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Summary .  Extending the operator formalism of [3] we show that there exists 
a large class of functions which possess an exponential decay of correlations 
and fulfill a central limit theorem under a certain type of Markov chains. This 
result can be applied to the symbolic dynamics of Anosov maps, showing that 
in the case of a absolutely continuous invariant measure there is a large class of 
functions with good ergodic properties - larger than the usual class of  H61der 
continuous functions. 

Mathematics Subject Classifications: 60F05, 58F15 

1 Definitions 

Let r E N be given. For sequences {~s},cz of  symbols ~s E { I , . . .  , r}  define 
the shift-by-one-digit map T by {(s},Ez ~-+ {(s+l },EZ- We look at a T-invariant 
subset Z C { 1 , . . . ,  r} z of "admissible" two-sided symbol sequences. ~ is de- 
fined with the help of a fixed r x r-matrix , 7  whose entries are either 0 or 1: 
A sequence {~s}sc~ is admissible if and only if ~6,(,+~ = 1 for all s E Z. The 
admissible "future" symbol sequences form the subset Z + of { 1 , . . . ,  r }r~o which 
consists of all {~s},c~0 with .~s~s,~,§ = 1 for all s E No. 

27 and S + possess a natural measurable structure. Assume that we are given 
a probability measure d #  which is invariant and weakly mixing w.r.t, the shift T. 
(The further assumptions which will be introduced about d #  demand implicitly 
that T is topologically mixing, i.e. there exists m E N such that g ' m  > 0.) In 
the following, the norm of the space LP(d#), p > 0, will be denoted 11 " lip. The 
measure d #  induces a measure d #  + on Z + in a natural way. 
Define a distance function on Y7 by 
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dE({l ,  r  exp( - -max{n E N0 "r = ~ for all s = - n , . . . ,  n }). 

A similar distance function ds* can be introduced on S +. 
We assume that the conditional expectation #(~01r ~2,- . . )  is strictly positive on 
S + and define a function h : { 1 , . . . ,  r }r~0 ~ Ii~ by 

h(vo, v 2 , . . . )  :-- #(r  -- -- Vl,r : v 2 , . . . )  

if (to, v~, u2 , . . . )  is admissible and set h(uo, vl, u2, . . . )  := 0 else. We assume 
furthermore that there exist ah > 0 and Ch < oo such that for all n E No: 

sup Ih(~ ~) - h(~2)l < Che -ah" for all ~ E S +. (1) 

Thus, h is continuous w.r.t, d and possesses a strictly positive infimum H on the 
compact space (Z  '+, ds+). 

The aim of this paper is to find a large class of  functionsy such that f d # f f o  
T N decays exponentially and N -1/z y-]U~lf o T ~ converges to a Gaussian law 
a s N  --~ oo, 

2 Generalized Hiilder continuous functions 

Now we generalize the notion of H61der continuity w.r.t, the distance function 
d s .  To this end, we carry over the notion of generalized variation employed in 
the study of multidimensional piecewise expanding maps (see [2], [5], and the 
references therein.) 

Definition. For n E N0, ~ E Z ,  and Y : S --~ C, define an oscillation by 

OSCn07,r := sup{[f(r 1) -Y(~2) I :  r r E S;r = ~s = ~s 2 , - n  < s < n}. 

For cr > 0 and m E N0 the set GH~,m consists by definition of all functions 
f E LI ( z  ~ C,d#) with finite variation 

var~ m(f) := inf sup e~n f d#(~) OSCn 0 7, r 
' " y = y  ~.~. , , > m  J 

a no~,m is equipped with the norm I1" II~,m := II" I1~ + var~,m(.). 

The following properties of GH~,m are obvious: 

1. For c~' < a and m '  >_ m every function f E Gnc~,m is contained in GH~,m,, 
too. 

2. For a l ly  E GHa,m and all Lipshitz continuous ~b : i m g f  + C, also ~ o f  E 
GH~,m with var~,m(~b o f )  < Lip(C0 vary,re(f). 

3. There exist C < ~ such that ILfll~ -< ClLfll~,m for eweryy E GH~,m. 
4. Vara,m(fg) _< var~,m(f)llgll~ + var,~,m(g)lfl]~ for a l ly ,  g E GHa,m. 
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Let L~(d# +) denote the subspace of Ll(d#)  consisting of the functions that pos- 
sess a d/z-version which only depends on the symbols {s with s >_ 0. Analo- 

+ gously, call GHo,,m the class of functions f E GHo~,m possessing a d/z-version f0 
which only depends on the symbols ~s with s _> 0 such that 

oo>var+~,m(f):= inf supe "/d/z+(r 
f-=f0 a.e. n>_m 

where the infimum runs over all functions f "  S + --~ C and where 

osc~+07, r  sup{Lf(~') -j7(~2)1" ~1 r E ~W+;~ 1 m Cs -~ 42, 0 < S < n} .  

On GH+~,m, a norm can be defined by II" II+ . . . .  := [l" t[1 + va r ; ,m( ' ) -  

Theorem 1 GHc~,m with the norm II " Ilc~,m and GH+,m with the norm [1 �9 II+,~,m 
are Banach spaces. 

Proof (Only the GH~,m-part.) Let {J}}16~ be a Cauchy sequence in GHc~,m. 
Due to Property 3 of GH~,m it is also a Cauchy sequence in L~(d/z), so that it 
possesses a limit f E L~(d/z) with respect to 1t" lloo. 

Fix e > 0. By the Cauchy property for {fi}lS~ in GHa,~ we find: There 

exists L E N such that for all l _> L there is some d/z-version ~ of 3~ with 

f d/z({)oscn@ --fz,{) <_ ee -an (2) 

for all n _> m. We can assume that ~/(~) - j~(~)[  is bounded for all { and all 
l > L by C := 2supt Ib611~ < ~ .  There exists a set A with #(A) = 1 such that 
for all x E A we have f ( x )  = limlj~(x) and on A the modulus of all j~, l E N, is 
bounded by C/2. 

Given these building blocks, we construct a d/z-version j~ o f f  such that 

f d/z(~)OSCn(f - - f L , ~ )  _< ee -an (3) 

for all n > m. This implies vara ,m0  c --fL) < s hence f = (f --fL)+fL E GHa,m, 
and f is GH~,m-limit offL, L --~ oo, which proves the theorem. 

Construction of f :  Let jTIA := fla. For ~ not in A, take some sequence 
{~k(~)}k~ in A which converges to ~ with respect to dz .  Such a sequence 
exists, because otherwise ~ would possess a neighborhood disjoint from A, in 
contradiction to #(A) = 1. The sequence I07(~k(~))--~(~k(~))}kE~ is bounded 
and, hence, possesses at least one point of accumulation. Define f (~)  in such a 
way that one of these points equals f (~)  - ~ ( ~ ) .  

cl/2 This implies that for a l l , l / 2  E s ~s = i s  f o r - n  _< s < n, theva lue  
[~@) _ ~ ( ~ 1 ) _ y ( ~ 2 ) + ~ ( ~ 2 ) 1  ' and hence oscn(f - f L ,  ~), is bounded by 

sup{[~(r _ ~ ( ~ 1 )  _y(~2)  +~( r  r E A;r = ~ , - n  < s < n} 
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(Note the appearance of A instead of the full set Z:!) because, if E 1 is not already 
an element of A, the value ofj~(~ 1) - ~ @ )  is the limit of its values at some near 
(with respect to idz) points v C A. These v can be chosen so as to fulfill vs = ~s, 
- n  < s _< n, so that they are contained in the set of {1 in the supremum. A 
similar argument applies to ~2. 

For ~] EA, the valuejT@) is the limit ofj~(~ 1). Thus, the above estimate leads 
to oscn(f - fL ,  ( )  _< lira infl oscn(~ --fL, ~). Now we can apply Fatou's lemma to 
deduce Eqn. (3) from Eqn. (2) by interchanging lira infl and integration f d#(~). 

[] 

Theorem 2 The closed unit ball of GHe~,m is compact in Ll(d#). Likewise, the 
closed unit ball of GH+,m is compact in L 1 (d#+). 

Proof (Only the GH~,m-part.) We have to show: For every sequence Id~}t~ in 
GHc~,m with ]~[[,~,m _< 1 for all 1 E N there exists some subsequence which 
converges in Ll(d#) to s o m e f  E GHc~,m with Ibfl[~,m _< 1. 

Due to Property 3, there exists C < oe such that for all l E N we have 
I~l]~ -< C, and hence ]~112 -< C. Therefore there exists a subsequence of 
{./~}ts~ which converges weakly with respect to L2(d#) to some f E L2(d#) 
with I Ull2 _~ C. Call this converging subsequence again {J} }te~. 

Fix e > 0. By the definition of the unit ball in GHc~,m we can find for each 

j~ a d#-version ~ such that [~(~)1 -< C for all ~ and 

f d#(~) osc,(~,~)  < - +  e) (4) e - ~ (1 I[~lll 

for all n _> m. 
Next we show that fi also converges strongly with respect to [[-II~= Fix 

M > m. Choose a finite partition Ui Ai of L' into disjoint non-zero measurable 
sets A i such that all symbol sequences from a specific set A i coincide from 
the - M - t h  up to the M-th entry. Of ~ define a discrete approximation Ft := 
~ i  li #(Ai) -! fA, d#~,  where li is the indicator function of the set Ai. The 

weak convergence ofj~ implies that FI converges strongly with respect to [[. t[1 
as l ~ oc. We can estimate the distance between Ft and j~" 

liE/-Y/Ill ~ ~ [ d#(~)sup{[~(~')- ~(~)[ : ~ I E  Ai} 
dA i 

_< (1 -Ib~[ll +~)e -~M, 

where in the last step Eqn. (4) has been applied with n = M. Therefore, I[~ - 
AII~ -< 2(1 + e)e -aM + I1~ - F~[[~. But the rhs. of this estimate tends to 0 as l, 
k --+ oc because M can be chosen arbitrarily large and because Ft is strongly 
convergent in L l(d#). This shows that ft is Cauchy with respect to L l(d#) and 
hence converges t o f  on a set A of full d#-measure. We construct a d#-versionj  7 
o f f  similar to the proof of Theorem 1: L e t f l a  :=fla. For r not in A, take some 
sequence {r162 in A which converges to r The sequence {j7(r162 ~ is 
bounded. Define f ( r  to be one of its points of accumulation. 
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Using a similar argument as in the proof of Theorem 1 we find from Eqn. 

(4) that vary,re(f) < 1 -Ibrll~ + ~. But e > 0 has been arbitrary, and therefore 
Ibrlll + var~,mff) <_ 1, so t h a t f  is an element of the unit ball of  GH,~,,,,. [3 

3 Decay of correlations 

An operator P in L l (d#  +) is uniquely determined by demanding that for all 
9 E L~176 

f d# + gP(f)= f d.+(9oT)f. (5) 

P is a contractive mapping both of the space Ll(d# +) into itself and of  the space 
L~176 into itself. 

With the help of the function h which has been introduced in the beginning, 
P ( f )  can also be defined pointwise: 

P(f)(() :: ~ h(a()f(a{), 
a=]  

(6) 

where a~ is the symbol sequence with first entry a, second entry {l, third {z, 
and so on. Note that a{  is not necessarily an element of Z '+, so that f ( a { )  may 
not make sense. This problem is solved by the special form of h: It vanishes for 
symbol sequences which are no elements of  L "+. 

The following theorem shows that T has strong ergodic properties with re- 
spect to the new class of  function spaces GH+: 

Theorem 3 The theorem of lonescu-Tulcea and Marinescu (see Appendix A) can 
be applied to P acting in GH+,m C L 1 (d# +) if c~ <_ ah and if m E No is large 
enough. 

Proof We have to show that for c~ _< c~h and for large m E No there exist 
rl E (0, 1) and r 2 E ]~ such that var+,m(P(f)) _< rlvar+,m(f) + r21[fllL for all 
f ff GH+,m . To see this, fix some e > 0 and choose according to the definition 

of GH+,m a d#+-versiona 7 o f f  which only depends on symbols G, s > 0, such 
that for all n >_ m (where m is unknown at this stage): 

f d#+({) osc+07, + -an {) _< (var~,m(f)+e)e . (7) 

For a = 1 , . . . ,  r the value Ih(a(l)y(a~ 1) - h ( a ~ 2 ) y ( a ~ 2 ) l  is bounded by 

h(a~)~(a{ l) -Y(a~2)] + [f(a~l)[ Ih(ag') - h(ag)t + [17(a~2)1 Ih(a{ 2) - h(ag)l,  

where we definej 7 to be 0 for non-admissible sequences of symbols. Thus: 
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/ d#+(~ c ) oscn+(h(a .)f(a .), ~) (8) 

i <_ d#+(~) h(a~) osc+(f(a.),  ~) 

+ 2 f d # + ( ~ )  sup{[r(a~l)l : ~ 1 E s 1 = ~s,0 < s < #'/} 

x sup{ih(a~ l) - h(a~)] :  ~I 6 Z+;~,} = ~s,0 < s < n} 

The domain of the first integral on the rhs. can be reducect to those ~ with 
a~ E 2 + because h(a~) is 0 otherwise. But then, also a~ i and a~ 2 in the 
definition of osc~+OY(a-), ~) are elements of S +, because of the definition of S + 
via the matrix J "  and because ~ = ~0 = ~g. Likewise, in the second integral on 
the rhs. only those ~ have to be considered for which a~ E s because otherwise 
the first supremum would evaluatej  7 only at points a~ l ~ Z7 +, wherej  ~ is defined 
to be 0. This shows that expression (8) is bounded for all n c I~ by 

/ d # + (~) h(a~) a~) (9) OSC++I 0 

i +. 1 + 2  d#+(~) sup{L~(~l)l :~1E Z ,~s =(a~)s,O<s <n+l}Che -~ 

where we have applied Eqn. (1). 
Summing over a we get for the first term of this expression for all n _> m : 

r 

a~l f d#(~)h(a~)~ f 

_< (var+~,.,(f) + ~) e-~("+l~, 

where the L l(d#)-contractivity of P as defined by Eqn. (6) has been used. For 
the same reason, the sum over a for the second term of expression (9) is bounded 
by 

2Che-e~"(n+l) ra~=lid#+(~)H-lh(a~) 

x sup{~(~ ' ) l  : ~'  E 27;~ 2 = (a~) , ,0  < s < n + 1} 

2ChH-'e-~"'+~fdy(~) sup{ [f(~l )l " ~ 1 E 27;~ 2 -=~s,O < s < n + 1), < 

Let us estimate for n _> m the value of the integral appearing in the preceding 
expression: 

id#+(~) sup{[~(~l)i  . ~1 E ~E';~ 1 = ~s ,0  < < + 1} S 1"/ 

_< ILrll~ + (var+~,mq) +e) e-<~(n+l), 
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where in the last step Eqn. (7) has been used. 
Assembling these pieces together and letting e + 0, we find 

+ 
vara,m (P(f ) )  

r 

-< E var+a, "~(h ( a ' ) f ( a ' ) )  
a = l  

_< sup (var+,m(f) e - a  +2ChH-le  a"-ah(n+l) (Itflla +var+~,mO~)e-a(n+'))) 
n>_m 

<-- ( e-a  + 2Ch H-'e-ah(m+D-a) var+,m (f) + 2Ch H-'e-(c'~-c')m-a~ l[fll,. 

The coefficient of var+,m (f) can be made smaller than 1 by choosing m large 
enough. [] 

Applying the theorem of Ionescu-Tulcea and Marinescu and using that (T, dp )  is 
weakly mixing we find that the n-th power of  the operator P can be decomposed 
a s :  

P" = H + R" for all n E I~1, (10) 

where H : f  ~-+ f d#+f is a one-dimensional projector. The spectral radius of  
R w.r.t. GH+,m (ee and m chosen according to the previous theorem) is strictly 
smaller than 1. 

+ To make use of  this result for the full space GH~,m instead of GH~, m, we 
need two lemmas, which are standard for functions which are HSlder continuous 
w.r.t, d~.  

L e m m a 4  For f E GHa,m and atl N E ~ also f o T N E GH~,m with [~ o 
TNl[a,m ~ CealNl[Oc][a,m, where C < oo only depends on a and m. 

Proof (Only the case N >_ 0.) Choose a d#-version 0 7 o f f  E GH~,z such that 

If[ is bounded everywhere by [ f [ l~  and such that 

/ d # ( r  osc, r _< var~,m (f) (11) 2e 

for all n _> m. Then varc~,m(f o T N) is bounded by 

sup e ~n f d.(r sup{[f(r162 - r e X'; F'/2~s = r - n - N  < s < n - N } ,  
n>_m J 

because of the invariance of d #  under T. For n - N _> m Eqn. (11) implies 
that the integral in the preceding expression is bounded by 2e -a(n-N) var~,m(f). 
Additionally, for all n this integral is bounded by 2lLfltoo. So we find 

varc~,mO c o T N) < 2(C'e am + 1)eC~Nl~[Ic~,m , 

where C '  < oo is chosen according to property 3 of  GH. Furthermore, IV o 
TN I[1 = ILflll. Therefore it is possible to take C := 2C'e ~m + 2 in the statement 
of the lemma. [] 
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Lemma 5 (Finite approximation) For ever), f C GHc~,m and for all N >_ m 
there exist fN C GHc~,m such that the following is true: (i) ~ H fN (~) only depends 
on ~-N . . . . .  ~N. (ii) IV --fN II1 ~ 2e-C~N I~ltc~,m- (iii) ~N] is bounded everywhere 
by [~fl[~. (iv) lOON Itoqm ~-~ 4][fll~,m- 

Proof For every a = 1 , . . . ,  r choose some ~(a) E Z' with ~(a)0 = a,  N o w  define 
for N E N0 a truncation ~ �9 Z' ~ Z' by 

~N(~) ; :  ( ' - ' , ~ ( ~ - N ) - Z , ~ ( ~ - N ) - I , ~ - N , - ' ' , ~ 0 , ' - ' , ~ N , ~ ( ~ N ) I , ~ ( ~ N ) 2 , - - . ) .  

With j7 as in the proof of Lemma 4 define fN := J~ o ,~-& for all N > m. The 
claimed properties of fN follow easily from Eqn. (11). [] 

Theorem 6 (Exponential decay of correlations) As N ~ ~ ,  the correlation 
f d# (9 o TU)f  decays exponentially to O for all f ,  9 E GHa,m with f d # f  = 0 if 
0 < e~ <_ O~h and i fm is large enough for Theorem 3 to be valid. 

Proof According to Lemma 5 choose finite approximations f~ and 9~, n _> m, 

o f f  and 9. Then I f  d#  (9 o T N)f[  is bounded by 

2e-~ +2e-~" l [g l l~ l [ f l l~ ,m + f d # 9  n o Tn+U fn o T n 

Now note that fn o T n and 9,, o T n are elements of GH,~,m+ : 

]191[~ (Clt~N C2eC~n4ioe[Ic~,m + 2e-C~n t~']]c~,m) , 

where C~ < cx~ and ~ E (0, 1) have been chosen according to Lemma 13 and 
C2 < ~z according to Lemma 4. Choose such a k E I~ that t~ke ~ < 1. Then take 
n = [N/kj  in the estimates above. Hence for N >_ km: 

d#(9  o TN) f  < 2e-'~<N/k-~)[Igll,~,,~l[fll~ + 4e-~ 

+ llg[Ic~Cl C2(~ec~)N/k4t~ll . . . .  

which decays exponentially as N --~ ~ .  [] 

4 Central limit theorem 

Let k be a R a-valued (d < ~ )  function with entries of  type GHc~m and vanishing 
mean: f d #  k = 0. We give conditions on which k fulfills a central limit theorem, 

i.e. conditions when the distribution of the random variable N-1/2 Sn=0U--I k o  T" 

tends to a non-degenerate Gaussian measure as N -+ cxz, Again, the first step is 

to reduce the problem to the space GH+,,n. Define ~ := In sups+ h - In infs+ h. 
We have to introduce a condition concerning ~5: 
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L e m m a  7 Assume that the value range of h is so small or h is so smooth that 
2~5 < ah. If  a and a~ fulfill 0 < 2a ~ + 28 < a < an and m is large enough, then 

, H + for everyf  E GHa m there existsf + E G a,,m and 9 E GHa, m such that 

f =f+ - 9 + 9 o T  a.e. 

(The proof of this lemma is given in Appendix B.) 

Remark. Given tha t f (~)  does not depend too singularly (this can be made precise) 
on ,~s, s < 0, the condition 28 < ah can be dropped, and the decomposition of 
f is true f o r 0 < 2 a  ~ < a _ < a h .  

In the following we will tacitly assume 28 < oz h and that there exists a E 
(28, ah] and m E 1~ such that every entry of the function k is an element of 
GH . . . .  Choose some a ~ E (0, a /2  - ~5). If  necessary, increase m until Theorem 
3 is valid for GHc,'m and Lemma 7 is valid. 

Let p C GHa,,m be a normalized non-negative weight function on ~ with 

respect to d# ,  i.e. f p d #  -- 1. We can calculate the characteristic function of 
N - -  1 T ~ ~ d  XN := Y~=0 k o for all p E given the initial probability measure pd#: 

N--1 / *  

Ep[e ipxu ] / p d #  exp i  Z p  �9 k o T"" 
t /  

n=0 

According to Lemma 7 there exists a real vector-valued function k + with entries 
of type GH+~,,,~ and a real vector-valued function u with entries of type GH~,,m 
such that k = k + + u o T - u a.e. This yields: 

( ) E p [ e ' p X u ] = j p d # e x p i p  uorU-u+~__,k+ or~ . (12) 

n--O 

Choose finite approximations p, E GH~,,m, s >_ m, according to Lemma 5. We 
approximate the characteristic function (12) with their help (s >_ m): 

Ep[eip'xu ] i N--nZlo Tn - p s d # e x p i  p . k + o  (13) 

<_/dr e'~U~ le-'~u-l[P+idulp-Psl 
<_ c, (Jpl + e-O's), (14) 

with some CI < c~, which depends on p. 

Now note that for s _> m the approximation of  the expectation value (12) in 
Eqn. (13) may be written 

N - - I  

S,os exp; �9 ,'<+ o : S d,.,.+,yp'(,,o: o (Is) 
n--O 
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where we have introduced the operator family f ~-+ Pp(f) := p(eipk+f), p E R d, 
which acts in the space Ll(d#+). (This scheme follows [3].) 

For small lpl, one can view Pp as an analytic perturbation [4] of P:  There is 
an e such that for [Pt -< e we have a decomposition analogous to Eqn. (10): 

Pp =KpHp+Rp for all n E N, (16) 

where Kp is the leading, complex eigenvalue,/-/p a one-dimensional projector in 
GH~,,m, Rp a bounded operator in GH~,,m, all three of them analytic with respect 
to p, and the spectral radius of Rp in GHo~',m is strictly less than 1. Furthermore, 
for p = 0 the decomposition Eqn. (16) reduces to that of Eqn. (10): K0 = 1, 
H0 = H, and R0 = R. The leading eigenvalue Kp may be written e -p'Dp/2+F(p), 
where F is a complex-valued function of type C ~ ,  which is of  order 3 at p = 0. 
The real symmetric matrix D is uniquely determined and non-negative, because 
for all p E Ilia: 

p . D p =  lim N - l i d # +  ( ~ p . k + o T n )  2 
N --.~ oo \ n--O 

L e m m a  8 The following statements are equivalent: 

(i) The matrix D is strictly positive. 
(ii) There exists an open neighborhood ofO E N e such that for all p r O from this 

neighborhood, the spectral radius of Pp w.r.t. GH+~, m is strictly less than 1. 
(iii) The following equation cannot be solved by any ~ E L~(d#) and any p r O: 

p .  k = ~ o T - ~ a.e. (17) 

Proof (i)=>(ii): We will apply Theorem 12 for the spaces GH~,,m C Ll(d#+), 
the operator Pp and the norm II" [l' := II" IlL~(du*) = [l '  ]1~. This is possible 
because of  the following facts: 

- There exists C1 < oc such that Ibell~ < Cll[fll~',m for a l l f  E GH++,~,m . 
- IIe~(f)llo~ _< I[fll~llPn(1)[Io~ < c21[fl[oo with some fixed C2 < e~ for all 

f E GH+~,,m and n E N. 
- As a consequence of  Theorem 3, there exist rl E (0, 1) and r2 > 0 such that 

for a l l f  E GH+,m and all p c Re: 

+ + ip-k § 
vara, ,m(PpOC))  <_ rl varc~,,m(e f )  + r21Lf[ll 

<_ r, var;,,m(f) + (r2 + rl var+,,m(eip't+)) I[fl[oo- 

Now let ,5 ~ be the set of all p E I1~ d for which the spectral radius in Gn+a,m of 
Pp is not strictly less than 1. Let p be an element of this set. Then by Theorem 
12 the spectral radius of Pp actually equals 1 and there exists an eigenvector 

f E GH2,,m of Pp with eigenvalue e iO, 0 E I~. The operator P has the property 

that a.e. P(Ig[) -> Ie(g)l for all 9 E Ll(d/z +) and hence P([f[)  > f l  for the 
eigenvectorf .  On the other hand, P is a contractive operator in Ll(d#+). Taken 
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together, this implies P([ ( I )  = [[I a.e. But the 1-eigenspace of  P consists of 

the constant functions; so (perhaps after normalization) we have a.e. ~1 = 1, so 

that a.e. f = e i~  with some real-valued ~b E L~(d#).  Combining the eigenvalue 

equation with the definition Eqn. (5) of the operator P we obtain 

f d#goTeipk+ei~P= f d#gei~ f o r a l l g c L~ ( d # + ) .  

We choose 9 : =  e - i ~  and examine the exponents, which yields that a.e. 
p �9 k + - 0 - ~b o T + ~ E 27rE. It is now obvious that for arbitrary n E E, e in~ is 

an eigenvector with eigenvalue of modulus 1. Thus, we have shown Z .~ :  C ,~ ' .  
Now assume that ~ contains non-zero elements q with arbitrarily small modulus 
Iql- Then from Z S  f C ~ follows that there exists a line •p, p r 0, so that every 
point of this line is a limit point of ~'~. From the semicontinuity of the spectrum 
[4] follows that S f is closed; hence, ~ p  C S "c and 1 = IKq] = le-qOq/2+F(P)l for 

all q, I q] < e, which are parallel to p .  This yields p - Dp = O. [] 

(ii)=~(iii): Let 4, be a solution of Eqn. (17) for some f ixedp.  Then p .k  + = ~poT-~b, 
where ~b := ~h - p  �9 u. Thus, for all N E H: 

N--1 

e i~ = e i~~ exp -- i  E p  �9 k + o T n a.e. 

n--0 

By Lemma 5, there exists functions fu o T N C L 1 (d# +) such that H~b--fu Ill tends 

to zero as N ---+ cx~. The expression e ifN~ exp - i  ~-]~Uo1 p .  k + o T n defines an 
element of L 1(d/z+). We can estimate: 

e i'p N - 1  1 - e ifu~ exp - i  E p " k+ o T n = ei~p~ --  eifNOTU 1 
n--O 

<--II~--fNl[I , 

which becomes arbitrarily small as N ~ c~. But L 1 (d/z +) is a closed suhspace of  

L 1 (d/z), so we see that e i~  itself is an element of L l(d/z +) C L 1 (d/z). Therefore, 
in Ll(d#+), the operator Pp is conjugated to P ,  namely Pp(f) = e i~ P(e - i~ f )  for 

all f E L1(d/z+). This implies that Pp possesses an Ll(d/z+)-eigenfunction with 
eigenvalue of modulus 1. But then also the spectral radius of  Pp in GH+,m must 
equal 1, b e c a u s e  GH+,m is dense in LI(d/z+). This remains true if we replace p 

by a real multiple of itself. Therefore, on the whole line q E ]Rp (which intersects 
any neighborhood of  0) the spectral radius of  Pq in GH+,m equals 1. [] 

(iii)=~(i): Assume that D is not strictly positive, i.e. that for some p ~ 0 the 
variance of  the random variable N - 1 / 2  ~-]~N~01 p �9 k + o T n tends to 0 as N -+ ~ .  

De fne  ~b := Y'~,~I P"(P  ' k+), which converges exponentially in GHa',m because 
f d/z + k + = 0. The variance of the telescoped random variable 

N--I 

N - t / 2  Z +  �9 k + + ~ = ~b o T) o T n, 

n--O 
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too, tends to 0 as N --~ oe. Due to the decay of  correlations, this can be expressed 
with the help of the Green-Kubo formula: 

O<3 

n=l 

But P ( ~  o T) = ~b and ~ - P(~O) = P (p  . k +) so that in the above equation all 
expressions pn (.. .) vanish. Thus, also f d #  + (p -k  + + ~b - ~b o T) 2 vanishes, which 

leads to Eqn. (17) for 0 := ~b + p  �9 u. [] 

Theorem 9 (Central limit theorem) Assume that any one of  the statements of 
the preceding lemma is true. Then the distribution of the random variable XN / x/N 
on the probability space (Z, pd#) converges to a non-degenerate Gaussian dis- 
tribution as N ---* oc. 

Proof We show that for every p E R a the expectation Eo[e ip'xN/'/~] converges 
to e-PDp/2. Fix an arbitrary p C IRa and choose M so large that IP[ < e/x/M-. 

Then Eqn. (16) is valid for P p / v ~  if N _> M.  Thus, for N >_ M and s _> m we 
find with the help of Eqn. (14) and (15): 

e--p'Dp/2 _ Ep[eip'XN/,/~] 

e-P.Dp/2 . [  N s T s) < - ( ; ,  o 

+ f R;/~-N P~(p~ oT  ~) +Cj([p]N-1/2+e-~'s) .  

Given the operator R q ,  [ql <- e, choose C2 _< oc and ~ E (0, 1) according to 
Lemma 13. By the smoothness of q ~ Hq we find the existence of C3 < oo 
such that 

I I q ( f ) -  / d#+ f , <_ C3lql [[flI+,~,,m 
+,c~ ,m 

H + for all f E G ~',m and all q with Iql <- e. The norm IlpS(p~ o TS)ll+,c~,,m is 
bounded by some C4 < oc. Therefore, if  N > M : 

e-p.Dp/2 _ Ep[eip.Xu/,/~] 

e -p'Dp/2 - KpU/v~ + (C1 + C3C4)1Pl N -1/2 + C2C4 i%N -t- ( C  1 + 2C4)  e -a's. 

Consider only N which are larger than both of M and m. Take s := N in the 
calculations above. Then it is easy to see that this expression decays to 0 as 
N --~ oc. [] 
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5 Application 

We have introduced a space of generalized H61der continuous functions and have 
shown that correlations of these functions decay exponentially. The multidimen- 
sional central limit theorem has been proved for a certain subset of  this function 
space. (The condition In supE. h - In infz+ h < c~h/2 remains to be checked.) 

Via symbolic dynamics, these results can be immediately carried over to 
Anosov maps: A C2-diffeomorphism ~ of  a compact finite-dimensional Rie- 
mannian C~-mani fo ld  ~//g onto itself is called Anosov [1], if there exists a 
continuous invariant splitting of  the tangent spaces of ~/f~ at all x ~ ./ig~ into 
subspaces E + ~ E  x such that the following is true: There are C > 0, 0 > 1 such 
that for all n E N, x E ~/[g, u E E +, and v E E x :  

I(Dx~n)(u)l~~ > co"lulx 
[(Dx~n)(v)]~.(x) <_ C-lO-nlV[x 

(expansion), 
(contraction), 

where ] �9 Ix denotes the Riemannian length in the tangent space at x E .//g. 
Assume that ~/i : ~/d ~ is transitive and that an invariant measure d #  is 

known which is absolutely continuous with respect to the canonical Riemann- 
Lebesgue measure dA on ~//g. Then it is well-known [1] that such an Anosov 
diffeomorphism can be described by a Markov chain (Z,  d/z) of  the type we 
have considered: Up to a set of  measure 0 one can identify the manifold . / /g 
with the space of allowed symbol sequences Z.  With this identification, the shift 
T is the representation of the Anosov map ~b. The operator P is related [3] to 
the Ruelle-Perron-Frobenius operator L by P ( / )  = (ke) - lL(e f ) ,  where k is the 
leading eigenvalue and e spans the corresponding eigenspace. 

There exist [1] constants C , /3  > 0, such that if the symbol sequences ~1 = 
2 { ~ } s ~ z  a n d  ~2 _ {~s}sEZ E ~ c o r r e s p o n d i n g  to some points xa, x2 E , J /~  

coincide from place - n  to place n, then the Riemannian distance d(xl ,x2)  is 
bounded from above by Ce -~n = Cd~(~l,  ~2). 

The following obvious theorem shows that our construction generalizes the 
notion of H61der continuity w.r.t. Riemannian distance d. Recall that the upper 
capacity of  a set D is defined by C := lim suptlo(Iog 1/t)  -1 logN(t) ,  where N( t )  
is the number of balls with Riemannian radius t needed to cover D. 

Theorem 10 For some bounded function f assume that there exists a number 
C < oe and a subset D which cuts ~//g into a countable union ~//g - D = Ui Ai 
of  disjoint open sets Ai such that the restriction o f f  to each of  these sets Ai fulfills 

[f(Xl)  - - f ( x 2 )  I ~ Cd(xl,x2) c~/~ forallxb X 2 E A  i. 

m 
Assume furthermore that the upper capacity C of  D is smaller than d + dim.//g - 
c~//3. (This is the case e.g. i f  c~ is small enough and D is the union o f  a finite 
number o f  smooth hypersurfaces.) Then f E GH~,m for  m large enough. 

So from our considerations follow exponential decay of  correlations and cen- 
tral limit theorem for a larger class than the usual class of  H/51der continuous 
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functions. A byproduct are local central limit theorems and renewal theorems, 
which can be proved by the methods of [3]. In addition to these basic probabilis- 
tic properties, the results of this work allow to study the periodic extensions of 
Anosov maps instead of piecewise expanding maps along the lines of [5]. 

A The theorem of lonescu-Tulcea and Marineseu 

Theorem 11 (lonescu-Tulcea and Marinescu [6]) Consider Banach spaces 
( ~ ,  H' 11~) C (,5~, II' I1~) with the property that the closed unit ball of  ~ is ~ -  
compact. Let P : (=~, [[-[I~) 4~ be a bounded operator which can be extended to 
a bounded operator in ( ~ ,  l[" [[.~)- Suppose that SUpncl ~ [[pn I[o~ < OO and that 
there exist r ~  C (0, 1) and r ~  E I ~  such that IlP(f)[[~ _< r ~  [~ll~- + r.-~l~[I.~ 
for all f E f~ .  

Then P can be decomposed as pn = ~ ' r  7n H'r + Rn for all n E I~, where the 
sum runs over all eigenvalues 7 of modulus 1 of  P which belong to eigenvectors 
in f~ .  The span of these is finite-dimensional, so that the sum is well-defned. The 
operators FI r are (some) 5~-projectors onto the corresponding eigenspaces. R 
maps ~ into =5;~, and its ~-spec tra l  radius is strictly smaller than 1. Further- 
more, FI.~FI~ = 0 and 17.rR = 0 = RJ-L r for all 7 r 8 which occur as eigenvalues 
of  modulus 1. 

We also need a special form of this theorem with weakened assumptions: 

Theorem 12 Consider Banach spaces (SgS, I[. ][~) c ( ~ ,  I[-I[~') with theprop- 
erty that the closed unit ball of  ~ is ..~-compact. On the space ~ let a seminorm 
II. [[' be given, such that there exists a C < oo with Ill[ '  < C [f  [[~ for all f E ~ .  
Let P : ( ~ ,  [[. J[.~) ~ be a bounded operator which can be extended to a bounded 
operator in ( ~ ,  II " [[~). Suppose that supnE~ ~ IlPn [I, < oo and that there exist 
r ~  E (0, 1) and r'  E II~; such that llPflt~ <_ r~lFll~f. + r'lFIl' for  alt f E S .  

Then the ~-spec tra l  radius of  P is equal to or smaller than 1. It equals 1 iff 
there exists an eigenvector in f ~  with eigenvalue of  modulus 1. 

When applying the above theorems, the following is helpful: 

Lemma 13 Let K C Nd, d < oo, be a compact set. Assume A : p ~-+ Ap maps K 
continuously (with respect to operator norm) to the bounded operators in some 
Banach space with norm {l" H- I f  the spectral radius of  all Ap, p E K, is strictly 
smaller than I, then there exist C < oo and n E (0, 1) such that []a~,]i _< Cn" for 
all p E K and all n E I~. 

B Proof of Lemma 7 

ConstmctfN E GHc~,m for all N _> m according to Lemma 5_ For N > m define 

N - 1  

g= := Z (e=-~162  o o r") 
n=O 
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and 
N - I  

f~v :=fN e T N + Z ( PN-',(fN e T N) - p N - ' ( f N  o T N) o T) 
n=0 

Obviously f~ = f~v - 9N + gN o T with f~  C GH+,m and 9N ~ GH~,m for all 
N > m .  

9N is Cauchy with respect to L l(d#), because 119N+l --gN II1 decays exponen- 
tially fast as N --~ ec: For N > m we can estimate 

N 

IIgN+1 - o~ ~ 2~--~ IbeN+l --INI[1 <-- 8(N + 1)e-~Nlbell~,,,, 
n=0 

because fN o T N = P(fN o TU+l). Hence, as N ~ oc, the functions 9N converge 
to some 9 E L 1(d/z) and f~  tends to f+  := f + 9 - 9 o T c L 1 (d/z+), both with 
respect to I1" 111- 

Now assume we would know that 119Ntl~,,m remains bounded as N ~ ee. 
Then also Ibe ; l l+ j ,m = ]beN +gN - - g g  ~ TII§ ,. is bounded as N --4 oe. Thus, 
according to Theorem 2, 9 is an element of GH,~,,m and f+  is an element of 

H + G ~,,m, which had to be shown. 
So it is sufficient to prove that IIgNII~',,. remains bounded as N -+ ec. This 

will follow if we show that there exists C1 < oe such that for all n and N 
with 0 _< n < N > m the following inequality holds: [IpN--n(fN o T N) --fN o 
Tn ]l~',m <- C1 e -(~-2~'-2e~',. According to Lemma 4 applied to GH,~,,,, for that 
it is sufficient that there exists (72 < cx3 with the property 

[ [ p N - n ( f  N o T N) o T -n  - - fN  I1~,,,. _< c 2  e -(c~-~''-26)" . (18) 

First, we estimate the L 1 (d/z)-part of the lhs.: fN depends only on the symbols 
is with - N  < s < N : f u ( f )  = f u ( ~ - U , . . .  ,iN)- With the help of Y'f=l h(a.) = 1 
we can calculate 

pN-noe N a T N) o T-"(~)  - - f u ( i )  (I9) 

=~--~' '"  ~ h ( a l , f - n , f - ' , + l , . . . ) ' " h ( a N - n , . . . , a l , i - ' , , f - ' , §  
al=l aN_n=l 

• ( f N ( a N - n , . . . , a l , i - - n , . . . , f N ) - - f N ( ' - N , . . . ~ N ) ) .  

If  ( a N - , , , . . . ,  al,  ~- ' , ,  f -~+1,- . . )  is not admissible, the former expression is 0 
by the definition of  h. If, on the other hand, ( a N - ' , , . . . ,  al, ~-n, ~-' ,§ is 
admissible, we have 

N(aN--n, . . . , a l , ~ - ' , , . . .  ,~N)  -- fN(~--N,  " " " ,~N)  ~ OSCn(fN,f )  

and thus 

IIpN-"(fN o T N) o T - " ( f )  -fN(~)[ll  < [ dlz(~)PN- ' , (1)(T-n(~))  OSCn (fN ~ f). 
J 
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This expression is always bounded by 2 I[/t1~. Additionally, due to Eqn. (1 1) 
it is bounded by 2e - " "  vary,m0 ~) for n _> m. Hence, this expression is for all 
n E N bounded by a finite constant times e -~'-'~'-26~n. Therefore, of Eqn. (18) 
only the following inequality remains to be shown: 

Vara,,t n (pN-n(fN o T N) o T -n --fN) <-- C3 e -( '~-~'-2e)~ (20) 

for all 0 < n < N > m with some fixed C3 < exp. 
To estimate OSct(pN-n(fN a T N) o T -n -- fN , 4) which is imbedded in the lhs., 

we look at 

]pN-noe N o T N ) o T-~(~ 1) -- fu(~ 1) - pN-n~N o T N) o T-n(~ 2) +fN (~2)1 
(21) 

for 4, 41, 42 E S which all coincide from place - t  up to t, t >_ m. (All functions 
are declared to vanish for non-admissible sequences of symbols.) We consider 
two cases: first, t _< n (which can only happen if n _ m) and second, t > n. 

Case 1: m < t < n. Expression (21) is bounded by 

[pN-n( f  N o T N) o T-n(41) --fN(41)[ + ]pN-noc N o T N) o T-n(~ 2) +fN (42)[ 

Thus, considering Eqn. (19) we find that 

/ dlz(~) OSCt(pN-noc N o T N) o T -n ~) 

~ 2 f d # ( 4 )  sup ~-~ . . .  ~ h(al,~ln,41_n+l, . . .)  . . .  
1E~' aa=l au-n=l 

~2=~s,-t<s<t 

l "'" h ( a N - n , . . . ,  al, 4-n, 41n+l, "" ") sup [f(~2) __y(43)i 
~2/3ES 

2/3 l ~s =~s, -n<s<n 

= 2 [ d#(4) sup sup f ( 4  2) -j7(~3)1 
d ~l E.Z7 ~2/3EL' 

r r 

#(4- t  = a - t , . . . ,  4t = at) 
< sup 
- a .. . . . . .  a,E{1 ..... r} # ( ~ - t = a - n , . . . , 4 t = a , )  

~,V+~=l,-~<j<,-I  

x 2 [ d/z(~) sup [~(~2) _37(~3)1 
d (2/3ES 

~/3=~,_n <s <n 

< sups+ h 2t+l 
2 . 2  e -c~n varc~,rn 0 e) = 4 e ~ e 2t6-c~n var~,m(f), 

- infs+ h 2n+l 

because 

# ( ( - t  = a - t , . . . ,  ~t = at) 

= [ dt-t+(~) h(at,  ~o, ~ 1 , . . . ) "  h ( a _ t , . . . ,  at, ~o, ~1 , . . . ) .  
J 
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Case 2: m < t > n. Now we use that expression (21) is bounded by 

] eN-nor  N o T N)  o r - n ( G  l)  - p N - n ( f N  o T N)  o T-n(G2)]  + ~r 1) - fN (~2)1 

<_ ~ - ~ . . .  ~ h ( a l , G - n , G - n + l , . . . ) ' " h ( a N - n , . . . , a l , G - n , G - n + l ,  . . . )  
al=l aN-n=l 

• ~ N ( a N - n , . . . ,  a l ,  G l n , . . . ,  GIN) - - f N ( a N - , , . . . ,  a l ,  G2_n, . . . ,  G 2 ) 

+ ~ . . .  ~ h(al ,Gl-n,Gln+l, '") '"h(aN-n, '" ,al ,~ln,~l-n+l,  "'') 
al=l aN--n=l 

-h(al ,G_n,G_n+l, . . . )" 'h(aN_n,. . . ,al ,G_n,G_n+l, . . . )  sup 2[fN(G3)] 
~3EZ 

+ the same multiple sum with G l replaced by G2+ [fN(G 1) --fN(G2)[ . 

Assume that the sequence ( a N - n , .  �9 �9 a l ,  G-n,  G-n+l,  �9 �9 .) is admissible. Then so 
are (ak, . . . ,al ,Gl_n,Gl_n+l, . . . )  and (ak,. . . ,al ,G2_n,~2_,+l, . . . )  for all 1 < k < 
N - n, and it easy to show that for m large enough there exists C4 < ec such 
that 

h(al,Gl_n,Gl_n+ 1, ..)" h(au-n, 1 1 
�9 "" . . . , a l ,G_n ,G_n+l , . . . )  

h (a l ,  G-n,  ~ - - n + l , - - - ) ' ' "  h ( a N - n ,  . . . , al , G-n,  ~-n+ l ,  �9 �9 -) 

if ( a N - n , . .  �9 al, ~-n, G-,+I, �9 - .) is admissible. Hence, 

- 1 < C 4 e -c~ht 

h(a l  , GIn , Gl_n+l , . . .) - - - h ( a N - n  , . . . , al , Gin,  ~ I n + l , - - - )  

- h ( a l , ~ - n , ~ - n + l , . . . ) ' - - h ( a N - n , . . . ,  a l , G - n ,  G - n + l , . . . )  

always bounded by h(ai, ~- , ,  G-,+I,- �9 - ) " "  h(aN-n, . . ,  a l ,  ~ - n ,  ~ - n + l ,  - - -) is 

x C4 e - ' ~ t .  This remains true if ~1 is replaced by G 2. 
So in this case (m _< t > n) we find 

f d#(G)OSCt(pN-n(fn o T N) o T -n 

<_ O(N - t ) f d # P  u-n (osct0%, TN(.))) o T-n 

+ (2 + 2)C4 e -~"t [g 11~ f d# eN-n(1) + O(N - t) e-~t2 vara,mOeN) 

C 5 e -o~t, 

with C5 := 4 v a r a , m O  c) + 4C4][~11oc and where O(N - t) equals 1 for N > t and 
vanishes else. 

Finally, we collect the estimates of case 1 and case 2 to achieve the following 
expression as a bound for the lhs. of Eqn. (20): 
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max(t:m<t<nSup 4e ' e e2t - n e 'tCse- t) 
<_ e-(a-a'-2'~)n max(4e6 varo~,mOC), Cse-26m). [] 
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