(C) Springer-Verlag 1995

A generalized notion of variation applied to Markov chains and Anosov maps

J. Loviscach ${ }^{\star}$
BiBoS, Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
(Fax: +49-521/106 2961)

Received: 26 April 1994 / In revised form: 1 November 1994

Summary. Extending the operator formalism of [3] we show that there exists a large class of functions which possess an exponential decay of correlations and fulfill a central limit theorem under a certain type of Markov chains. This result can be applied to the symbolic dynamics of Anosov maps, showing that in the case of a absolutely continuous invariant measure there is a large class of functions with good ergodic properties - larger than the usual class of Hölder continuous functions.

Mathematics Subject Classifications: 60F05, 58F15

1 Definitions

Let $r \in \mathbb{N}$ be given. For sequences $\left\{\xi_{s}\right\}_{s \in \mathbb{Z}}$ of symbols $\xi_{s} \in\{1, \ldots, r\}$ define the shift-by-one-digit map T by $\left\{\xi_{s}\right\}_{s \in \mathbb{Z}} \mapsto\left\{\xi_{s+1}\right\}_{s \in \mathbb{Z}}$. We look at a T-invariant subset $\Sigma \subset\{1, \ldots, r\}^{\mathbb{Z}}$ of "admissible" two-sided symbol sequences. Σ is defined with the help of a fixed $r \times r$-matrix \mathscr{T} whose entries are either 0 or 1 : A sequence $\left\{\xi_{s}\right\}_{s \in \mathbb{Z}}$ is admissible if and only if $\mathscr{F}_{\xi_{s}, \xi_{s+1}}=1$ for all $s \in \mathbb{Z}$. The admissible "future" symbol sequences form the subset Σ^{+}of $\{1, \ldots, r\}^{\mathbb{N}_{0}}$ which consists of all $\left\{\xi_{s}\right\}_{s \in \mathbb{N}_{0}}$ with $\mathscr{F}_{\xi_{s}, \xi_{s+1}}=1$ for all $s \in \mathbb{N}_{0}$.
Σ and Σ^{+}possess a natural measurable structure. Assume that we are given a probability measure $d \mu$ which is invariant and weakly mixing w.r.t. the shift T. (The further assumptions which will be introduced about $d \mu$ demand implicitly that T is topologically mixing, i.e. there exists $m \in \mathbb{N}$ such that $\mathscr{T}^{m}>0$.) In the following, the norm of the space $L^{p}(d \mu), p>0$, will be denoted $\|\cdot\|_{p}$. The measure $d \mu$ induces a measure $d \mu^{+}$on Σ^{+}in a natural way.
Define a distance function on Σ by

[^0]$$
d_{\Sigma}\left(\xi^{1}, \xi^{2}\right):=\exp \left(-\max \left\{n \in \mathbb{N}_{0}: \xi_{s}^{1}=\xi_{s}^{2} \text { for all } s=-n, \ldots, n\right\}\right)
$$

A similar distance function $d_{\Sigma^{+}}$can be introduced on Σ^{+}.
We assume that the conditional expectation $\mu\left(\xi_{0} \mid \xi_{1}, \xi_{2}, \ldots\right)$ is strictly positive on Σ^{+}and define a function $h:\{1, \ldots, r\}^{\mathbb{N}_{0}} \rightarrow \mathbb{R}_{0}^{+}$by

$$
h\left(\nu_{0}, \nu_{1}, \nu_{2}, \ldots\right):=\mu\left(\xi_{0}=\nu_{0} \mid \xi_{1}=\nu_{1}, \xi_{2}=\nu_{2}, \ldots\right)
$$

if $\left(\nu_{0}, \nu_{1}, \nu_{2}, \ldots\right)$ is admissible and set $h\left(\nu_{0}, \nu_{1}, \nu_{2}, \ldots\right):=0$ else. We assume furthermore that there exist $\alpha_{h}>0$ and $C_{h}<\infty$ such that for all $n \in \mathbb{N}_{0}$:

$$
\begin{equation*}
\sup _{\substack{\xi^{4}, \xi^{2} \in \Sigma^{+} \\ \xi_{s}^{1}=\xi_{s}=\xi_{s}^{2}, 0 \leq s \leq n}}\left|h\left(\xi^{1}\right)-h\left(\xi^{2}\right)\right| \leq C_{h} e^{-\alpha_{h} n} \quad \text { for all } \xi \in \Sigma^{+} \tag{1}
\end{equation*}
$$

Thus, h is continuous w.r.t. d and possesses a strictly positive infimum H on the compact space ($\Sigma^{+}, d_{\Sigma^{+}}$).

The aim of this paper is to find a large class of functions f such that $\int d \mu \bar{f} f \circ$ T^{N} decays exponentially and $N^{-1 / 2} \sum_{n=0}^{N-1} f \circ T^{n}$ converges to a Gaussian law as $N \rightarrow \infty$.

2 Generalized Hölder continuous functions

Now we generalize the notion of Hölder continuity w.r.t. the distance function d_{Σ}. To this end, we carry over the notion of generalized variation employed in the study of multidimensional piecewise expanding maps (see [2], [5], and the references therein.)

Definition. For $n \in \mathbb{N}_{0}, \xi \in \Sigma$, and $\widetilde{f}: \Sigma \rightarrow \mathbb{C}$, define an oscillation by

$$
\operatorname{osc}_{n}(\widetilde{f}, \xi):=\sup \left\{\left|\tilde{f}\left(\xi^{1}\right)-\tilde{f}\left(\xi^{2}\right)\right|: \xi^{1}, \xi^{2} \in \Sigma ; \xi_{s}^{1}=\xi_{s}=\xi_{s}^{2},-n \leq s \leq n\right\}
$$

For $\alpha>0$ and $m \in \mathbb{N}_{0}$ the set $G H_{\alpha, m}$ consists by definition of all functions $f \in L^{1}(\Sigma \rightarrow \mathbb{C}, d \mu)$ with finite variation

$$
\operatorname{var}_{\alpha, m}(f):=\inf _{\widetilde{f}=f \text { a.e. }} \sup _{n \geq m} e^{\alpha n} \int d \mu(\xi) \operatorname{osc}_{n}(\widetilde{f}, \xi)
$$

$G H_{\alpha, m}$ is equipped with the norm $\|\cdot\|_{\alpha, m}:=\|\cdot\|_{1}+\operatorname{var}_{\alpha, m}(\cdot)$.
The following properties of $G H_{\alpha, m}$ are obvious:

1. For $\alpha^{\prime} \leq \alpha$ and $m^{\prime} \geq m$ every function $f \in G H_{\alpha, m}$ is contained in $G H_{\alpha^{\prime}, m^{\prime}}$, too.
2. For all $f \in G H_{\alpha, m}$ and all Lipshitz continuous $\phi: \operatorname{img} f \rightarrow \mathbb{C}$, also $\phi \circ f \in$ $G H_{\alpha, m}$ with $\operatorname{var}_{\alpha, m}(\phi \circ f) \leq \operatorname{Lip}(\phi) \operatorname{var}_{\alpha, m}(f)$.
3. There exist $C<\infty$ such that $\|f\|_{\infty} \leq C\|f\|_{\alpha, m}$ for every $f \in G H_{\alpha, m}$.
4. $\operatorname{var}_{\alpha, m}(f g) \leq \operatorname{var}_{\alpha, m}(f)\|g\|_{\infty}+\operatorname{var}_{\alpha, m}(g)\|f\|_{\infty}$ for all $f, g \in G H_{\alpha, m}$.

Let $L^{1}\left(d \mu^{+}\right)$denote the subspace of $L^{1}(d \mu)$ consisting of the functions that possess a $d \mu$-version which only depends on the symbols ξ_{s} with $s \geq 0$. Analogously, call $G H_{\alpha, m}^{+}$the class of functions $f \in G H_{\alpha, m}$ possessing a $d \mu$-version f_{0} which only depends on the symbols ξ_{s} with $s \geq 0$ such that

$$
\infty>\operatorname{var}_{\alpha, m}^{+}(f):=\inf _{\widetilde{f}=f_{0} \text { a.e. }} \sup _{n \geq m} e^{\alpha n} \int d \mu^{+}(\xi) \operatorname{osc}_{n}^{+}(\widetilde{f}, \xi),
$$

where the infimum runs over all functions $\tilde{f}: \Sigma^{+} \rightarrow \mathbb{C}$ and where

$$
\operatorname{osc}_{n}^{+}(\widetilde{f}, \xi):=\sup \left\{\left|\widetilde{f}\left(\xi^{1}\right)-\widetilde{f}\left(\xi^{2}\right)\right|: \xi^{1}, \xi^{2} \in \Sigma^{+} ; \xi_{s}^{1}=\xi_{s}=\xi^{2}, 0 \leq s \leq n\right\}
$$

On $G H_{\alpha, m}^{+}$, a norm can be defined by $\|\cdot\|_{+, \alpha, m}:=\|\cdot\|_{1}+\operatorname{var}_{\alpha, m}^{+}(\cdot)$.
Theorem $1 G H_{\alpha, m}$ with the norm $\|\cdot\|_{\alpha, m}$ and $G H_{\alpha, m}^{+}$with the norm $\|\cdot\|_{+, \alpha, m}$ are Banach spaces.

Proof. (Only the $G H_{\alpha, m}$-part.) Let $\left\{f_{l}\right\}_{l \in \mathbb{N}}$ be a Cauchy sequence in $G H_{\alpha, m}$. Due to Property 3 of $G H_{\alpha, m}$ it is also a Cauchy sequence in $L^{\infty}(d \mu)$, so that it possesses a limit $f \in L^{\infty}(d \mu)$ with respect to $\|\cdot\|_{\infty}$.

Fix $\epsilon>0$. By the Cauchy property for $\left\{f_{l}\right\}_{l \in \mathbb{N}}$ in $G H_{\alpha, m}$ we find: There exists $L \in \mathbb{N}$ such that for all $l \geq L$ there is some $d \mu$-version \widetilde{f}_{l} of f_{l} with

$$
\begin{equation*}
\int d \mu(\xi) \operatorname{osc}_{n}\left(\widetilde{f}_{l}-\widetilde{f}_{L}, \xi\right) \leq \epsilon e^{-\alpha n} \tag{2}
\end{equation*}
$$

for all $n \geq m$. We can assume that $\left|\tilde{f}_{l}(\xi)-\widetilde{f}_{L}(\xi)\right|$ is bounded for all ξ and all $l \geq L$ by $C:=2 \sup _{l}\left\|f_{l}\right\|_{\infty}<\infty$. There exists a set A with $\mu(A)=1$ such that for all $x \in A$ we have $f(x)=\lim _{l} \widetilde{f}_{l}(x)$ and on A the modulus of all $\widetilde{f}_{l}, l \in \mathbb{N}$, is bounded by $C / 2$.

Given these building blocks, we construct a $d \mu$-version \widetilde{f} of f such that

$$
\begin{equation*}
\left.\int d \mu(\xi) \operatorname{osc}_{n} \tilde{f}-\tilde{f}_{L}, \xi\right) \leq \epsilon e^{-\alpha n} \tag{3}
\end{equation*}
$$

for all $n \geq m$. This implies $\operatorname{var}_{\alpha, m}\left(f-f_{L}\right)<\epsilon$, hence $f=\left(f-f_{L}\right)+f_{L} \in G H_{\alpha, m}$, and f is $G H_{\alpha, m}$-limit of $f_{L}, L \rightarrow \infty$, which proves the theorem.

Construction of $\widetilde{f}:$ Let $\left.\widetilde{f}\right|_{A}:=\left.f\right|_{A}$. For ξ not in A, take some sequence $\left\{\xi^{k}(\xi)\right\}_{k \in \mathbb{N}}$ in A which converges to ξ with respect to d_{Σ}. Such a sequence exists, because otherwise ξ would possess a neighborhood disjoint from A, in contradiction to $\mu(A)=1$. The sequence $\left\{\widetilde{f}\left(\xi^{k}(\xi)\right)-\widetilde{f}_{L}\left(\xi^{k}(\xi)\right)\right\}_{k \in \mathbb{N}}$ is bounded and, hence, possesses at least one point of accumulation. Define $\tilde{f}(\xi)$ in such a way that one of these points equals $\widetilde{f}(\xi)-\widetilde{f}_{L}(\xi)$.

This implies that for all $\xi^{1 / 2} \in \Sigma, \xi_{s}^{1 / 2}=\xi_{s}$ for $-n \leq s \leq n$, the value $\left|\widetilde{f}\left(\xi^{1}\right)-\widetilde{f}_{L}\left(\xi^{1}\right)-\widetilde{f}\left(\xi^{2}\right)+\widetilde{f}_{L}\left(\xi^{2}\right)\right|$, and hence $\operatorname{osc}_{n}\left(\stackrel{(}{f}-\widetilde{f}_{L}, \xi\right)$, is bounded by

$$
\sup \left\{\left|\tilde{f}\left(\xi^{1}\right)-\tilde{f}_{L}\left(\xi^{1}\right)-\tilde{f}\left(\xi^{2}\right)+\tilde{f}_{L}\left(\xi^{2}\right)\right|: \xi^{1 / 2} \in A ; \xi_{s}^{1 / 2}=\xi_{s},-n \leq s \leq n\right\}
$$

(Note the appearance of A instead of the full set $\Sigma!$) because, if ξ^{1} is not already an element of A, the value of $\widetilde{f}\left(\xi^{1}\right)-\widetilde{f}_{L}\left(\xi^{1}\right)$ is the limit of its values at some near (with respect to d_{Σ}) points $v \in A$. These v can be chosen so as to fulfill $v_{s}=\xi_{s}$, $-n \leq s \leq n$, so that they are contained in the set of ξ^{1} in the supremum. A similar argument applies to ξ^{2}.

For $\xi^{1} \in A$, the value $\widetilde{f}\left(\xi^{1}\right)$ is the limit of $\widetilde{f}_{l}\left(\xi^{1}\right)$. Thus, the above estimate leads to $\operatorname{osc}_{n}\left(\widetilde{f}-\widetilde{f}_{L}, \xi\right) \leq \liminf \operatorname{iosc}_{n}\left(\widetilde{f}_{l}-\widetilde{f}_{L}, \xi\right)$. Now we can apply Fatou's lemma to deduce Eqn. (3) from Eqn. (2) by interchanging lim inf f_{l} and integration $\int d \mu(\xi)$.

Theorem 2 The closed unit ball of $G H_{\alpha, m}$ is compact in $L^{1}(d \mu)$. Likewise, the closed unit ball of $G H_{\alpha, m}^{+}$is compact in $L^{1}\left(d \mu^{+}\right)$.

Proof. (Only the $G H_{\alpha, m}$-part.) We have to show: For every sequence $\left\{f_{l}\right\}_{l \in \mathbb{N}}$ in $G H_{\alpha, m}$ with $\left\|f_{i}\right\|_{\alpha, m} \leq 1$ for all $l \in \mathbb{N}$ there exists some subsequence which converges in $L^{1}(d \mu)$ to some $f \in G H_{\alpha, m}$ with $\|f\|_{\alpha, m} \leq 1$.

Due to Property 3, there exists $C<\infty$ such that for all $l \in \mathbb{N}$ we have $\left\|f_{l}\right\|_{\infty} \leq C$, and hence $\left\|f_{l}\right\|_{2} \leq C$. Therefore there exists a subsequence of $\left\{f_{l}\right\}_{l \in \mathbb{N}}$ which converges weakly with respect to $L^{2}(d \mu)$ to some $f \in L^{2}(d \mu)$ with $\|f\|_{2} \leq C$. Call this converging subsequence again $\left\{f_{l}\right\}_{l \in \mathbb{N}}$.

Fix $\epsilon>0$. By the definition of the unit ball in $G H_{\alpha, m}$ we can find for each f_{l} a $d \mu$-version \widetilde{f}_{l} such that $\left|\tilde{f}_{l}(\xi)\right| \leq C$ for all ξ and

$$
\begin{equation*}
\int d \mu(\xi) \operatorname{osc}_{n}\left(\widetilde{f}_{l}, \xi\right) \leq e^{-\alpha n}\left(1-\left\|\widetilde{f}_{l}\right\|_{1}+\epsilon\right) \tag{4}
\end{equation*}
$$

for all $n \geq m$.
Next we show that \tilde{f}_{l} also converges strongly with respect to $\|\cdot\|_{1}$: Fix $M \geq m$. Choose a finite partition $\bigcup_{i} A_{i}$ of Σ into disjoint non-zero measurable sets A_{i} such that all symbol sequences from a specific set A_{i} coincide from the $-M$-th up to the M-th entry. Of \tilde{f}_{l} define a discrete approximation $F_{l}:=$ $\sum_{i} \mathbf{1}_{i} \mu\left(A_{i}\right)^{-1} \int_{A_{i}} d \mu \widetilde{f}_{l}$, where $\mathbf{1}_{i}$ is the indicator function of the set A_{i}. The weak convergence of \widetilde{f}_{l} implies that F_{l} converges strongly with respect to $\|\cdot\|_{1}$ as $l \rightarrow \infty$. We can estimate the distance between F_{l} and \widetilde{f}_{l} :

$$
\begin{aligned}
\left\|F_{l}-\widetilde{f}_{l}\right\|_{1} & \leq \sum_{i} \int_{A_{i}} d \mu(\xi) \sup \left\{\widetilde{f}_{l}\left(\xi^{1}\right)-\widetilde{f}_{l}(\xi) \mid: \xi^{1} \in A_{i}\right\} \\
& \leq\left(1-\left\|\widetilde{f}_{l}\right\|_{1}+\epsilon\right) e^{-\alpha M}
\end{aligned}
$$

where in the last step Eqn. (4) has been applied with $n=M$. Therefore, $\| \widetilde{f}_{l}-$ $\widetilde{f}_{k}\left\|_{1} \leq 2(1+\epsilon) e^{-\alpha M}+\right\| F_{l}-F_{k} \|_{1}$. But the rhs. of this estimate tends to 0 as l, $k \rightarrow \infty$ because M can be chosen arbitrarily large and because F_{l} is strongly convergent in $L^{1}(d \mu)$. This shows that \widetilde{f}_{l} is Cauchy with respect to $L^{1}(d \mu)$ and hence converges to f on a set A of full $d \mu$-measure. We construct a $d \mu$-version \widetilde{f} of f similar to the proof of Theorem 1: Let $\left.\widetilde{f}\right|_{A}:=\left.f\right|_{A}$. For ξ not in A, take some sequence $\left\{\xi^{k}(\xi)\right\}_{\underline{k \in \mathbb{N}}}$ in A which converges to ξ. The sequence $\left\{\widetilde{f}\left(\xi^{k}(\xi)\right)\right\}_{k \in \mathbb{N}}$ is bounded. Define $\widetilde{f}(\xi)$ to be one of its points of accumulation.

Using a similar argument as in the proof of Theorem 1 we find from Eqn. (4) that $\operatorname{var}_{\alpha, m}(f) \leq 1-\|f\|_{1}+\epsilon$. But $\epsilon>0$ has been arbitrary, and therefore $\|f\|_{1}+\operatorname{var}_{\alpha, m}(f) \leq 1$, so that f is an element of the unit ball of $G H_{\alpha, m}$.

3 Decay of correlations

An operator P in $L^{1}\left(d \mu^{+}\right)$is uniquely determined by demanding that for all $g \in L^{\infty}\left(d \mu^{+}\right):$

$$
\begin{equation*}
\int d \mu^{+} g P(f)=\int d \mu^{+}(g \circ T) f \tag{5}
\end{equation*}
$$

P is a contractive mapping both of the space $L^{1}\left(d \mu^{+}\right)$into itself and of the space $L^{\infty}\left(d \mu^{+}\right)$into itself.

With the help of the function h which has been introduced in the beginning, $P(f)$ can also be defined pointwise:

$$
\begin{equation*}
P(f)(\xi):=\sum_{a=1}^{r} h(a \xi) f(a \xi) \tag{6}
\end{equation*}
$$

where $a \xi$ is the symbol sequence with first entry a, second entry ξ_{1}, third ξ_{2}, and so on. Note that $a \xi$ is not necessarily an element of Σ^{+}, so that $f(a \xi)$ may not make sense. This problem is solved by the special form of h : It vanishes for symbol sequences which are no elements of Σ^{+}.

The following theorem shows that T has strong ergodic properties with respect to the new class of function spaces $G H^{+}$:

Theorem 3 The theorem of Ionescu-Tulcea and Marinescu (see Appendix A) can be applied to P acting in $G H_{\alpha, m}^{+} \subset L^{1}\left(d \mu^{+}\right)$if $\alpha \leq \alpha_{h}$ and if $m \in \mathbb{N}_{0}$ is large enough.

Proof. We have to show that for $\alpha \leq \alpha_{h}$ and for large $m \in \mathbb{N}_{0}$ there exist $r_{1} \in(0,1)$ and $r_{2} \in \mathbb{R}_{0}^{+}$such that $\operatorname{var}_{\alpha, m}^{+}(P(f)) \leq r_{1} \operatorname{var}_{\alpha, m}^{+}(f)+r_{2}\|f\|_{1}$ for all $f \in G H_{\alpha, m}^{+}$. To see this, fix some $\epsilon>0$ and choose according to the definition of $G H_{\alpha, m}^{+}$a $d \mu^{+}$-version \widetilde{f} of f which only depends on symbols $\xi_{s}, s \geq 0$, such that for all $n \geq m$ (where m is unknown at this stage):

$$
\begin{equation*}
\int d \mu^{+}(\xi) \operatorname{osc}_{n}^{+}(\widetilde{f}, \xi) \leq\left(\operatorname{var}_{\alpha, m}^{+}(f)+\epsilon\right) e^{-\alpha n} \tag{7}
\end{equation*}
$$

For $a=1, \ldots, r$ the value $\left|h\left(a \xi^{1}\right) \widetilde{f}\left(a \xi^{1}\right)-h\left(a \xi^{2}\right) \tilde{f}\left(a \xi^{2}\right)\right|$ is bounded by

$$
h(a \xi)\left|\widetilde{f}\left(a \xi^{1}\right)-\widetilde{f}\left(a \xi^{2}\right)\right|+\left|\widetilde{f}\left(a \xi^{1}\right)\right|\left|h\left(a \xi^{1}\right)-h(a \xi)\right|+\left|\widetilde{f}\left(a \xi^{2}\right)\right|\left|h\left(a \xi^{2}\right)-h(a \xi)\right|
$$

where we define \tilde{f} to be 0 for non-admissible sequences of symbols. Thus:

$$
\begin{align*}
& \int d \mu^{+}(\xi) \operatorname{osc}_{n}^{+}(h(a \cdot) \widetilde{f}(a \cdot), \xi) \tag{8}\\
& \leq \int d \mu^{+}(\xi) h(a \xi) \operatorname{osc}_{n}^{+}(\widetilde{f}(a \cdot), \xi) \\
& \quad+2 \int d \mu^{+}(\xi) \sup \left\{\left|\widetilde{f}\left(a \xi^{1}\right)\right|: \xi^{1} \in \Sigma^{+} ; \xi_{s}^{1}=\xi_{s}, 0 \leq s \leq n\right\} \\
& \quad \times \sup \left\{\left|h\left(a \xi^{1}\right)-h(a \xi)\right|: \xi^{1} \in \Sigma^{+} ; \xi_{s}^{1}=\xi_{s}, 0 \leq s \leq n\right\}
\end{align*}
$$

The domain of the first integral on the rhs. can be reduced to those ξ with $a \xi \in \Sigma^{+}$because $h(a \xi)$ is 0 otherwise. But then, also $a \xi^{1}$ and $a \xi^{2}$ in the definition of $\operatorname{osc}_{n}^{+}(\widetilde{f}(a \cdot), \xi)$ are elements of Σ^{+}, because of the definition of Σ^{+} via the matrix \mathscr{T} and because $\xi_{0}^{1}=\xi_{0}=\xi_{0}^{2}$. Likewise, in the second integral on the rhs. only those ξ have to be considered for which $a \xi \in \Sigma^{+}$because otherwise the first supremum would evaluate \widetilde{f} only at points $a \xi^{1} \notin \Sigma^{+}$, where \widetilde{f} is defined to be 0 . This shows that expression (8) is bounded for all $n \in \mathbb{N}$ by

$$
\begin{align*}
& \int d \mu^{+}(\xi) h(a \xi) \operatorname{osc}_{n+1}^{+}(\widetilde{f}, a \xi) \tag{9}\\
& +2 \int d \mu^{+}(\xi) \sup \left\{\widetilde{f}\left(\xi^{1}\right) \mid: \xi^{1} \in \Sigma^{+} ; \xi_{s}^{1}=(a \xi)_{s}, 0 \leq s \leq n+1\right\} C_{h} e^{-\alpha_{h}(n+1)}
\end{align*}
$$

where we have applied Eqn. (1).
Summing over a we get for the first term of this expression for all $n \geq m$:

$$
\begin{aligned}
\sum_{a=1}^{r} \int d \mu(\xi) h(a \xi) \operatorname{osc}_{n+1}^{+}(\widetilde{f}, a \xi) & \leq \int d \mu^{+}(\xi) \operatorname{osc}_{n+1}^{+}(\widetilde{f}, \xi) \\
& \leq\left(\operatorname{var}_{\alpha, m}^{+}(f)+\epsilon\right) e^{-\alpha(n+1)}
\end{aligned}
$$

where the $L^{1}(d \mu)$-contractivity of P as defined by Eqn. (6) has been used. For the same reason, the sum over a for the second term of expression (9) is bounded by

$$
\begin{aligned}
& \quad 2 C_{h} e^{-\alpha_{h}(n+1)} \sum_{a=1}^{r} \int d \mu^{+}(\xi) H^{-1} h(a \xi) \\
& \quad \times \sup \left\{\left|\widetilde{f}\left(\xi^{1}\right)\right|: \xi^{1} \in \Sigma ; \xi_{s}^{1}=(a \xi)_{s}, 0 \leq s \leq n+1\right\} \\
& \leq \\
& \quad 2 C_{h} H^{-1} e^{-\alpha_{h}(n+1)} \int d \mu^{+}(\xi) \sup \left\{\left|\tilde{f}\left(\xi^{1}\right)\right|: \xi^{1} \in \Sigma ; \xi_{s}^{1}=\xi_{s}, 0 \leq s \leq n+1\right\},
\end{aligned}
$$

Let us estimate for $n \geq m$ the value of the integral appearing in the preceding expression:

$$
\begin{aligned}
& \int d \mu^{+}(\xi) \sup \left\{\left|\widetilde{f}\left(\xi^{1}\right)\right|: \xi^{1} \in \Sigma ; \xi_{s}^{1}=\xi_{s}, 0 \leq s \leq n+1\right\} \\
& \leq \int d \mu^{+}(\xi)\left(|\widetilde{f}(\xi)|+\operatorname{osc}_{n+1}^{+}(\widetilde{f}, \xi)\right) \\
& \leq\|f\|_{1}+\left(\operatorname{var}_{\alpha, m}^{+}(f)+\epsilon\right) e^{-\alpha(n+1)}
\end{aligned}
$$

where in the last step Eqn. (7) has been used.
Assembling these pieces together and letting $\epsilon \downarrow 0$, we find

$$
\begin{aligned}
& \operatorname{var}_{\alpha, m}^{+}(P(f)) \\
& \leq \sum_{a=1}^{r} \operatorname{var}_{\alpha, \dot{m}}^{+}(h(a \cdot) f(a \cdot)) \\
& \leq \sup _{n \geq m}\left(\operatorname{var}_{\alpha, m}^{+}(f) e^{-\alpha}+2 C_{h} H^{-1} e^{\alpha n-\alpha_{h}(n+1)}\left(\|f\|_{1}+\operatorname{var}_{\alpha, m}^{+}(f) e^{-\alpha(n+1)}\right)\right) \\
& \leq\left(e^{-\alpha}+2 C_{h} H^{-1} e^{-\alpha_{h}(m+1)-\alpha}\right) \operatorname{var}_{\alpha, m}^{+}(f)+2 C_{h} H^{-1} e^{-\left(\alpha_{h}-\alpha\right) m-\alpha_{h}}\|f\|_{1} .
\end{aligned}
$$

The coefficient of $\operatorname{var}_{\alpha, m}^{+}(f)$ can be made smaller than 1 by choosing m large enough.

Applying the theorem of Ionescu-Tulcea and Marinescu and using that ($T, d \mu$) is weakly mixing we find that the n-th power of the operator P can be decomposed as:

$$
\begin{equation*}
P^{n}=\Pi+R^{n} \quad \text { for all } n \in \mathbb{N} \tag{10}
\end{equation*}
$$

where $\Pi: f \mapsto \int d \mu^{+} f$ is a one-dimensional projector. The spectral radius of R w.r.t. $G H_{\alpha, m}^{+}$(α and m chosen according to the previous theorem) is strictly smaller than 1 .

To make use of this result for the full space $G H_{\alpha, m}$ instead of $G H_{\alpha, m}^{+}$, we need two lemmas, which are standard for functions which are Hölder continuous w.r.t. d_{Σ}.

Lemma 4 For $f \in G H_{\alpha, m}$ and all $N \in \mathbb{Z}$ also $f \circ T^{N} \in G H_{\alpha, m}$ with $\| f \circ$ $T^{N}\left\|_{\alpha, m} \leq C e^{\alpha|N|}\right\| f \|_{\alpha, m}$, where $C<\infty$ only depends on α and m.

Proof. (Only the case $N \geq 0$.) Choose a $d \mu$-version \tilde{f} of $f \in G H_{\alpha, m}$ such that $|\widetilde{f}|$ is bounded everywhere by $\|f\|_{\infty}$ and such that

$$
\begin{equation*}
\int d \mu(\xi) \operatorname{osc}_{n}(\widetilde{f}, \xi) \leq 2 e^{-\alpha n} \operatorname{var}_{\alpha, m}(f) \tag{11}
\end{equation*}
$$

for all $n \geq m$. Then $\operatorname{var}_{\alpha, m}\left(f \circ T^{N}\right)$ is bounded by
$\sup _{n \geq m} e^{\alpha n} \int d \mu(\xi) \sup \left\{\left|\widetilde{f}\left(\xi^{1}\right)-\tilde{f}\left(\xi^{2}\right)\right|: \xi^{1 / 2} \in \Sigma ; \xi_{s}^{1 / 2}=\xi_{s},-n-N \leq s \leq n-N\right\}$,
because of the invariance of $d \mu$ under T. For $n-N \geq m$ Eqn. (11) implies that the integral in the preceding expression is bounded by $2 e^{-\alpha(n-N)} \operatorname{var}_{\alpha, m}(f)$. Additionally, for all n this integral is bounded by $2\|f\|_{\infty}$. So we find

$$
\operatorname{var}_{\alpha, m}\left(f \circ T^{N}\right) \leq 2\left(C^{\prime} e^{\alpha m}+1\right) e^{\alpha N}\|f\|_{\alpha, m},
$$

where $C^{\prime}<\infty$ is chosen according to property 3 of $G H$. Furthermore, $\| f \circ$ $T^{N}\left\|_{1}=\right\| f \|_{1}$. Therefore it is possible to take $C:=2 C^{\prime} e^{\alpha m}+2$ in the statement of the lemma.

Lemma 5 (Finite approximation) For every $f \in G H_{\alpha, m}$ and for all $N \geq m$ there exist $f_{N} \in G H_{\alpha, m}$ such that the following is true: (i) $\xi \mapsto f_{N}(\xi)$ only depends on $\xi_{-N}, \ldots, \xi_{N}$. (ii) $\left\|f-f_{N}\right\|_{1} \leq 2 e^{-\alpha N}\|f\|_{\alpha, m}$. (iii) $\left|f_{N}\right|$ is bounded everywhere by $\|f\|_{\infty}$. (iv) $\left\|f_{N}\right\|_{\alpha, m} \leq 4\|f\|_{\alpha, m}$.

Proof. For every $a=1, \ldots, r$ choose some $\xi(a) \in \Sigma$ with $\xi(a)_{0}=a$. Now define for $N \in \mathbb{N}_{0}$ a truncation $\mathbb{Q}_{N}: \Sigma \rightarrow \Sigma$ by

$$
\mathcal{O}_{N}(\xi):=\left(\ldots, \xi\left(\xi_{-N}\right)_{-2}, \xi\left(\xi_{-N}\right)_{-1}, \xi_{-N}, \ldots, \xi_{0}, \ldots, \xi_{N}, \xi\left(\xi_{N}\right)_{1}, \xi\left(\xi_{N}\right)_{2}, \ldots\right)
$$

With \widetilde{f} as in the proof of Lemma 4 define $f_{N}:=\tilde{f} \circ Q_{N}$ for all $N \geq m$. The claimed properties of f_{N} follow easily from Eqn. (11).
Theorem 6 (Exponential decay of correlations) As $N \rightarrow \infty$, the correlation $\int d \mu\left(g \circ T^{N}\right) f$ decays exponentially to 0 for all $f, g \in G H_{\alpha, m}$ with $\int d \mu f=0$ if $0<\alpha \leq \alpha_{h}$ and if m is large enough for Theorem 3 to be valid.

Proof. According to Lemma 5 choose finite approximations f_{n} and $g_{n}, n \geq m$, of f and g. Then $\left|\int d \mu\left(g \circ T^{N}\right) f\right|$ is bounded by

$$
2 e^{-\alpha n}\|g\|_{\alpha, m}\|f\|_{\infty}+2 e^{-\alpha n}\|g\|_{\infty}\|f\|_{\alpha, m}+\left|\int d \mu g_{n} \circ T^{n+N} f_{n} \circ T^{n}\right|
$$

Now note that $f_{n} \circ T^{n}$ and $g_{n} \circ T^{n}$ are elements of $G H_{\alpha, m}^{+}$:

$$
\begin{aligned}
\left|\int d \mu g_{n} \circ T^{n+N} f_{n} \circ T^{n}\right| & =\left|\int d \mu^{+} g_{n} \circ T^{n} P^{N}\left(f_{n} \circ T^{n}\right)\right| \\
& \leq\left\|g_{n}\right\|_{\infty}\left(\left\|R^{N}\right\|_{+, \alpha, m}\left\|f_{n} \circ T^{n}\right\|_{+, \alpha, m}+\left|\int d \mu f_{n}\right|\right) \\
& \leq\|g\|_{\infty}\left(C_{1} \kappa^{N} C_{2} e^{\alpha n} 4\|f\|_{\alpha, m}+2 e^{-\alpha n}\|f\|_{\alpha, m}\right)
\end{aligned}
$$

where $C_{1}<\infty$ and $\kappa \in(0,1)$ have been chosen according to Lemma 13 and $C_{2}<\infty$ according to Lemma 4 . Choose such a $k \in \mathbb{N}$ that $\kappa^{k} e^{\alpha}<1$. Then take $n=\lfloor N / k\rfloor$ in the estimates above. Hence for $N \geq k m$:

$$
\begin{aligned}
\left|\int d \mu\left(g \circ T^{N}\right) f\right| \leq & 2 e^{-\alpha(N / k-1)}\|g\|_{\alpha, m}\|f\|_{\infty}+4 e^{-\alpha(N / k-1)}\|g\|_{\infty}\|f\|_{\alpha, m} \\
& +\|g\|_{\infty} C_{1} C_{2}\left(\kappa^{k} e^{\alpha}\right)^{N / k} 4\|f\|_{\alpha, m}
\end{aligned}
$$

which decays exponentially as $N \rightarrow \infty$.

4 Central limit theorem

Let k be a \mathbb{R}^{d}-valued $(d<\infty)$ function with entries of type $G H_{\alpha, m}$ and vanishing mean: $\int d \mu k=0$. We give conditions on which k fulfills a central limit theorem, i.e. conditions when the distribution of the random variable $N^{-1 / 2} \sum_{n=0}^{N-1} k \circ T^{n}$ tends to a non-degenerate Gaussian measure as $N \rightarrow \infty$. Again, the first step is to reduce the problem to the space $G H_{\alpha, m}^{+}$. Define $\delta:=\ln \sup _{\Sigma^{+}} h-\ln \inf _{\Sigma^{+}} h$. We have to introduce a condition concerning δ :

Lemma 7 Assume that the value range of h is so small or h is so smooth that $2 \delta<\alpha_{h}$. If α and α^{\prime} fulfill $0<2 \alpha^{\prime}+2 \delta<\alpha \leq \alpha_{h}$ and m is large enough, then for every $f \in G H_{\alpha, m}$ there exists $f^{+} \in G H_{\alpha^{\prime}, m}^{+}$and $g \in G H_{\alpha^{\prime}, m}$ such that

$$
f=f^{+}-g+g \circ T \quad \text { a.e. }
$$

(The proof of this lemma is given in Appendix B.)
Remark. Given that $f(\xi)$ does not depend too singularly (this can be made precise) on $\xi_{s}, s<0$, the condition $2 \delta<\alpha_{h}$ can be dropped, and the decomposition of f is true for $0<2 \alpha^{\prime}<\alpha \leq \alpha_{h}$.

In the following we will tacitly assume $2 \delta<\alpha_{h}$ and that there exists $\alpha \in$ ($2 \delta, \alpha_{h}$] and $m \in \mathbb{N}$ such that every entry of the function k is an element of $G H_{\alpha, m}$. Choose some $\alpha^{\prime} \in(0, \alpha / 2-\delta)$. If necessary, increase m until Theorem 3 is valid for $G H_{\alpha^{\prime}, m}$ and Lemma 7 is valid.

Let $\rho \in G H_{\alpha^{\prime}, m}$ be a normalized non-negative weight function on Σ with respect to $d \mu$, i.e. $\int \rho d \mu=1$. We can calculate the characteristic function of $X_{N}:=\sum_{n=0}^{N-1} k \circ T^{n}$ for all $p \in \mathbb{R}^{d}$ given the initial probability measure $\rho d \mu$:

$$
E_{\rho}\left[e^{i p \cdot X_{N}}\right]=\int \rho d \mu \exp i \sum_{n=0}^{N-1} p \cdot k \circ T^{n}
$$

According to Lemma 7 there exists a real vector-valued function k^{+}with entries of type $G H_{\alpha^{\prime}, m}^{+}$and a real vector-valued function u with entries of type $G H_{\alpha^{\prime}, m}$ such that $k=k^{+}+u \circ T-u$ a.e. This yields:

$$
\begin{equation*}
E_{\rho}\left[e^{i p \cdot X_{N}}\right]=\int \rho d \mu \exp i p \cdot\left(u \circ T^{N}-u+\sum_{n=0}^{N-1} k^{+} \circ T^{n}\right) \tag{12}
\end{equation*}
$$

Choose finite approximations $\rho_{s} \in G H_{\alpha^{\prime}, m}, s \geq m$, according to Lemma 5. We approximate the characteristic function (12) with their help $(s \geq m)$:

$$
\begin{align*}
& \left|E_{\rho}\left[e^{i p \cdot X_{N}}\right]-\int \rho_{s} d \mu \exp i \sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n}\right| \tag{13}\\
& \leq \int d \mu\left|e^{i p \cdot u \circ T^{N}}-1\right| \rho+\int d \mu\left|e^{-i p \cdot u}-1\right| \rho+\int d \mu\left|\rho-\rho_{s}\right| \\
& \leq C_{1}\left(|p|+e^{-\alpha^{\prime} s}\right) \tag{14}
\end{align*}
$$

with some $C_{1}<\infty$, which depends on ρ.
Now note that for $s \geq m$ the approximation of the expectation value (12) in Eqn. (13) may be written

$$
\begin{equation*}
\int \rho_{s} d \mu \exp i \sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n}=\int d \mu^{+} P_{p}^{N} P^{s}\left(\rho_{s} \circ T^{s}\right) \tag{15}
\end{equation*}
$$

where we have introduced the operator family $f \mapsto P_{p}(f):=P\left(e^{i p \cdot k^{+}} f\right), p \in \mathbb{R}^{d}$, which acts in the space $L^{1}\left(d \mu^{+}\right)$. (This scheme follows [3].)

For small $|p|$, one can view P_{p} as an analytic perturbation [4] of P : There is an ϵ such that for $|p| \leq \epsilon$ we have a decomposition analogous to Eqn. (10):

$$
\begin{equation*}
P_{p}^{n}=K_{p}^{n} \Pi_{p}+R_{p}^{n} \quad \text { for all } n \in \mathbb{N}, \tag{16}
\end{equation*}
$$

where K_{p} is the leading, complex eigenvalue, Π_{p} a one-dimensional projector in $G H_{\alpha^{\prime}, m}, R_{p}$ a bounded operator in $G H_{\alpha^{\prime}, m}$, all three of them analytic with respect to p, and the spectral radius of R_{p} in $G H_{\alpha^{\prime}, m}$ is strictly less than 1. Furthermore, for $p=0$ the decomposition Eqn. (16) reduces to that of Eqn. (10): $K_{0}=1$, $\Pi_{0}=\Pi$, and $R_{0}=R$. The leading eigenvalue K_{p} may be written $e^{-p \cdot D p / 2+F(p)}$, where F is a complex-valued function of type C^{∞}, which is of order 3 at $p=0$. The real symmetric matrix D is uniquely determined and non-negative, because for all $p \in \mathbb{R}^{d}$:

$$
p \cdot D p=\lim _{N \rightarrow \infty} N^{-1} \int d \mu^{+}\left(\sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n}\right)^{2}
$$

Lemma 8 The following statements are equivalent:
(i) The matrix D is strictly positive.
(ii) There exists an open neighborhood of $0 \in \mathbb{R}^{d}$ such that for all $p \neq 0$ from this neighborhood, the spectral radius of P_{p} w.r.t. $G H_{\alpha^{\prime}, m}^{+}$is strictly less than 1 .
(iii) The following equation cannot be solved by any $\phi \in L^{\infty}(d \mu)$ and any $p \neq 0$:

$$
\begin{equation*}
p \cdot k=\phi \circ T-\phi \quad \text { a.e. } \tag{17}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii): We will apply Theorem 12 for the spaces $G H_{\alpha^{\prime}, m}^{+} \subset L_{1}\left(d \mu^{+}\right)$, the operator P_{p} and the norm $\|\cdot\|^{\prime}:=\|\cdot\|_{L^{\infty}\left(d \mu^{+}\right)}=\|\cdot\|_{\infty}$. This is possible because of the following facts:

- There exists $C_{1}<\infty$ such that $\|f\|_{\infty} \leq C_{1}\|f\|_{\alpha^{\prime}, m}$ for all $f \in G H_{+, \alpha^{\prime}, m}^{+}$.
- $\left\|P_{p}^{n}(f)\right\|_{\infty} \leq\|f\|_{\infty}\left\|P^{n}(1)\right\|_{\infty} \leq C_{2}\|f\|_{\infty}$ with some fixed $C_{2}<\infty$ for all $f \in G H_{\alpha^{\prime}, m}^{+}$and $n \in \mathbb{N}$.
- As a consequence of Theorem 3, there exist $r_{1} \in(0,1)$ and $r_{2}>0$ such that for all $f \in G H_{\alpha^{\prime}, m}^{+}$and all $p \in \mathbb{R}^{d}$:

$$
\begin{aligned}
\operatorname{var}_{\alpha^{\prime}, m}^{+}\left(P_{p}(f)\right) & \leq r_{1} \operatorname{var}_{\alpha^{\prime}, m}^{+}\left(e^{i p \cdot k^{+}} f\right)+r_{2}\|f\|_{1} \\
& \leq r_{1} \operatorname{var}_{\alpha^{\prime}, m}^{+}(f)+\left(r_{2}+r_{1} \operatorname{var}_{\alpha^{\prime}, m}^{+}\left(e^{i p \cdot k^{+}}\right)\right) \mid f \|_{\infty}
\end{aligned}
$$

Now let \mathscr{S} be the set of all $p \in \mathbb{R}^{d}$ for which the spectral radius in $G H_{\alpha, m}^{+}$of P_{p} is not strictly less than 1 . Let p be an element of this set. Then by Theorem 12 the spectral radius of P_{p} actually equals 1 and there exists an eigenvector $f \in G H_{\alpha^{\prime}, m}^{+}$of P_{p} with eigenvalue $e^{i \theta}, \theta \in \mathbb{R}$. The operator P has the property that a.e. $P(|g|) \geq|P(g)|$ for all $g \in L^{1}\left(d \mu^{+}\right)$and hence $P(|f|) \geq|f|$ for the eigenvector f. On the other hand, P is a contractive operator in $L^{1}\left(d \mu^{+}\right)$. Taken
together, this implies $P(|f|)=|f|$ a.e. But the 1 -eigenspace of P consists of the constant functions; so (perhaps after normalization) we have a.e. $|f|=1$, so that a.e. $f=e^{i \psi}$ with some real-valued $\psi \in L^{\infty}(d \mu)$. Combining the eigenvalue equation with the definition Eqn. (5) of the operator P we obtain

$$
\int d \mu g \circ T e^{i p \cdot k^{+}} e^{i \psi}=\int d \mu g e^{i \theta} e^{i \psi} \quad \text { for all } g \in L^{\infty}\left(d \mu^{+}\right) .
$$

We choose $g:=e^{-i \theta} e^{-i \psi}$ and examine the exponents, which yields that a.e. $p \cdot k^{+}-\theta-\psi \circ T+\psi \in 2 \pi \mathbb{Z}$. It is now obvious that for arbitrary $n \in \mathbb{Z}, e^{i n \psi}$ is an eigenvector with eigenvalue of modulus 1 . Thus, we have shown $\mathbb{Z} . \mathscr{F} \subset \mathscr{F}$. Now assume that \mathscr{S} contains non-zero elements q with arbitrarily small modulus $|q|$. Then from $\mathbb{Z} \mathscr{S} \subset \mathscr{S}$ follows that there exists a line $\mathbb{R} p, p \neq 0$, so that every point of this line is a limit point of \mathscr{S}. From the semicontinuity of the spectrum [4] follows that \mathscr{F} is closed; hence, $\mathbb{R} p \subset \mathscr{F}$ and $1=\left|K_{q}\right|=\left|e^{-q \cdot D q / 2+F(p)}\right|$ for all $q,|q|<\epsilon$, which are parallel to p. This yields $p \cdot D p=0$.
(ii) \Rightarrow (iii): Let ϕ be a solution of Eqn. (17) for some fixed p. Then $p \cdot k^{+}=\psi \circ T-\psi$, where $\psi:=\phi-p \cdot u$. Thus, for all $N \in \mathbb{N}$:

$$
e^{i \psi}=e^{i \psi \circ T^{N}} \exp -i \sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n} \quad \text { a.e. }
$$

By Lemma 5, there exists functions $f_{N} \circ T^{N} \in L^{1}\left(d \mu^{+}\right)$such that $\left\|\psi-f_{N}\right\|_{1}$ tends to zero as $N \rightarrow \infty$. The expression $e^{i f_{N} \circ T^{N}} \exp -i \sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n}$ defines an element of $L^{1}\left(d \mu^{+}\right)$. We can estimate:

$$
\begin{aligned}
\left\|e^{i \psi}-e^{i f_{N} \circ T^{N}} \exp -i \sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n}\right\|_{1} & =\left\|e^{i \psi \circ T^{N}}-e^{i f_{N} \circ T^{N}}\right\|_{1} \\
& \leq\left\|\psi-f_{N}\right\|_{1}
\end{aligned}
$$

which becomes arbitrarily small as $N \rightarrow \infty$. But $L^{1}\left(d \mu^{+}\right)$is a closed subspace of $L^{1}(d \mu)$, so we see that $e^{i \psi}$ itself is an element of $L^{1}\left(d \mu^{+}\right) \subset L^{1}(d \mu)$. Therefore, in $L^{1}\left(d \mu^{+}\right)$, the operator P_{p} is conjugated to P, namely $P_{p}(f)=e^{i \psi} P\left(e^{-i \psi} f\right)$ for all $f \in L^{1}\left(d \mu^{+}\right)$. This implies that P_{p} possesses an $L^{1}\left(d \mu^{+}\right)$-eigenfunction with eigenvalue of modulus 1. But then also the spectral radius of P_{p} in $G H_{\alpha, m}^{+}$must equal 1, because $G H_{\alpha, m}^{+}$is dense in $L^{1}\left(d \mu^{+}\right)$. This remains true if we replace p by a real multiple of itself. Therefore, on the whole line $q \in \mathbb{R} p$ (which intersects any neighborhood of 0) the spectral radius of P_{q} in $G H_{\alpha, m}^{+}$equals 1 .
(iii) \Rightarrow (i): Assume that D is not strictly positive, i.e. that for some $p \neq 0$ the variance of the random variable $N^{-1 / 2} \sum_{n=0}^{N-1} p \cdot k^{+} \circ T^{n}$ tends to 0 as $N \rightarrow \infty$. Define $\psi:=\sum_{n=1}^{\infty} P^{n}\left(p \cdot k^{+}\right)$, which converges exponentially in $G H_{\alpha^{\prime}, m}$ because $\int d \mu^{+} k^{+}=0$. The variance of the telescoped random variable

$$
N^{-1 / 2} \sum_{n=0}^{N-1}\left(p \cdot k^{+}+\psi-\psi \circ T\right) \circ T^{n}
$$

too, tends to 0 as $N \rightarrow \infty$. Due to the decay of correlations, this can be expressed with the help of the Green-Kubo formula:
$0=\int d \mu^{+}\left(p \cdot k^{+}+\psi-\psi \circ T\right)^{2}+2 \sum_{n=1}^{\infty} \int d \mu^{+}\left(p \cdot k^{+}+\psi-\psi \circ T\right) P^{n}\left(p \cdot k^{+}+\psi-\psi \circ T\right)$.
But $P(\psi \circ T)=\psi$ and $\psi-P(\psi)=P\left(p \cdot k^{+}\right)$so that in the above equation all expressions $P^{n}(\cdots)$ vanish. Thus, also $\int d \mu^{+}\left(p \cdot k^{+}+\psi-\psi \circ T\right)^{2}$ vanishes, which leads to Eqn. (17) for $\phi:=\psi+p \cdot u$.

Theorem 9 (Central limit theorem) Assume that any one of the statements of the preceding lemma is true. Then the distribution of the random variable X_{N} / \sqrt{N} on the probability space ($\Sigma, \rho d \mu$) converges to a non-degenerate Gaussian distribution as $N \rightarrow \infty$.

Proof. We show that for every $p \in \mathbb{R}^{d}$ the expectation $E_{\rho}\left[e^{i p \cdot X_{N} / \sqrt{N}}\right]$ converges to $e^{-p \cdot D p / 2}$. Fix an arbitrary $p \in \mathbb{R}^{d}$ and choose M so large that $|p|<\epsilon / \sqrt{M}$. Then Eqn. (16) is valid for $P_{p / \sqrt{N}}$ if $N \geq M$. Thus, for $N \geq M$ and $s \geq m$ we find with the help of Eqn. (14) and (15):

$$
\begin{aligned}
& \left|e^{-p \cdot D p / 2}-E_{\rho}\left[e^{i p \cdot X_{N} / \sqrt{N}}\right]\right| \\
& \leq\left|e^{-p \cdot D_{p} / 2}-\int d \mu^{+} K_{p / \sqrt{N}}^{N} \Pi_{p / \sqrt{N}} P^{s}\left(\rho_{s} \circ T^{s}\right)\right| \\
& \quad+\int d \mu^{+}\left|R_{p / \sqrt{N}}^{N} P^{s}\left(\rho_{s} \circ T^{s}\right)\right|+C_{1}\left(|p| N^{-1 / 2}+e^{-\alpha^{\prime} s}\right)
\end{aligned}
$$

Given the operator $R_{q},|q| \leq \epsilon$, choose $C_{2} \leq \infty$ and $\kappa \in(0,1)$ according to Lemma 13. By the smoothness of $q \mapsto \Pi_{q}$ we find the existence of $C_{3}<\infty$ such that

$$
\left\|\Pi_{q}(f)-\int d \mu^{+} f\right\|_{+, \alpha^{\prime}, m} \leq C_{3}|q|\|f\|_{+, \alpha^{\prime}, m}
$$

for all $f \in G H_{\alpha^{\prime}, m}^{+}$and all q with $|q| \leq \epsilon$. The norm $\left\|P^{s}\left(\rho_{s} \circ T^{s}\right)\right\|_{+, \alpha^{\prime}, m}$ is bounded by some $C_{4}<\infty$. Therefore, if $N \geq M$:

$$
\begin{aligned}
& \left|e^{-p \cdot D p / 2}-E_{\rho}\left[e^{i p \cdot X_{N} / \sqrt{N}}\right]\right| \\
& \leq\left|e^{-p \cdot D p / 2}-K_{p / \sqrt{N}}^{N}\right|+\left(C_{1}+C_{3} C_{4}\right)|p| N^{-1 / 2}+C_{2} C_{4} \kappa^{N}+\left(C_{1}+2 C_{4}\right) e^{-\alpha^{\prime} s}
\end{aligned}
$$

Consider only N which are larger than both of M and m. Take $s:=N$ in the calculations above. Then it is easy to see that this expression decays to 0 as $N \rightarrow \infty$.

5 Application

We have introduced a space of generalized Hölder continuous functions and have shown that correlations of these functions decay exponentially. The multidimensional central limit theorem has been proved for a certain subset of this function space. (The condition $\ln \sup _{\Sigma^{+}} h-\ln \inf _{\Sigma^{+}} h<\alpha_{h} / 2$ remains to be checked.)

Via symbolic dynamics, these results can be immediately carried over to Anosov maps: A C^{2}-diffeomorphism Φ of a compact finite-dimensional Riemannian C^{∞}-manifold \mathscr{A} onto itself is called Anosov [1], if there exists a continuous invariant splitting of the tangent spaces of \mathscr{A} at all $x \in \mathscr{A}$ into subspaces $E_{x}^{+} \oplus E_{x}^{-}$such that the following is true: There are $C>0, \theta>1$ such that for all $n \in \mathbb{N}, x \in \mathscr{A} b, u \in E_{x}^{+}$, and $v \in E_{x}^{-}$:

$$
\begin{array}{ll}
\left|\left(D_{x} \Phi^{n}\right)(u)\right|_{\Phi^{n}(x)} \geq C \theta^{n}|u|_{x} & \text { (expansion), } \\
\left|\left(D_{x} \Phi^{n}\right)(v)\right|_{\Phi^{n}(x)} \leq C^{-1} \theta^{-n}|v|_{x} & \text { (contraction) }
\end{array}
$$

where $|\cdot|_{x}$ denotes the Riemannian length in the tangent space at $x \in \mathscr{A}$.
Assume that $\Phi: \mathscr{A} b \hookleftarrow$ is transitive and that an invariant measure $d \mu$ is known which is absolutely continuous with respect to the canonical RiemannLebesgue measure $d \lambda$ on $\mathscr{A} \ell$. Then it is well-known [1] that such an Anosov diffeomorphism can be described by a Markov chain ($\Sigma, d \mu$) of the type we have considered: Up to a set of measure 0 one can identify the manifold \mathscr{A} with the space of allowed symbol sequences Σ. With this identification, the shift T is the representation of the Anosov map Φ. The operator P is related [3] to the Ruelle-Perron-Frobenius operator L by $P(f)=(k e)^{-1} L(e f)$, where k is the leading eigenvalue and e spans the corresponding eigenspace.

There exist [1] constants $C, \beta>0$, such that if the symbol sequences $\xi^{1}=$ $\left\{\xi_{s}^{1}\right\}_{s \in \mathbb{Z}}$ and $\xi^{2}=\left\{\xi_{s}^{2}\right\}_{s \in \mathbb{Z}} \in \Sigma$ corresponding to some points $x_{1}, x_{2} \in \mathscr{M}$ coincide from place $-n$ to place n, then the Riemannian distance $d\left(x_{1}, x_{2}\right)$ is bounded from above by $C e^{-\beta n}=C d_{\Sigma}^{\beta}\left(\xi_{1}, \xi_{2}\right)$.

The following obvious theorem shows that our construction generalizes the notion of Hölder continuity w.r.t. Riemannian distance d. Recall that the upper capacity of a set D is defined by $\bar{C}:=\limsup _{t 10}(\log 1 / t)^{-1} \log N(t)$, where $N(t)$ is the number of balls with Riemannian radius t needed to cover D.

Theorem 10 For some bounded function f assume that there exists a number $C<\infty$ and a subset D which cuts $\mathscr{A} \in$ into a countable union $\mathscr{A} b-D=\bigcup_{i} A_{i}$ of disjoint open sets A_{i} such that the restriction off to each of these sets A_{i} fulfills

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq C d\left(x_{1}, x_{2}\right)^{\alpha / \beta} \quad \text { for all } x_{1}, x_{2} \in A_{i}
$$

Assume furthermore that the upper capacity \bar{C} of D is smaller than $d+\operatorname{dim} / l b-$ α / β. (This is the case e.g. if α is small enough and D is the union of a finite number of smooth hypersurfaces.) Then $f \in G H_{\alpha, m}$ for m large enough.

So from our considerations follow exponential decay of correlations and central limit theorem for a larger class than the usual class of Hölder continuous
functions. A byproduct are local central limit theorems and renewal theorems, which can be proved by the methods of [3]. In addition to these basic probabilistic properties, the results of this work allow to study the periodic extensions of Anosov maps instead of piecewise expanding maps along the lines of [5].

A The theorem of Ionescu-Tulcea and Marinescu

Theorem 11 (Ionescu-Tulcea and Marinescu [6]) Consider Banach spaces $\left(\mathscr{C},\|\cdot\|_{\mathscr{C}}\right) \subset\left(\mathscr{B},\|\cdot\|_{\mathscr{B}}\right)$ with the property that the closed unit ball of \mathscr{C} is \mathscr{B} compact. Let $P:\left(\mathscr{S},\|\cdot\|_{\mathscr{E}}\right) \hookleftarrow$ be a bounded operator which can be extended to a bounded operator in $\left(\mathscr{B},\|\cdot\|, \mathscr{F}_{\mathcal{B}}\right)$. Suppose that $\sup _{n \in \mathbb{N}_{0}}\left\|P^{n}\right\|_{\mathscr{B}}<\infty$ and that there exist $r_{\mathscr{E}} \in(0,1)$ and $r_{\mathscr{B}} \in \mathbb{R}_{0}^{+}$such that $\|P(f)\|_{\mathscr{E}} \leq r_{\mathscr{E}}\|f\|_{\mathscr{E}}+r_{\mathscr{B}}\|f\|_{\mathscr{B}}$ for all $f \in \mathscr{L}$.

Then P can be decomposed as $P^{n}=\sum_{\gamma} \gamma^{n} \Pi_{\gamma}+R^{n}$ for all $n \in \mathbb{N}$, where the sum runs over all eigenvalues γ of modulus 1 of P which belong to eigenvectors in \mathscr{E}. The span of these is finite-dimensional, so that the sum is well-defined. The operators Π_{γ} are (some) \mathscr{C}-projectors onto the corresponding eigenspaces. R maps \mathscr{L} into \mathscr{L}, and its \mathscr{C}-spectral radius is strictly smaller than 1. Furthermore, $\Pi_{\gamma} \Pi_{\delta}=0$ and $\Pi_{\gamma} R=0=R \Pi_{\gamma}$ for all $\gamma \neq \delta$ which occur as eigenvalues of modulus I.

We also need a special form of this theorem with weakened assumptions:
Theorem 12 Consider Banach spaces $\left(\mathscr{L},\|\cdot\|_{\mathscr{E}}\right) \subset\left(\mathscr{B},\|\cdot\|_{\mathscr{B}}\right)$ with the property that the closed unit ball of \mathscr{C} is \mathscr{S}-compact. On the space \mathscr{C} let a seminorm $\|\cdot\|^{\prime}$ be given, such that there exists a $C<\infty$ with $\|f\|^{\prime} \leq C\|f\|_{\mathscr{S}}$ for all $f \in \mathscr{B}$. Let $P:\left(\mathscr{C},\|\cdot\|_{\mathscr{E}}\right) \hookleftarrow$ be a bounded operator which can be extended to a bounded operator in $\left(\mathscr{B},\|\cdot\|_{\mathscr{B}}\right)$. Suppose that $\sup _{n \in \mathbb{N}_{0}}\left\|P^{n}\right\|^{t}<\infty$ and that there exist $r_{\mathscr{E}} \in(0,1)$ and $r^{\prime} \in \mathbb{R}_{0}^{+}$such that $\|P f\|_{\mathscr{E}} \leq r_{\mathscr{E}}\|f\|_{\mathscr{E}}+r^{\prime}\|f\|^{\prime}$ for all $f \in \mathscr{G}$.

Then the \mathscr{C}-spectral radius of P is equal to or smaller than 1 . It equals 1 iff there exists an eigenvector in \mathscr{E} with eigenvalue of modulus 1 .

When applying the above theorems, the following is helpful:
Lemma 13 Let $K \subset \mathbb{R}^{d}$, $d<\infty$, be a compact set. Assume $A: p \mapsto A_{p}$ maps K continuously (with respect to operator norm) to the bounded operators in some Banach space with norm $\|\cdot\|$. If the spectral radius of all $A_{p}, p \in K$, is strictly smaller than 1 , then there exist $C<\infty$ and $\kappa \in(0,1)$ such that $\left\|A_{p}^{n}\right\| \leq C \kappa^{n}$ for all $p \in K$ and all $n \in \mathbb{N}$.

B Proof of Lemma 7

Construct $f_{N} \in G H_{\alpha, m}$ for all $N \geq m$ according to Lemma 5. For $N>m$ define

$$
g_{N}:=\sum_{n=0}^{N-1}\left(P^{N-n}\left(f_{N} \circ T^{N}\right)-f_{N} \circ T^{n}\right)
$$

and

$$
f_{N}^{+}:=f_{N} \circ T^{N}+\sum_{n=0}^{N-1}\left(P^{N-n}\left(f_{N} \circ T^{N}\right)-P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T\right)
$$

Obviously $f_{N}=f_{N}^{+}-g_{N}+g_{N} \circ T$ with $f_{N}^{+} \in G H_{\alpha, m}^{+}$and $g_{N} \in G H_{\alpha, m}$ for all $N>m$.
g_{N} is Cauchy with respect to $L^{1}(d \mu)$, because $\left\|g_{N+1}-g_{N}\right\|_{1}$ decays exponentially fast as $N \rightarrow \infty$: For $N>m$ we can estimate

$$
\left\|g_{N+1}-g_{N}\right\|_{1} \leq 2 \sum_{n=0}^{N}\left\|f_{N+1}-f_{N}\right\|_{1} \leq 8(N+1) e^{-\alpha N}\|f\|_{\alpha, m},
$$

because $f_{N} \circ T^{N}=P\left(f_{N} \circ T^{N+1}\right)$. Hence, as $N \rightarrow \infty$, the functions g_{N} converge to some $g \in L^{1}(d \mu)$ and f_{N}^{+}tends to $f^{+}:=f+g-g \circ T \in L^{1}\left(d \mu^{+}\right)$, both with respect to $\|\cdot\|_{1}$.

Now assume we would know that $\left\|g_{N}\right\|_{\alpha^{\prime}, m}$ remains bounded as $N \rightarrow \infty$. Then also $\left\|f_{N}^{+}\right\|_{+, \alpha^{\prime}, m}=\left\|f_{N}+g_{N}-g_{N} \circ T\right\|_{+, \alpha^{\prime}, m}$ is bounded as $N \rightarrow \infty$. Thus, according to Theorem 2, g is an element of $G H_{\alpha^{\prime}, m}$ and f^{+}is an element of $G H_{\alpha^{\prime}, m}^{+}$, which had to be shown.

So it is sufficient to prove that $\left\|g_{N}\right\|_{\alpha^{\prime}, m}$ remains bounded as $N \rightarrow \infty$. This will follow if we show that there exists $C_{1}<\infty$ such that for all n and N with $0 \leq n<N>m$ the following inequality holds: $\| P^{N-n}\left(f_{N} \circ T^{N}\right)-f_{N} \circ$ $T^{n} \|_{\alpha^{\prime}, m} \leq C_{1} e^{-\left(\alpha-2 \alpha^{\prime}-2 \delta\right) n}$. According to Lemma 4 applied to $G H_{\alpha^{\prime}, m}$ for that it is sufficient that there exists $C_{2}<\infty$ with the property

$$
\begin{equation*}
\left\|P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}-f_{N}\right\|_{\alpha^{\prime}, m} \leq C_{2} e^{-\left(\alpha-\alpha^{\prime}-2 \delta\right) n} . \tag{18}
\end{equation*}
$$

First, we estimate the $L^{1}(d \mu)$-part of the lhs.: f_{N} depends only on the symbols ξ_{s} with $-N \leq s \leq N: f_{N}(\xi)=f_{N}\left(\xi_{-N}, \ldots, \xi_{N}\right)$. With the help of $\sum_{a=1}^{r} h(a \cdot)=1$ we can calculate

$$
\begin{align*}
& P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}(\xi)-f_{N}(\xi) \tag{19}\\
& =\sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} h\left(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \\
& \quad \times\left(f_{N}\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \ldots, \xi_{N}\right)-f_{N}\left(\xi_{-N}, \ldots, \xi_{N}\right)\right) .
\end{align*}
$$

If ($a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots$) is not admissible, the former expression is 0 by the definition of h. If, on the other hand, ($a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots$) is admissible, we have

$$
\left|f_{N}\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \ldots, \xi_{N}\right)-f_{N}\left(\xi_{-N}, \ldots, \xi_{N}\right)\right| \leq \operatorname{osc}_{n}\left(f_{N}, \xi\right)
$$

and thus

$$
\left\|P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}(\xi)-f_{N}(\xi)\right\|_{1} \leq \int d \mu(\xi) P^{N-n}(1)\left(T^{-n}(\xi)\right) \operatorname{osc}_{n}\left(f_{N}, \xi\right)
$$

This expression is always bounded by $2\|f\|_{\infty}$. Additionally, due to Eqn. (11) it is bounded by $2 e^{-\alpha n} \operatorname{var}_{\alpha, m}(f)$ for $n \geq m$. Hence, this expression is for all $n \in \mathbb{N}$ bounded by a finite constant times $e^{-\left(\alpha-\alpha^{\prime}-2 \delta\right) n}$. Therefore, of Eqn. (18) only the following inequality remains to be shown:

$$
\begin{equation*}
\operatorname{var}_{\alpha^{\prime}, m}\left(P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}-f_{N}\right) \leq C_{3} e^{-\left(\alpha-\alpha^{\prime}-2 \delta\right) n} \tag{20}
\end{equation*}
$$

for all $0 \leq n<N>m$ with some fixed $C_{3}<\infty$.
To estimate $\operatorname{osc}_{t}\left(P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}-f_{N}, \xi\right)$ which is imbedded in the lhs., we look at

$$
\begin{equation*}
\left|P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}\left(\xi^{1}\right)-f_{N}\left(\xi^{1}\right)-P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}\left(\xi^{2}\right)+f_{N}\left(\xi^{2}\right)\right| \tag{21}
\end{equation*}
$$

for $\xi, \xi^{1}, \xi^{2} \in \Sigma$ which all coincide from place $-t$ up to $t, t \geq m$. (All functions are declared to vanish for non-admissible sequences of symbols.) We consider two cases: first, $t \leq n$ (which can only happen if $n \geq m$) and second, $t>n$.
Case 1: $m \leq t \leq n$. Expression (21) is bounded by

$$
\left|P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}\left(\xi^{1}\right)-f_{N}\left(\xi^{1}\right)\right|+\left|P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}\left(\xi^{2}\right)+f_{N}\left(\xi^{2}\right)\right|
$$

Thus, considering Eqn. (19) we find that

$$
\begin{aligned}
& \int d \mu(\xi) \operatorname{osc}_{t}\left(P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}-f_{N}, \xi\right) \\
& \leq 2 \int d \mu(\xi) \sup _{\substack{\xi^{1} \in \Sigma \\
\xi_{s}^{1}=\xi_{s},-t \leq s \leq t}} \sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} h\left(a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \cdots \\
& \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \quad \sup \quad\left|\tilde{f}\left(\xi^{2}\right)-\tilde{f}\left(\xi^{3}\right)\right| \\
& \xi_{s}^{2 / 3}=\xi_{s}^{1},-n \leq s \leq n \\
& =2 \int d \mu(\xi) \sup _{\substack{\xi^{\prime} \in \Sigma \\
\xi_{s}^{\prime}=\xi_{s},-t \leq s \leq t}} \sup _{\substack{\xi_{s}^{2 / 3}=\xi_{s}^{\prime 2} \in,-n \leq s \leq n}}\left|\widetilde{f}\left(\xi^{2}\right)-\widetilde{f}\left(\xi^{3}\right)\right| \\
& \leq \sup _{\substack{a_{-n}, \ldots, a_{n} \in\{1, \ldots, r\} \\
\mathscr{T}_{j}, a_{j+1}=1,-n \leq j \leq n-1}} \frac{\mu\left(\xi_{-t}=a_{-t}, \ldots, \xi_{t}=a_{t}\right)}{\mu\left(\xi_{-t}=a_{-n}, \ldots, \xi_{t}=a_{n}\right)} \\
& \times 2 \int d \mu(\xi) \sup _{\substack{\xi^{2 / 3} \in \Sigma \\
\xi_{s}^{2 / 3}=\xi_{s},-n \leq s \leq n}}\left|\widetilde{f}\left(\xi^{2}\right)-\tilde{f}\left(\xi^{3}\right)\right| \\
& \leq \frac{\sup _{\Sigma^{+}} h^{2 t+1}}{\inf _{\Sigma^{+}} h^{2 n+1}} 2 \cdot 2 e^{-\alpha n} \operatorname{var}_{\alpha, m}(f)=4 e^{\delta} e^{2 t \delta-\alpha n} \operatorname{var}_{\alpha, m}(f),
\end{aligned}
$$

because

$$
\begin{aligned}
& \mu\left(\xi_{-t}=a_{-t}, \ldots, \xi_{t}=a_{t}\right) \\
& =\int d \mu^{+}(\xi) h\left(a_{t}, \xi_{0}, \xi_{1}, \ldots\right) \cdots h\left(a_{-t}, \ldots, a_{t}, \xi_{0}, \xi_{1}, \ldots\right)
\end{aligned}
$$

Case 2: $m \leq t>n$. Now we use that expression (21) is bounded by

$$
\begin{aligned}
& \left|P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}\left(\xi^{1}\right)-P^{N-n}\left(f_{N} \circ T^{N}\right) \circ T^{-n}\left(\xi^{2}\right)\right|+\left|f_{N}\left(\xi^{1}\right)-f_{N}\left(\xi^{2}\right)\right| \\
& \leq \sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} h\left(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \\
& \quad \times\left|f_{N}\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \ldots, \xi_{N}^{1}\right)-f_{N}\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{2}, \ldots, \xi_{N}^{2}\right)\right| \\
& \quad+\sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} \mid h\left(a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \\
& \quad-h\left(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right)\left|\sup _{\xi^{3} \in \Sigma} 2\right| f_{N}\left(\xi^{3}\right) \mid
\end{aligned}
$$

$$
+ \text { the same multiple sum with } \xi^{1} \text { replaced by } \xi^{2}+\left|f_{N}\left(\xi^{1}\right)-f_{N}\left(\xi^{2}\right)\right|
$$

Assume that the sequence ($a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots$) is admissible. Then so are $\left(a_{k}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right)$ and $\left(a_{k}, \ldots, a_{1}, \xi_{-n}^{2}, \xi_{-n+1}^{2}, \ldots\right)$ for all $1 \leq k \leq$ $N-n$, and it easy to show that for m large enough there exists $C_{4}<\infty$ such that

$$
\left|\frac{h\left(a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right)}{h\left(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right)}-1\right| \leq C_{4} e^{-\alpha_{n} t}
$$

if $\left(a_{N-n}, \ldots a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right)$ is admissible. Hence,

$$
\begin{array}{r}
\mid h\left(a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots\right) \\
-h\left(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \mid
\end{array}
$$

is always bounded by $h\left(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right) \cdots h\left(a_{N-n}, \ldots a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots\right)$ $\times C_{4} e^{-\alpha_{h} t}$. This remains true if ξ^{1} is replaced by ξ^{2}.

So in this case ($m \leq t>n$) we find

$$
\begin{aligned}
& \int d \mu(\xi) \operatorname{osc}_{t}\left(P^{N-n}\left(f_{n} \circ T^{N}\right) \circ T^{-n}-f_{N}, \xi\right) \\
& \leq \theta(N-t) \int d \mu P^{N-n}\left(\operatorname{osc}_{t}\left(f_{N}, T^{N}(\cdot)\right)\right) \circ T^{-n} \\
& \quad+(2+2) C_{4} e^{-\alpha_{h} t}\|f\|_{\infty} \int d \mu P^{N-n}(1)+\theta(N-t) e^{-\alpha t} 2 \operatorname{var}_{\alpha, m}\left(f_{N}\right) \\
& \leq C_{5} e^{-\alpha t},
\end{aligned}
$$

with $C_{5}:=4 \operatorname{var}_{\alpha, m}(f)+4 C_{4}\|f\|_{\infty}$ and where $\theta(N-t)$ equals 1 for $N>t$ and vanishes else.

Finally, we collect the estimates of case 1 and case 2 to achieve the following expression as a bound for the lhs. of Eqn. (20):

$$
\begin{aligned}
& \max \left(\sup _{t: m \leq t \leq n} 4 e^{\alpha^{\prime} t} e^{\delta} e^{2 t \delta-\alpha n} \operatorname{var}_{\alpha, m}(f), \sup _{t>n, t \geq m} e^{\alpha^{\prime} t} C_{5} e^{-\alpha t}\right) \\
& \leq e^{-\left(\alpha-\alpha^{\prime}-2 \delta\right) n} \max \left(4 e^{\delta} \operatorname{var}_{\alpha, m}(f), C_{5} e^{-2 \delta m}\right) .
\end{aligned}
$$

References

1. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Berlin: Springer 1975
2. Blank, M.L.: Chaotic mappings and stochastic Markov chains. In: Mathematical Physics X. Proceedings, Leipzig 1991, pp. 341-345. Berlin: Springer 1992, ed. Schmüdgen, K.
3. Guivarc'h, Y., Hardy, J.: Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. H. Poincaré 24, 73-98 (1988)
4. Kato, T.: Perturbation theory for linear operators. New York: Springer 1966
5. Loviscach, Jörn: Probabilistic models of multidimensional piecewise expanding mappings. J. Stat. Phys. 75 189-213 (1994)
6. Norman, F.: Markov processes and learning models. New York: Academic Press 1972

This article was processed by the author using the $\operatorname{LAT}_{\mathrm{E}} \mathrm{X}$ style file pljourlm from Springer-Verlag.

[^0]: * work supported by Studienstiftung des deutschen Volkes

