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Summary .  Let X and Z be IRd-valued solutions of the stochastic differential 
inequalities dXt <_ a(t,Xt)dt + ~r(t,Xt)dWt and b(t,Zt)dt + cr(t,Zt)dWt <_ dZt, 
respectively, with a fixed IRm-valued Wiener process W. In this paper we give 
conditions on a,b and cr under which the relation X0 < Z0 of  the initial values 
leads to the same relation between the solutions with probability one. Further 
we discuss whether in general our conditions can be weakened or not. Then 
we deal with notions like 'maximal/minimal solution' of a stochastic differential 
inequality. Using the comparison result we derive a sufficient condition for the 
existence of  such 'solutions' as well as some Gronwall-type estimates. 

Mathematics Subject Classifcation (1991): 60H10 

1 Introduction 

One of the important and effective techniques in the theory of differential equa- 
tions is the comparison method. It can be applied in proving a priori estimates 
for existence and uniqueness theorems as well as in stability investigations and 
in many other directions (cf. [9] or [14]). From this point of view it is quite 
clear that comparison theorems also appear in the theory of stochastic differen- 
tial equations (cf. [6] and the references therein). The aim of the present paper is 
to derive a comparison theorem for systems of  stochastic differential inequalities. 
In this situation the famous machinery of  the It6-formula does not work. Instead 
of  it we develop a method which is based on a simple idea. As far as we know 
Anderson [1] was the first who used it. Let us shortly sketch this idea. 

Anderson considered IRa-valued solutions X and Z of  the homogeneous 
stochastic differential equations 

dXt = a(Xt)dt + ~r(X,)dWt 
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dZt = b(Zt)dt + a(Zt)dWt 

with the same initial value. Then he proved that fo r j  = 1, . . . ,d 

(1.1) lim Zj(t) - Xj(t) _ bj(X(O)) - aj(X(O)) 
t \ 0  t 

holds a.s. if a, b are continuous and cr is H61der continuous with exponent greater 
than �89 Under the condition 

aj(x) < bj(x), x E ~d 

this implies 

(1.2) P ( { X j ( t )  < Z j ( t )  for all sufficiently small t > 0}) = 1. 

Using the homogeneity of the considered equations one can extend this result to 

P({Xj(t)  <_ Zj(t), t > 0)) = 1 

if an additional condition on r is required. But in case of stochastic differential 
inequalities 

dXt < a(Xt)dt + cr(Xt)dWt 

and 

one can derive only 

dZt >_ b(Zt)dt + cr(Zt)dWt 

lim sup 
t \ o  

Z j ( t ) - X j ( t )  
<_ b j ( x ( 0 ) )  - aj(X(O)) a.s.  

7-q = 

~-1 q = 

= 

and conclude (cf. [3], page 18) 

If  P({T q = ~ q  for a l lq  c Q + } )  = 1 then P({Xt < _ Z t f o r a l l t  > 0 } )  = 1. 

But the last implication is not true in general. Indeed, if we take for example 
X ~- 0 as well as for Z = W (the standard Wiener process) then from the 
implication would be follow that the Wiener process is nonnegative. 

In higher but finite dimensions we found an analogous mistake in [4]. This 
has stimulated us to write the present paper. With our technique we obtain for 

inf{t > q : Xt = Zt}, 
i n f { t  > T q : X t > Z t }  , 

inf{t > ~-q : Xt < Zt } 

instead of (1.1) which does not allow to conclude (1.2). 
In the one-dimensional case the authors of [3] attempted to solve this problem 

with a complicated stopping procedure which we shall briefly discuss now: For 
two processes X, Z with the same initial value and for q r Q+ they consider the 

stopping times 



The behavior of solutions of stochastic differential inequalities 495 

systems of inhomogeneous stochastic differential inequalities with possible explo- 
sions a better result than Anderson in [1] for homogeneous stochastic differential 
equations. It should be noted here that the authors in [5], [6], [10] proved our 
result in the special case of stochastic differential equations but we do not know 
how one could use their techniques with respect to inequalities. Further we also 
admit different initial values and this turns out to be very useful which the proofs 
below will show. Our results are in a certain sense stronger than those stated in 
[3], [5], [6] or [10]: We shall give conditions guaranteeing that the solutions 
cannot come in contact with each other. 

At first look the conditions in our Theorem 2.3 seem to be very restrictive. 
Therefore we shall give several arguments showing that this is not really true. 

Inspired by the deterministic theory we introduce the notions 'maximal/minimal 
solution' of a stochastic differential inequality and give a sufficient condition for 
the existence of such 'solutions'. If  there does not exist the 'maximal/minimal 
solution' then we look for upper/lower boundaries for the solutions of  the stochas- 
tic differential inequality, respectively. In dimension one this leads to some 
Gronwall-type estimates. 

2 A comparison theorem 

We shall always work with a complete probability space (s 5~ ,  P) equipped with 
a right continuous filtration N = ( ~ ) t > o  such that . ~  contains all P-null sets of  
, ~ .  In order to deal with processes with a possible explosion we introduce the 

one-point compactification ~d = ll~d U {A} of IRa together with the corresponding 
Borel cr-algebra. In our framework it is technically useful to define IIA]I = O. In 
the sequel we shall deal with the following two systems of stochastic integral 
inequalities: 

(<) Xj(t) <_ Xj(s) + a j (r ,X(r) )dr  + ~rjk(r,X(r))dWk(r) 
k=l 

I' L/' (>_) Zj(t) > Zj(s) + bj (r ,Z(r))dr  + ~Tjk(r,Z(r))dWk(r) 
k=l s 

where j = 1, . . . ,d  and W = (WI, ..., Win) is a given m-dimensional N-adapted 
Wiener process. The initial values X(0) and Z(0) are supposed to be Fo- 
measurable. Moreover they satisfy the condition 

(Co) xAo) _< zj(o) 

for j = 1, . . . ,d P-a.s. The mappings aj,bj,  ojk : ~+ x I~ d ~ •, j = 1,..., d, 
k = 1, . . . ,m, are always assumed to be continuous. For a later use we need the 
following condition on c,. 
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For some c~ E (�89 oo) and each T . N  > 0 there exists a constant KN(T) 
such that for every j = 1, ..., d ' 

(C~) ,1 s  - ojdt,z) t < - K N ( T ) .  I x j  - zj I ~ 

L k=l 

holds for all t E [0~ T] and any x , z  E L~ d with Ilxll, Ilzll _< N.  

We shall always use the sum-norm, i.e. 

d 

IIx II = Ixkl. 
k=l 

Let 0 be a strictly positive predictable stopping time and let (0n)~E~ be an 
announcing sequence for 0. 

Definition 2.1 Let X be an IF-adapted stochastic process with values in ~ which 
is continuous on [0, 0). X is called a solution to (<) up to 0 if in replacing s and 
t by s A On and t A On, respectively, the inequality (<_) holds for all t >_ 0 and 
s E [0, t] P-a.s., n E N. 

Remark 2.2 (i) In particular the assertion that (_<) is fulfilled means that the 
integrals on the right hand side of  (<)  are well-defined. This includes the 
assumption X(t A On) r ~ for all t >_ 0 P-a.s. in the definition above. 

(ii) Analogously, one introduces the notion of a solution to (>_) up to O. 
(iii) For 0 = ec we obtain the usual notion of a global solution. 
(iv) If  0 is the explosion time of X, i.e. 0 = limN~o~ inf{t > 0 : IfX(t)l] > N},  

then X is said to be a local solution. 

In order to formulate the comparison theorem we introduce the main condition 
on the 'drift' coefficients: 

For any t >_ 0, j = 1,..., d, it holds 

(Ca,b) aj(t ,x)  < bj(t ,z)  

~.ifxj =zj ,  xt <_ zt, l 5/j. 

The following assertion is the main result of this section. 

Theorem 2.3 Let X and Z be arbitrary solutions to (<) and (>) up to a strictly 
positive predictabl e stopping time O, respectively. Then the conditions (Co), (C~) 
and (Ca,b) imply 

P ( { X ( t )  < z(t), t E [0, 0)} )  = 1. 

Moreover, the sign "<" in (Co) leads to "<" in the above assertion. 

Remark 2.4 For two local solutions to (<)  and (>_) with the explosion times Ox 
and Oz, respectively, the natural choice for 0 is Ox A Oz. 
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Proof (i) First we prove the strict inequality. Let 

Xj(0) < Zj(0), P-a.s., j = 1, ...,d. 

Put D = inf{t _> 0 : Xj(t) = Zj(t)}, where inft3 = oo, and r = r~ A ... A -ca. In this 
case we trivially have 7- > 0 P-a.s. For a later use we introduce 

92(t) = ~ [crjl~(r,X(r)) - crjk(r,Z(r))] 2 dr, t < O, 
"7-7= k=l 0 

and the stopping times 

TN = inf{0 < t < 0 HX(t)II V IIZ(t)i] V 9..t(t) > N}AON 

where (ON)NC~ is an announcing sequence for 0. By Remark 2.2(i) it holds 
TN T O. Assume for a moment we would have proved 

(2 .5)  P({7~ = 7" < T N}) = 0 

for j = 1,..., d and all N E N. Taking N --+ oo it would follow P({7" < 0}) = 0 
which is equivalent to 

P({X(t) < Z(t),  t E [0, 0)}) = 1 

proving the theorem in the considered case. Therefore it remains to verify (2.5). 
To do this we assume the opposite, namely, that there exists a j  E {1, ..., d} and 
an N c N such that P({~ = 7" < TN }) > 0. After fixing these two numbers we 
introduce the notation 

L ;  tATu Mj(t) = [crjk(r,X(r)) - erjk(r,Z(r))] dWk(r), t > O, 
k=l JO 

and note that Mj is a continuous martingale with the quadratic variation process 

L [  tATu 
Aj(t) = [~rj~(r,X(r)) - o-jk(r,Z(r))]2 dr, t > 0, P-a.s. 

k=l J0  

It is well-known (cf. [6], Th. II.7.2') that there exists a Wiener process Bj on a 
possibly extended probability space with the property 

Mj(t) = Bj(Aj(t)), t > 0, P-a.s. 

If it is necessary to extend the basic probability space we also define all random 
variables on the extended probability space in the canonical Way using the same 
notations. Fix a real 

Z) �89 
"yC 2c~+1'2c~ ;q(O, ). 

Let ~-r be the measurable subset of  $2 which is defined by the following six 
requirements: 



498 S. Assing, R. Manthey 

1 ~ X( . ,w) ,Z( . ,w)  and Aj(. ,w)are continuous on [0, 0(w)). 
2 0 Replacing s and t by s A 0n(w) and t A 0n(W), respectively, the inequalities 

(<)  and (>)  hold for all t > 0, s E [0, t] and n E I~ where again (0n)nc~ is 
an announcing sequence for 0. 

3 0 7-(co) > 0. 
4 0 It holds Mj (t, co) = Bj (Aj (t, co), co), t >_ O. 
5 o There exists an hj (co) such that 

[Bj(t,co) - Bj(s,co)l < ~ _ 2 
sup (t - s)'r - 1 - 2- ' r  

O ~ t -- S < hj(co) 
t ,s  E [0,N] 

6 o 0 _< Aj (t, co) <_ N,  t >_ O, holds. 

Since Bj for the chosen r possesses the property 5 o with probability one (cf. 
[8], sect. 2.2) and 6 o holds for P-a.a. co E a"2 by the definition of TN we get 
P(gT r) = 1. Consequently we observe .P({7~ = r < TN } A ~'r)  > 0. Choose an 
coO 6 {~" = 7" < TN } f-'l .Q'r. Then from the continuity of  Aj for the fixed coo we 
can conclude that there exists a to(coo) C [0, r(coo)) such that 

(2.6) [Aj(7-(Wo), coo) - Aj(t , coo)l <_ hj(coo) 

for all t E [to(coo), r(coo)). Moreover we have 

aj (v-(coo), X (v-(coo) , coo)) < bj (v'(coO) , Z(7-(Wo), Wo)) 

by combining the definition of 7- and condition (Ca,b). But aj and bj are contin- 
uous why we find neighbourhoods Ux and Uz of the points (7-(coo), X(r(wo), coo)) 
and (r(coo),Z(r(coo), coo)), respectively, such that 

aj( t ,x)  < bj( t ' ,z)  

for all ( t ,x)  E Ux and ( t ' , z )  E Uz. Clearly, if to(coo) chosen above is sufficiently 
close to 7-(coo) then it holds 

(t,X(t,coo)) E Ux and (t,Z(t,coo)) E Uz 

for all t E [to(COo), 7-(coo)) by the continuity of  X and Z for the fixed coo. All in 
all this yields 
(2.7) aj(t,X(t,coo)) < bj(t,Z(t,coo)) 

for all t E [to(coo), 7-(coo)). For 0 _< s < 7- the basic inequalities (_<) and (>_) lead 

to 

Xg(7-) - / s ra j ( r ,X ( r ) )d r  - L s rcr jk ( r ,X(r ) )dWk(r )  
' k = l  s 

< Xj(s)  < 

< Zj(s) < 
7" 7- 

< Zj (7- ) -  b j ( r , Z ( r ) ) d r -  aj~(r,Z(r))dWk(r) 
k = l  
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where for simplicity of the notation the dependence on ~0 is here and from now 
on omitted. We shall always deal with the paths determined by the chosen wo. 
The last inequalities give finally 

(2.8)0 < Z j ( s ) - X j ( s )  <_ [ a j ( r , X ( r ) ) - b j ( r , Z ( r ) ) ] d r  + M j ( T ) - M j ( s )  

for s E [0, r).  Because of (2.7) the integral in (2.8) is negative for s E [to, T). 
Therefore it holds 

(2.9) 0 <_ Zj(s) - Xj(s)  <_ Mj(T) - Mj(s)  

for s C [to, ~-). Further relation (2.8) implies 

(2.10) -1 [ b ] ( r , Z ( r ) ) - a j ( r , X ( r ) ) ] d r  <_ 1 ( M ] ( T ) - M j ( s ) )  
T S T - - S  

if s E [to, "r). 
For the right hand side of (2.10) we get 

1---~-(Mj(T) -- Mj(s))  = Bj(Aj(7)) - Bj(Aj(s)) IAj(7) - Aj(s)r  ~ 
~- - s  IAi(~-) - Aj (s)  F ~- - s  

(2.11) _< 6.  ]Aj(~-)-Aj(s)p  
T - - S  

i fs  E [to, ~-) where the last inequality follows from (2.6) and the properties 5 ~ 6 ~ 
From the definition of A], T < TN and condition (C~) we derive for s E [to, T) 

IAjO -) - A j ( s ) r  ~ = I [c~]k(r,X(r)) - crj~(r,Z(r))]2 dr[ "~ 
k=l 

r _< (T -- S) "y sup ~ Ir~]k(r,X(r)) -- ~ik(r,Z(r))l  2 
[ r6[s , r ]  k=l 

<_ ( T - s )  ~ sup ~-~ t~ ik ( r ,X( r ) ) - -~ ik ( r ,Z ( r ) )  ] 
[rC[s,r] k=l 

<_ KZ'~(-r-s)~ [ sUPkr~[s,~_ l 'Xj ( r ) -Z] ( r ) tc~]  2"y 

(2.12)  < K~'~(r  - s )  "~ sup I N ( r )  - Z j ( r ) l  

where KN = KN(T). The fact that Zj(r) > Xj(r)  for r C [s,71,(2.11) and (2.12) 
lead to 

(2.13) 1-~(Mj(~- ) -Mj(s ) )  < 6.  K~'~(T----s)'~ sup ( Z j ( r ) - ~ ( r ) )  
T - s T -- s LrE[s,~- ] 
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if s E [to, r). Moreover  from (2.9) and (2.13) we get 

2a'7 

' . . . .  I ] (2.14) (Mj(r)  - Ms(s)) <_ 6 . K~n(r - s)'~ sup (Mj(7-) - Mj(r)) 
7- -- s 7- -- s [rE{s,r] 

if S E [to, 7-). The continuity of  the chosen trajectories of  X and Z ,  respect ively ,  
and Xj(r)  = Z j ( r )  imply  the existence of a t ime tl E [to, 7-) such that for n = 1 

(2.15) sup (Zj (r )  - X j ( r ) )  < n -(2c~)-~ 
rE[tn ,r] 

From (2.13) and (2.15) we can conclude for n = 1 

_ _ 1  (Mj(7-) - M j ( s ) )  < ~5. K2-r(7- - s)'r �9 n -1 ,  
7" - - S  7" - - S  

s E [tn, r). 

1 (Mj(7-) Mj(s ) )  < (1V6)'---~aT~(1VKN) 1 - ~  
7 " - - S  

(2.18] • -n  
7 - - - S  

if  s E [tn, r). Note  that because of  the choice of ~y we obtain 2c~ 7 < 1 which en- 

sures the convergence  of  the geometr ic  series above.  On the other hand n -(2a'v)-" 

(2.17) sup ( Z j ( r ) - X j ( r ) )  < n - ( 2 ~ ) - " .  
rE[tn,'r] 

Putting (2.17) into (2.16) we arrive at 

1 
- - ( M j ( 7 - )  - MS(s)) <_ 
7 " - - S  

(5(l+2oe2r176 __ s)'-),(1+20e~r 

7 " - - S  

for s E [tn, 7-) and n = 2. A cont inuat ion of  this procedure  leads to 

"r/  --1 

To obtain the next i teration step we mult iply  (2.13) with (7- - s)  and put  the 

result into (2.14). This gives 

l ~ .  x ~ ( 7 -  - ~ ) ~ x ~ ( 7 -  - ~)~ 
- - ( M j ( 7 - )  - Mj(s))  < 
7" - - S  7" - - S  

[rE[s ,-r] 

6(>2~'r)K~'r(l+2~'v)(7- _ S)'vO+2,~'~) 

7 - - - S  

( 2 . 1 6 )  • [ sup ( Z j ( r ) - X j ( r ) ) ]  (2~ 
Lr~[s,~] 

if s E [q,7-) (here one could also take to instead of  q) .  By the same arguments  
as above  we can find a t2 E [q ,  7-) such that for n = 2 
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tends to zero as n -~ oo and this together with the continuity of Xj and Zj implies 

tn ---+ T ,  rt --+ O 0 .  

The relations (2.10) and (2.18) lead finally to 

' s  7" - t~ [bj(r,Z(r)) - a j (r ,X(r))]dr  

<_ constant �9 �9 n 
7" - -  t n 

(2.19) 

The left hand side of (2.19) converges to 

bj ( r ,  Z ( r ) )  - aj(7-,X(~-)) 

which is strictly positive by (Co,b) since we have 

Xj( r )  = Zj(7-) and Xt(T) <_ ZI(T), j 7(1. 

But by the choice of 7 we obtain. "~ > 1 and consequently for sufficiently 
large n the right hand side of (2.19) can be estimated from above by 

c o n s t a n t - n - I  ---4 0~ n ----+ o o .  

This contradiction proves the theorem in case of 

Xj (0) < Zj (0), P-a.s. ,  j = 1, ..., d.  

(ii) In the remaining case we admit the equality of the initial values: 

Xj(O) < Zj(O), P-a.s., j = 1, . . . ,d .  

Instead of  Tj and T we now introduce the stopping times gj = inf{t _> 0 " Xj(t)  > 
Zj( t)} and ~ = ~1 A .. .  A ~d, respectively. Clearly if we could prove 

P({~j = ~ < r~v }) = 0 

f o r j  = 1 , . . . , d  and all N E N then the theorem would be shown. And i f ~  > 0 

would be held P-a.s. then we could prove the last equality in the same way as 
(2.5) in part (i) above. Therefore let us show g > 0 P-a.s. finishing the proof  of 
the theorem. 

At first we shall establish that there exists a locally Lipschitz continuous 
mapping c " II~+ x I~ d ---+ ]R d such that for a fixed N and a sufficiently small 
c > 0  

(2.20) aj( t ,x)  < cj( t ,y)  • e < bj(t, z) 

fo r t  E [0 ,N] ,  Jlxll, Ilzfl _< N andxj  = y j  = zj andxt  <_ Yt <_ zt, l ~r = 1, . . . ,d. 
To make this clear we f i x j  C {1, . . . ,d}  as well as N and introduce the sets 

~ .  = {x ~ ad- Ilxll <_N, xj =yj,  xt <-Yz, l s t j } ,  Y EI~ J, 

and 

gYgy = {z E Na . IIz II ~ N ,  zj = y], zt >_ Yl, l 5tj }, 3' E I~ a. 
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Since 9Ry and 9Ry are compact we observe 

sup aj(t ,x)  =: a; ( t , y )  < b ; ( t , y )  := in f bj(t ,z)  
x E .r z E.Cr~y 

for each t >_ 0 and y E ~d with IIY [I -< N. The continuity of a f  and bj* on 

[O,N] • {y E R a �9 IlYl[ -< N} implies the existence of a r > 0 such that 

inf (b.*,(t y ) -  a f ( t ,y))  > 6. 
(t,y)E[O,N]• {yET~d:ily[I<_N } J 

Now any sufficiently smooth mapping cj : ~+ x IRa ~ ~ with 

1 , 6 
sup Icj(t,y) - ~(ay ( t , y )+b f ( t , y ) )  I < -~ 

(t,y)E[0,g] x {y~a:liYl <g ) 

and r E (0, ~) are good candidates for cj and r as desired. 
Now we define Yj (0) = Xj (0), j = 1, .,., d. Because of Xj (0) < Zj (0) we obtain 

Xj (0) < Yj(0) _< Zj (0), j = 1,..., d. Let us consider the systems of stochastic 
integral equations 

/o' • Yj(+~)(t) = gj(:~)(O) + (cj(r, g ( •177  + ~rjt(r, Y(+~)(r))dWk(r) 
k=l 

(2.21) 
where in case of  e > 0 

Yj(+')(o) := ~(o)  + c > ~-(o) >_ xj(o) 

and 
~(-~) (0)  := ~ ( 0 )  - c < ~ ( o )  <_ z j (o ) .  

By Corollary 5.4 of the appendix there exist pathwise unique local solutions 
Y(• ~ > 0, to (2.21) with the explosion times 0 (ie). We will show that there 
exists a P-a.s. strictly positive stopping time 0 such that the unique local solution 
y = y(• with the initial value Y(0) coincides on [0, 0") with the limit of  both 
sequences of solutions (Y (-e)) and (Y(+e)) for ~ ~ 0. This will help us to show 
X < Y < Z up to 0 A 0 proving the desired relation 7 > 0 A 0" > 0 P-a.s. 

For 0 < r < r the comparison in the strict case gives the following useful 
lemma which will be shown after the end of the present proof. 

L e m m a  2.22 It holds 

(i) Y(-e2)(t) < Y(-~l)(t) < Y(+~')(t) < Y(+~2)(t), t E [0,0 (-~2) A 0(+c:)), P-a.s. 
(ii) 0 ~-~2) A 0 (+~2) < 0 (-~1) A 0 (+~') P-a.s. 

This lemma has two consequences. First for each ~5 > 0 there exists 

Y(• = lira Y(+~)(t), t ~ [0, 0 {-~) A 0(+e)), P-a.s., 
e \ 0  

and second the limit 
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= l im(0 i-~) A 8 (+5)) 
5 \ o  

is a predictable stopping time. Hence Y(• can be defined P-a.s. on the stochastic 
interval [0, 0) where they take values in R d. By setting 

r (+ )=o  on [~, ,c)  

we so obtain two adapted processes Y(+) and Y(-). Further each explosion time 
8 (+5) is P-a.s. strictly positive providing 

0 > 0 P-a.s. 

The next step is to show that Y(+) and Y(-) solve (2.21) with ~ = 0 up to 0". 
Then we can identify Y(+) and Y(-) with the above mentioned process Y up to 
0. Let us fix (5 as well as N and define 

Tu ~ = inf{t > 0 : IIY(+~)(t)II v llYI-a)(t)ll > N} AN. 

If  0 < e < (5 from (2.21) it follows 

+ fo ,Ar~ Yj(+e)(t A TN e) = Yj(+e)(0) (cj(r, Y(+~)(r)) zk r dr 

m [.IAT~ 
+ ~ Jo crj,(r, Y(• 

for all t > 0 P-a.s., j = 1,...,d. Fixing t and letting c "N 0 we observe that 
the left hand side converges to Yj(+)(t A T~) P-a.s. The first term on the right 
hand side tends P-a.s. to Yj(0). Because of the boundedness of  both c and a 
on [0, t] x {y e I1U - ][Y[I -< N} we can use Lebesgue 's  theorem on dominated 
convergence to take the limit into the integrals where the stochastic integral is 
handled in L2(J'2). Finally the continuity of both coefficients implies 

ItAT6N ~_~ ftATg 
Yj(+)(tATN e) = Yj(0)+ cj(r, Y(+)(r))dr + ~jk(r, Y(• 

JO k=l JO 

for all t _> 0 P-a.s., j = 1,. . . ,d. Since (T~) with (5 "N~ 0 and N --~ o~ is an 

announcing sequence for 0" the processes Y(+) are solutions of (2.21) with ~ = 0 
up to 8. But by Proposition 5.1 and Remark 5.3 of  the appendix there is only 
one solution of (2.21) with e = 0 up to 0. Therefore we can identify Y(+) and 
Y(-) with Y on [0, 8). 

Now we shall study the connection between X, Y and Z.  In addition to the 
stopping times TN ~ we use the stopping times TN introduced at the beginning of 
part (i) of  this proof (but we only need [[X(t)[[, []Z(t)[[ _< N on [0, TN]) which 
converge to 0 for N ---+ oo. Then for a fixed N Lemma 2.22(ii), (2.20) and part 
(i) of  the present proof give 

X(t) < Y(+C)(t), t E [0, TN A T~), P-a.s., 
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and 
Z(t) > Y(-~)(t), t E [0, T N /~ T~N), P-a.s., 

for all 0 < e < (5, (5 sufficiently small. Here we can apply (2.20) in place 
of (C~,c+~) and (Cb,c-~), respectively, since we only compare the processes on 
[0, TN A T~N). If c converges to zero we obtain 

and 

X(t) < Y(t), t E [0, TN A T~), P-a.s., 

Z(t) >_ Y(t), 

which leads to 
X(t) <_ Y(t) < Z(t), 

if (5 tends to zero and N to infinity. But this means ~ >_ 0 A 0 > 0 P-a.s. 

t c [0, TN A T~N), e-a.s., 

t E [0, 0 A 0), P-a.s., 

[] 

Proof of  Lemma 2.22. Reminding of the proof of (2.20) the function cj can also 
be chosen with the property I such that for each t _> 0 

q( t , x )  <_ cj(t,z) 

if x) = zj and xt _< zt, l 5/j .  This carries over from the corresponding property 
1 * of the function ~(aj (t, .) + b~(t, -)) introduced there. As a consequence we may 

compare the solutions of (2.21) for the fixed el, ce by applying the already proved 
part (i) of the theorem. 

It suffices to prove (ii) because statement (i) then immediately follows from 
the assertion which has been shown in part (i) of the previous proof. But instead 

of (ii) we shall prove 
(2.23) 0 (-~2) A 0 (+e2) < 0 (~) 

P-a.s. for an arbitrary ~5 C ( -e2,  +c2)- Substituting (5 by - c l  and +el,  respectively, 
we get (ii). 

In order to show (2.23) let us fix (5 E ( -e2 ,  +c2). Applying the result from 
part (i) of the previous proof we obtain 

{ Y(-~2)(t) < Y(~)(t), t E [0,0 (-~2) A 0(6)), P-a.s., 
(2.24) Y(~)(t) < Y(+~)(t), t E [0, 0 (~) A 0(+~2)), P-a.s. 

If we now assume the opposite of  (2.23) that is 

P ( ( 0  (~) < 0 (-~2) /N 0(+~2)}) > 0 

then we can easily derive a contradiction proving (2.23). Indeed, using (2.24) 
under the assumption above there exists an w E {0 (~) < 0 (-~2) A 0 (+~2)} such that 

Y(-~)(t,  w) < r(~)(t, w) < Y(+~)(t, w), t E [0, 0(~)(w)). 

This is a contradiction to the definition of the explosion time in Remark 2.2(iv). 

[] 

I See also Definition 3.1 
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3 Discussion of the conditions 

Let us deal with the question wether the conditions of Theorem 2.3 can be 
weakened. Clearly condition (Co) should remain untouched. But what about (Ca) 
and (Ca,b)? 

Let us first consider (C~). Having the one-dimensional theory in mind one 
could have expected that Theorem 2.3 could be proved under the usual condi- 
tion of local H61der continuity with exponent oe > �89 which follows from (C~). 
However the example below shows that (Ca) cannot be weakened in this sense. 
Intuitively a reason for that is the following: In the critical situation when X] and 
Zj are close to each other the remaining coordinates should have no influence on 
the noise intensity of the j th  coordinate. Our example works already for systems 
of equations in dimension 2. Consider 

/o' Xl( t )  = 1 + X e ( r ) d W ( r )  

2 X2(t) = X l ( r ) d W ( r )  

and 

j~0 t ZI(t)  = 1 + 2 t  + Z2 ( r )dW(r )  

/o' Z2(t) = 1 + 2 t  + Z l ( r ) d W ( r )  

where W is a given one-dimensional Wiener process. In both systems the drift 
and diffusion coefficients are continuous. Moreover we observe X(0) _< Z(0). 
Condition (Ca,b) is obviously fulfilled. Because of 

and 

I ~ l ( x )  - m ( z ) l  = Ix2 - z21 

/ ~ 2 ( x )  - o - 2 ( z ) l  = lx~ - z z l  

the diffusion is Lipschitz continuous but condition (Ca) is violated. Both systems 
can be explicitly solved. Adding and subtracting the corresponding equations we 
easily obtain 

1 [ e x p { W ( t ) _ l  1 ] Xl( t )  = ~ ~t} + e x p { - W ( t ) -  t} 

1 [ e x p { W ( t ) - I  ~ ] X2(t) = ~ ~ t } -  e x p { - W ( t ) -  t} 

as well as 

Zl(t)  = Z2(t) = t I dr ] 
+ fo z - W(r)} J . e x p { W ( t ) -  ~t}. exp{=r 1 
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If the comparison principle X(t) < Z(t) would hold we would have in particular 
XI (t) _< ZI (t). Putting the explicite solutions into this inequality and dividing the 
result by exp{W(t) - �89 we establish after a trivial calculation 

exp{-2W(t )}  _< 1 + e x P { 2 r - W ( r ) } d r .  

Taking the expectations on both sides this gives 

/o exp{2t} <_ 1 + exp{r}dr  = exp{t} 

which is a contradiction. Hence, already in this simple case the comparison 
principle does not hold. 

A further problem is the following: Does the assertion of Theorem 2.3 hold 
i in (C~)? We believe that the answer is negative. if we admit c~ <_ 

Now let us investigate condition (Ca,b). Here one would prefer to take the 
condition 

(C~,b) aj(t,x) < bj(t,x), t >_O,x E I~d,j = 1,...,d, 

instead of (Co,b). Unfortunately it turns out that if we replace (Ca,b) by (Ca*b) 
in Theorem 2.3 then we do not obtain a true assertion. This has already been 
well-known in the deterministic theory (cf. [14]). The following counterexample 
even works if in (C2, b) the strict inequality between aj and bj holds as well as 
cr does not vanish. Consider the systems 

/o'L Xl(t) = -X2(r)]  dr + W(t) 

/o E X~(t) = -X~( r ) ]d r  + W(t) 

and 

fo 
t 1 

Zl(t) = [ - Z 2 ( r ) +  ~ ] d r  + W(t) 

Z2(t) = [-Zl(r)+-~]dr + W(t) 

where W is again a given one-dimensional Wiener process. That means that the 
corresponding drift coefficients a, b " I~ 2 --+ R 2 are defined by 

1 
al(Xl,X2) = - - x 2  and bl = al + 

1 
az (Xl  , x2 )  = --Xl b2 = a2  + 

The diffusion coefficient equals one. All in all the conditions (Co), (C~,) and 
(C'b) are satisfied. But it is easy to verify that (Ca,o) is not fulfilled. Solving the 
equations above we get the unique global solutions 
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and 

This gives 

f0 t Xl(t) = X2(t) = e x p { - t }  exp{r} dW(r)  

1 ]0' 1 Zl(t) = ~ + e x p { - t }  exp{r}dW(r)  - ~exp{ t}  

1 ~o t 1 Z2(t) = ~ + e x p { - t }  exp{ r}dW(r )  + ~exp{ t} .  

1 1 Z l ( t ) - X l ( t )  = ~ ( - e x p { t } )  < 0, t > 0, P-a.s., 

which is in contradiction to the assertion of Theorem 2.3. 
The counterexample above implies that if we replace (Ca,b) by (C~*b) in 

Theorem 2.3 then we need further conditions in order to derive the conclusion 
of this theorem. In the next proposition we shall give such conditions. Among 
them is the so-called quasi-monotonicity which is defined as follows: 

Definition 3.1 A mapping f : ~d __~ R~ is said to be quasi-monotonously in- 
creasing if for each j = 1, ..., d 

fj.(x) <_fjCy) 
provided xj = yy and xt <_ Yt, l =~j. 

Remark 3.2 The property which is called quasi-monotonicity here is well-known 
in the deterministic theory of differential equations. It was first recognized by 
Mtiller [11], [12] and Kamke [7] in carrying over fundamental theorems from 
one differential equation to systems of differential equations. 

Probably this has motivated Mel 'nikov in [10] to generalize a comparison 
result for stochastic differential equations from the one-dimensional case to the 
higher dimensional case without proof using an additional quasi-monotonicity 
of one of the drift coefficients. However, he arrives at a better condition as the 
authors in the next proposition only with respect to o'. Indeed he can employ 
the condition (Co~) which will be introduced in the appendix. But already in the 
one-dimensional case we do not know how to apply his technique to stochastic 
differential inequalities. 

Proposition 3.3 Let one of  the inequalities (<_) or (>) be an equation which 
possesses a pathwise unique solution 2 up to a strictly positive predictable stopping 
time O. Suppose that the remaining inequality has a solution up to O. Further we 
assume that the drift coefficient in the equation is quasi-monotonously increasing 
in the second variable. I f  we denote the solutions of (<) and (>) by X and Z, 
respectively, then (Co), (C~) and (Ca,/,) imply 

P({X(t)  _< Z(t), t e [0,0)}) = 1. 

Applying Theorem 2.3 in place of  the comparison theorem in [5] the proof  is 
exactly the same as the proof of  Th. 1.2 in [5]. Therefore we omit it. 

2 For the definition of this notion see Proposition 5.t of the appendix 
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4 Existence of solutions of stochastic differential inequalities 

Although we introduced the notion of a solution of a stochastic differential in- 
equality in Definition 2.1 we have not yet discussed questions like existence or 
uniqueness of  such solutions. It is a useful consequence of  our comparison results 
in section 2 that we are now able to deal with these questions. In this framework 
we shall derive some Gronwall-type estimates, too. 

At first let us consider the following simple example in dimension one, 

(4.1) X(t) < X(s) + X ( r )dW(r )  + (t - s ) ,  

where W is a given one-dimensional Wiener process. Clearly, for each initial 
value X(0) there exists a pathwise unique solution Z of  the equation 

Z(t) = X(0) + Z(r )dW(r )  + t 

and this is also a solution of (4.1). But for each fixed initial value X(0) we can 
give a whole class of other solutions to the inequality, namely (X~)~c(_~,l~ 
where X c~ is the solution to 

XC~(t) = X(O) + XC~(r)dW(r) + oa. 

Already this example demonstrates what is intuitively clear: It is not reasonable 
to search for 'unique solutions' of stochastic differential inequalities in the usual 
sense of pathwise uniqueness. 

By applying Proposition 3.3 to 

X(t) <_ X(s) + X ( r )dW(r )  + ( t - s )  

f' 
Z(t)  = Z(s) + Z ( r )dW(r )  + ( t - s )  

we observe that the solution Z of (4.1) mentioned above is maximal in the 
following sense: If  Y is any other solution of (4.1) with X(0) = Y(0) P-a.s. then 
it holds 

Y(t) < Z(t), t >_ O, P-a.s. 

It is evident that such a maximal solution is pathwise unique in the usual sense. 
Moreover it turns out to be natural that in case of  (_<) one should only search 
for upper boundaries for the solutions of  the inequality. Indeed, already in our 
simple example there does not exist a lower boundary for the class of solutions 
(X~)~c~_~,l). This has inspired us to the following definition. Let 0 be a strictly 
positive predictable stopping time. 
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Definition 4.2 (i) A solution X of(<_) up to 0 with initial value X(O) satisfying 
the property that if  Y is any other solution of(<_) up to 0 with Y (O) = X (O) 
P-a.s. then 

P({Y(t)  <_ X(t) ,  t E [0, 0)}) = t 

is said to be the maximal solution of(<<_) up to O. 
(ii) A solution X of(>_) up to 0 with initial value X (O) satisfying the property that 

if  Y is an), other solution of(>_) up to 8 with Y (O) = X (O) P-a.s. then 

P({Y(t)  >- X(t) ,  t E [0, 8)}) = 1 

is said to be the minimal solution of  (>) up to 8. 

Remark 4.3 (i) In the particular case that we have an equation in place of an 
inequality a solution X is pathwise unique if and only if it is the maximal as 
well as the minimal solution. 

(ii) With respect to deterministic differential equations these concepts are well- 
known (cf. [14]). 

(iii) Finally, in [2] analogous concepts have already been introduced for describing 
certain decompositions of semimartingales which are related to the so-called 
'reflection problem'.  

The following theorem gives a sufficient condition for the existence of the maxi- 
mal solution of (<_) up to the explosion time. An analogous result can be proved 
for (>_). 

Theo rem 4.4 I f  the coefficient a is quasi-monotonously increasing in the second 
variable as well as satisfies 

f For each T , N  > 0 there exists a constant LN(T) such that 

Ila(t,x) - a(t,y)l] <_ LN(T)IIx -- yll 
I 
I, for  all t <_ T and x ,  y C ]~a with x ,  y <_ N.  

and it holds (C~) then for  each initial value X (O) there exists the maximal solution 
X o f ( < )  up to the explosion time 8x. 

Proof  Let X(0) be a fixed initial value. Then Corollary 5.4 of the appendix gives 
the existence of a pathwise unique solution X o f  the corresponding equation up 
to the explosion time Ox. I f  now Y is a solution of(<-) up to Ox with Y(0) = X(0) 
then Proposition 3.3 implies 

P({Y(t)  < X(t) ,  t C [O, Ox)}) = 1. [] 

All the next considerations concern the inequality (_<) but one could also consider 
(>-) in a similar way. We want to deal with the situation where the maximal 
solution does not exist. Here we should be interested in finding a process whose 
trajectories are upper boundaries for the trajectories of  all solutions of  (<_). This 
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idea comes from the deterministic differential equations where in case of non- 
uniqueness Perron [13] called a majorant for all solutions a 'superfunction', 
Now for solutions of stochastic differential inequalities we are able to give such 
a 'superfunction' by applying our comparison theorem. 

Let X(0) be a fixed initial value. We assume (C~,) and search for a continuous 
function c : II~+ x I~ d --+ ~d  which possesses the following two properties: 

- a j ( t , x )  < c j ( t , z )  

for all t > 0 and x , z  C I~ d with xj = zj, xt <_ zt, l r  
- For the given m-dimensional Wiener process W there exists a solution Z, 

Z(0) = X(0), of  the inequality 

fs' f,' Z(t) > Z(s) + c(r,Z(r))dr + cr(r,Z(r))dW(r) 

up to a strictly positive predictable stopping time Oz. 

From Theorem 2.3 (after changing the assumptions correspondingly one could 
also apply Proposition 3.3) we get then that Z is an upper boundary on [0, Ox A0z) 
for each solution X of (<_) up to a strictly positive pedictable stopping time Ox: 

P({X(t) < Z(t), t e [0, Ox A 0z)}) = 1. 

In dimension one this method leads to some Gronwali-type estimates which 
follow finishing this section. Here certain coefficients will be assumed to be 
locally bounded. That is not the best condition and it is left to the reader to make 
it better in special cases. 

Proposition 4.5 For locally bounded coefficients a, 13, % (5 : ~+ ~ tI~ let X be a 
(global) solution to 

f' fs' X(t) <_ X(s) + a(r,X(r))dr + (~/(r)+~(r)X(r))dW(r) 
S 

where the continuous function a is assumed to satisfy 

a(r,x) < a(r) +/3(r)x, r > O ,  x C R .  

We set 

r  exp { for[/3(u)-~52(u)]du + for(5(u)dW(u)}. 
Then it holds P-a.s. for all t >_ 0 

[ fot 1" for'Y(r) dw(r)] X(t) <_ ~(t) X(O) + - ~ { a ( r ) - " / ( r ) 6 ( r ) } d r  + ~ . 
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With the preceding considerations in mind the proof is clear and therefore omit- 
ted. Let us emphasize the particular case ct = 7 = 0 and/3 = ~5 = constant. Then 
the proposition above gives 

X ( t )  < X(0)exp{[/3-1~52]t  +~SW(t)}. 

Moreover, for ~5 = 0 we arrive at the simplest form of Gronwall's lemma. 

Proposition 4.6 For  locally bounded coefficients 9, h, l : II~+ --+ I~ let X be a 
(global) solution to 

X ( t )  < X ( s )  + a ( r , X ( r ) ) d r  + l ( r ) X ( r ) d W ( r )  

with a strictly posi t ive  initial value X (O) where  the continuous funct ion a is as- 
sumed to satisfy 

a ( r , x )  <_ 9(r )x  + h ( r ) x  p, r >_ O, x E ItS, 

f o r  an exponent  p > 2. We set  q = 1 - p and define 

{ f o  r ~ fo r } ((r)  = exp q .  [ 9 ( u ) -  12(u)]du + q .  l ( u ) d W ( u )  . 

Then it holds P-a.s. 

x(t) < 

where 

_I 

(((t) IX(O) q +q'foth(r) dr]) q , 

fo 
t h ( r )  . 

0 = inf{t > 0 : X(O) q + q �9 ~ or < 0}. 

P r o o f  From Corollary 5.4 of the appendix we know that the equation 

t 6 [o, o), 

fot fo' Z ( t )  = X(O) + [9(r )Z(r )  + h ( r ) Z ( r )  p] dr + l ( r ) Z ( r )  dW(r) 

has a pathwise unique solution Z up to the explosion time Oz. Applying our 
comparison method and computing the explicit structure of z q  by the It6-formula 
we arrive with V ( t )  = Z( t )q  at 

/0 /o V ( t )  = V(O) + [ a ( r ) +  / 3 ( r ) V ( r ) ] d r  + ~ ( r ) V ( r ) d W ( r )  

where 

a ( r )  = q . h (r ) ,  

/3(r) = q . (9(r)  - •  . l ( r )  2) 2 

6(r) = q - l ( r ) .  
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The solution V of  this linear equation is exactly 

V(t)  = ((t)  [X(O)q + q ' fo t h(r) dr] j 

1 which also Now the rest of the proof follows by taking V to the power of 
gives 0 = Oz. [] 

Remark 4.7 (i) We have to demand X(0) > 0 in the proposition because in our 
proof we have to be able to compute X(O)q. 

(ii) Note that h < 0 implies 0 = oc. 

5 Appendix 

In this section we shall prove the existence and uniqueness results which we 
have used in the previous sections. For this purpose let us consider the system 

(*) Yj(t) = Yj(O) + cj(r, Y ( r ) )dr  + ~Tjk(r, Y(r) )dWk(r)  
k=l 0 

where j = 1, ..., d and W is a given m-dimensional Wiener process. The mapping 
c : R+ • R d -+ ~a is supposed to satisfy 

Ile(t,x) - c(t,y)[I <_ tN(Z)llx -Yll 

whenever t < T and Ilxll, IIYll <- N for each T , N  > 0 while a is the same as at 
the beginning of section 2. We need the following condition. 

There exists a strictly increasing function p : ~ .  -~ L 
with p(0) = 0 and 

f0§ p-2(U) du = O<3 

(C~) such that for each j  = 1, . . . ,d 

~ l ~rjk(t,x)--~rjk(t,z) I < _ p(I xj - zj I) 
k=l 

for all t > 0, x , z  E ~d. 

Proposit ion 5.1 I f  ~r satisfies (Cf )  then there exists at most one solution of  (*) 
up to a strictly positive predictable stopping time 0 in the following sense: I f  y(l) 
and y(2) are two solutions of(*)  up to 0 it holds 

P({Y(1)(t) = Y<2)(t), t < 0}) = 1. 

Remark 5.2 This result is well-known in the one-dimensional case for global 
solutions. It was proved by T. Yamada [15] improving an idea of H. Tanaka. 
Using the condition (Co~) in higher dimensions the proof is nearly a copy of the 
proof in the one-dimensional case (compare with the proof of Theorem IV.3.2 
in [6]). Therefore we omit it. 
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Remark 5.3 Proposition 5.1 remains true if (C~) is replaced by (Co). In this case 
1 we can use p(u) = u s, a > 7" 

Corol la ry  5.4 Let cr satisfy (C~) or (Ca). Then there exists one and only one 
local solution Y o f  (*) up to the explosion time Oy. 

Proof  We shall use the usual truncation and prolongation method. Let ~ " ~+ • 
q/~(N) •a __~ Ra be continuous. We define ~j , j = 1, ..., d, as follows. For tVIlx II - N 

it coincides with ~j.  If tVllxll  > N w e  take for ~ N ) ( t , x ) t h e  value of ~ N ) ( ( t - ~ )  

where (t, x) is the point of  intersection of the straight line connecting (t, x) with 
(0,0) and the boundary of {( t ,x)  : t V Ilxll _< N}. Obviously, r is again 
continuous and it holds ]~bfc)(t,x)[ < constant. By this way we can introduce the 

mappings c (u) and a (u). With them we obtain a system of stochastic differential 
equations with continuous and bounded coefficients for which a weak solution 
(cf. [6], Th. IV.2.2) exists. On the other hand we observe the pathwise uniqueness 
by Proposition 5.1 and Remark 5.3. Consequently the Yamada-Watanabe theorem 
(cf. [8], Cor. 5.3.23) gives us the existence of a strong solution y(N). If  we now 
introduce 

7IN = inf{t >_ 0"  []Y(N)(t)[[ > N}  

then the uniqueness implies 

y(N) = y(N+O on [0,~N A N )  P-a.s. 

because c (N), cr (u) and c (N+O, a (N+1) coincide on {(t, x) " t V llx tl -< N }. Therefore, 
up to indistinguishability we can define a process Y by setting 

Y(t)  = Y(N)(t), t C [0, TIN AN) ,  N = 1,2, ..., 

and 
Y(t)  = A ,  t E [limN--,~ 7]U , OO). 

From this definition it immediately follows that Y is a local solution of ( , )  up 
to the explosion time 0r = l i m u ~  rlN. [] 
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