
International Journal of Clinical Monitoring and Computing 10: 147-i54, 1993.
�9 1993 Kluwer Academic Publishers. Printed in the Netherlands.

Hydra: a C-language environment for real-time DOS multitasking
at the bedside

Andrea DeGaetano, 1'2 William R Coleman, 3 Rita Pizzi, 4 Edoardo Tomaselta, 4 Marco Castagneto :'2 &
Aldo V~ Greco 2'5

CNR Centro Fisiopatologia Shock e Clinica Chirurgica, Univet~itd Cattolica del Sacro Cuore, Rome, italy;
2 Centro per la Modellistica dei Sistemi Fisiologici, Universitd Cattolica del Sacro Cuore, Rome, italy.:
3 MIEMMS--Shock Trauma Center and Dept. o f Mathematics, University o f Maryland, Baltimore, USA;
4 Dipartimento di Scienze dell'Informazione, Universitd degli Studi, Milano, Italy," s Clinica Medica,
Gastroenterologia e Malattie Metaboliche, Universita' Cattolica, Rome, Italy

Accepted 4 May 1992

Key words: microcomputers, mathematics, software, multitasking

Abstract

Patient monitoring at the bedside is an inherently parallet job, best handled by multiple individual tasks
running concurrently. Cost and diffusion considerations strongly favor the use of PC's at the bedside, but
their most widespread operating system, DOS, is not built for multitasking. Hence, a software platform in C
language has been prepared, allowing the intermediate programmer to easily write independent modules
which will then run simultaneously without conflicts.

Such a platform aims at allowing effortless sharing of data among concurrently running processes, while
providing strong insulation between tasks, enough to allow multiple copies of any one task to run simultane-
ously unknown to each other. A cooperative, memory sharing multitasking paradigm has been chosen, which
offers fine granularity of timeslicing and low execution overhead at the price of some loss in generality of
design.

Speed, data exchange capability and number of stackable windows are greater than with commercial
packages like Windows or LabWindows. Dynamical reprioritization of tasks is built in, allowing the comput-
erized monitor to focus its attention and resources on urgent tasks.

Introduction

Computerized patient monitoring and instrument
control necessitate an easy, inexpensive and effec-
tive computing platform in order to spread from
the research laboratory to the clinical setting.

The usefulness of microcomputers in the clinical
monitoring setting was recognized early [1-3], and
there are more and more applications in which
computing power is necessary for patient control.
Several such applications have been described in

the on-line respiratory monitoring of the intensive
care patient [4-6], other applications have been
described which greatly expand the scope of simple
ECG monitoring [7, 8], such as continuous imped-
ance cardiometry [9, 10]. Newer applications re-
quiring additional computing power at the bedside
could be renal function monitoring [11], or voice-
mediated user interaction [12]. Whereas expert sys-
tems already exist in the intensive care setting [13,
14], a forthcoming necessity will be to have them
running continuously on the latest patient's data.

148

Also, meaningful interpretation of acquired data
must be preceded by computationally expensive
signal conditioning [15, 16].

While massive computing power is available, it
often comes at a steep price. Since Personal Com-
puters are widely available, come at a relatively
small cost, and are quickly increasing in power,
they appear to be a natural choice if each bed must
be equipped with a computer and if standard sup-
porting software is still in the definition phase [17-
19]. From a pure computational speed point of
view, PC's are not too bad: a Toshiba 5200 (386 at
20 MHz) with a 387 coprocessor clocks at 5500
Dhrystones/sec, about the same as a VAX 785.
Some practical problems have to be solved, how-
ever, before PC's can become effective tools in
intensive care.

A bedside computer faces an inherently parallel
job, where distinct tasks or processes have to be
given attention to by the CPU: different instru-
ments communicating at different rates, the user
interface to be kept active, background computing
processes like on-the-fly statistical analyses and ex-
pert system interrogations, disk updates, and other
housekeeping chores. Other authors have already
proposed parallel architectures for clinical mon-
itoring systems [20, 21].

The purpose of the present work is to describe
the Hydra platform developed at UCSC in Rome.
This C-language software skeleton allows an inter-
mediate level programmer to quickly create as
many separate processes as he deems fit and as the
hardware will tolerate, making them run on an
IBM-PC compatible machine under MS-DOS. An
application of this platform, currently monitoring a
calorimetric chamber, is described.

Materials and methods

The Hydra multitasker is a Microsoft C large mem-
ory model template for the development of C pro-
grams consisting of several independent but freely
communicating tasks.

The programmer is supplied with a header file
(multitsk.h) containing the definitions of the global
symbols used in the template, an object file (multi-

rou.obj) corresponding to the compiled set of rou-
tines which handle the transitions between the
pieces of code written by the programmer himself,
and a manual. He then tackles each task separately
as if it were an isolated program to be run alone,
writing the relative code in standard C language.

In other words, if the computer programmer is
able to write single small programs that execute the
things he wants done one at a time, Hydra will run
them simultaneously, each in its own window on
the screen. If desired, the small programs (the sep-
arate tasks) will be able to call each other, ex-
change data and influence the behavior of one an-
other in a very simple and powerful way. On the
other hand, if insulation between tasks is desired,
Hydra will make them so unaware of one another's
workings that even arbitrarily many copies of the
same task will run concurrently without conflict.

The separate programs are merged into a final
source according to the following criteria. A task is
logically divided into three components:
1) directives, pragmas and declarations;
2) a task body;
3) service routines (functions).
Directives, pragmas and declarations for all tasks
are collected at the external level or at the begin-
ning of the main () function of the final merged
source file. A call SETUP_MULTITASK is placed
after the declarations under main (). All task bod-
ies, delimited by
label: BEGIN-TASK;

< statementblock >
END-TASK;
are then added to the merged main () function.
Accessory functions can be placed in the main file
or in separate modules; legible coding practice sug-
gests that most of the work be delegated from the
task bodies to accessory functions.

At run-time, control is passed to the task bearing
the label 'main-task'. From it, other tasks may be
forked or chained as needed, by means of instruc-
tions like

fork (< task label >, 'task name', < task priority >);

Whereas chaining a child task suspends execution

149

HYDRA ORGANIZATION

begin-task l
1112 A

end-task
f

begin-task

end-task

begin-task

end-task

begin-task
.=,,=

end-task

B

/ / � 9 /

j , /

�9 / /
J � 9

D

j "
/ "

S --~-~ ~

CODE USER LOGIC

R

A

M

Fig. 1. To each Hydra task there corresponds a screen window and keyboard buffer, making it a separate virtual computer program. All
such programs share all data in the host computer's RAM.

of the parent task until the child has terminated
running, forking a child does not suspend execu-

tion of the parent.
The merged code can then be compiled and link-

ed, together with the multirou.obj file, to produce a
program in which each task runs independently in
its own window.

Under Hydra, to each task is associated its own
screen window (Fig. 1). Each task's window is up-
dated independently of all others, even when it is
completely or partially in the background, so that
leafing through the windows on the screen brings
up instantaneously the current window's contents.

To each task is also associated its own keyboard
buffer and echo, so that the user talks to the fore-
ground window. The user can leave the current
input incomplete, bring some other window to the
foreground, work on that, then come back later
and restart from where he or she left off.

Appropriate input functions are provided, which
act in a non-suspensive way: while the user com-
pletes input to a window, all the rest of the system
continues working unimpeded. Windows are

moved and restacked independently of any ongo-
ing input process.

Task priorities are not fixed: supervisory tasks
can be written that modify the system priorities on
the basis of current variable values.

Extended memory is used to store large arrays,
freeing conventional memory for counters and
control variables. Appropriate functions are pro-
vided to handle transparently extended memory
arrays.

At runtime multiple copies of the same task can
be called and made to run concurrently and inde-
pendently of each other. There is no fixed limit to
the number of replicates of each task, which may be
determined at runtime on the basis of the available
data. This feature is useful when writing shared
servers that are forked or chained by several other
tasks. For instance, multiple copies of an inference
engine can simultaneously roam the same rule base
with different goals.

The multitasking kernel on which Hydra oper-
ates works under the cooperative and memory
sharing paradigms.

150

As a cooperative multitasker, Hydra does not
use a clock interrupt signal to stop task execution
and delimit timeslices. Instead, it depends on each
task generating an appropriate 'end-of-timeslice'
signal, by calling the function preempt (), This
arrangement has both advantages and disadvan-
tages: on one hand it provides for task-defined
timeslices allowing greater flexibility and easier da-
ta integrity maintenance. It also makes for faster
context switching, finer granularity and smoother
operation. On the other hand the whole system
becomes only as robust as the worst task running
under it, and task design requires some careful
consideration on the part of the programmer.

Hydra is also based on a shared-memory as op-
posed to a message-passing architecture. In memo-
ry sharing all 'common data' among different tasks
are simply declared at the external level and are
indifferently accessible by everybody in the system.
Such an arrangement makes condivision of infor-
mation easier, but makes code encapsulation more
difficult; it is more efficient and produces less over-
head than a message-passing system, but it is not as
easily upward scalable, does not enjoy as much
generality of design and must be somewhat tailored
to the application at hand.

Results

One current implementation of the Hydra multi-
tasker is at the calorimetric chamber of the Depart-
ment of Gastroenterology and Metabolic Diseases,
Catholic University, Rome. This is a somewhat un-
usual patient monitoring application, where the
object is to continuously measure metabolism,
movement and heart rate in order to estimate real
life energy expenditure and related factors. How-
ever, there is no difference in either concept or
software between this application and a more tradi-
tional intensive care situation: all that would vary
would be the type of some of the connected in-
struments. In the following description, the overall
metabolic monitoring job is split into the several
different concurrent tasks composing it. The rela-
tionships between some of these tasks are also
sketched.

One of the several tasks running in this applica-
tion talks to the user and modifies accordingly the
computing environment (length of sampling brack-
ets, depth of data smoothing, measured urinary
Nitrogen Excretion, frequency of disk data saves,
and other similar keyboard-input information).
Another task polls the 16 channel A/D converter,
to which 0 2 and CO 2 concentrations within the
chamber, flow through the chamber, patient's heart
rate, radar output, temperature, humidity, pressure
and other signals are brought; this task also stores
smoothed data onto a large circular buffer. A me-
tabolic computations task sleeps the allotted peri-
od of time, then wakes up, performs the computa-
tions, displays the results, stores them on disk,
clears the buffer of the used data and goes back to
sleep. There is a task which monitors a treadmill
through an RS232 port and which records and
shows speed, miles run, and slope. A radar motion
detector task is being implemented, relying on a
simple neural network simulator to gauge the
amount of actual patient movement from the out-
put of two ultrasound detectors; for the moment
this task only adds the motion signals for the two
detectors and averages them out relative to the
chosen time period. There are also a system clock
task and a fleeting (self-terminating) instrument
calibration task. Invisible to the user, there is the
windower task (part of the kernel).

Figure 2 shows the time tracing of some of the
measured and on-line computed variables from an
obese diabetic patient examined in the calorimetric
chamber. It must be appreciated how the derived
parameters of interest, like metabolic rate, are
computed using information coming in from differ-
ent instruments (flowmeter, oxymeter, temper-
ature and humidity probes) as well as from the
keyboard (Nitrogen Excretion). This integration of
different sources of information is as easy as writ-
ing the formulae including the variables of interest,
provided that the multitasking environment is in
place.

Now that the skeleton works reliably, adding
further tasks is very easy: a small library of them is
being built and they can be plugged effortlessly in
the main module. A case in point is the Siemens
900C Servoventilator, which outputs sixteen differ-

151

1600

1200

900

800

300

0

'!

vc02

0 5 ~0 15

0 ,8

0 .6

0 ,4

0 .2

0

i - rq

/
{

/
_ I

m r

i ,

0 ~ 1 0 1 ~ 2 O 2 ~

IB

meal ~ s leep ~ exercise

Fig. 2. Time tracings for a 33yr old male type i diabetic patient studied in the Calorimetric Chamber. Time is expressed in hours from
beginning of the experiment (at 8:00 A.M.). VO2 and VCO2 are expressed in ml/min. RQ is the respiratory quotient (VO2/VCO2), which
varies from 0.7 (when the subject burns only lipids) to 1.0 (when the subject burns only carbohydrates). Metabolic Rate (mr: Kcal/24hr)
has been divided by 10,000 in order to superimpose its graph to that of RQ. Each graphed point is the average value of half an hour
recording at five samples per second.

ent pieces of information through analog 0-10 Volt
lines (Table 1): with the A/D board already in place,
adding a ventilator task is a matter of merely de-
claring to the system the meaning of the sixteen
pieces of information and the rate at which the user
wants them polled from the ventilator.

Another example of the kind of problems which
Hydra solves is the following: the physicians in our
team perform euglycemic hyperinsulinemic clamp
studies, where high doses of insulin are infused to
stop hepatic gluconeogenesis and a continuous in-
fusion of glucose must be maintained at varying
rates in order to keep glycemia constant. A simple
BASIC program was used to perform the clamp
computations for the physician, indicating the nec-
essary rate of glucose infusion for the next five
minutes, given the target glycemia, current glucose
infusion rate, size of the patient, etc. A decision was
then made to associate metabolic monitoring, with
a Deltatrac Metabolic Cart (Datex, Finland), to the

clamp study. Hydra runs the clamp computations in
a window, automatically acquires data from the
Deltatrac in another window, corrects raw metabo-

Tab& L Data available on-line from the Siemens 900C Servoven~
tilator as 0-10V analog signals.

Airway flow
Tidal volume (inspired)
Tidal volume (expired)
Airway pressure (waveform)
Airway pressure (peak)
Airway pressure (mean)
FiO 2
Respiratory rate (set)
Respiratory rate (real)
SIMV rate (set)
Expiratory time
Inspiratory time
Pause pressure
Expired minute volume
PEEP level (set)

152

lic measurements in a third window, and time-
stamps and saves together the clamp and (correct-
ed) metabolic data in a fourth. In a fifth window the
user is invited to express possible dissatisfaction
with the current state of things, so that corrective
measures can be taken.

With the above architecture running an on IBM
PS2 System 80 computer (386 at 20 MHz, 6 MB
RAM, 120 MB HD, no coprocessor), more than 200
task switches per second have been observed.

Discussion

A sizeable amount of effort has been expended in
making it possible for a PC to perform in a reason-
ably efficient way as a parallel controller for bed-
side operation under the standard MS-DOS oper-
ating system. The rationale is that in most institu-
tions big workstations are not cost-effective, and
that PC's perform acceptably many functions with
widespread cheap software. The same computer

VIRTUAL INSTRUMENT:

VENTILATOR

�9 QOO

AP

SET PEEP
A I D

MONITOR

IMP CO
I NCCOM3 I - - --"

RATE . ~ _ _

PUMP
TD CO

~ K E Y B O A R D \ \ - - - - - 2

used to monitor a critical patient for a few days can
then be used to draw diagrams, analyze historical
data, do word processing or develop some more
software.

Whereas the described windowing behaviour is
more artfully implemented in commercial multi-
tasking packages like Microsoft Windows or Quar-
terdeck Desqview 386, Hydra adds painless data
condivision among tasks and dynamic, software
controlled task reprioritization: for instance, the
user interface can be slowed down in favor of in-
strument control processes when no keypress has
been detected for ten seconds, to be accelerated
again at the first keypress. A clinically more in-
teresting example is that in which a physiologic
abnormality in one organ system, say circulation, is
detected; Hydra then increases the priority allocat-
ed to expert system interrogations referring to that
specific organ system. This feature provides an
analogue for attention focusing in information pro-
cessing [22].

Faster PC's, like 486's, can run this system faster,

EXAMPLE

COMPUTER

I COMPUTING MODULE: [
"EFFECTIVE PEEP"

VIRTUAL INSTRUMENT:
"PEEP OPTIMIZATION"

IMPED CO TD CO

SET PEEP

EFFECTIVE PEEP

DOPAMINE HR UO

Fig. 3. Data items from several physical instruments and from the keyboard, after possible processing, are represented in the window
dedicated to the control of one physiologic situation, realizing a computerized Virtual Instrument monitoring that physiologic situation.

and a physician's real time is usually slow enough to
obviate the need of a dedicated, high performance
workstation. What is more important, the availabil-
ity of programmers versed in the standard PC lan-
guages is far greater than that of programmers able
to quickly produce code for workstations, and soft-
ware customization is thereby greatly facilitated.

Using the memory sharing parallel features of
this software it is very easy to set up what may be
called a 'Virtual Instrument' to operate at the pa-
tient's bedside (Fig. 3). A Virtual Instrument looks
to the operator like a single isolated instrument, its
frontpiece consisting of one window on the screen
on which switches and dials are present. In the
background, the Virtual Instrument task collects
from shared memory whatever ingredients it
needs, causes dependent tasks to be activated if
necessary and displays as a finished product the
computed quantities. In the foreground, it prompts
for and accepts instrument-specific input.

Commercial software packages for process con-
trol, like LabWindows or Asyst, also provide tools
for building virtual instruments, with much better
graphical displays and semi-automated connection
to vendor-specific hardware (which, however, does
not eliminate the need to write programs). On the
other hand, Hydra allows stackable instruments
(more instruments than can fit in a single screen),
native C programming, dynamically reprioritizable
concurrent execution and multiple simultaneous
copies of servers.

A Virtual Instrument in the anesthesiologic set-
ting could be, for instance, a collection of comput-
ing routines specifically designed for PEEP optimi-
zation in the ventilated patient. This optimization
could be brought about by recording simultaneous
Cardiac Index and Effective PEEP values from an
impedance cardiometer and the ventilator respec-
tively, and by periodically calling a numerical fit-
ting routine to find the point at which an increase of
PEEP has relatively larger negative effects on CI.

In our application, such a Virtual Instrument is
the Metabolic Computer, which updates in real
time the fuel mix and rate of metabolism of the
patient, accepting such keyboard inputs as the daily
average nitrogen elimination and finding, in shared

153

memory, the necessary chamber gas concentration
and flow data.

In the preparation of this software, a deliberate
course of action has been taken, minimizing graph-
ical niceties and nonessential components in order
to produce as fast a system as possible. The deci-
sion to start from native C code instead of building
over a commercially available platform stems from
this requirement. SubstantiaI computing power is
now needed at the bedside of the critically ill pa-
tient, and this need will increase in the near future.
A trimmed-down, lean, efficient software can en-
able PC's to economically provide such computing
power.

References

1. East TD. Microcomputer data acquisition and control. ~nt J
Clin Monit Comput 1986; 3: 225-38.

2. Stoodley KD, Crew AD. Lu R et al. A microcomputer
implementation of status and alarm algorithms in a cardiac
surgical intensive care unit. Int J Clin Monit Comput 1987;
4: 115-22.

3. Farrell AR Bruce E Data acquisition and analysis of pulsa-
tile signals using a personal computer: an application in
cardiovascular physiology. Comput Biol Med 1987; 17:
151-9.

4. Chambrin MC, Ravaux R Chopin C et al. Computer-assist-
ed evaluation of respiratory data in ventilated critically ill
patients. Int J Clin Monit Comput 1989; 6: 211-5.

5. Jenkins JS, Vatcke CR Ward DS. A programmable system
for acquisition and reduction of respiratory physiological
data. Ann Biomed Eng 1989; 17: 93-108.

6. Rudowski R, Skreta L, Baehrendtz Se t al. Lung function
analysis and optimization during artificial ventilation. A
personal computer-based system. Comput Methods Pro-
grams Biomed 1990; 31: 33-42.

7. Kamath MV, Fallen EL, Ghista DN. Microcomputerized
on-line evaluation of heart rate variability power spectra in
humans. Comput Biot Med 1988; 18: 165-71.

8. Pinciroli E Pellegrini A, Falcetti Ge t al. Electrocardiomul-
tigraphimeter using a home computer. Comput Methods
Programs Biomed 1988; 26: 1-10.

9. Jossinet J, Leftheriotis G, Vernier F et al. A computerized
bioelectrical cardiac monitor. Comput Biol Med 1990; 20:
253-60.

10. Wang XA, Sun HH, Adamson D et al. An impedance
cardiography system: a new design. Ann Biomed Eng 1989;
17: 535-56.

11. Koning HM, Mackie DR Is on-line monitoring of renal
function possible? Int J Clin Monit Comput 1989; 6: 243-6.

154

12. McMillan P J, Harris JG. Data Voice: a microcomputer-
based general purpose voice-controlled data-collection sys-
tem. Comput Biol Med 1990; 20: 415-9.

13. van den Heuvel J, Stemerdink JD, Bogers AJ et al. GUUS
an expert system in the intensive care unit. Int J Clin Monit
Comput 1990; 7: 171-5.

14. Winkel E A programming language and a system for auto-
mated time- and laboratory test level dependent decision-
making during patient monitoring. Comput Biomed Res
1990; 23: 426-46.

15. Ciarlini P, Barone E A recursive algorithm to compute the
baseline drift in recorded biological signals. Comput
Biomed Res 1988; 21: 221-6.

16. Sittig DE Factor M. Physiologic trend detection and artifact
rejection: a parallel implementation of a multi-state Kal-
man filtering algorithm. Comput Methods Programs
Biomed 1990; 31: 1-10.

17. Cesarelli M, Clemente F, Bracale M. A flexible FFT algo-
rithm for processing biomedical signals using a personal
computer. J Biomed Eng 1990; 12: 527-30.

18. Mustard RA, Cosolo A, Fisher J et al. PC-based system for

collection and analysis of physiological data. Comput Biol
Med 1990; 20: 65-74.

19. Petrini MF, Dwyer TM, Wall MA et al. Communication
between the PC and laboratory instruments. Comput Appl
Biosci 1990; 6: 161-4.

20. Westdijk JA, van Alste JA, Schoute AL. Multi-tasking con-
trol system for real-time processing of biomedical signals.
Comput Methods Programs Biomed 1988; 26: 153-8.

21. Factor M, Sittig DF, Cohn AI et al. A parallel software
architecture for building intelligent medical monitors. Int J
Clin Monit Comput 1990; 7: 117-28.

22. Hayes-Roth B, Washington R, Hewett R et al. Intelligent
monitoring and control. Proceedings IJCAI 89 1989, De-
troit, 243-9.

Address for offprints:
A. De Gaetano,
CNR Centro Fisiopatologia Shock,
Universith Cattolica del Sacro Cuore,
L.go Gemelli,
8 - 00168 Rome, Italy

