

A generalized notion of variation applied to Markov chains and Anosov maps

J. Loviscach*

BiBoS, Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany (Fax: +49-521/106 2961)

Received: 26 April 1994 / In revised form: 1 November 1994

Summary. Extending the operator formalism of [3] we show that there exists a large class of functions which possess an exponential decay of correlations and fulfill a central limit theorem under a certain type of Markov chains. This result can be applied to the symbolic dynamics of Anosov maps, showing that in the case of a absolutely continuous invariant measure there is a large class of functions with good ergodic properties – larger than the usual class of Hölder continuous functions.

Mathematics Subject Classifications: 60F05, 58F15

1 Definitions

Let $r \in \mathbb{N}$ be given. For sequences $\{\xi_s\}_{s \in \mathbb{Z}}$ of symbols $\xi_s \in \{1, \ldots, r\}$ define the shift-by-one-digit map T by $\{\xi_s\}_{s \in \mathbb{Z}} \mapsto \{\xi_{s+1}\}_{s \in \mathbb{Z}}$. We look at a T-invariant subset $\Sigma \subset \{1, \ldots, r\}^{\mathbb{Z}}$ of "admissible" two-sided symbol sequences. Σ is defined with the help of a fixed $r \times r$ -matrix \mathscr{T} whose entries are either 0 or 1: A sequence $\{\xi_s\}_{s \in \mathbb{Z}}$ is admissible if and only if $\mathscr{T}_{\xi_s,\xi_{s+1}} = 1$ for all $s \in \mathbb{Z}$. The admissible "future" symbol sequences form the subset Σ^+ of $\{1, \ldots, r\}^{\mathbb{N}_0}$ which consists of all $\{\xi_s\}_{s \in \mathbb{N}_0}$ with $\mathscr{T}_{\xi_s,\xi_{s+1}} = 1$ for all $s \in \mathbb{N}_0$.

 Σ and Σ^+ possess a natural measurable structure. Assume that we are given a probability measure $d\mu$ which is invariant and weakly mixing w.r.t. the shift T. (The further assumptions which will be introduced about $d\mu$ demand implicitly that T is topologically mixing, i.e. there exists $m \in \mathbb{N}$ such that $\mathscr{T}^m > 0$.) In the following, the norm of the space $L^p(d\mu)$, p > 0, will be denoted $\|\cdot\|_p$. The measure $d\mu$ induces a measure $d\mu^+$ on Σ^+ in a natural way. Define a distance function on Σ by

^{*} work supported by Studienstiftung des deutschen Volkes

J. Loviscach

$$d_{\Sigma}(\xi^{1},\xi^{2}) := \exp(-\max\{n \in \mathbb{N}_{0} : \xi^{1}_{s} = \xi^{2}_{s} \text{ for all } s = -n,\ldots,n\}).$$

A similar distance function d_{Σ^+} can be introduced on Σ^+ .

We assume that the conditional expectation $\mu(\xi_0|\xi_1,\xi_2,...)$ is strictly positive on Σ^+ and define a function $h: \{1,...,r\}^{\mathbb{N}_0} \to \mathbb{R}^+_0$ by

$$h(\nu_0, \nu_1, \nu_2, \ldots) := \mu(\xi_0 = \nu_0 | \xi_1 = \nu_1, \xi_2 = \nu_2, \ldots)$$

if $(\nu_0, \nu_1, \nu_2, ...)$ is admissible and set $h(\nu_0, \nu_1, \nu_2, ...) := 0$ else. We assume furthermore that there exist $\alpha_h > 0$ and $C_h < \infty$ such that for all $n \in \mathbb{N}_0$:

$$\sup_{\substack{\xi^1,\xi^2\in\Sigma^+\\\xi_s^1=\xi_s=\xi_s^2, 0\le s\le n}} |h(\xi^1) - h(\xi^2)| \le C_h e^{-\alpha_h n} \quad \text{for all } \xi\in\Sigma^+.$$
(1)

Thus, h is continuous w.r.t. d and possesses a strictly positive infimum H on the compact space (Σ^+, d_{Σ^+}) .

The aim of this paper is to find a large class of functions f such that $\int d\mu \overline{f} f \circ T^N$ decays exponentially and $N^{-1/2} \sum_{n=0}^{N-1} f \circ T^n$ converges to a Gaussian law as $N \to \infty$.

2 Generalized Hölder continuous functions

Now we generalize the notion of Hölder continuity w.r.t. the distance function d_{Σ} . To this end, we carry over the notion of generalized variation employed in the study of multidimensional piecewise expanding maps (see [2], [5], and the references therein.)

Definition. For $n \in \mathbb{N}_0$, $\xi \in \Sigma$, and $\tilde{f} : \Sigma \to \mathbb{C}$, define an oscillation by

$$\operatorname{osc}_n(\widetilde{f},\xi) := \sup\{|\widetilde{f}(\xi^1) - \widetilde{f}(\xi^2)| : \xi^1, \xi^2 \in \Sigma; \xi^1_s = \xi_s = \xi^2_s, -n \le s \le n\}.$$

For $\alpha > 0$ and $m \in \mathbb{N}_0$ the set $GH_{\alpha,m}$ consists by definition of all functions $f \in L^1(\Sigma \to \mathbb{C}, d\mu)$ with finite variation

$$\operatorname{var}_{\alpha,m}(f) := \inf_{\widetilde{f} = f \text{ a.e. } n \ge m} \sup e^{\alpha n} \int d\mu(\xi) \operatorname{osc}_n(\widetilde{f}, \xi).$$

 $GH_{\alpha,m}$ is equipped with the norm $\|\cdot\|_{\alpha,m} := \|\cdot\|_1 + \operatorname{var}_{\alpha,m}(\cdot)$.

The following *properties* of $GH_{\alpha,m}$ are obvious:

- 1. For $\alpha' \leq \alpha$ and $m' \geq m$ every function $f \in GH_{\alpha,m}$ is contained in $GH_{\alpha',m'}$, too.
- 2. For all $f \in GH_{\alpha,m}$ and all Lipshitz continuous $\phi : \operatorname{img} f \to \mathbb{C}$, also $\phi \circ f \in GH_{\alpha,m}$ with $\operatorname{var}_{\alpha,m}(\phi \circ f) \leq \operatorname{Lip}(\phi) \operatorname{var}_{\alpha,m}(f)$.
- 3. There exist $C < \infty$ such that $||f||_{\infty} \leq C ||f||_{\alpha,m}$ for every $f \in GH_{\alpha,m}$.
- 4. $\operatorname{var}_{\alpha,m}(fg) \leq \operatorname{var}_{\alpha,m}(f) ||g||_{\infty} + \operatorname{var}_{\alpha,m}(g) ||f||_{\infty}$ for all $f, g \in GH_{\alpha,m}$.

Let $L^1(d\mu^+)$ denote the subspace of $L^1(d\mu)$ consisting of the functions that possess a $d\mu$ -version which only depends on the symbols ξ_s with $s \ge 0$. Analogously, call $GH^+_{\alpha,m}$ the class of functions $f \in GH_{\alpha,m}$ possessing a $d\mu$ -version f_0 which only depends on the symbols ξ_s with $s \ge 0$ such that

$$\infty > \operatorname{var}_{\alpha,m}^+(f) := \inf_{\widetilde{f} = f_0 \text{ a.e.}} \sup_{n \ge m} e^{\alpha n} \int d\mu^+(\xi) \operatorname{osc}_n^+(\widetilde{f},\xi),$$

where the infimum runs over all functions $\widetilde{f} : \Sigma^+ \to \mathbb{C}$ and where

$$\operatorname{osc}_n^+(\widetilde{f},\xi) := \sup\{|\widetilde{f}(\xi^1) - \widetilde{f}(\xi^2)| : \xi^1, \xi^2 \in \Sigma^+; \xi_s^1 = \xi_s = \xi^2, 0 \le s \le n\}.$$

On $GH^+_{\alpha,m}$, a norm can be defined by $\|\cdot\|_{+,\alpha,m} := \|\cdot\|_1 + \operatorname{var}^+_{\alpha,m}(\cdot)$.

Theorem 1 $GH_{\alpha,m}$ with the norm $\|\cdot\|_{\alpha,m}$ and $GH_{\alpha,m}^+$ with the norm $\|\cdot\|_{+,\alpha,m}$ are Banach spaces.

Proof. (Only the $GH_{\alpha,m}$ -part.) Let $\{f_l\}_{l\in\mathbb{N}}$ be a Cauchy sequence in $GH_{\alpha,m}$. Due to Property 3 of $GH_{\alpha,m}$ it is also a Cauchy sequence in $L^{\infty}(d\mu)$, so that it possesses a limit $f \in L^{\infty}(d\mu)$ with respect to $\|\cdot\|_{\infty}$.

Fix $\epsilon > 0$. By the Cauchy property for $\{f_l\}_{l \in \mathbb{N}}$ in $GH_{\alpha,m}$ we find: There exists $L \in \mathbb{N}$ such that for all $l \ge L$ there is some $d\mu$ -version $\tilde{f_l}$ of f_l with

$$\int d\mu(\xi) \operatorname{osc}_{n}(\widetilde{f}_{l} - \widetilde{f}_{L}, \xi) \leq \epsilon e^{-\alpha n}$$
(2)

for all $n \ge m$. We can assume that $|\tilde{f}_l(\xi) - \tilde{f}_L(\xi)|$ is bounded for all ξ and all $l \ge L$ by $C := 2 \sup_l ||f_l||_{\infty} < \infty$. There exists a set A with $\mu(A) = 1$ such that for all $x \in A$ we have $f(x) = \lim_l \tilde{f}_l(x)$ and on A the modulus of all \tilde{f}_l , $l \in \mathbb{N}$, is bounded by C/2.

Given these building blocks, we construct a $d\mu$ -version \tilde{f} of f such that

$$\int d\mu(\xi) \operatorname{osc}_{n}(\widetilde{f} - \widetilde{f}_{L}, \xi) \leq \epsilon \, e^{-\alpha n} \tag{3}$$

for all $n \ge m$. This implies $\operatorname{var}_{\alpha,m}(f - f_L) < \epsilon$, hence $f = (f - f_L) + f_L \in GH_{\alpha,m}$, and f is $GH_{\alpha,m}$ -limit of $f_L, L \to \infty$, which proves the theorem.

Construction of \tilde{f} : Let $\tilde{f}|_A := f|_A$. For ξ not in A, take some sequence $\{\xi^k(\xi)\}_{k\in\mathbb{N}}$ in A which converges to ξ with respect to d_{Σ} . Such a sequence exists, because otherwise ξ would possess a neighborhood disjoint from A, in contradiction to $\mu(A) = 1$. The sequence $\{\tilde{f}(\xi^k(\xi)) - \tilde{f}_L(\xi^k(\xi))\}_{k\in\mathbb{N}}$ is bounded and, hence, possesses at least one point of accumulation. Define $\tilde{f}(\xi)$ in such a way that one of these points equals $\tilde{f}(\xi) - \tilde{f}_L(\xi)$.

This implies that for all $\xi^{1/2} \in \Sigma$, $\xi_s^{1/2} = \xi_s$ for $-n \leq s \leq n$, the value $|\tilde{f}(\xi^1) - \tilde{f}_L(\xi^1) - \tilde{f}(\xi^2) + \tilde{f}_L(\xi^2)|$, and hence $\operatorname{osc}_n(\tilde{f} - \tilde{f}_L, \xi)$, is bounded by

$$\sup\{|\tilde{f}(\xi^{1}) - \tilde{f}_{L}(\xi^{1}) - \tilde{f}(\xi^{2}) + \tilde{f}_{L}(\xi^{2})| : \xi^{1/2} \in A; \xi^{1/2}_{s} = \xi_{s}, -n \le s \le n\}$$

(Note the appearance of A instead of the full set Σ !) because, if ξ^1 is not already an element of A, the value of $\tilde{f}(\xi^1) - \tilde{f}_L(\xi^1)$ is the limit of its values at some near (with respect to d_{Σ}) points $v \in A$. These v can be chosen so as to fulfill $v_s = \xi_s$, $-n \leq s \leq n$, so that they are contained in the set of ξ^1 in the supremum. A similar argument applies to ξ^2 .

For $\xi^1 \in A$, the value $\tilde{f}(\xi^1)$ is the limit of $\tilde{f}_l(\xi^1)$. Thus, the above estimate leads to $\operatorname{osc}_n(\tilde{f} - \tilde{f}_L, \xi) \leq \liminf_l \operatorname{osc}_n(\tilde{f}_l - \tilde{f}_L, \xi)$. Now we can apply Fatou's lemma to deduce Eqn. (3) from Eqn. (2) by interchanging \liminf_l and integration $\int d\mu(\xi)$.

Theorem 2 The closed unit ball of $GH_{\alpha,m}$ is compact in $L^1(d\mu)$. Likewise, the closed unit ball of $GH^+_{\alpha,m}$ is compact in $L^1(d\mu^+)$.

Proof. (Only the $GH_{\alpha,m}$ -part.) We have to show: For every sequence $\{f_l\}_{l \in \mathbb{N}}$ in $GH_{\alpha,m}$ with $||f_l||_{\alpha,m} \leq 1$ for all $l \in \mathbb{N}$ there exists some subsequence which converges in $L^1(d\mu)$ to some $f \in GH_{\alpha,m}$ with $||f||_{\alpha,m} \leq 1$.

Due to Property 3, there exists $C < \infty$ such that for all $l \in \mathbb{N}$ we have $\|f_l\|_{\infty} \leq C$, and hence $\|f_l\|_2 \leq C$. Therefore there exists a subsequence of $\{f_l\}_{l \in \mathbb{N}}$ which converges weakly with respect to $L^2(d\mu)$ to some $f \in L^2(d\mu)$ with $\|f\|_2 \leq C$. Call this converging subsequence again $\{f_l\}_{l \in \mathbb{N}}$.

Fix $\epsilon > 0$. By the definition of the unit ball in $GH_{\alpha,m}$ we can find for each f_l a $d\mu$ -version \tilde{f}_l such that $|\tilde{f}_l(\xi)| \leq C$ for all ξ and

$$\int d\mu(\xi) \operatorname{osc}_{n}(\widetilde{f}_{l},\xi) \leq e^{-\alpha n} (1 - \|\widetilde{f}_{l}\|_{1} + \epsilon)$$
(4)

for all $n \ge m$.

Next we show that \tilde{f}_l also converges strongly with respect to $\|\cdot\|_1$: Fix $M \ge m$. Choose a finite partition $\bigcup_i A_i$ of Σ into disjoint non-zero measurable sets A_i such that all symbol sequences from a specific set A_i coincide from the -M-th up to the M-th entry. Of \tilde{f}_l define a discrete approximation $F_l := \sum_i \mathbf{1}_i \mu(A_i)^{-1} \int_{A_i} d\mu \tilde{f}_l$, where $\mathbf{1}_i$ is the indicator function of the set A_i . The weak convergence of \tilde{f}_l implies that F_l converges strongly with respect to $\|\cdot\|_1$ as $l \to \infty$. We can estimate the distance between F_l and \tilde{f}_l :

$$\begin{aligned} \|F_l - \widetilde{f}_l\|_1 &\leq \sum_i \int_{A_i} d\mu(\xi) \sup\{|\widetilde{f}_l(\xi^1) - \widetilde{f}_l(\xi)| : \xi^1 \in A_i\} \\ &\leq (1 - \|\widetilde{f}_l\|_1 + \epsilon) e^{-\alpha M}, \end{aligned}$$

where in the last step Eqn. (4) has been applied with n = M. Therefore, $\|\tilde{f}_l - \tilde{f}_k\|_1 \le 2(1+\epsilon) e^{-\alpha M} + \|F_l - F_k\|_1$. But the rhs. of this estimate tends to 0 as l, $k \to \infty$ because M can be chosen arbitrarily large and because F_l is strongly convergent in $L^1(d\mu)$. This shows that \tilde{f}_l is Cauchy with respect to $L^1(d\mu)$ and hence converges to f on a set A of full $d\mu$ -measure. We construct a $d\mu$ -version \tilde{f} of f similar to the proof of Theorem 1: Let $\tilde{f}|_A := f|_A$. For ξ not in A, take some sequence $\{\xi^k(\xi)\}_{k\in\mathbb{N}}$ in A which converges to ξ . The sequence $\{\tilde{f}(\xi^k(\xi))\}_{k\in\mathbb{N}}$ is bounded. Define $\tilde{f}(\xi)$ to be one of its points of accumulation.

Using a similar argument as in the proof of Theorem 1 we find from Eqn. (4) that $\operatorname{var}_{\alpha,m}(f) \leq 1 - ||f||_1 + \epsilon$. But $\epsilon > 0$ has been arbitrary, and therefore $||f||_1 + \operatorname{var}_{\alpha,m}(f) \leq 1$, so that f is an element of the unit ball of $GH_{\alpha,m}$. \Box

3 Decay of correlations

An operator P in $L^1(d\mu^+)$ is uniquely determined by demanding that for all $g \in L^{\infty}(d\mu^+)$:

$$\int d\mu^+ g P(f) = \int d\mu^+ (g \circ T) f.$$
⁽⁵⁾

P is a contractive mapping both of the space $L^1(d\mu^+)$ into itself and of the space $L^{\infty}(d\mu^+)$ into itself.

With the help of the function h which has been introduced in the beginning, P(f) can also be defined pointwise:

$$P(f)(\xi) := \sum_{a=1}^{r} h(a\xi) f(a\xi),$$
(6)

where $a\xi$ is the symbol sequence with first entry a, second entry ξ_1 , third ξ_2 , and so on. Note that $a\xi$ is not necessarily an element of Σ^+ , so that $f(a\xi)$ may not make sense. This problem is solved by the special form of h: It vanishes for symbol sequences which are no elements of Σ^+ .

The following theorem shows that T has strong ergodic properties with respect to the new class of function spaces GH^+ :

Theorem 3 The theorem of Ionescu-Tulcea and Marinescu (see Appendix A) can be applied to P acting in $GH^+_{\alpha,m} \subset L^1(d\mu^+)$ if $\alpha \leq \alpha_h$ and if $m \in \mathbb{N}_0$ is large enough.

Proof. We have to show that for $\alpha \leq \alpha_h$ and for large $m \in \mathbb{N}_0$ there exist $r_1 \in (0, 1)$ and $r_2 \in \mathbb{R}_0^+$ such that $\operatorname{var}_{\alpha,m}^+(P(f)) \leq r_1 \operatorname{var}_{\alpha,m}^+(f) + r_2 ||f||_1$ for all $f \in GH_{\alpha,m}^+$. To see this, fix some $\epsilon > 0$ and choose according to the definition of $GH_{\alpha,m}^+$ a $d\mu^+$ -version \tilde{f} of f which only depends on symbols ξ_s , $s \geq 0$, such that for all $n \geq m$ (where m is unknown at this stage):

$$\int d\mu^{+}(\xi) \operatorname{osc}_{n}^{+}(\widetilde{f},\xi) \leq (\operatorname{var}_{\alpha,m}^{+}(f) + \epsilon) e^{-\alpha n}.$$
(7)

For a = 1, ..., r the value $|h(a\xi^1)\widetilde{f}(a\xi^1) - h(a\xi^2)\widetilde{f}(a\xi^2)|$ is bounded by

$$h(a\xi)|\widetilde{f}(a\xi^1) - \widetilde{f}(a\xi^2)| + |\widetilde{f}(a\xi^1)| |h(a\xi^1) - h(a\xi)| + |\widetilde{f}(a\xi^2)| |h(a\xi^2) - h(a\xi)|,$$

where we define \tilde{f} to be 0 for non-admissible sequences of symbols. Thus:

J. Loviscach

$$\int d\mu^{+}(\xi) \operatorname{osc}_{n}^{+}(h(a \cdot)\widetilde{f}(a \cdot), \xi)$$

$$\leq \int d\mu^{+}(\xi) h(a\xi) \operatorname{osc}_{n}^{+}(\widetilde{f}(a \cdot), \xi)$$

$$+ 2 \int d\mu^{+}(\xi) \sup\{|\widetilde{f}(a\xi^{1})| : \xi^{1} \in \Sigma^{+}; \xi^{1}_{s} = \xi_{s}, 0 \le s \le n\}$$

$$\times \sup\{|h(a\xi^{1}) - h(a\xi)| : \xi^{1} \in \Sigma^{+}; \xi^{1}_{s} = \xi_{s}, 0 \le s \le n\}$$
(8)

The domain of the first integral on the rhs. can be reduced to those ξ with $a\xi \in \Sigma^+$ because $h(a\xi)$ is 0 otherwise. But then, also $a\xi^1$ and $a\xi^2$ in the definition of $\operatorname{osc}_n^+(\tilde{f}(a\cdot),\xi)$ are elements of Σ^+ , because of the definition of Σ^+ via the matrix \mathscr{T} and because $\xi_0^1 = \xi_0 = \xi_0^2$. Likewise, in the second integral on the rhs. only those ξ have to be considered for which $a\xi \in \Sigma^+$ because otherwise the first supremum would evaluate \tilde{f} only at points $a\xi^1 \notin \Sigma^+$, where \tilde{f} is defined to be 0. This shows that expression (8) is bounded for all $n \in \mathbb{N}$ by

$$\int d\mu^{+}(\xi) h(a\xi) \operatorname{osc}_{n+1}^{+}(\tilde{f}, a\xi)$$
(9)
+ 2 $\int d\mu^{+}(\xi) \sup\{|\tilde{f}(\xi^{1})| : \xi^{1} \in \Sigma^{+}; \xi^{1}_{s} = (a\xi)_{s}, 0 \le s \le n+1\} C_{h} e^{-\alpha_{h}(n+1)},$

where we have applied Eqn. (1).

Summing over a we get for the first term of this expression for all $n \ge m$:

$$\sum_{a=1}^{r} \int d\mu(\xi) h(a\xi) \operatorname{osc}_{n+1}^{+}(\widetilde{f}, a\xi) \leq \int d\mu^{+}(\xi) \operatorname{osc}_{n+1}^{+}(\widetilde{f}, \xi)$$
$$\leq (\operatorname{var}_{\alpha,m}^{+}(f) + \epsilon) e^{-\alpha(n+1)},$$

where the $L^1(d\mu)$ -contractivity of P as defined by Eqn. (6) has been used. For the same reason, the sum over a for the second term of expression (9) is bounded by

$$2C_{h}e^{-\alpha_{h}(n+1)}\sum_{a=1}^{r}\int d\mu^{+}(\xi)H^{-1}h(a\xi)$$

$$\times \sup\{|\tilde{f}(\xi^{1})|:\xi^{1}\in\Sigma;\xi^{1}_{s}=(a\xi)_{s}, 0\leq s\leq n+1\}$$

$$\leq 2C_{h}H^{-1}e^{-\alpha_{h}(n+1)}\int d\mu^{+}(\xi)\sup\{|\tilde{f}(\xi^{1})|:\xi^{1}\in\Sigma;\xi^{1}_{s}=\xi_{s}, 0\leq s\leq n+1\}$$

Let us estimate for $n \ge m$ the value of the integral appearing in the preceding expression:

$$\int d\mu^{+}(\xi) \sup\{|\widetilde{f}(\xi^{1})| : \xi^{1} \in \Sigma; \xi^{1}_{s} = \xi_{s}, 0 \le s \le n+1\}$$

$$\leq \int d\mu^{+}(\xi) \left(|\widetilde{f}(\xi)| + \operatorname{osc}_{n+1}^{+}(\widetilde{f}, \xi)\right)$$

$$\leq \|f\|_{1} + \left(\operatorname{var}_{\alpha,m}^{+}(f) + \epsilon\right) e^{-\alpha(n+1)},$$

where in the last step Eqn. (7) has been used.

Assembling these pieces together and letting $\epsilon \downarrow 0$, we find

$$\begin{aligned} &\operatorname{var}_{\alpha,m}^{+}(P(f)) \\ &\leq \sum_{a=1}^{r} \operatorname{var}_{\alpha,m}^{+}(h(a \cdot)f(a \cdot)) \\ &\leq \sup_{n \geq m} \left(\operatorname{var}_{\alpha,m}^{+}(f) e^{-\alpha} + 2C_{h}H^{-1}e^{\alpha n - \alpha_{h}(n+1)} \left(\|f\|_{1} + \operatorname{var}_{\alpha,m}^{+}(f) e^{-\alpha(n+1)} \right) \right) \\ &\leq \left(e^{-\alpha} + 2C_{h}H^{-1}e^{-\alpha_{h}(m+1) - \alpha} \right) \operatorname{var}_{\alpha,m}^{+}(f) + 2C_{h}H^{-1}e^{-(\alpha_{h} - \alpha)m - \alpha_{h}} \|f\|_{1}. \end{aligned}$$

The coefficient of $\operatorname{var}_{\alpha,m}^+(f)$ can be made smaller than 1 by choosing *m* large enough. \Box

Applying the theorem of Ionescu-Tulcea and Marinescu and using that $(T, d\mu)$ is weakly mixing we find that the *n*-th power of the operator *P* can be decomposed as:

$$P^n = \Pi + R^n \qquad \text{for all } n \in \mathbb{N},\tag{10}$$

where $\Pi : f \mapsto \int d\mu^+ f$ is a one-dimensional projector. The spectral radius of R w.r.t. $GH^+_{\alpha,m}$ (α and m chosen according to the previous theorem) is strictly smaller than 1.

To make use of this result for the full space $GH_{\alpha,m}$ instead of $GH_{\alpha,m}^+$, we need two lemmas, which are standard for functions which are Hölder continuous w.r.t. d_{Σ} .

Lemma 4 For $f \in GH_{\alpha,m}$ and all $N \in \mathbb{Z}$ also $f \circ T^N \in GH_{\alpha,m}$ with $||f \circ T^N||_{\alpha,m} \leq Ce^{\alpha|N|} ||f||_{\alpha,m}$, where $C < \infty$ only depends on α and m.

Proof. (Only the case $N \ge 0$.) Choose a $d\mu$ -version \tilde{f} of $f \in GH_{\alpha,m}$ such that $|\tilde{f}|$ is bounded everywhere by $||f||_{\infty}$ and such that

$$\int d\mu(\xi) \operatorname{osc}_{n}(\widetilde{f},\xi) \leq 2e^{-\alpha n} \operatorname{var}_{\alpha,m}(f)$$
(11)

for all $n \ge m$. Then $\operatorname{var}_{\alpha,m}(f \circ T^N)$ is bounded by

$$\sup_{n \ge m} e^{\alpha n} \int d\mu(\xi) \, \sup\{|\tilde{f}(\xi^1) - \tilde{f}(\xi^2)| : \xi^{1/2} \in \Sigma; \xi^{1/2}_s = \xi_s, -n - N \le s \le n - N\},\$$

because of the invariance of $d\mu$ under T. For $n - N \ge m$ Eqn. (11) implies that the integral in the preceding expression is bounded by $2e^{-\alpha(n-N)} \operatorname{var}_{\alpha,m}(f)$. Additionally, for all n this integral is bounded by $2||f||_{\infty}$. So we find

$$\operatorname{var}_{\alpha,m}(f \circ T^N) \le 2(C'e^{\alpha m} + 1)e^{\alpha N} \|f\|_{\alpha,m}$$

where $C' < \infty$ is chosen according to property 3 of *GH*. Furthermore, $||f \circ T^N||_1 = ||f||_1$. Therefore it is possible to take $C := 2C'e^{\alpha m} + 2$ in the statement of the lemma. \Box

Lemma 5 (Finite approximation) For every $f \in GH_{\alpha,m}$ and for all $N \ge m$ there exist $f_N \in GH_{\alpha,m}$ such that the following is true: (i) $\xi \mapsto f_N(\xi)$ only depends on ξ_{-N}, \ldots, ξ_N . (ii) $||f - f_N||_1 \le 2e^{-\alpha N} ||f||_{\alpha,m}$. (iii) $|f_N|$ is bounded everywhere by $||f||_{\infty}$. (iv) $||f_N||_{\alpha,m} \le 4||f||_{\alpha,m}$.

Proof. For every a = 1, ..., r choose some $\xi(a) \in \Sigma$ with $\xi(a)_0 = a$. Now define for $N \in \mathbb{N}_0$ a truncation $\mathcal{Q}_N : \Sigma \to \Sigma$ by

$$\mathcal{Q}_{N}(\xi) := (\dots, \xi(\xi_{-N})_{-2}, \xi(\xi_{-N})_{-1}, \xi_{-N}, \dots, \xi_{0}, \dots, \xi_{N}, \xi(\xi_{N})_{1}, \xi(\xi_{N})_{2}, \dots).$$

With \tilde{f} as in the proof of Lemma 4 define $f_N := \tilde{f} \circ \mathcal{Q}_N$ for all $N \ge m$. The claimed properties of f_N follow easily from Eqn. (11). \Box

Theorem 6 (Exponential decay of correlations) As $N \to \infty$, the correlation $\int d\mu (g \circ T^N) f$ decays exponentially to 0 for all $f, g \in GH_{\alpha,m}$ with $\int d\mu f = 0$ if $0 < \alpha \leq \alpha_h$ and if m is large enough for Theorem 3 to be valid.

Proof. According to Lemma 5 choose finite approximations f_n and g_n , $n \ge m$, of f and g. Then $\left| \int d\mu (g \circ T^N) f \right|$ is bounded by

$$2e^{-\alpha n} ||g||_{\alpha,m} ||f||_{\infty} + 2e^{-\alpha n} ||g||_{\infty} ||f||_{\alpha,m} + \left| \int d\mu g_n \circ T^{n+N} f_n \circ T^n \right|_{\infty}$$

Now note that $f_n \circ T^n$ and $g_n \circ T^n$ are elements of $GH^+_{\alpha,m}$:

$$\begin{split} \left| \int d\mu \, g_n \circ T^{n+N} \, f_n \circ T^n \right| &= \left| \int d\mu^+ \, g_n \circ T^n \, P^N(f_n \circ T^n) \right| \\ &\leq \|g_n\|_{\infty} \left(\|R^N\|_{+,\alpha,m} \|f_n \circ T^n\|_{+,\alpha,m} + \left| \int d\mu f_n \right| \right) \\ &\leq \|g\|_{\infty} \left(C_1 \kappa^N C_2 e^{\alpha n} 4 \|f\|_{\alpha,m} + 2e^{-\alpha n} \|f\|_{\alpha,m} \right), \end{split}$$

where $C_1 < \infty$ and $\kappa \in (0, 1)$ have been chosen according to Lemma 13 and $C_2 < \infty$ according to Lemma 4. Choose such a $k \in \mathbb{N}$ that $\kappa^k e^{\alpha} < 1$. Then take $n = \lfloor N/k \rfloor$ in the estimates above. Hence for $N \ge km$:

$$\left| \int d\mu \, (g \circ T^N) f \right| \le 2e^{-\alpha (N/k-1)} \|g\|_{\alpha,m} \|f\|_{\infty} + 4e^{-\alpha (N/k-1)} \|g\|_{\infty} \|f\|_{\alpha,m} + \|g\|_{\infty} C_1 C_2 (\kappa^k e^{\alpha})^{N/k} 4 \|f\|_{\alpha,m},$$

which decays exponentially as $N \to \infty$. \Box

4 Central limit theorem

Let k be a \mathbb{R}^d -valued $(d < \infty)$ function with entries of type $GH_{\alpha,m}$ and vanishing mean: $\int d\mu k = 0$. We give conditions on which k fulfills a central limit theorem, i.e. conditions when the distribution of the random variable $N^{-1/2} \sum_{n=0}^{N-1} k \circ T^n$ tends to a non-degenerate Gaussian measure as $N \to \infty$. Again, the first step is to reduce the problem to the space $GH_{\alpha,m}^+$. Define $\delta := \ln \sup_{\Sigma^+} h - \ln \inf_{\Sigma^+} h$. We have to introduce a condition concerning δ :

Lemma 7 Assume that the value range of h is so small or h is so smooth that $2\delta < \alpha_h$. If α and α' fulfill $0 < 2\alpha' + 2\delta < \alpha \le \alpha_h$ and m is large enough, then for every $f \in GH_{\alpha,m}$ there exists $f^+ \in GH^+_{\alpha',m}$ and $g \in GH_{\alpha',m}$ such that

$$f = f^+ - g + g \circ T \qquad a.e$$

(The proof of this lemma is given in Appendix B.)

Remark. Given that $f(\xi)$ does not depend too singularly (this can be made precise) on ξ_s , s < 0, the condition $2\delta < \alpha_h$ can be dropped, and the decomposition of f is true for $0 < 2\alpha' < \alpha \le \alpha_h$.

In the following we will tacitly assume $2\delta < \alpha_h$ and that there exists $\alpha \in (2\delta, \alpha_h]$ and $m \in \mathbb{N}$ such that every entry of the function k is an element of $GH_{\alpha,m}$. Choose some $\alpha' \in (0, \alpha/2 - \delta)$. If necessary, increase m until Theorem 3 is valid for $GH_{\alpha',m}$ and Lemma 7 is valid.

Let $\rho \in GH_{\alpha',m}$ be a normalized non-negative weight function on Σ with respect to $d\mu$, i.e. $\int \rho d\mu = 1$. We can calculate the characteristic function of $X_N := \sum_{n=0}^{N-1} k \circ T^n$ for all $p \in \mathbb{R}^d$ given the initial probability measure $\rho d\mu$:

$$E_{\rho}[e^{ip\cdot X_{N}}] = \int \rho \, d\mu \, \exp i \, \sum_{n=0}^{N-1} p \cdot k \circ T^{n}$$

According to Lemma 7 there exists a real vector-valued function k^+ with entries of type $GH^+_{\alpha',m}$ and a real vector-valued function u with entries of type $GH_{\alpha',m}$ such that $k = k^+ + u \circ T - u$ a.e. This yields:

$$E_{\rho}[e^{ip\cdot X_N}] = \int \rho \, d\mu \, \exp ip \, \cdot \left(u \circ T^N - u + \sum_{n=0}^{N-1} k^+ \circ T^n \right). \tag{12}$$

Choose finite approximations $\rho_s \in GH_{\alpha',m}$, $s \ge m$, according to Lemma 5. We approximate the characteristic function (12) with their help $(s \ge m)$:

$$\left| E_{\rho}[e^{ip \cdot X_N}] - \int \rho_s \, d\mu \, \exp i \, \sum_{n=0}^{N-1} p \cdot k^+ \circ T^n \right| \tag{13}$$

$$\leq \int d\mu \left| e^{ip \cdot u \circ T^{N}} - 1 \right| \rho + \int d\mu \left| e^{-ip \cdot u} - 1 \right| \rho + \int d\mu \left| \rho - \rho_{s} \right|$$

$$\leq C_{1} \left(\left| p \right| + e^{-\alpha' s} \right), \tag{14}$$

with some $C_1 < \infty$, which depends on ρ .

Now note that for $s \ge m$ the approximation of the expectation value (12) in Eqn. (13) may be written

$$\int \rho_s \, d\mu \, \exp i \sum_{n=0}^{N-1} p \cdot k^+ \circ T^n = \int d\mu^+ P_p^N P^s(\rho_s \circ T^s), \tag{15}$$

where we have introduced the operator family $f \mapsto P_p(f) := P(e^{ip \cdot k^+}f), p \in \mathbb{R}^d$, which acts in the space $L^1(d\mu^+)$. (This scheme follows [3].)

For small |p|, one can view P_p as an analytic perturbation [4] of P: There is an ϵ such that for $|p| \le \epsilon$ we have a decomposition analogous to Eqn. (10):

$$P_n^n = K_n^n \Pi_p + R_n^n \qquad \text{for all } n \in \mathbb{N}, \tag{16}$$

where K_p is the leading, complex eigenvalue, Π_p a one-dimensional projector in $GH_{\alpha',m}$, R_p a bounded operator in $GH_{\alpha',m}$, all three of them analytic with respect to p, and the spectral radius of R_p in $GH_{\alpha',m}$ is strictly less than 1. Furthermore, for p = 0 the decomposition Eqn. (16) reduces to that of Eqn. (10): $K_0 = 1$, $\Pi_0 = \Pi$, and $R_0 = R$. The leading eigenvalue K_p may be written $e^{-p \cdot Dp/2 + F(p)}$, where F is a complex-valued function of type C^{∞} , which is of order 3 at p = 0. The real symmetric matrix D is uniquely determined and non-negative, because for all $p \in \mathbb{R}^d$:

$$p \cdot Dp = \lim_{N \to \infty} N^{-1} \int d\mu^+ \left(\sum_{n=0}^{N-1} p \cdot k^+ \circ T^n \right)^2.$$

Lemma 8 The following statements are equivalent:

- (i) The matrix D is strictly positive.
- (ii) There exists an open neighborhood of $0 \in \mathbb{R}^d$ such that for all $p \neq 0$ from this neighborhood, the spectral radius of P_p w.r.t. $GH^+_{\alpha',m}$ is strictly less than 1.
- (iii) The following equation cannot be solved by any $\phi \in L^{\infty}(d\mu)$ and any $p \neq 0$:

$$p \cdot k = \phi \circ T - \phi \qquad a.e. \tag{17}$$

Proof. (i) \Rightarrow (ii): We will apply Theorem 12 for the spaces $GH_{\alpha',m}^+ \subset L_1(d\mu^+)$, the operator P_p and the norm $\|\cdot\|' := \|\cdot\|_{L^{\infty}(d\mu^+)} = \|\cdot\|_{\infty}$. This is possible because of the following facts:

- There exists $C_1 < \infty$ such that $||f||_{\infty} \leq C_1 ||f||_{\alpha',m}$ for all $f \in GH^+_{+,\alpha',m}$.
- $\|P_p^n(f)\|_{\infty} \leq \|f\|_{\infty} \|P^n(1)\|_{\infty} \leq C_2 \|f\|_{\infty} \text{ with some fixed } C_2 < \infty \text{ for all } f \in GH^+_{\alpha',m} \text{ and } n \in \mathbb{N}.$
- As a consequence of Theorem 3, there exist $r_1 \in (0, 1)$ and $r_2 > 0$ such that for all $f \in GH^+_{o', m}$ and all $p \in \mathbb{R}^d$:

$$\operatorname{var}_{\alpha',m}^{+}(P_{p}(f)) \leq r_{1} \operatorname{var}_{\alpha',m}^{+}(e^{ip \cdot k^{+}}f) + r_{2} ||f||_{1}$$

$$\leq r_{1} \operatorname{var}_{\alpha',m}^{+}(f) + (r_{2} + r_{1} \operatorname{var}_{\alpha',m}^{+}(e^{ip \cdot k^{+}})) ||f||_{\infty}.$$

Now let \mathscr{S} be the set of all $p \in \mathbb{R}^d$ for which the spectral radius in $GH^+_{\alpha,m}$ of P_p is not strictly less than 1. Let p be an element of this set. Then by Theorem 12 the spectral radius of P_p actually equals 1 and there exists an eigenvector $f \in GH^+_{\alpha',m}$ of P_p with eigenvalue $e^{i\theta}$, $\theta \in \mathbb{R}$. The operator P has the property that a.e. $P(|g|) \ge |P(g)|$ for all $g \in L^1(d\mu^+)$ and hence $P(|f|) \ge |f|$ for the eigenvector f. On the other hand, P is a contractive operator in $L^1(d\mu^+)$. Taken

together, this implies P(|f|) = |f| a.e. But the 1-eigenspace of P consists of the constant functions; so (perhaps after normalization) we have a.e. |f| = 1, so that a.e. $f = e^{i\psi}$ with some real-valued $\psi \in L^{\infty}(d\mu)$. Combining the eigenvalue equation with the definition Eqn. (5) of the operator P we obtain

$$\int d\mu \, g \circ T \, e^{ip \cdot k^+} e^{i\psi} = \int d\mu \, g \, e^{i\theta} e^{i\psi} \qquad \text{for all } g \in L^\infty(d\mu^+).$$

We choose $g := e^{-i\theta}e^{-i\psi}$ and examine the exponents, which yields that a.e. $p \cdot k^+ - \theta - \psi \circ T + \psi \in 2\pi\mathbb{Z}$. It is now obvious that for arbitrary $n \in \mathbb{Z}$, $e^{in\psi}$ is an eigenvector with eigenvalue of modulus 1. Thus, we have shown $\mathbb{Z}\mathscr{S} \subset \mathscr{S}$. Now assume that \mathscr{S} contains non-zero elements q with arbitrarily small modulus |q|. Then from $\mathbb{Z}\mathscr{S} \subset \mathscr{S}$ follows that there exists a line $\mathbb{R}p$, $p \neq 0$, so that every point of this line is a limit point of \mathscr{S} . From the semicontinuity of the spectrum [4] follows that \mathscr{S} is closed; hence, $\mathbb{R}p \subset \mathscr{S}$ and $1 = |K_q| = |e^{-q \cdot Dq/2 + F(p)}|$ for all q, $|q| < \epsilon$, which are parallel to p. This yields $p \cdot Dp = 0$. \Box

(ii) \Rightarrow (iii): Let ϕ be a solution of Eqn. (17) for some fixed p. Then $p \cdot k^+ = \psi \circ T - \psi$, where $\psi := \phi - p \cdot u$. Thus, for all $N \in \mathbb{N}$:

$$e^{i\psi} = e^{i\psi\circ T^N} \exp{-i\sum_{n=0}^{N-1} p \cdot k^+ \circ T^n}$$
 a.e.

By Lemma 5, there exists functions $f_N \circ T^N \in L^1(d\mu^+)$ such that $\|\psi - f_N\|_1$ tends to zero as $N \to \infty$. The expression $e^{if_N \circ T^N} \exp -i \sum_{n=0}^{N-1} p \cdot k^+ \circ T^n$ defines an element of $L^1(d\mu^+)$. We can estimate:

$$\left\| e^{i\psi} - e^{if_N \circ T^N} \exp -i \sum_{n=0}^{N-1} p \cdot k^+ \circ T^n \right\|_1 = \left\| e^{i\psi \circ T^N} - e^{if_N \circ T^N} \right\|_1$$
$$\leq \left\| \psi - f_N \right\|_1,$$

which becomes arbitrarily small as $N \to \infty$. But $L^1(d\mu^+)$ is a closed subspace of $L^1(d\mu)$, so we see that $e^{i\psi}$ itself is an element of $L^1(d\mu^+) \subset L^1(d\mu)$. Therefore, in $L^1(d\mu^+)$, the operator P_p is conjugated to P, namely $P_p(f) = e^{i\psi} P(e^{-i\psi}f)$ for all $f \in L^1(d\mu^+)$. This implies that P_p possesses an $L^1(d\mu^+)$ -eigenfunction with eigenvalue of modulus 1. But then also the spectral radius of P_p in $GH^+_{\alpha,m}$ must equal 1, because $GH^+_{\alpha,m}$ is dense in $L^1(d\mu^+)$. This remains true if we replace p by a real multiple of itself. Therefore, on the whole line $q \in \mathbb{R}p$ (which intersects any neighborhood of 0) the spectral radius of P_q in $GH^+_{\alpha,m}$ equals 1. \Box

(iii) \Rightarrow (i): Assume that *D* is not strictly positive, i.e. that for some $p \neq 0$ the variance of the random variable $N^{-1/2} \sum_{n=0}^{N-1} p \cdot k^+ \circ T^n$ tends to 0 as $N \to \infty$. Define $\psi := \sum_{n=1}^{\infty} P^n(p \cdot k^+)$, which converges exponentially in $GH_{\alpha',m}$ because $\int d\mu^+ k^+ = 0$. The variance of the telescoped random variable

$$N^{-1/2}\sum_{n=0}^{N-1} (p \cdot k^+ + \psi - \psi \circ T) \circ T^n,$$

too, tends to 0 as $N \to \infty$. Due to the decay of correlations, this can be expressed with the help of the Green-Kubo formula:

$$0 = \int d\mu^{+} (p \cdot k^{+} + \psi - \psi \circ T)^{2} + 2 \sum_{n=1}^{\infty} \int d\mu^{+} (p \cdot k^{+} + \psi - \psi \circ T) P^{n} (p \cdot k^{+} + \psi - \psi \circ T).$$

But $P(\psi \circ T) = \psi$ and $\psi - P(\psi) = P(p \cdot k^+)$ so that in the above equation all expressions $P^n(\cdots)$ vanish. Thus, also $\int d\mu^+ (p \cdot k^+ + \psi - \psi \circ T)^2$ vanishes, which leads to Eqn. (17) for $\phi := \psi + p \cdot u$. \Box

Theorem 9 (Central limit theorem) Assume that any one of the statements of the preceding lemma is true. Then the distribution of the random variable X_N/\sqrt{N} on the probability space $(\Sigma, \rho d\mu)$ converges to a non-degenerate Gaussian distribution as $N \to \infty$.

Proof. We show that for every $p \in \mathbb{R}^d$ the expectation $E_{\rho}[e^{ip \cdot X_N/\sqrt{N}}]$ converges to $e^{-p \cdot Dp/2}$. Fix an arbitrary $p \in \mathbb{R}^d$ and choose M so large that $|p| < \epsilon/\sqrt{M}$. Then Eqn. (16) is valid for $P_{p/\sqrt{N}}$ if $N \ge M$. Thus, for $N \ge M$ and $s \ge m$ we find with the help of Eqn. (14) and (15):

$$\begin{aligned} \left| e^{-p \cdot Dp/2} - E_{\rho} [e^{ip \cdot X_N/\sqrt{N}}] \right| \\ &\leq \left| e^{-p \cdot Dp/2} - \int d\mu^+ K_{p/\sqrt{N}}^N \Pi_{p/\sqrt{N}} P^s(\rho_s \circ T^s) \right| \\ &+ \int d\mu^+ \left| R_{p/\sqrt{N}}^N P^s(\rho_s \circ T^s) \right| + C_1 (|p|N^{-1/2} + e^{-\alpha's}). \end{aligned}$$

Given the operator R_q , $|q| \le \epsilon$, choose $C_2 \le \infty$ and $\kappa \in (0, 1)$ according to Lemma 13. By the smoothness of $q \mapsto \Pi_q$ we find the existence of $C_3 < \infty$ such that

$$\left\| \Pi_q(f) - \int d\mu^+ f \right\|_{+,\alpha',m} \leq C_3 |q| \, \|f\|_{+,\alpha',m}$$

for all $f \in GH_{\alpha',m}^+$ and all q with $|q| \leq \epsilon$. The norm $||P^s(\rho_s \circ T^s)||_{+,\alpha',m}$ is bounded by some $C_4 < \infty$. Therefore, if $N \geq M$:

$$\left| e^{-p \cdot Dp/2} - E_{\rho} [e^{ip \cdot X_N / \sqrt{N}}] \right|$$

 $\leq \left| e^{-p \cdot Dp/2} - K_{p/\sqrt{N}}^N \right| + (C_1 + C_3 C_4) |p| N^{-1/2} + C_2 C_4 \kappa^N + (C_1 + 2C_4) e^{-\alpha' s}.$

Consider only N which are larger than both of M and m. Take s := N in the calculations above. Then it is easy to see that this expression decays to 0 as $N \to \infty$. \Box

5 Application

We have introduced a space of generalized Hölder continuous functions and have shown that correlations of these functions decay exponentially. The multidimensional central limit theorem has been proved for a certain subset of this function space. (The condition $\ln \sup_{\Sigma^+} h - \ln \inf_{\Sigma^+} h < \alpha_h/2$ remains to be checked.)

Via symbolic dynamics, these results can be immediately carried over to Anosov maps: A C^2 -diffeomorphism Φ of a compact finite-dimensional Riemannian C^{∞} -manifold \mathcal{M} onto itself is called Anosov [1], if there exists a continuous invariant splitting of the tangent spaces of \mathcal{M} at all $x \in \mathcal{M}$ into subspaces $E_x^+ \oplus E_x^-$ such that the following is true: There are C > 0, $\theta > 1$ such that for all $n \in \mathbb{N}$, $x \in \mathcal{M}$, $u \in E_x^+$, and $v \in E_x^-$:

$$\begin{aligned} |(D_x \Phi^n)(u)|_{\Phi^n(x)} &\geq C \theta^n |u|_x \qquad \text{(expansion),} \\ |(D_x \Phi^n)(v)|_{\Phi^n(x)} &\leq C^{-1} \theta^{-n} |v|_x \qquad \text{(contraction),} \end{aligned}$$

where $|\cdot|_x$ denotes the Riemannian length in the tangent space at $x \in \mathcal{M}$.

Assume that $\Phi : \mathscr{M} \hookrightarrow$ is transitive and that an invariant measure $d\mu$ is known which is absolutely continuous with respect to the canonical Riemann-Lebesgue measure $d\lambda$ on \mathscr{M} . Then it is well-known [1] that such an Anosov diffeomorphism can be described by a Markov chain $(\Sigma, d\mu)$ of the type we have considered: Up to a set of measure 0 one can identify the manifold \mathscr{M} with the space of allowed symbol sequences Σ . With this identification, the shift T is the representation of the Anosov map Φ . The operator P is related [3] to the Ruelle-Perron-Frobenius operator L by $P(f) = (ke)^{-1}L(ef)$, where k is the leading eigenvalue and e spans the corresponding eigenspace.

There exist [1] constants C, $\beta > 0$, such that if the symbol sequences $\xi^1 = \{\xi_s^1\}_{s \in \mathbb{Z}}$ and $\xi^2 = \{\xi_s^2\}_{s \in \mathbb{Z}} \in \Sigma$ corresponding to some points $x_1, x_2 \in \mathcal{M}$ coincide from place -n to place n, then the Riemannian distance $d(x_1, x_2)$ is bounded from above by $Ce^{-\beta n} = Cd_{\Sigma}^{\beta}(\xi_1, \xi_2)$.

The following obvious theorem shows that our construction generalizes the notion of Hölder continuity w.r.t. Riemannian distance d. Recall that the upper capacity of a set D is defined by $\overline{C} := \limsup_{t \ge 0} (\log 1/t)^{-1} \log N(t)$, where N(t) is the number of balls with Riemannian radius t needed to cover D.

Theorem 10 For some bounded function f assume that there exists a number $C < \infty$ and a subset D which cuts \mathcal{M} into a countable union $\mathcal{M} - D = \bigcup_i A_i$ of disjoint open sets A_i such that the restriction of f to each of these sets A_i fulfills

$$|f(x_1) - f(x_2)| \le C d(x_1, x_2)^{\alpha/\beta}$$
 for all $x_1, x_2 \in A_i$.

Assume furthermore that the upper capacity \overline{C} of D is smaller than $d + \dim \mathcal{M} - \alpha/\beta$. (This is the case e.g. if α is small enough and D is the union of a finite number of smooth hypersurfaces.) Then $f \in GH_{\alpha,m}$ for m large enough.

So from our considerations follow exponential decay of correlations and central limit theorem for a larger class than the usual class of Hölder continuous functions. A byproduct are *local* central limit theorems and renewal theorems, which can be proved by the methods of [3]. In addition to these basic probabilistic properties, the results of this work allow to study the periodic extensions of Anosov maps instead of piecewise expanding maps along the lines of [5].

A The theorem of Ionescu-Tulcea and Marinescu

Theorem 11 (Ionescu-Tulcea and Marinescu [6]) Consider Banach spaces $(\mathscr{L}, \|\cdot\|_{\mathscr{L}}) \subset (\mathscr{B}, \|\cdot\|_{\mathscr{B}})$ with the property that the closed unit ball of \mathscr{L} is \mathscr{B} compact. Let $P : (\mathscr{L}, \|\cdot\|_{\mathscr{B}}) \hookrightarrow$ be a bounded operator which can be extended to a bounded operator in $(\mathscr{B}, \|\cdot\|_{\mathscr{B}})$. Suppose that $\sup_{n \in \mathbb{N}_0} \|P^n\|_{\mathscr{B}} < \infty$ and that there exist $r_{\mathscr{L}} \in (0, 1)$ and $r_{\mathscr{B}} \in \mathbb{R}_0^+$ such that $\|P(f)\|_{\mathscr{L}} \leq r_{\mathscr{L}} \|f\|_{\mathscr{L}} + r_{\mathscr{B}} \|f\|_{\mathscr{B}}$ for all $f \in \mathscr{L}$.

Then P can be decomposed as $P^n = \sum_{\gamma} \gamma^n \Pi_{\gamma} + R^n$ for all $n \in \mathbb{N}$, where the sum runs over all eigenvalues γ of modulus 1 of P which belong to eigenvectors in \mathscr{L} . The span of these is finite-dimensional, so that the sum is well-defined. The operators Π_{γ} are (some) \mathscr{L} -projectors onto the corresponding eigenspaces. R maps \mathscr{L} into \mathscr{L} , and its \mathscr{L} -spectral radius is strictly smaller than 1. Furthermore, $\Pi_{\gamma} \Pi_{\delta} = 0$ and $\Pi_{\gamma} R = 0 = R \Pi_{\gamma}$ for all $\gamma \neq \delta$ which occur as eigenvalues of modulus 1.

We also need a special form of this theorem with weakened assumptions:

Theorem 12 Consider Banach spaces $(\mathscr{L}, \|\cdot\|_{\mathscr{L}}) \subset (\mathscr{B}, \|\cdot\|_{\mathscr{B}})$ with the property that the closed unit ball of \mathscr{L} is \mathscr{B} -compact. On the space \mathscr{L} let a seminorm $\|\cdot\|'$ be given, such that there exists a $C < \infty$ with $\|f\|' \leq C \|f\|_{\mathscr{L}}$ for all $f \in \mathscr{L}$. Let $P : (\mathscr{L}, \|\cdot\|_{\mathscr{L}}) \leftrightarrow$ be a bounded operator which can be extended to a bounded operator in $(\mathscr{B}, \|\cdot\|_{\mathscr{B}})$. Suppose that $\sup_{n \in \mathbb{N}_0} \|P^n\|' < \infty$ and that there exist $r_{\mathscr{L}} \in (0, 1)$ and $r' \in \mathbb{R}_0^+$ such that $\|Pf\|_{\mathscr{L}} \leq r_{\mathscr{L}} \|f\|_{\mathscr{L}} + r'\|f\|'$ for all $f \in \mathscr{L}$.

Then the \mathscr{L} -spectral radius of P is equal to or smaller than 1. It equals 1 iff there exists an eigenvector in \mathscr{L} with eigenvalue of modulus 1.

When applying the above theorems, the following is helpful:

Lemma 13 Let $K \subset \mathbb{R}^d$, $d < \infty$, be a compact set. Assume $A : p \mapsto A_p$ maps K continuously (with respect to operator norm) to the bounded operators in some Banach space with norm $\|\cdot\|$. If the spectral radius of all A_p , $p \in K$, is strictly smaller than 1, then there exist $C < \infty$ and $\kappa \in (0, 1)$ such that $\|A_p^n\| \leq C \kappa^n$ for all $p \in K$ and all $n \in \mathbb{N}$.

B Proof of Lemma 7

Construct $f_N \in GH_{\alpha,m}$ for all $N \ge m$ according to Lemma 5. For N > m define

$$g_N := \sum_{n=0}^{N-1} \left(P^{N-n} (f_N \circ T^N) - f_N \circ T^n \right)$$

A generalized notion of variation applied to Markov chains and Anosov maps

and

$$f_N^+ := f_N \circ T^N + \sum_{n=0}^{N-1} \left(P^{N-n} (f_N \circ T^N) - P^{N-n} (f_N \circ T^N) \circ T \right)$$

Obviously $f_N = f_N^+ - g_N + g_N \circ T$ with $f_N^+ \in GH_{\alpha,m}^+$ and $g_N \in GH_{\alpha,m}$ for all N > m.

 g_N is Cauchy with respect to $L^1(d\mu)$, because $||g_{N+1} - g_N||_1$ decays exponentially fast as $N \to \infty$: For N > m we can estimate

$$||g_{N+1} - g_N||_1 \le 2 \sum_{n=0}^N ||f_{N+1} - f_N||_1 \le 8(N+1)e^{-\alpha N} ||f||_{\alpha,m},$$

because $f_N \circ T^N = P(f_N \circ T^{N+1})$. Hence, as $N \to \infty$, the functions g_N converge to some $g \in L^1(d\mu)$ and f_N^+ tends to $f^+ := f + g - g \circ T \in L^1(d\mu^+)$, both with respect to $\|\cdot\|_1$.

Now assume we would know that $||g_N||_{\alpha',m}$ remains bounded as $N \to \infty$. Then also $||f_N^+||_{+,\alpha',m} = ||f_N + g_N - g_N \circ T||_{+,\alpha',m}$ is bounded as $N \to \infty$. Thus, according to Theorem 2, g is an element of $GH_{\alpha',m}$ and f^+ is an element of $GH_{\alpha',m}^+$, which had to be shown.

So it is sufficient to prove that $||g_N||_{\alpha',m}$ remains bounded as $N \to \infty$. This will follow if we show that there exists $C_1 < \infty$ such that for all n and N with $0 \le n < N > m$ the following inequality holds: $||P^{N-n}(f_N \circ T^N) - f_N \circ T^n||_{\alpha',m} \le C_1 e^{-(\alpha - 2\alpha' - 2\delta)n}$. According to Lemma 4 applied to $GH_{\alpha',m}$ for that it is sufficient that there exists $C_2 < \infty$ with the property

$$\|P^{N-n}(f_N \circ T^N) \circ T^{-n} - f_N\|_{\alpha',m} \le C_2 e^{-(\alpha - \alpha' - 2\delta)n}.$$
 (18)

First, we estimate the $L^1(d\mu)$ -part of the lhs.: f_N depends only on the symbols ξ_s with $-N \leq s \leq N$: $f_N(\xi) = f_N(\xi_{-N}, \ldots, \xi_N)$. With the help of $\sum_{a=1}^r h(a \cdot) = 1$ we can calculate

$$P^{N-n}(f_N \circ T^N) \circ T^{-n}(\xi) - f_N(\xi)$$

$$= \sum_{a_1=1}^r \cdots \sum_{a_{N-n}=1}^r h(a_1, \xi_{-n}, \xi_{-n+1}, \ldots) \cdots h(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots)$$

$$\times \left(f_N(a_{N-n}, \ldots, a_1, \xi_{-n}, \ldots, \xi_N) - f_N(\xi_{-N}, \ldots, \xi_N) \right).$$
(19)

If $(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots)$ is not admissible, the former expression is 0 by the definition of *h*. If, on the other hand, $(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots)$ is admissible, we have

$$\left|f_N(a_{N-n},\ldots,a_1,\xi_{-n},\ldots,\xi_N)-f_N(\xi_{-N},\ldots,\xi_N)\right|\leq \operatorname{osc}_n(f_N,\xi)$$

and thus

$$\|P^{N-n}(f_N \circ T^N) \circ T^{-n}(\xi) - f_N(\xi)\|_1 \le \int d\mu(\xi) P^{N-n}(1)(T^{-n}(\xi)) \operatorname{osc}_n(f_N,\xi).$$

This expression is always bounded by $2||f||_{\infty}$. Additionally, due to Eqn. (11) it is bounded by $2e^{-\alpha n} \operatorname{var}_{\alpha,m}(f)$ for $n \ge m$. Hence, this expression is for all $n \in \mathbb{N}$ bounded by a finite constant times $e^{-(\alpha - \alpha' - 2\delta)n}$. Therefore, of Eqn. (18) only the following inequality remains to be shown:

$$\operatorname{var}_{\alpha',m}\left(P^{N-n}(f_N\circ T^N)\circ T^{-n}-f_N\right)\leq C_3\,e^{-(\alpha-\alpha'-2\delta)n}\tag{20}$$

for all $0 \le n < N > m$ with some fixed $C_3 < \infty$.

To estimate $\operatorname{osc}_t(P^{N-n}(f_N \circ T^N) \circ T^{-n} - f_N, \xi)$ which is imbedded in the lhs., we look at

$$\left| P^{N-n}(f_N \circ T^N) \circ T^{-n}(\xi^1) - f_N(\xi^1) - P^{N-n}(f_N \circ T^N) \circ T^{-n}(\xi^2) + f_N(\xi^2) \right|$$
(21)

for ξ , ξ^1 , $\xi^2 \in \Sigma$ which all coincide from place -t up to t, $t \ge m$. (All functions are declared to vanish for non-admissible sequences of symbols.) We consider two cases: first, $t \le n$ (which can only happen if $n \ge m$) and second, t > n.

Case 1: $m \le t \le n$. Expression (21) is bounded by

$$\left|P^{N-n}(f_N \circ T^N) \circ T^{-n}(\xi^1) - f_N(\xi^1)\right| + \left|P^{N-n}(f_N \circ T^N) \circ T^{-n}(\xi^2) + f_N(\xi^2)\right|$$

Thus, considering Eqn. (19) we find that

$$\begin{split} \int d\mu(\xi) \operatorname{osc}_{t}(P^{N-n}(f_{N} \circ T^{N}) \circ T^{-n} - f_{N}, \xi) \\ &\leq 2 \int d\mu(\xi) \sup_{\substack{\xi^{1} \in \Sigma \\ \xi_{s}^{1} = \xi_{s}, -t \leq s \leq t}} \sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} h(a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots) \cdots \\ &\cdots h(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots) \sup_{\substack{\xi^{2/3} \in \Sigma \\ \xi_{s}^{2/3} = \xi_{s}^{1}, -n \leq s \leq n}} |\widetilde{f}(\xi^{2}) - \widetilde{f}(\xi^{3})| \\ &= 2 \int d\mu(\xi) \sup_{\substack{\xi^{1} \in \Sigma \\ \xi_{s}^{1} = \xi_{s}, -t \leq s \leq t}} \sup_{\substack{\xi^{2/3} \in \Sigma \\ \xi_{s}^{2/3} = \xi_{s}^{1}, -n \leq s \leq n}} |\widetilde{f}(\xi^{2}) - \widetilde{f}(\xi^{3})| \\ &\leq \sup_{\substack{a_{-n}, \ldots, a_{n} \in \{1, \ldots, r\} \\ \mathscr{F}_{q_{j}, q_{j+1}}=1, -n \leq j \leq n-1}} \frac{\mu(\xi_{-t} = a_{-t}, \ldots, \xi_{t} = a_{t})}{\mu(\xi_{-t} = a_{-n}, \ldots, \xi_{t} = a_{n})} \\ &\times 2 \int d\mu(\xi) \sup_{\substack{\xi^{2/3} \in \Sigma \\ \xi_{s}^{2/3} = \xi_{s}, -n \leq s \leq n}} |\widetilde{f}(\xi^{2}) - \widetilde{f}(\xi^{3})| \\ &\leq \frac{\sup_{\Sigma^{+}} h^{2t+1}}{\inf_{\Sigma^{+}} h^{2n+1}} 2 \cdot 2 e^{-\alpha n} \operatorname{var}_{\alpha, m}(f) = 4 e^{\delta} e^{2t\delta - \alpha n} \operatorname{var}_{\alpha, m}(f), \end{split}$$

because

$$\mu(\xi_{-t} = a_{-t}, \dots, \xi_t = a_t)$$

= $\int d\mu^+(\xi) h(a_t, \xi_0, \xi_1, \dots) \cdots h(a_{-t}, \dots, a_t, \xi_0, \xi_1, \dots).$

Case 2: $m \le t > n$. Now we use that expression (21) is bounded by

$$\begin{aligned} P^{N-n}(f_{N} \circ T^{N}) \circ T^{-n}(\xi^{1}) - P^{N-n}(f_{N} \circ T^{N}) \circ T^{-n}(\xi^{2}) \Big| + \Big| f_{N}(\xi^{1}) - f_{N}(\xi^{2}) \Big| \\ \leq \sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} h(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots) \cdots h(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots) \\ \times \left| f_{N}(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \ldots, \xi_{N}^{1}) - f_{N}(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{2}, \ldots, \xi_{N}^{2}) \right| \\ + \sum_{a_{1}=1}^{r} \cdots \sum_{a_{N-n}=1}^{r} \Big| h(a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots) \cdots h(a_{N-n}, \ldots, a_{1}, \xi_{-n}^{1}, \xi_{-n+1}^{1}, \ldots) \\ - h(a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots) \cdots h(a_{N-n}, \ldots, a_{1}, \xi_{-n}, \xi_{-n+1}, \ldots) \Big| \sup_{\xi^{3} \in \Sigma} 2[f_{N}(\xi^{3})] \end{aligned}$$

+ the same multiple sum with ξ^1 replaced by $\xi^2 + |f_N(\xi^1) - f_N(\xi^2)|$.

Assume that the sequence $(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots)$ is admissible. Then so are $(a_k, \ldots, a_1, \xi_{-n}^1, \xi_{-n+1}^1, \ldots)$ and $(a_k, \ldots, a_1, \xi_{-n}^2, \xi_{-n+1}^2, \ldots)$ for all $1 \le k \le N - n$, and it easy to show that for *m* large enough there exists $C_4 < \infty$ such that

$$\left|\frac{h(a_1,\xi_{-n}^1,\xi_{-n+1}^1,\ldots)\cdots h(a_{N-n},\ldots,a_1,\xi_{-n}^1,\xi_{-n+1}^1,\ldots)}{h(a_1,\xi_{-n},\xi_{-n+1},\ldots)\cdots h(a_{N-n},\ldots,a_1,\xi_{-n},\xi_{-n+1},\ldots)}-1\right| \leq C_4 e^{-\alpha_h t}$$

if $(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots)$ is admissible. Hence,

$$\left| h(a_1, \xi_{-n}^1, \xi_{-n+1}^1, \ldots) \cdots h(a_{N-n}, \ldots, a_1, \xi_{-n}^1, \xi_{-n+1}^1, \ldots) - h(a_1, \xi_{-n}, \xi_{-n+1}, \ldots) \cdots h(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots) \right|$$

is always bounded by $h(a_1, \xi_{-n}, \xi_{-n+1}, \ldots) \cdots h(a_{N-n}, \ldots, a_1, \xi_{-n}, \xi_{-n+1}, \ldots) \times C_4 e^{-\alpha_h t}$. This remains true if ξ^1 is replaced by ξ^2 .

So in this case $(m \le t > n)$ we find

1

$$\int d\mu(\xi) \operatorname{osc}_{t}(P^{N-n}(f_{n} \circ T^{N}) \circ T^{-n} - f_{N}, \xi)$$

$$\leq \theta(N-t) \int d\mu P^{N-n} \left(\operatorname{osc}_{t}(f_{N}, T^{N}(\cdot)) \right) \circ T^{-n}$$

$$+ (2+2)C_{4} e^{-\alpha_{h}t} ||f||_{\infty} \int d\mu P^{N-n}(1) + \theta(N-t) e^{-\alpha t} 2 \operatorname{var}_{\alpha,m}(f_{N})$$

$$\leq C_{5} e^{-\alpha t},$$

with $C_5 := 4 \operatorname{var}_{\alpha,m}(f) + 4C_4 ||f||_{\infty}$ and where $\theta(N - t)$ equals 1 for N > t and vanishes else.

Finally, we collect the estimates of case 1 and case 2 to achieve the following expression as a bound for the lhs. of Eqn. (20):

J. Loviscach

$$\max\left(\sup_{t:m\leq t\leq n} 4e^{\alpha' t}e^{\delta}e^{2t\delta-\alpha n}\operatorname{var}_{\alpha,m}(f), \sup_{t>n,t\geq m}e^{\alpha' t}C_5e^{-\alpha t}\right)$$
$$\leq e^{-(\alpha-\alpha'-2\delta)n}\max\left(4e^{\delta}\operatorname{var}_{\alpha,m}(f), C_5e^{-2\delta m}\right). \quad \Box$$

References

- 1. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Berlin: Springer 1975
- Blank, M.L.: Chaotic mappings and stochastic Markov chains. In: Mathematical Physics X. Proceedings, Leipzig 1991, pp. 341–345. Berlin: Springer 1992, ed. Schmüdgen, K.
- Guivarc'h, Y., Hardy, J.: Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. H. Poincaré 24, 73-98 (1988)
- 4. Kato, T.: Perturbation theory for linear operators. New York: Springer 1966
- Loviscach, Jörn: Probabilistic models of multidimensional piecewise expanding mappings. J. Stat. Phys. 75 189–213 (1994)
- 6. Norman, F.: Markov processes and learning models. New York: Academic Press 1972

This article was processed by the author using the LATEX style file pljourlm from Springer-Verlag.