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Summary. Extending the operator formalism of {3] we show that there exists
a large class of functions which possess an exponential decay of correlations
and fulfill a central limit theorem under a certain type of Markov chains. This
result can be applied to the symbolic dynamics of Anosov maps, showing that
in the case of a absolutely continuous invariant measure there is a large class of
functions with good ergodic properties — larger than the usual class of Holder
continuous functions.
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1 Definitions

Let r € N be given. For sequences {&}s¢z of symbols & € {1,...,r} define
the shift-by-one-digit map T by {&}sez — {&+1}sez- We look at a T-invariant
subset X C {1,...,r}® of “admissible” two-sided symbol sequences. X is de-
fined with the help of a fixed r x r-matrix .7 whose entries are either O or 1:
A sequence {; }sez is admissible if and only if J%, ¢, = 1 for all s € Z. The
admissible “future” symbol sequences form the subset £* of {1,...,r}¥o which
consists of all {& };ex, with .7, ¢, =1 for all s € Ny.

2 and X* possess a natural measurable structure. Assume that we are given
a probability measure du which is invariant and weakly mixing w.r.t. the shift 7.
(The further assumptions which will be introduced about dy demand implicitly
that T is topologically mixing, i.e. there exists m € N such that 7™ > 0.) In
the following, the norm of the space L/(dy), p > 0, will be denoted || - ||,. The
measure du induces a measure du* on X* in a natural way.
Define a distance function on X' by

*
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ds(¢!, &%) =exp(-~max{n € Ng: &} =€ forall s = —n,...,n}).

A similar distance function dx+ can be introduced on X*.
We assume that the conditional expectation p(&|&1, &2, . . ) is strictly positive on
X* and define a function 4 : {1,...,r}* — R} by

h(vg,vi,1n,...) = wo =l =v,&=1s,...)

if (vo,v1,14,...) is admissible and set A(vg, vy, 1a,...) = 0 else. We assume
furthermore that there exist a;, > 0 and C;, < oo such that for all n € Ny:

sup |h(E) — h(€P)| < Cpe " for all £ € I+, 6))
¢ees
£5=E:=] 0S5 <n
Thus, 4 is continuous w.r.t. d and possesses a strictly positive infimum H on the
compact space (X*, dx+).
The aim of this paper is to find a large class of functions f such that [ d uffo
TV decays exponentially and N~1/2 3N 1 £ 0 77 converges to a Gaussian law
as N — oo,

2 Generalized Holder continuous functions

Now we generalize the notion of Holder continuity w.r.t. the distance function
dx. To this end, we carry over the notion of generalized variation employed in
the study of multidimensional piecewise expanding maps (see [2], [5], and the
references therein.)

Definition. For n € Ny, £ € X, andf : 3 — C, define an oscillation by
osc,(f, &) =sup{[f (") — f(&)] : £, &> € T3¢} =&, =€, —n <5 <n}.

For @ > 0 and m € Ny the set GH, , consists by definition of all functions
f € LN(X — C,dy) with finite variation

varg m(f) =_inf  sup e*" / d (&) oscu(f , ).

f=fae n>m

GH,  is equipped with the norm || - |la,m = || - |1 + vare,m ().

The following properties of GH, ., are obvious:

1. For o' < a and m’ > m every function f € GH,, , is contained in GHy ',
t00.

2. For all f € GH,y and all Lipshitz continuous ¢ : img f — C, also ¢of €

GHom With Varg m(¢ o f) < Lip(6) vare m(f).

There exist C < oo such that |[f||cc < Cl|f||a,= for every f € GHy .

4. varg m(fg) < varg m(F)|glloc + Vara,m(9)||fllco for all f, g € GHy .

»
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Let L'(d %) denote the subspace of L'(d ) consisting of the functions that pos-
sess a dpu-version which only depends on the symbols & with s > 0. Analo-
gously, call GHy , the class of functions f € GH, » possessing a d p-version fp
which only depends on the symbols & with s > 0 such that

00 > varh ,(f):=_ inf  supe®” / dp*(€) osci(f, £),

f=fyae n>m
where the infimum runs over all functions f : X% — C and where

osct(f, &) = sup{[f(€") —f (D) : €', €2 € T*;¢l =€, =€2,0 < s <n}.

On GH; ,,, a norm can be defined by || - [|+,a,m = || - {l1 + vary, ,, ().
Theorem 1 GH,, ,, with the norm || - |a,m and GH;, ,, with the norm || - ||+ a.m

are Banach spaces.

Proof. (Only the GH, m-part.) Let {fi}iexy be a Cauchy sequence in GHy .
Due to Property 3 of GH, » it is also a Cauchy sequence in L*°(dp), so that it
possesses a limit f € L>(d u) with respect to || - || .

Fix ¢ > 0. By the Cauchy property for {f;};cy in GH,, » we find: There
exists L € N such that for all > L there is some d u-version fl of fi with

/ dp©) osc,(fy — fr,€) < ee™ " Q)

for all n > m. We can assume that [}‘;(5) —ﬂ(§)| is bounded for all £ and all
I > Lby C :=2sup |[fifloc < oo. There exists a set A with u(A) = 1 such that
for all x € A we have f(x) = limlﬁ(x) and on A the modulus of allﬁ, leN,is
bounded by C /2.

Given these building blocks, we construct a d ,u-versionf of f such that

/ du(E) oseaf —Jir€) < e 3

for all n > m. This implies var, ,(f —f1) <€ hence f = (f —fi)+fi € GHom,
and f is GHy, p,-limit of f;, L — oo, which proves the theorem.

Construction of f: Let ]7|A = fla. For £ not in A, take some sequence
{€¥(©)}ken in A which converges to & with respect to ds. Such a sequence
exists, because otherwise £ would possess a neighborhood disjoint from A, in
contradiction to u(A) = 1. The sequence {f(£*(€)) — fL.(€*(€))}xen is bounded
and, hence, possesses at least one point of accumulation. Define f(£) in such a
way that one of these points equals f(£) — fL(f)

This implies that for all £/2 € X, e = & for —n < s < n, the value
[F(€h) = Fu(€") — F(€?) + fu(€?)|, and hence osc,(f — i, €). is bounded by

sup{[F(€") ~ ful6") —FE) +fuleD)] : €2 € A;6)/2 = ¢,,—n <5 <n}
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(Note the appearance of A instead of the full set 2'!) because, if § !is not already
an element of A, the value of f(£!) —f,(£!) is the limit of its values at some near
(with respect to'dx) points v € A. These v can be chosen so as to fulfill v, = &,
—n < s < n, so that they are contained in the set of &' in the supremum. A
similar argument applies to £. B
For &' € A, the value f(£') is the limit of ;(€"). Thus, the above estimate leads
to osc,(f — f,€) < liminf; osc,(f; — f, £). Now we can apply Fatou’s lemma to
deduce Eqn. (3) from Eqn. (2) by interchanging lim inf; and integration [ du(£).
O

Theorem 2 The closed unit ball of GH,, p, is compact in Ld W). Likewise, the
closed unit ball of GH}, , is compact in L'(dy*).

Proof. (Only the GH,, ,,-part.) We have to show: For every sequence {f;};ex in
GHo m with |[filla,m < 1 for all I € N there exists some subsequence which
converges in L'(dy) to some f € GHy yn with [[f lam < L.

Due to Property 3, there exists C < oo such that for all / € N we have
filleoe < C, and hence ||fillz < C. Therefore there exists a subsequence of
{fi}1ex Which converges weakly with respect to L*(du) to some f € L*(dp)
with ||f|l2 < C. Call this converging subsequence again {f; };ex.

Fix € > 0. By the definition of the unit ball in GH, , we can find for each
fia d,u-versionf, such that [ﬁ({)t < C for all £ and

/du(f)oscn(fz,ﬁ) <e (1 - il +o) @

for all n > m.

Next we show that f; also converges strongly with respect to || - ||;: Fix
M > m. Choose a finite partition | J; A; of X' into disjoint non-zero measurable
sets A; such that all symbol sequences from a specific set A; coincide from
the —M-th up to the M-th entry. Of f; define a discrete approximation F; :=
Sl puA)T! fAi dufi, where 1; is the indicator function of the set A;. The

weak convergence of f; implies that F; converges strongly with respect to || - ||
as | — oo. We can estimate the distance between F; and fi:

IR =Flh < 3 [ duce) swp{ice) ~F0)1 €' < i)

<= |filli + e M,

where in the last step Eqn. (4) has been applied with n = M. Therefore, ][}7, -
fk||1 < 2(1 +€)e M 4 ||F; — Fi|);. But the rhs. of this estimate tends to O as /,
k — oo because M can be chosen arbitrarily large and because F; is strongly
convergent in L'(dy). This shows that f; is Cauchy with respect to L'(d ) and
hence converges to f on a set A of full d u-measure. We construct a d y-version f
of f similar to the proof of Theorem 1: Let f |a :=f|a. For £ not in A, take some
sequence {&F (§)}xen in A which converges to . The sequence {f (gk(g))}kEN is
bounded. Define f(£) to be one of its points of accumulation.
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Using a similar argument as in the proof of Theorem 1 we find from Eqn.
(4) that vare »(f) < 1 —|[f]li +€. But € > 0 has been arbitrary, and therefore
Wil + varg m(f) < 1, so that f is an element of the unit ball of GHy . O

3 Decay of correlations

An operator P in L!(du*) is uniquely determined by demanding that for all
g € L=®(dy"):

/ dut gP(f) = / du* (go T)f. 5)

P is a contractive mapping both of the space L!(du*) into itself and of the space
L>®(du*) into itself.

With the help of the function A which has been introduced in the beginning,
P(f) can also be defined pointwise:

P()E) = h(@g)f (a), (6)

a=]

where af is the symbol sequence with first entry a, second entry &, third &,
and so on. Note that a¢ is not necessarily an element of X*, so that f(af) may
not make sense. This problem is solved by the special form of 4: It vanishes for
symbol sequences which are no elements of X*.

The following theorem shows that T has strong ergodic properties with re-
spect to the new class of function spaces GH*:

Theorem 3 The theorem of Ionescu-Tulcea and Marinescu (see Appendix A) can
be applied to P acting in GH},,, C L'(dp*) if @ < oy, and if m € Ny is large
enough.

Proof. We have to show that for a < a3 and for large m € Ny there exist

r € (0,1) and r, € R} such that varg, . (P(f)) < ryvary, () + r|[f|[; for all
f € GH, ,,. To see this, fix some € > 0 and choose according to the definition

of GH?  a dyu*-version f of f which only depends on symbols &;, s > 0, such

o,m

that for all n > m (where m is unknown at this stage):
/d,lf(i) 0sch(f, &) < (varh, ,(f) + &) e ™", (7)

Fora =1,...,r the value [h(afl)}:(afl) - h(a{z)f(a§2)| is bounded by
h(ad)lf (@€") — f@agh)] + [f(@€"H |h(ag") — h@&)| + [f(ae)] |h@€?) — h(ag)],

where we deﬁne]7 to be O for non-admissible sequences of symbols. Thus:
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/ dpt(€) osct (h(a-)f (a-), £) (8)
< / di (6 h(af) osct (Fla-), ©)

+2/du+(§) sup{|f(ag")|: &' € &€l =&,0 <5 <n}
x sup{|h(@€") —h(af)|: &' € £*;&) = £,0 <5 <n}

The domain of the first integral on the rhs. can be reduced to those ¢ with
af € X% because h(af) is O otherwise. But then, also a&! and a€? in the
definition of osc;(f (a-), &) are elements of X*, because of the definition of X*
via the matrix .7 and because £} = & = 2. Likewise, in the second integral on
the rhs. only those £ have to be considered for which a§ € 2™ because otherwise
the first supremum would evaluate f only at points a¢! € T*, where f is defined
to be 0. This shows that expression (8) is bounded for all n € N by

/du+(§)h(a€) osch i (f . af) ©

#2 [ dt© sup{lFE1: €' € 5%€] =@, 0 <5 < n+ 1)Chemu,

where we have applied Eqn. (1).
Summing over ¢ we get for the first term of this expression for all n > m:

S [ du@yhayosciF.a9) < [ dut(© osct 0
a=1

+ —a(n+l)
< (vart, , () + ) e =0+,

where the L'(dp)-contractivity of P as defined by Eqn. (6) has been used. For
the same reason, the sum over a for the second term of expression (9) is bounded
by

26,0 S [ ay© i hag)
a=1
x sup{[f ("] : €' € T;¢! = (a€),,0 < s <n+1}
< 2ChH—‘e—““<"+”/du*(§) sup{[f(H)] : €' € Z;€l =&,0<s <n+1},

Let us estimate for n > m the value of the integral appearing in the preceding
expression:

/du*(f) sup{[F€")| : €' € Ti6l =&, 0 <s <n+1)
< [ © (For+osctaf.o)

< Hf“l + (Varz’m(f)+ 6) e—tx(n+1)7
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where in the last step Eqn. (7) has been used.
Assembling these pieces together and letting € | 0, we find

varl, . (P(f))

i
<Y varl k(@) @)

a=1
< sup (vart, ,(f) e~ + 2C,H ="~ (|[£]| 4+ vart, () e~o@+D))

n>m

< (e +2C,H lem DY vark | (F)+2C,H e~ (@r=edmmen ey,

The coefficient of vary, ,,(f) can be made smaller than 1 by choosing m large
enough. O

Applying the theorem of Ionescu-Tulcea and Marinescu and using that (T,du) is
weakly mixing we find that the n-th power of the operator P can be decomposed
as:

P =II+R" for all n € N, 10

where I : f — [du*f is a one-dimensional projector. The spectral radius of
R w.rt. GHg ,, (o and m chosen according to the previous theorem) is strictly
smaller than 1.

To make use of this result for the full space GH,, instead of GH; ,, we
need two lemmas, which are standard for functions which are Hélder continuous
w.rt. ds.

Lemma 4 Forf € GH,p and all N € Z also f o TV € GH,,, with ||f o
T¥lam < Ce®N||f || a,m» where C < oc only depends on o and m.

Proof. (Only the case N > 0.) Choose a d u-version f of f € GH, , such that
[f| is bounded everywhere by ||f || and such that

/du(f) 05¢, (f, €) < 27" vary () (11)

for all n > m. Then var, ,(f o T") is bounded by
sup e / dp(©) sup{[f(€")—f(EM)|: /% € £;€}/* =&, —n-N <5 <n-N},
n>m

because of the invariance of dy under T. For n — N > m Egn. (11) implies
that the integral in the preceding expression is bounded by 2e ="~ var, _(f).
Additionally, for all n this integral is bounded by 2)|f ]l So we find

varg o (f o TV) < 2(C'e®™ + 1)V ||f|

o,m s

where C’ < oo is chosen according to property 3 of GH. Furthermore, ||f o
T¥|l; = |Iflli. Therefore it is possible to take C := 2C’e®™ + 2 in the statement
of the lemma. 0O



560 J. Loviscach

Lemma 5 (Finite approximation) For every f € GH, ,, and for all N > m
there exist fy € GHy m such that the following is true: (i) € — fy(€) only depends
on€_y, ..., En. (i) If —fullh <2e=N||flam. (i) |fw| is bounded everywhere
by Hf“oo (iv) HfNHa,m < 4llf”a,m-

Proof. Forevery a = 1,...,r choose some &(a) € X with £&(a)g = a. Now define
for N € Ny a truncation &y : X' — X' by

@V(g) = ( .. 7§(€—N)—27£(€~N)—11€—N7 L 7&)7 e ﬁ&Na&(fN)lag(éN)Zz .- )

With f as in the proof of Lemma 4 define fy := f o for all N > m. The
claimed properties of fy follow easily from Eqgn. (11). O

Theorem 6 (Exponential decay of correlations) As N — oo, the correlation
[ du(goTV)f decays exponentially to O for all f, g € GHom with [duf =0 if
0 < a <oy and if m is large enough for Theorem 3 to be valid.

Proof. According to Lemma 5 choose finite approximations f, and g,, n > m,
of f and g. Then | [dp(go TV)f| is bounded by

2¢™ M gllam f lloo + 26" |9l o If | +

/dﬂgnOTn+Nﬁ,0Tn

Now note that f, o T" and g, o T" are elements of GH

’/d/lgnoTn+NﬁyoTn

= [/du*gn oT" P¥(fy o T")

< flgalloe (||R”n+,a,m|vn T ecam+] [ dus )
< llglloo (C1A" Coe™ &l lam + 26~ [F[lam)

where C; < oo and £ € (0, 1) have been chosen according to Lemma 13 and
C; < oo according to Lemma 4. Choose such a k € N that x*e® < 1. Then take
n = |N /k] in the estimates above. Hence for N > km:

< 2e= D gl mIf lloo +4e ™ E gl o If |y

+1|9]l00 C1 Ca(k* €Y % 41|f || oo

‘/dﬂ«(g oTY)f

which decays exponentially as N — oco. O

4 Central limit theorem

Let k be a R?-valued (d < oo) function with entries of type GH, » and vanishing
mean: [ duk = 0. We give conditions on which k fulfills a central limit theorem,
i.e. conditions when the distribution of the random variable N =1/2 "N -1 g o 77
tends to a non-degenerate Gaussian measure as N — oo. Again, the first step is
to reduce the problem to the space GH, . Define ¢ := Insupg. h — Ininfg. h.
We have to introduce a condition concerning é:



A generalized notion of variation applied to Markov chains and Anosov maps 561

Lemma 7 Assume that the value range of h is so small or h is so smooth that
26 < ap. If a and o fulfill 0 < 20’ + 26 < oo < ay, and m is large enough, then
for every f € GHy,m there exists f* € GH, , and g € GHy py such that

f=f"—g+goT ae.

(The proof of this lemma is given in Appendix B.)

Remark. Given that f () does not depend too singularly (this can be made precise)
on &, s < 0, the condition 26 < a; can be dropped, and the decomposition of
f is true for 0 < 20/ < ¢ < .

In the following we will tacitly assume 26 < a3 and that there exists « €
(26, xp] and m € N such that every entry of the function k is an element of
GH, . Choose some o € (0, /2 ~ 8). If necessary, increase m until Theorem
3 is valid for GH, » and Lemma 7 is valid.

Let p € GHy . be a normalized non-negative weight function on X' with
respect to dyu, i.e. [ pdy = 1. We can calculate the characteristic function of

Xy = Z::)] k o T" for all p € R? given the initial probability measure pd y:

N-1

E [e?P*] = /pdu expi Zp ckoT”.

n=0

According to Lemma 7 there exists a real vector-valued function k* with entries
of type GH, ,, and a real vector-valued function u with entries of type GHy/
such that k = k*+u o T — u a.e. This yields:

N-1
Ep[eip'x”]=/pdu expip - <u0TN ~u+zk+0T">. (12)

n=0

Choose finite approximations p; € GHy . § > m, according to Lemma 5. We
approximate the characteristic function (12) with their help (s > m):

N-1

Ep[ei”'x”]—/psdu expin-k*oT” (13)
n=0

< /du Iei"'“°TN - 1}p+/du e P — 1|p+/du lp = pl

< G (pl+e), (14)

with some C; < oo, which depends on p.
Now note that for s > m the approximation of the expectation value (12) in
Eqn. (13) may be written

N-1

[ pduexpi Y poktorr= [awereor, a3
n=0
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where we have introduced the operator family f — P,(f) := P(e? ) p € RY
which acts in the space L!(dy*). (This scheme follows [3].)

For small |p|, one can view P, as an analytic perturbation [4] of P: There is
an e such that for |p| < € we have a decomposition analogous to Eqn. (10):

Py = K;Hp +Ry for all n-€ N, (16)

where K, is the leading, complex eigenvalue, IT, a one-dimensional projector in
GHgy' m» R, 2 bounded operator in GHy s, all three of them analytic with respect
to p, and the spectral radius of R, in GH , is strictly less than 1. Furthermore,
for p = 0 the decomposition Eqn. (16) reduces to that of Eqn. (10): Ky = 1,
ITy = II, and Ry = R. The leading cigenvalue K, may be written ¢ ~7-0p/2+F®),
where F is a complex-valued function of type C°°, which is of order 3 at p == 0.
The real symmetric matrix D is uniquely determined and non-negative, because
for all p € R¥:

2
N—1
p-DpleLmooN_l/d,u+ (Zp-k*oT") :

n=0
Lemma 8 The following statements are equivalent:

(i) The matrix D is strictly positive.
(ii) There exists an open neighborhood of 0 € R? such that for all p # O from this
neighborhood, the spectral radius of P, w.r.t. GHZ, , is strictly less than 1.
(iii) The following equation cannot be solved by any ¢ € L>°(d ) and any p # 0:

p-k=¢oT —¢ a.e. {17)

Proof. (i)=(ii): We will apply Theorem 12 for the spaces GH, ,, C Li(du*),
the operator P, and the norm || - ||" := || - ||zec@ur) = || - lloo- This is possible
because of the following facts:

— There exists Cy < oo such that ||f|lcc < Cillf|lar,m for all f € GHY .

— P2 (lloo < IfllooIP"Dlloe < Callflloo with some fixed C; < oo for all
f€GH,, , andn €N.

— As a consequence of Theorem 3, there exist r; € (0, 1) and r, > 0 such that

for all f € GH}, ,, and all p € R*:

vary, , (Pp(f)) < rivarly, . (e?* )+ rallf ]
< ryvary, () + (r + rlvarz,m(e"”'“)) i1 lloo-

Now let . be the set of all p € R? for which the spectral radius in GH, ,, of
P, is not strictly less than 1. Let p be an element of this set. Then by Theorem
12 the spectral radius of P, actually equals 1 and there exists an eigenvector
f € GH,, ,, of P, with eigenvalue e, € R. The operator P has the property
that a.e. P(|g]) > |P(g)| for all g € L'(du*) and hence P(|f]) > |f| for the
eigenvector f. On the other hand, P is a contractive operator in L!(du*). Taken
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together, this implies P(|f|) = |f| a.c. But the l-eigenspace of P consists of
the constant functions; so (perhaps after normalization) we have a.e. |f| = 1, so
that a.e. f = /¥ with some real-valued ¢ € L°(d ). Combining the eigenvalue
equation with the definition Eqn. (5) of the operator P we obtain

/dug oTe?* eV = /d,uge"ee’w for all g € L>®(du™).
We choose g := ¢ %% and examine the exponents, which yields that a.e.
p -kt —0—1oT+1 € 2rZ. It is now obvious that for arbitrary n € Z, e™¥ is
an eigenvector with eigenvalue of modulus 1. Thus, we have shown Z.%° C &
Now assume that . contains non-zero elements g with arbitrarily small modulus
|g|. Then from Z.% C . follows that there exists a line Rp, p # 0, so that every
point of this line is a limit point of .%”. From the semicontinuity of the spectrum
[4] follows that .% is closed; hence, Rp C % and 1 = |K, | = e ~9D2/2#F®)| for
all g, |q| < €, which are parallel to p. This yields p -Dp =0. 0O

(i1)=(ii1): Let ¢ be a solution of Eqn. (17) for some fixed p. Then p-k* = 1poT —1p,
where ¥ := ¢ — p - u. Thus, for all N € N:

N-1
ol = pitol” exp —i Zp ktoTm a.e.
n=0

By Lemma 5, there exists functions fy o TV € L'(du*) such that ||v —fy | tends
to zero as N — oo. The expression etfver” exp —1i ZLVJ)I p - kT oT" defines an
element of L'(du*). We can estimate:

<l —=Avlly,

which becomes arbitrarily small as N — oc. But L'(dp*) is a closed subspace of
L'(dp), so we see that e/ itself is an element of L!(du*) C L'(dy). Therefore,
in L'(d i), the operator P, is conjugated to P, namely P,(f) = ¢'¥ P(e~"¥f) for
all f € L'(dp*). This implies that P, possesses an L!(dy*)-eigenfunction with
cigenvalue of modulus 1. But then also the spectral radius of P, in GH; ,, must
equal 1, because GH,, ,, is dense in Ll(d ). This remains true if we replace p
by a real multiple of itself. Therefore, on the whole line g € Rp (which intersects
any neighborhood of 0) the spectral radius of P, in GH , equals 1. O

N-1
; ; N
e’V — el exp —i Zp kToT"
n=0

pivoT" _ jifwor” H
1

1

(iii)=>(i): Assume that D is not strictly positive, i.e. that for some p # 0 the
variance of the random variable N=/25"V 1 5. k* o T7 tends to 0 as N — oo.
Define ¢ := Y2, P"(p - k*), which converges exponentially in GHy m because

Jdu* k™ = 0. The variance of the telescoped random variable

N-1

NN ok +p = poT)oT,

n=0
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too, tends to 0 as N — oo. Due to the decay of correlations, this can be expressed
with the help of the Green-Kubo formula:

0=/d/f(p-k++1[)—1/)oT)2+22/d;f(p-k++1/1~on)P"(p-k++1/)—zpoT).
n=1

But P( oT) =4 and ¥ — P(¢p) = P(p - k*) so that in the above equation all
expressions P"(- --) vanish. Thus, also [ du* (p-k*+v —1oT)? vanishes, which
leads to Eqn. (17) for ¢ ==y +p-u. O

Theorem 9 (Central limit theorem) Assume that any one of the statements of
the preceding lemma is true. Then the distribution of the random variable Xy //N
on the probability space (X, pdp) converges to a non-degenerate Gaussian dis-
tribution as N — oc.

Proof. We show that for every p € R? the expectation E [e? X / ‘/N] converges
to e~P"PP/2_ Fix an arbitrary p € R? and choose M so large that |p| < ¢/v/M.
Then Eqn. (16) is valid for Pp/\/ﬁ if N >M. Thus, for N >M and s > m we
find with the help of Eqn. (14) and (15):

’e-p~Dp/2 _ Ep[eip'XN/\/N]‘

<

e‘“["DP/2 _ /dN+KI£\I/\/ﬁHP/WPs(p: oTs)i

+/du+ \R;V/WPS(pS o T*)| + Ci(|p| N~"/2 +e7%%).

Given the operator Ry, |q| < ¢, choose C; < oo and k € (0, 1) according to
Lemma 13. By the smoothness of g ~ II, we find the existence of C3 < oo
such that

HHq(f)—/dxff

< Gslgq| [f ll+.ar,m

7
+,a’ m

for all f € GH}, , and all ¢ with |g| < e. The norm ||[P%(p; o T*

o',m

bounded by some C4 < co. Therefore, if N > M:

)H+,a’,m is

‘e—p-Dp/Z _ Ep[eip'XN/\/f_V_]l

< ’e—P'DP/Z - K[f"/\/ﬁl +(Cr + GCIp| N ™12 4+ GG +(Cy +2Ca) e =9

Consider only N which are larger than both of M and m. Take s := N in the
calculations above. Then it i1s easy to see that this expression decays to O as
N —o0. O
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S Application

We have introduced a space of generalized Holder continuous functions and have
shown that correlations of these functions decay exponentially. The multidimen-
sional central limit theorem has been proved for a certain subset of this function
space. (The condition Insupy. & — Ininfx+ h < /2 remains to be checked.)

Via symbolic dynamics, these results can be immediately carried over to
Anosov maps: A CZ2-diffeomorphism @ of a compact finite-dimensional Rie-
mannian C°°-manifold .74 onto itself is called Anosov [1], if there exists a
continuous invariant splitting of the tangent spaces of .24 at all x € .4 into
subspaces E; @ E. such that the following is true: There are C > 0, # > 1 such
that foralln e N,x € A6, u € E},and v E_:

(Dx " Yu)|gn () = C O™ |uly (expansion),
(D @) (V)| arr) < €107 v, (contraction),

where | - |, denotes the Riemannian length in the tangent space at x € /5.

Assume that ¢ : .Z% < is trapsitive and that an invariant measure dy is
known which is absolutely continuous with respect to the canonical Riemann-
Lebesgue measure dA on .Z%. Then it is well-known [1] that such an Anosov
diffeomorphism can be described by a Markov chain (X, dp) of the type we
have considered: Up to a set of measure O one can identify the manifold .
with the space of allowed symbol sequences X. With this identification, the shift
T is the representation of the Anosov map @. The operator P is related [3] to
the Ruelle-Perron-Frobenius operator L by P(f) = (ke)™'L(ef), where k is the
leading eigenvalue and e spans the corresponding eigenspace.

There exist [1] constants C, 8 > 0, such that if the symbol sequences ¢! =
{€ }sez and €2 = {€2};¢z € X corresponding to some points x;, x, € 2
coincide from place —n to place n, then the Riemannian distance d(xy,x;) is
bounded from above by Ce=%" = Cdg(gl, £).

The following obvious theorem shows that our construction generalizes the
notion of Holder continuity w.r.t. Riemannian distance d. Recall that the upper
capacity of a set D is defined by C := lim sup, o(log 1 /)" llog N (1), where N (1)
is the number of balls with Riemannian radius ¢ needed to cover D.

Theorem 10 For some bounded function f assume that there exists a number
C < 00 and a subset D which cuts 6 into a countable union A& — D =, A;
of disjoint open sets A; such that the restriction of f to each of these sets A; fulfills

[fOe) = F(x)] < Cdxy,x)? for all x;, x; € Ay

Assume furthermore that the upper capacity C of D is smaller than d + dim. 44 —
o/fB. (This is the case e.g. if « is small enough and D is the union of a finite
number of smooth hypersurfaces.) Then f € GHy, p, for m large enough.

So from our considerations follow exponential decay of correlations and cen-
tral limit theorem for a larger ¢lass than the usual class of Hélder continuous
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functions. A byproduct are local central limit theorems and renewal theorems,
which can be proved by the methods of [3]. In addition to these basic probabilis-
tic properties, the results of this work allow to study the periodic extensions of
Anosov maps instead of piecewise expanding maps along the lines of [5].

A The theorem of Ionescu-Tulcea and Marinescu

Theorem 11 (lonescu-Tulcea and Marinescu [6]) Consider Banach spaces
(Z, | le) C (A, ||| z) with the property that the closed unit ball of %5 is 7-
compact. Let P : (£, || |.%) < be a bounded operator which can be extended to
a bounded operator in (7, || - || ). Suppose that sup, ., [IP"||. 3 < oo and that
there exist rg € (0,1) and rp € R such that |P(f)|| & < re|flle +ralflils
forallf € £.

Then P can be decomposed as P" = Ew Y*'II, + R" for all n € N, where the
sum runs over all eigenvalues v of modulus 1 of P which belong to eigenvectors
in . The span of these is finite-dimensional, so that the sum is well-defined. The
operators II., are (some) & -projectors onto the corresponding eigenspaces. R
maps & intoe £, and its £ -spectral radius is strictly smaller than 1. Further-
more, I1,1Is = 0 and II.R = 0 = RIL, for all v # § which occur as eigenvalues
of modulus 1.

We also need a special form of this theorem with weakened assumptions:

Theorem 12 Consider Banach spaces (5, | - ||.&) C (%, | - | ) with the prop-
erty that the closed unit ball of & is F3-compact. On the space % let a seminorm
Il be given, such that there exists a C < oo with ||f]]' < Cllf |l forallf € &.
Let P : (£, | %) « be a bounded operator which can be extended to a bounded
operator in (A, || - || ). Suppose that sup, c, |[P"|" < oo and that there exist
ro €(0,1) and r’ € R such that ||Pflle <rglflle+rf foralf € &.

Then the £ -spectral radius of P is equal to or smaller than 1. It equals 1 iff
there exists an eigenvector in & with eigenvalue of modulus 1.

When applying the above theorems, the following is helpful:

Lemma 13 Let K C R?, d < oo, be a compact set. Assume A 1 p — A, maps K
continuously (with respect to operator norm) to the bounded operators in some
Banach space with norm || - ||. If the spectral radius of all A,, p € K, is strictly
smaller than I, then there exist C < oo and k € (0, 1) such that ||A}]| < Ck” for
allp € K and alln € N.

B Proof of Lemma 7

Construct fy € GH,, for all N > m according to Lemma 5. For N > m define

N-1

gv =Y (PY (o TV —fiy o T7)

n=0
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and
N-1

f=foTV 3 (PV "ty o TV) = PY="(fy 0 TV) 0 T)
n=0
Obviously fv = fy — gy +gv o T with fy € GH ,, and gy € GH, ) for all
N >m.
gn is Cauchy with respect to L!(d ), because ||gv+1 — gn ||1 decays exponen-
tially fast as N — oo: For N > m we can estimate

N

lgwsr — gl <23 Il = fivll < 8OV + De™V][f|
n=0

a,ms

because fy o TV = P(fy o TN*1). Hence, as N — oo, the functions gy converge
to some g € L'(dy) and f tends to f* :=f +g — go T € L'(dy*), both with
respect to || - |}

Now assume we would know that ||gy{|o’m remains bounded as N — oo.
Then also ||fyll+,a'm = fv +9v —gn © T|l, ,, ,, is bounded as N — oco. Thus,
according to Theorem 2, g is an element of GHa/,m and f* is an element of
GH_, ,,» which had to be shown.

So it is sufficient to prove that ||gy{|o’ » remains bounded as N — oo. This
will follow if we show that there exists C; < oo such that for all n and N
with 0 < n < N > m the following inequality holds: ||PY ~"(fy o TN) — fy o
T o m < Cy e~ @72¢' =26 According to Lemma 4 applied to GH,  for that
it is sufficient that there exists C; < oo with the property

“PN—n(fN o TN) oT ™" _fN”a’,m S Cze——(a—a’_zé)n. (18)

First, we estimate the L!(dy)-part of the lhs.: fy depends only on the symbols
& with =N <5 <N: fu () =fv(€-n,...,&). With the help of >/ _ h(a) =1
we can calculate

PNty o TN Yo T™™(E) — fn (6) (19)
= Z Z h(alag—nag—nﬂr-~)"'h(aN—n7--'7ala€—n7€—n+17'~-)
a=1 ay —n=1

X (fN(aN—nv---aalvg—nv"',gN) —fN(g——Ny--ng))-

If (av_n,-..,a1,€—n,&—ns1,...) is not admissible, the former expression is 0
by the definition of 4. If, on the other hand, (ay—,,...,a1,€ 0, & ps1,...) is
admissible, we have

LfN(aN—nw--aalag—ny"'véN)—fN(f—Ns"'7§N)‘ S oscn(fNag)

and thus

1PV ="y o TVY o T™(€) — fu ()]s < / dp(€) PV =" (1T 7 (£)) osca(fy, £).
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This expression is always bounded by 2||f||.. Additionally, due to Eqn. (11)
it is bounded by 2e~%" var, »(f) for n > m. Hence, this expression is for all
n € N bounded by a finite constant times e =@~ =26 Therefore, of Eqn. (18)
only the following inequality remains to be shown:

Varg m (PY "y o TV) o T™" — fiy) < Cy e~ (@' ~20m (20)

forall 0 <n <N > m with some fixed C3 < co.
To estimate osc,(PY =" (fy o TN Yo T™" — fy, €) which is imbedded in the lhs.,
we look at

PV (fy o TY) o T7(EY) = fu(€D) = PY T (fy o TY) o T(ED) + fu (62))
21
for &, ¢!, €2 € X which all coincide from place —z up to ¢, t > m. (All functions
are declared to vanish for non-admissible sequences of symbols.) We consider
two cases: first, t < n (which can only happen if n > m) and second, ¢t > n.

Case 1: m <t < n. Expression (21) is bounded by
[PY "y o TY) o T70(EN) = fiu (€D + [PV 7" (fy o TY) o T7(€%) + i (€)]
Thus, considering Eqn. (19) we find that

/d#(f)OSCx(PN_"(fN oT")oT™" — fy,6)

r

SZ/d[,L(&) sup Z Z h(alyglnvgl—n-i-l"")"'

tlex a=1 ay —n=1

£)=£;,—1<s<t
o h(@y gy an L E ) sup [FE) —F(ED)
52/362
&=l —n<s<n
-2 / du(€)  sup sup (€ - Fe)
fex &lex

&=, —1<s<s §§/3=§:1,-n5s§n

:U/(g—t =a—h"'7§I :at)

< sup

a_pyag€{1,..,r} ,U(f—[ =d—pn,--- 7£t =ay,)

ylzj,ajH:lv_"S].S"_l

x 2 / du©  sup  |fEH —f(E)

¢ex
&/%=¢;,—n<s<n

SUD st h2t+1 N B

< MI;%WZ -2e7 % varg, m(f) = 40 gb—on vary . (f),

because
wlr=a—,....5=a)
= /dﬂ+(§)h(at7607§17' . ) : 'h(a—H' - 7ata§07£17- . )
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Case 2: m <t > n. Now we use that expression (21) is bounded by
1PV (v o TY) o T™MEN = PN (fy o TY) o T™(ED)| + [fu (€1) — fiv (D)
S Z Z h(a13§—n7§—n+15" -)"'h(aN—nv--- aalvg—naf—n+11"')

a1=1

ay —n=1

1 1 2 2
X ]fN(aN—n)-~-1al7€—n7'"vgN) -fN(aN—nv---7ala€—n7"‘7£N)

L11=1 IJN‘":l

h(a17£1—n7£}-n+17-'-)'"h(aN—na"'7ala€l—n7£1—n+1a'")

sup 2|fy (&)

&ex
+ the same multiple sum with &! replaced by £2 + [fN(f -~ fN(gz)[ .

_h(al7§—n7§—n+l7'")"'h(aN—rH'~-7al7§—n7§—n+11"')

Assume that the sequence (ay_p,...,a1,&-n,&-ns1,- - .) 1s admissible. Then so
are (ay,...,a;, €, & y,.. ) and (a,...,a1,€%,,€2,,,,...) forall 1 <k <
N — n, and it easy to show that for m large enough there exists C4 < oo such
that

h(alvgl—,ugl_m{.)v"')"'h(aN—na"'7a17£1—na§1_n+17' )

-1
h(alag—naé—nﬂw--)'"h(aN—na--'valag—nag—nﬂv-'-)

S C4 e—aht

if (@n—n,.--a1,€—n,E—ns1,...) s admissible. Hence,
’h(a11€1—n7£l—n+]7'")"'h(aN—nﬁ'" ’al’él—n’él—n+l7"')

_h(alyé—nvg—n-*h-- -)"'h(aN—rH"'1a11§—n7§—~n+17' )'

is always bounded by h(alv f—nag—nﬂv . ) T h(aN—rH RS g—n ) g—n+h .. )
X Cy e~ This remains true if ¢! is replaced by £2.
So in this case (m <t > n) we find

/ dp© osc,(PN(f, o TV Yo T™" — fy, )
<O(N —1) / du P (osei(fy, TV () o T

+(2+2)Cqe ™! |[f||oo/d,uPN“”(1)+0(N —t)e ¥ 2varg m(fv)
< CSe—aly

with Cs := 4 varg ,(f) + 4C4||f ||oc and where (N — 1) equals 1 for N > ¢ and
vanishes else.

Finally, we collect the estimates of case 1 and case 2 to achieve the following
expression as a bound for the lhs. of Eqn. (20):
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I/ !
max [ sup 4e“'e’ e var, (f), sup e*'Cse”*
tm<t<n t>nt2>m

< g~ (@—a'~20n max(4 el varg m(f), Cs e‘za’"). a
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