been taken, minimizing graph- 
ical niceties and nonessential components in order 
to produce as fast a system as possible. The deci- 
sion to start from native C code instead of building 
over a commercially available platform stems from 
this requirement. SubstantiaI computing power is 
now needed at the bedside of the critically ill pa- 
tient, and this need will increase in the near future. 
A trimmed-down, lean, efficient software can en- 
able PC's to economically provide such computing 
power. 
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