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Summary. A second order error bound is obtained for approximating f h dQ 

by f h dQ, where Q is a convolution o f  measures and Q a compound Poisson 
measure on a measurable abelian group, and the function h is not necessarily 
bounded. This error bound is more refined than the usual total variation bound 
in the sense that it contains the function h. The method used is inspired by 
Stein's method and hinges on bounding Radon-Nikodym derivatives related to 
dQ/dQ. The approximation theorem is then applied to obtain a large deviation 
result on groups, which in turn is applied to multivariate Poisson approximation. 
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1 Introduction 

The Poisson distribution provides a good approximation to the distribution of  a 
sum o f  dependent and small indicators if the dependence is sufficiently weak. 
However, if the dependence is strong or the indicators are replaced by non- 
negative random variables, then in many cases the compound Poisson distribu- 
tion provides a better approximation. Compound Poisson approximation in this 
direction has been considered by Arratia et al. [1], Barbour et al. [4], Barbour 
et al. [6] and Roos [12]. 

An interesting aspect o f  compound Poisson approximation is finding a 'cor- 
rect' generalization of  the 'magic '  factor 2 -1 A 1, which appears in the error 
bound in the Poisson approximation. Here 2 is the parameter of  the approxi- 
mating Poisson distribution. This factor is significant in that it gives the error 
bound the correct order for all values of  2 in the range (0, oe) (see, for exam- 
ple, Barbour and Hall [5]). 

* Research of the second author was supported by Schweizerischer Nationalfonds 
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Michel [1 1] observed that in a special case of  compound Poisson approx- 
imation, the same 'magic '  factor is present, with 2 being the parameter o f  
the approximating compound Poisson distribution. Borovkov and Pfeifer [7] 
showed that in this special case, the second order error bound is also as good 
as for Poisson approximation. However, in general, no 'correct '  generalization 
of  the 'magic '  factor seems to have been found. Although the approach of  
Barbour et al. [4], which applies Stein's method directly, holds promise for 
obtaining such a 'magic '  factor, progress has been slow due to the difficulty 
in studying the smoothness of  the solution of  the Stein equation. Fortunately, 
in many applications, the parameter of  the approximating compound Poisson 
distribution is bounded, and so in these cases, the presence of  a 'magic '  factor 
is not crucial. 

In this paper, we consider compound Poisson approximation for unbounded 
functions on a measurable abelian group, but do not attempt to find a 'magic '  
factor in the error bound. A pair (~', aM) is a measurable abelian group if Y" 
is an abelian group and N a a-algebra of  subsets of  ,Y' such that the mapping 
from 5~ • f to 5~" defined by the group operation is ( ~  x ~ ,  ~)-measurable .  
We let (X, N)  be a measurable abelian group such that aM contains the singleton 
consisting of  the identity element of  Y'. We also let 3~" be the class of  all finite 
signed measures on ~ .  With the usual operations of  real scalar multiplication, 
addition and convolution, and with the norm defined to be the mass of  total 
variation, ~ is a real commutative Banach algebra. We denote by I the Dirac 
measure at the identity element. For any two finite signed measures ~ and v, 
we denote their convolution by #v, the total variation of  # by [#[ and the norm 
of  # by ll#II- I f  #(B) < v(B) for all B C ~ ,  we say # < v. 

Let #l , . . . , /~n be probability measures on ~ which do not have any atom 
at the identity element. Also let P l , . . . , P , ,  be numbers between 0 and 1, and 
let 2 = ~"  2 - I  ~ ,  i=l Pi and/~ = i=1 pi#i. Define two probability measures Q and 
Q on N by 

O IeI [(1 - p,) I  § Pi#i], (1.1) 
i=1 

Q = e;~O,_l) = e_;~ ~ 2"y  (1.2) 
,=0 r! 

We call Q the compound Poisson measure generated by /~ and with para- 
meter ~. In the case X is an abelian group, Q is the distribution of  the sum 
of n independent random elements which equal the identity element with prob- 
abilities 1 - p l , . . . ,  1 - p, and have distributions /q , . . . , # , ,  with probabilities 
Pl .. . . .  p, respectively, while Q is a Poisson random sum with parameter 2 of  
random elements each with distribution #. 

It is well known that (see, for example, Le Cam [10]) 

I I Q -  Qll < 2 ~ p ~ .  (1.3) 
i=1 

In this general setting, the order of  the error bound in (1.3) is best possible. 
When specialized to Poisson approximation, the constant 2 is also best possible. 

In Chert [8], an error bound was obtained on f h d I Q  QI for any non- 
negative function h such that f h dQ b~ 2 < oo, assuming boundedness of  the 
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Radon Nikodym derivatives dl&/dllj, i , j  = 1 . . . . .  n. While the result of Chen 
[8] was inspired by the work of Simons and Johnson [13], the techniques used 
were inspired by Stein's method. A crucial step in Chen [8] is finding explicit 
bounds on Radon Nikodym derivatives related to dQ/d Q. The method of using 
such bounds in the context of Poisson approximation was developed in Chen 
and Choi [9] and refined in Barbour et al. [3]. 

The objective of this paper is to continue the work in Chen [8] and 
obtain a second order error bound for approximating f h dO by f h dQ in 
the spirit of Barbour et al. [3], where the real-valued function h is such that 
f IhldQ# 4 < oc. This result and Theorem 2.1 of Chen [8] are then shown to 
be applicable to large deviations on groups and multivariate Poisson approxi- 
mation. In particular, the main result of this paper is applied to obtain a large 
deviation result on a measurable abelian group, which in turn is applied to 
multivariate Poisson approximation. 

The error bound obtained in this paper and that in Theorem 2.1 of Chen 
[8] are more refined than the usual total variation bounds in that they contain 
the function h. As a result the bounds are always relatively small compared to 
f h dO or f h dQ. This is not the case for total variation bounds�9 

2 Theorems for unbounded functions 

We begin this section by stating Theorem 2.1 of Chen [8] in a form which is 
easy to apply. 

Theorem 2.1 (Chen [8]) Let (Y{',N) be a measurable abelian group and let 
O and Q be given by (1.1) and (1.2) respectively. I f  there exists a constant 
K such that fti <= K# j fo r  i , j  = 1 . . . . .  n, then for every real-valued function h 
defined on Y" such that f IhldQ # 2 < o% we have 

where 

and 

2 

I f  hdQ - f hdQ I < ~ C'kf I h l d Q ~  k , (2.1) 
k = 0  

C~ = + K2M _ 1 -  p i '  

n p2 
c; = l x 2 M  2 - 

2 i=1 1 Pi 

t 1 n 

K ~ p~ }s (2.2) 
M =  1 +  ~- 1 pi ' 

i = 1  - -  

n p2 } 
with s being the largest integer not exceeding K{2 + 2i= 1 ~ + 1. 

Remark. 2.1 We note that for a fixed K , M  < exp{cN~_ 1 P] } for some = 
constant c. 

The next theorem is the main result of this section. 



518 L.H.Y. Chen, M. Roos 

Theorem 2.2 Let (#f, ~ )  be a measurable abelian group and let Q and Q be 
given by (1.1) and (1.2) respectively. I f  there exists a constant K such that 
I~i <= K#j for i , j  = 1,...,  n, then for every real-valued function h defined on 
f such that f lhldQtt  4 < oc, we have 

4 

I f h d Q  f h d Q + A ( Q , h ) l  < ~ C k f l h [ d Q #  ~, (2.3) 
k=O 

where 

A(Q,h) = 

C o -  

CI = 

c2= 

1 

2 i = 1  

p i 
1 p~' i = 1  - -  

i=1 j=l 1 pj 

1 - ~ i=1 22 

p2 [f h dQ I ~2 - 2 f h dQ #i + 5 h dQ] ; 

p2 } 
i=1 1 - P i  ' 

K2(1 + 2M) ~ P~ _ p2 

- r  4 i=1 j= l  1 p j  

C3 = ~ 1 + p 
n -  1 \ i = J  

}, + ~  1 - pi i=1 

- p - - ;  
C4 8 i=l -= 1 pj 

n \ 2  

__+K2M  P9 } 
i=I 1 Pi  ' 

K 3 M ~ n p2 

+ P 1 pj 

(2.4) 

and M is given by (2.2). 

Remark. 2.2 (i) Theorems 2.1 and 2.2 allow a very wide choice of  pos- 
sible functions h. No smoothness or positivity condition is assumed, and in 
view of  the proof  of  Lemma2 .6  below, the growth condition flhl dQ~ ~ < oc 
(k = 2 or 4) is hardly restrictive at all. 

(ii) If  h is such that flhL dQ is small (for example, h = IA where Q(A) is 
small), then the smallness is also reflected in the error bounds. 

The proof  of  Theorem 2.2 consists of  the following lemmas. 
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Lemma 2.1 We have 

fhdQ - fhdQ =- -A(Q,h)+S,  +$2 +R1 +R2 @R3, (2.5) 

where 

SI=-  1-~1 kP2i 2 e- ;~Tfhdy-kpz~e-;~  
i= l  r = n + l  i= l  r=n  

e + 5 7. fh  dt~ #' ; 
i =  ] r = n - -  1 

S2=- ,~o~v  " e -;~ 1 - ~  
"= �9 i l i=1 

- ~ P ~ E  ~.~ e-x lei(1-pj) fhdt~i#" 
i=1 r = 0  j = l  

+51~P/2~ 7. e-';- fi(1-pj) fhdp2ip r; 
i= i  r=O j = l  

2 ~ ~r--l)~l+x--2(r-- l - -s) '  ( 
R, = k p2 ~ pj ~ rS. fhdpi laj V (j)r_l_s "l+s--2 

i=1 j = l  r = l  l= l  s = l  

2 ( j )  ~ / l + s - - 2 )  - f h  d#i l~/ vr_l_,_l 

R2:= - k  p 2 ~ p ~ k k  r--I--l~ Zl+s-2(r_ l)(rr! -- 1 --s- 1)! 
i=1 j = I  r = l  l=1 s = l  

x h d#~ & Vr_l_s_ 1 r--l--s--2 /21+s--2 " 

R3 = i=lk]@ ~ ~ ZI-I(F-- 1)[ l = l  r' fVhdllivr-l'(i) kt'l 1 - -  2 ~'. hd[.l i2 (i)l~r_l_ 1 ].ll--1 

1) 

Proof. We shall use arguments similar to those of  Chen [8], making use of  
the fact that ~d is a real commutative Banach algebra. We write 

i=1 i=I  r=O 

Pi where qi - -  1 - ~ p i ,  VO = [II~-l(1 - Pi)] I, and for r > 1, 

v~= fi  ( 1 -  pi) 2 f i  qik/#k. (2.6) 
i=1 i l <.,.<ir k = l  
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V(o i) = [ I I j , i ( 1  - p j ) ]  I ,  and for r > 1, We also write  

v~ i) = [ I  (1 p j )  2 h qJk #J,~" 
j 4 : i  j l  < ' - ' <  jr: k=l 

Jl ,...,jr @ i 

As in [8], for r >= 0, we consider  the identi t ies 

n 
' v ( 0  ( 2 . 7 )  t 'Vr ~ ~ ]3 i f f i  r - - I  

,=1 

and 
. ( i )  , , ( i )  

V r _  1 = p i ] l i V r _  2 4-  ( l  --  p i ) l r _ l  , (2.8) 

where  v~ and v~ i) are both taken to be the zero measure  i f  r is negative.  
Combin ing  (2.7)  and (2.8)  we have 

2 . (i) (i) \ 
r V r  = ) ~ # V r -  1 + P i  # i  {.V r _  1 - -  # i  V r -  2 ) . 

i=1 

From this we obtain 

;:-/ ~ ~ ~l '/-'(r-Z)!. + . ~(,I 
v~ r! v o +  P ~ # i  r! t v ~ _ / - # i  ~ - t - ] ) "  (2.9) 

i=1 l=1 

In order  to obtain a second order  expans ion  we apply  (2.8)  to (2.9)  to get 

U # ~  )oI-1#1 l ( r _  I)! 
~)r 7 70@ k 2 # , ~  r ,  Pi " (Vr 1 y i V ~ - l - - 1 )  

�9 i=1 l=1 

z "~ p~#, z "~ ; - ' # ' - ' ( r _  l)~. (,) + ,~(,~ (,) + i=1 I=1 r! kVr_1 -- #iV,. l-1 -- #i t  r - - l - t  -- # iV, -1--2))  " 

Next  we apply  (2.9)  to v~-I and v,--~-i in (2 .10)  to obtain 

U#"  Z~ J . r - 1  1 n 2r--2~2r--2 
v , . _ ~ 5 _ ,  v o + s  2 /~ 

i=1 

2 l - 1 # I - l ( r -  l)! 

i=1 j= l  l=1 

r - 1  ) s - l # s - l ( r  _ 1 s)[ r _ , vU ) 
x ~ ( r -  l)! , , - - l - ,  ~J ~ l -~-~)  

s=l 

i=1 j=l  I=1 r! 

r--I--1 25 -~#~-1 ( r  _ I - s - 1)! (v(j) _ . vU ) , 
X s=IE ( F - -  l - -  1)! ~ r I l - - s  l ptj  r - - l - - s - - Z )  

i=t I=1 r! 

(2.lO) 

(i) (i) , (i) (i) 
vr l - #iv,--1 I - # ~ v ~ - l - I  - # / v ~ - I - 2 ) ) "  

(2.11) 
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Recall that v0 = [II~=l(1 - pj)]L After summing the v~ given in (2.11) over r 

and integrating h with respect to the sum Q, we obtain (2.5). This proves the 
lemma. [] 

The next lemma was proved in [8]. 

Lemma 2.2 (Chen [8]) Let  v,, be as given in (2.6). We have for  r = O, 1 . . . . .  n, 

v, <=Me ; 2"#" r! ' (2.12) 

where M is given by (2.2). 

Lemma 2.3 For i = 1 . . . . .  n and r = O, 1 . . . .  , n, we have 

# < #i < K # ;  (b) .(i) < v~-i 
(a) K-- = • v"-I = l ~ p i "  

Proo f  Part (a) follows from the condition that # i  < K#j for i , j  = 1 . . . . .  n and 
part (b) follows from (2.8). [] 

The next lemma is proved by using the identity l - x  = e x p { - E ~ l  x~} for 
Ixl < 1. 

Lemma 2.4 We have 

(a) 0 <- e - ; -  YI ( 1 -  pi)  < = 2 e-j~. ~ l - p 2  ; 
-- l P i  

(b) 0 < e - ;  1 - ~  ( l - p i )  < e j~ - 

- -  i=1 i=l  = 3 1 Pi 

The next lemma is proved by applying the Chebyshev inequality and using 
the inequality 22 < n~i~_lp2i . 

Lemma 2.5 We have, fo r  h >= 0, 

.~r {~n p212 
(a) E e Ihd# < IhdO#2" 

~ : n + l  7 = ~2 , 

n 2 

(b) e-;" f h d # "  < f h d Q # ;  

(c) ~ e - ;  f h d #  ~ < 1 +  i = l P i f h d Q  #.  

Lemma 2.6 The condition f Ih]dQ # 4 < oo implies that f ]hldQ # ~ < oo for  
k = 0,1,2,3. 



522 L.H.Y. Chen, M. Roos 

Proo f  It suffices to show that f IhldQ # ~+' < oc impl ies  that f IhldQ # ~ < o~ 
for k = 0, 1,2,3.  First ,  we observe that f [h]dQ# ~ < oc for any k > 0 implies  
f Ihtdy < oc for r = 0, 1,2 . . . . .  Next ,  

f l h ] d Q #  ~+~ = e-r ~ ) f  f]hld#~W,+l = e-~. ~ ( s ~ - l ) !  f t h l d #  ~+~ 
r=0 r! s=l 

e - 2  ~s e 2 
> _ _  ~ / ~  flhld#,+ k 1 = 2 ~ .~ '  ' = = f l h i d Q # ~  - flhld#~ 

s = l  A .~ ' 

This proves  the lemma.  [] 

Combin ing  L e m m a s  2.1 2.6, we prove Theorem 2.2. 

3 Large deviations 

From now on let 2U1 be a coset  o f  a subgroup S o  of  X such that  ,J(i has 
infinite order in the quotient  group Y'/.N0. For  convenience,  assume ,Y' to be an 
addi t ive group. Define 24#,. = 2 G -  1 + 24/] for r = 1,2 . . . . .  Then ~/] ,  Y2 . . . .  are 
dist inct  cosets o f • 0 .  Let  .5U = U~_I y , . .  Since #i <= K#j  for i , j  = 1 . . . .  ,n, the 
measures  # and #i, i = 1 . . . . .  n, have the same support .  Assume  that  supp(# )  c 
~f" and that there is a posi t ive  integer l such that supp(p )  N Y r  0 for 1 < 
r < l and supp(# )  71 ~() ~=(3. Then for z = 1 , 2 , . . . ,  supp(#  Z) A ~((;. = (3 for 1 =< 
r < z l  and supp(#  ~) A -Y{zl # (3. 

Here  is an example  o f  X with subgroup 2(0 and dist inct  cosets ~ f ' l , -~2 , . . .  
such that  ~X/;- = ~f'~-I + $ 1 .  Take .Y" = 2U, where  ~ is the set of  integers 
and d = 1, 2 . . . . .  Let  kl . . . . .  kd be integers such that  klxl + �9 �9 + kdxd = 1 has 
an integral  solution. Define J(~ = {(Xl . . . . .  xd) E Zd . klxl + . . .  + kdxd = r}, 
where  r = 0, 1,2 . . . . .  Then ~((0 is a subgroup o f  Zd and Y l ,  $ 2  . . . .  are dist inct  
cosets  o f  2U0 with  5f;. = ~ - 1  + ~ 1 .  

Define ~4u to be the class o f  rea l -va lued  functions h defined on ;,~" which  
sat isfy the fo l lowing  property:  there exist  a posi t ive  integer r0 and a posi -  
t ive funct ion c~ defined on supp(# )  (both  r0 and ~ depending  on h)  such that 
f ~ k d #  < ec  for k = 1,2 . . . . .  and 0 < h ( x + ~ )  < ~(~)h(x) for x ~  U ~ r  ~ 

supp(#")  and ~ ~ supp(#) .  

Proposition 3.1 (a)  The class s~u is closed under addition, nonnegative scalar 
multiplication, and multiplication o f  functions (in the sense that i f  hi and 
h2 ~ ~ ,  then hlh2 ~ ~r 

(b)  It contains all eventually decreasing functions, that is, functions h with 
the property: 0 < h(x + ~) < h(x) for  x ~ ~ o  s u p p ( y )  and ~ ~ supp(#) .  

In particular, it contains indicators o f  sets f rom the class ~g, where 

cg = {A C f :  i f x C A ,  t h e n x + ~ A  
OO 

where x E U supp(#  r)  and ~ c s u p p ( # ) } .  
r = j "  0 

(c)  Suppose .Y' = 7/d, d = 1,2 . . . . .  and suppose ~f'~ = {(Xl . . . . .  xd)  c 2~ d" 
klXl + . . .  + kdxd r} such that JY] • (3, where r = O, 1,2 . . . .  and kl . . . . .  ka are 
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integers. I f  

f e x p  tixi d#(xl  . . . . .  Xd) < oc 

for  all real numbers q , . . . ,  td (in particular, i f  supp(#) is finite), then ~r 
contains (i) h where h(x) is a polynomial  in alxl + "." + adxd which is' positive 
and bounded away f r o m  0 on [-]~-r0 supp(# ~) for  sufficiently large ro, and 

(ii) h where h(x) = exp {N~=laixi}, where al . . . .  , ad are real numbers and x = 

(xl . . . . .  Xd ) C ~d. 

Proo f  We omit the proofs of  (a), (b) and (c) (ii) as they are easy. For (c) (i), 
we first note that h(x + ~) is a polynomial in al ~ + " -  + ad~d whose coeffi- 
cients are polynomials in alxl + . . .  + aaxd, where ~ = (~1 . . . .  , ~d) E supp(#). 
So there exists B > 0 such that for lalxl + . . .  + adXdl > B, h(x + ~)/h(x) = 
1 + (h(x + ~) - h(x)) /h(x)  where (h(x + ~) - h(x)) /h(x)  is a polynomial in 
a1~1 + " "  +ad~d with bounded coefficients. On the other hand, for laax~ 
+ " "  + adXdl < B, h(x + ~) < e - l h ( x  + ~)h(x) on [-J~--~0 s u p p ( y ) ,  where e is 

a lower bound of  h and e - l h ( x  + ~) is also a polynomial in al~l + ' "  + ad~d 
with bounded coefficients. This proves (c) (i). [] 

The following two theorems are the main results in this section. 

Theorem 3.1 Let  (Ys be a measurable abelian group and let Q and Q be 
given by (1.1) and (1.2) respectively. Assume that there exists a constant K 
such that #i <= K#j for  i , j  = 1 . . . . .  n. Let  h C ~ be such that f ]hldQ # 2 < 
oo and let h~ = h i  [[.J,.:~j ~] f o r  z = 1,2 , . . . .  Then, f o r  2 > 0 bounded and 
z +  1 > max{c2, r0}, 

f h z d Q  = Z ~ l - - c 2  2 ~ + 3 + 2  i = l l - p i '  

where c = max{1,  f c~d#} and M is given by (2.2), provided f h zdQ > O. 

For the next theorem, we regard pi ,# i , i  = 1 . . . . .  n,2 and # as being 
dependent on n. Note that 2 is not required to be bounded or bounded away 
from zero. 

Theorem 3.2 Let  ( f , ~ )  be a measurable abelian group and let Q and Q 
be given by (1.1) and (1.2) respectively. Assume that there exists a constant 
K such that #i <= K#j f o r  i , j  = 1 . . . . .  n. Let  h C ~4~ be such that f ]h[dQ# 4 
< oo and let hz = hi  [[Jr~zl.)f,,.] f o r  z = 1,2 . . . . .  Suppose E"i=l p2 _~ O, 

z/2 = o( (~=1p2)  -1/2) and z/2 -+ oc as n ~ oo. Then, as n,z -+ oo, 

n fhzdO  p Oi(z, hz), (3.2) 
f h z d Q  1 ~ -22~i=~ 

where Oi(z , hz) = f h z d# z-2 # 2 / f  h z d# z, provided f hz dQ > 0 for sufficiently 
large z. 
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Remark. 3.1 (i)  By Lemma 2.3 (a),  K -2 ~ Oi(z, hz) <= K 2 for i = 1 . . . . .  n. 
(ii) O~(z,h~)= f h ~ , ~ d # Z / f h z d #  " for i =  1 . . . . .  n, where OL,~ = d#~-2#2/ 

d# z and is given by 

Oi'z(X) = E { d~i ( u ) d ~ i  (V)lYl -t- " " + Yz-2 -I- U + V =- x }  a# 

where Y1,.. . ,  gz 2, U, V are i.i.d, random elements taking values in .g" with 
distribution #. 

(iii) I f  #1 . . . . .  #n, then Oi(z, hz) = 1 for i = l , . . . , n .  
(iv) The support o f  h is allowed to vary with z. 
(v) Theorem 3.2 generalizes Theorem 4.2 of  Barbour et al. [3] in the case 

when 2 satisfies the stated conditions. 

We shall give the proof  of  Theorem 3.2 only, since the proof  of  Theorem 
3.1 is easier and uses the same argument. We need a few lemmas. The first 
lemma is proved in [3] (see Lemma 4.5 (b) and its proof). 

Lemma 3.1 (Barbour et al. [3])Suppose g is a real-valued Junction defined on 
the set o f  nonnegative integers such that 0 <= g(r + 1) <= cg(r) for  r > r0, 
where c is a constant >= 1 and ro a positive integer (ro and c both depend- 
ing on g). Let  N be a Poisson random variable with parameter 2. Assume 
E{g(N)I[N > ro]} < oc. Then Jbr Z > 0 and z + l > max{c)o, r0}, 

1 <- Eg(N)I[N >=z] <= z + l  (3.3) 
- g ( z ) P [ N = z ]  z + l - e 2 '  

provided g(z) > O. 

Lemma 3.2 Let h E ~ and let [~i,k(r) r--~ = f hd# #i Jbr i =  1, . . ,n,  
r = 0, 1,2 . . . .  and k = O, 1 . . . . .  r (assuming integrability). Then hi, k satisfies 
condition on g in Lemma 3.1. 

Proof  We have for r > r0, 

] ~ ( r  + 1 )  = f f h ( x  + ~)d#(~)dp"-k#~(x) 

<_ f f~(~)h(x)d#(~)dp~-k#~(x)  = ( f~dp)  h~,k(r). 

This proves Lemma 3.2. [] 

We state the next lemma without proof. 

Lemma 3,3 We have 

i=1 1 pg - -  ~ ~ P  _ - p i )  2 �9 
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Proof of  Theorem 3.2 We use Theorem 2.2. It suffices to prove the following: 

(i) ~4k=~ f hJQ#~ ~ O, (3.4) 
A(Q, hz) 

(ii) A(Q'hO z2 ~ 
fh~ dQ fs i~=1 p~Oi(z' hO' (3.5) 

as n, Z ----+ 00. 

Here we note that hz > 0 for sufficiently large z. Let N be a Poisson random 
variable with parameter 2 and let hz(r) = f hz d#" for r = 0, 1,2 . . . . .  Then for 
k = 0 , 1  . . . . .  4, 

fh~ dQ# k ~ e ~ 2~ P" " ,-+k = ~(.jnza# = Ehz(N + k)I[N + k >->= z] 
r = z  k 

EN(N - 1) - . .  (N - k § 1)hz(N)I[N >= z] 
z 

2k 
(3.6) 

By Lemmas 3.1 and 3.2, we have for k = 0, 1 , . . . ,4 ,  and sufficiently large z, 

1 <_ 2~fhz dQ# k < z + 1 

- z ( z - 1 ) . . . ( z - k + l ) [ ~ z ( z ) P [ N = z ]  = z + l - c 2 '  

where c = max { 1, f c~ d#}. 

Therefore, for k = 0, 1 . . . . .  4, 

z k 

f hzdQ# k ~ ~ ( f  hzd# z) P{N = z] , (3.7) 

a s  n , Z  ~ (X). 

Similarly, by defining Qi,  k(r) f hz d#r-k#~ , we have for i = 1 . . . .  n and k 
0,1,2, 

fhz dQ#ki ~ e -~ hz d l /  #ki = EQi,~(N + k)I[N + k > z] 
r ~ z  k 

EN(N 1 ) . . . ( N - k +  1)hz, i,k(N)I[N >= z] 
2k 

By Lemmas 3.1 and 3.2 again, we have for i - -  1 . . . . .  n, k = 0, l, 2, and suffi- 
ciently large z, 

<_ 2k fhz dQ#ki < z + 1 

- z ( z -  1 ) - - . ( z - - k + l ) Q i ,  k ( z ) P [ N = z ]  = z + l - - c 2 '  

where c = max{l ,  f ~d#}.  
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This implies that for k = 0, 1,2, 

z k 
fhzdQ#f  ~ ~ (fhz d# ~ ~#f) P{N = z ] .  (3.8) 

uniformly in i for i = 1 . . . . .  n, as n,z ~ oo. 

By Lemma 2.3(a),  (3.8) implies that for k -- 0, 1,2, 

Z k 
fh~ dQ#~i x ~ (fh~ d# z) P[N = z ] .  (3.9) 

uniformly in i for i = 1 . . . .  , n, as n,z --+ oc. 
In view of  (3.9), 1 2~ _2 i=ll-'i f h z d Q #  2 is the dominant term in A(Q,h~). So, 

to prove (3.4), it suffices to show that 
2 4 2 ~k=oC~fhz dQg k 

- - + 0 ,  
z 2 ( ~ l  p2)( f  hz dktz)P[N = z] 

as n , z  ---+ CO. 

Indeed, by (3.7), for k = 0 . . . . .  4, 

22C~ fhz dQ# k z k 2Ok 

z2(ZT=lpZ)(fh~d#z)P[N = z ]  )ok-z~7=lp2 i 

which tends to 0 as n,z --+ oc, using Lemma 3.3 where applicable. This proves 
(3.4). 

To prove (3.5), it suffices to show that 

f h~ dO#2i z 2 
fh~dQ ~ ~ 20i(z'hz) 

uniformly in i for i = 1 . . . . .  n, as n, z ~ ec. 
Indeed, this follows from (3.7) and (3.8). This proves (3.5) and completes 

the proof  of  Theorem 3.2. [] 

4 Mult ivar iate  Po i s son  approx imat i on  

Let e ( j )  be the basis vector in 7Z. d with 1 in the j t h  position, where j = 1 . . . . .  d 
and d = 1,2, . . . .  Consider independent random vectors ) ; ' l , . . . ,Xn which take 
values in 7Z d with P [ X / =  e(]')] = Pi: = PiO~ij and P [ X / =  0] = 1 - Pi, where 
24 leVi J---- 1, for i =  1 . . . .  n. Let W = 2 ~  1 X ~ , 2 j = 2  n ----2 n j =  " = i = 1 P i j  i = 1  p i~ i j  and 
2 = 2 4  ~;~j= 2 ~ j =  i = 1 P i .  

Define Z1 . . . . .  Z~ to be independent Poisson random variables with parame- 
ters 21 . . . . .  2d respectively. Let Z = (Z1 , . . . ,Zd) .  The problem of  approximating 
5~(W) by 5~(Z) has been considered by Barbour [2] who obtained an error 
bound on the total variation distance between S ( W )  and S ( Z )  using a prob- 
abilistic approach to Stein 's  method. 

In this section we show that multivariate Poisson approximation can be 
considered as a special case of  compound Poisson approximation on a group. 
However, instead of  considering total variation bounds, we consider unbounded 
function approximation and large deviations. To this end, we consider 7Z d 
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to be an additive group. Take . f  = 7] d and define 2f~ = {(xl . . . . .  xd) E ;gd . 
xl + . . .  + x d  = r}, for r = 0,1,2 . . . . .  Clearly 3U0 is a subgroup of  Y" and 
~fi, 2(~,... are distinct cosets of  2,U0 with ~ = Kr 1 + ~,U1, r = 1,2 . . . . .  De- 

fine #g by #~({e ( j )} )=  c~j. Then 5 ~ ( W ) =  I I ~ l [ ( 1 -  p i ) I  § Pi#i] = Q. Now 
1 ~ n  _ . # = 2-- i=lPi#i, so # ( { e ( j ) } ) =  22/2. Therefore #~ is the multinomial dis- 

tribution MN(r ,  h 7-. . . . . .  ~ ) .  This implies that 5 ~ ( Z ) =  e-;~E ~ ;'%" ~=0 ,,! - Q .  The 
condition that #i ~ K#j  for i , j  = 1 . . . . .  n is equivalent to 

max xij < K  min eij for j =  1 . . . . .  d. (4.1) 
1 <_i<_n 1 N i < _ n  

Hence, if  we assume (4.1), then Theorems 2.1 and 2.2 can be applied to 
approximate E h ( W )  by Eh(Z)  for unbounded functions h defined on ~d. 

Next we observe that under (4.1), supp(pi) = supp(#) for i = 1 . . . . .  n, and 
supp(# ~) C ~ for r = 1,2 . . . . .  Hence Theorems 3.1 and 3.2 are also applica- 
ble. The following is a corollary o f  Theorem 3.2. 

Theorem 4.1 Let  h be a real-valued funct ion defined on 7l+a such that 
0 < h(x + e ( j ) )  < ch(x) f o r  all x = (Xl . . . . .  xd) with xl + . . .  §  > ro and 
j = 1 , . . . , d ,  where c is a constant and ro a positive integer (c and ro both 
dependin9 on h). Assume that E(ZeT)4[h(Z)I < oe where e T is the transpose 
o f  e = (1 , . . . ,  1). Suppose that condition (4.1) holds and that Ei~=lp~-~ O, 
z/}~ = o ( ( ~ "  . 2 ~ - i n  i=lei J ) and z/2 -+ oc as n ---~ oc. Then, as n , z , - *  oc, 

E h ( W ) I [ W e  ~ > z] 

Eh(Z) I[Ze  T > z] 

n 

- 1 ~ 2Eh(U~)i~lp~Eh(UJ~i(Uz),.= (4.2) 

where U~ ~ M N  z . . . . .  , T and 

d d ~ - 1 )  ~ij~i~xjx~ c~xj(xj 
~i(x,,...,x~) = ~ Z %,~ + 

j = l  k=l j = l  /~2 

f o r  i = 1 , . . . ,  n, provided Eh(Z) I[Ze  T > z] > 0 f o r  sufficiently large z. 

Remark.  4.1 (i) Since Y" = 7/d with Wr = {(xl . . . . .  xd) ~ 7F: x~ + . . .  + x d  = 
r}, and s u p p ( # ) =  {e(1) . . . . .  e(d)} which is finite, the class of  functions h sat- 
isfying the condition of  Theorem 4.1 has all the properties stated in Proposition 
3.1. 

(ii) The unbounded function approximations deduced from Theorems 2.1 
and 2.2 yield total variation bounds. While the second total variation bound 
is of  second order, the first is not as good as that obtained by Barbour [2] in 
the case of  multivariate Poisson approximation, due to the requirement of  the 
condition (4.1) and the absence o f  a 'magic '  factor. 

P r o o f  o f  Theorem 4.1 From the proof of  Lemma 2.6 and the fact that 
supp(# r) = s u p p ( ~ ( Z  ]Ze T = r)) ,  it is clear that the condition f IhldQ# 4 < oc 

is equivalent to E(ZeT)4]h(Z)[ < oc. It remains to show that ~i,~(x~ . . . .  ,xd) 
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g iven  in Remark  3 .1( i i )  is equal to ,)~2(/)i(x 1 .. . . .  X d ) / Z ( z - - 1 ) ,  where z = x l  
d ,u i + . . .  + x a .  Indeed, 7h- ({e( j )} )  = 2cqj/)~j, so, with x = (xl . . . .  ,xd),  

1 
~,,,z(x) - 

P[U~ = x] 
:=~#~lJ ~y & ~ r lu~_2=x-e( j ) -e (k ) ]  

4x,(x, - } 
2~ 1 ) p [ u ~  x] 

~- ~ ")~20~27T 2j 2e(j)]} 
J=~ ,~j 27P[U~ 2 = x - 

1 { ~ ~d ;~2 <J~ikxixk P[Uz = x] 
P[U~ = x] . z ( z - 1 )  Aj)~k j=l  = k+] 

d ~2 
+ 

Z - ' z ( z -  1) j=l 
22 

- z(z- l i  r  . . . . .  x a ) .  

This completes  the p roo f  o f  Theorem 4.1. [] 
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