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corollary to these results is the establishment of second (and in some cases 
higher) order asymptotic expansions for martingales. 
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1 Beyond the black box 

The embedding of martingales in Brownian motion is a powerful tool, 
particularly in asymptotic theory (see Hall and Heyde (1980) or Khosh- 
nevisan (1993), for example). There are two types of results: (i) any mar- 
tingale can be represented as a time changed Brownian motion, and (ii) any 
discrete time martingale can be interpolated with a continuous one. There 
is a substantial amount of literature in this area, including Dambis (1965), 
Dubins and Schwartz (1965), Skorokhod (1965), Sawyer (1967), Dubins 
(1968), Root (1969), Clark (1970), Monroe (1972), Chacon and Walsh (1976), 
Rost (1976), Heath (1977), Az6ma and Yor (1979), Meilijson (1983) and 
Khoshnevisan (1993). 

The papers cited use a variety of constructions of the embedding. Mainly 
(though see, for example, Rost, 1976; Khoshnevisan, 1993), the principle was 
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that any construction would do, one would just use it as a black box in subse- 
quent manipulations. On the whole, this strategy has functioned quite well in 
central limit theory and for the law of the iterated logarithm. 

Our reason for raising a 10 year old topic, however, is that the above 
approach runs into problems in connection with higher order asymptotics. It 
works, but it does not work very well. For example, in Mykland (1993), a key 
step in the development is to show that, in an asymptotic sense, 

+ E(ztlMs, 0 <_ s <_ t) ~ (1.1) 

where Mz is a discrete time martingale which can be embedded in Brownian 
motion as Mt = W~,. In other words, one is interested in the conditional distri- 
bution of the embedding, and one has to go through longish arguments to show 
that a black box embedding satisfies (1.1). This gets worse for higher order 
expansions. A similar need to have more precise properties of the embedding 
motivates the work of Khoshnevisan (1993). 

This leads to the question of whether one can construct embeddings with 
nicely controllable properties. The purpose of this paper is to partially answer 
this by constructing a specific embedding for which (1.1) holds exactly. We 
also give a formula for the conditional variance of zt. In the quasi-left contin- 
uous case, we give all conditional cumulants. 

As a corollary to these results, we derive a two step asymptotic expansion 
for martingales. For quasi-left continuous martingales, higher order expansions 
also follow. 

2 Explicit structure 

We shall consider embeddings for which 

E( ,hJ) = �89 MI, + 

where .r is a a-field with respect to which the martingale (Mr) is measurable, 
and similarly for higher order conditional cumulants. To characterize such em- 
beddings, let [Y, . . . .  Y]t, (Y, . . . .  Y)t and ~'p(Y)t = •(Y, . . . .  Y)t be the pth or- 
der optional, predictable and cumulant variations, respectively, of the chdl~q 
process (Yt) (see Sections 2 and 6 of Mykland, 1994). In the discrete time 
case, if 

I 

n = l  

the variations are given by 

! 

[r, . . . .  r ] , =  E g f ,  
n = [ 

l 

(r, . . . .  g), = e(x ,  f l J , ,  ) 
tl  z I 
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and 

t 

~(Y,. . . ,  Y)t = E CUmp(~l'~5,,-1), 
n - - I  

where ( ~ )  is the relevant filtration. Analogous definitions apply in the multi- 
variate case. We now define the family of  desired embeddings. 

Definition. Let (Mr) be a martingale with finite 2pth moment, and let ~ be 
a a-field with respect to which (Mr) is measurable. An embedding of this 
martingale in Brownian motion will be said to have explicit structure up to 
order p if E[zt[ p is finite and (for q < p)  CUmq(Zt[~) can be expressed as a 
linear combination of variations 

[M, . . . .  M, ~c(M, . . . .  M) . . . . .  ~c(M, . . . .  M)] , ,  

where "M" appears exactly 2q times, or, equivalently, as a linear combination 
of variations 

[M, . . . .  M, (M, . . . ,M}  . . . . .  (M,. . . ,M}]t .  

The same terminology applies by analogy to interpolation of discrete time 
martingales. 

For example, one should be able to express var(zt]Y) as a linear combi- 
nation of [M,M,M,M],, [M,~c(M,M,M)], = [M, (M,M,M)]t, [(M,M), (M,M}]t 
and ~c(M,M,M,M)t (or (M,M,M,M)t) .  

The reason for focusing on cumulants rather than moments is that in the 
discrete time case, embeddings are (typically) constructed to be conditionally 
independent given ~ in each interval, whence 

t 

CUmp(~llY) = ~ CUmp(Zn - "On-1 l Y )  . (2.1) 
I I :  I 

This means that constructing an embedding with explicit structure reduces to 
constructing it in each time interval. Obviously, this will not work for moments. 

Note that in the continuous time case, the analogous formula to (2.1) is 
that, for p > 2, 

CUmp(ztl-~)= ~ CUmp(A'cslY ). (2.2) 
O<_s<~t 

This follows from rt being an increasing process with conditionally (given 
the data) independent increments. It is easy to see that the process (2.2) is 
cM1/tg: [~,.. . ,  z]t can clearly be taken to be cfidl/ig, and hence the same applies 
to E([r  . . . . .  v]tlY). The cumulants are then defined from moments in the usual 
way (see McCullagh, 1987, Chap. 2), and the cfidl~g property follows. 
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3 Bartlett identities, and an existence theorem 

I f  Mt = W~ t, it follows (subject to integrability conditions) that, for small 0, 

) p=, ! cump('c,/Y) = E [exp (OMt - l 2 

(3.1) 
is a likelihood. This is because it integrates to 1, since exp(0Wt - �89 is a 

martingale. Hence #}P) given by 

= a 4 , ,  

(2p) 2p[ CUmp(ztlJ), > 1 (3.2) 

( 2p + I ) 
t = 0 ,  p > l  

can be seen as derivatives (at 0) of  a log likelihood, and consequently they 
satisfy Bartlett identities (Bartlett 1953a, b; see also McCullagh, 1987, Chap. 7). 
There are a number of  variations over these identities, see, for example, the 
discussion in Section 2 of  Mykland and Ye (1992). I f  one assumes that the : t ' s  
are adapted, cfidl@, and satisfy (2.2), there also exists a conditional cumulant 
version, where, e.g., the third identity takes the form 

K(:(I),:(l),dO))t + 3K(d(1),d(2))t + K(d(3))t = 0 .  (3.3) 

This is of  course heuristic. A formal result is stated below as Theorem 2. I f  
we go back to the variation notation, the first five identities have the following 
form: 

tc(M)t = 0 ,  

~2(M), - K(E(~.I.Y)), = 0,  

rOB(M), - 3K(M,E( r . I~ ) ) ,  = 0 ,  

~c4(M)t - 6K(M,M,E(z.I~))t  (3.4) 

+ 3 tcf fE(r . ]~) ) t  + 3tc(var(z . l~)) t  = 0 ,  

~cs(M),-  IO~c(M,M,M,E(~.I~)), 

+ 15~c(M,E(v.lY),E(r.lY)),  + 151c(M, va r ( r . lY) ) ,  - 0.  

This holds, obviously, without reference to explicit structure. However, if the 
embedding does have such structure of  order (at least) one, and if Mt has finite 
third absolute moment,  then the second and third identities imply that 

E(v,I,N) = �89 + ~(M,M), (3.5) 

unless tc(M,M,M)t is zero a.s. (The derivation is given in Section 7.) Similarly, 
the fourth and fifth identities yield 

v a r ( ~ , [ J )  = 8~c(M,M,M,M), + 2[M,M,M,M]t  

+ - c) IMIMII, 

+ c[M,m, (M,m)]t - c[M, ~c(M,M,m)]t, (3.6) 
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where c is nonrandom. This is provided Mt has fifth absolute moment and 
~cs(M)t and [~c2(M),lc3(M)]t are not zero a.s. It should be emphasized that 
if there is a constant nonrandom linear relation between any of the varia- 
tions appearing in (3.6), other relations may obviously also hold, and similarly 
for (3.5). The extreme case (in discrete time) is where the increment of Mt 
has a symmetric binary distribution. In that case, (M,M,M,M)~, [M,M,M,M]t, 
[(M,M),(M,M)]~,[M,M,(M,M)]t and [M, Ic(M,M,M)]~ are all the same. In 
this case, one can for example, write var ( r t lg )  = z x[M,M,M,M]t. 

On the other hand, it is worth noting that if M is quasi-left continuous (see 
Jacod and Shiryaev, 1987, p. 22), the terms in (3.6) involving c all vanish: 
there is only one possible expression for the conditional variance (when there 
is explicit structure). An argument similar to the one leading to (3.6) easily 
shows that the same is the case for the higher order conditional cumulants. 
CUmp(Ztl~) is a unique linear combination of (M, . . . .  M)t and [M,...,M]~, 
whence, in view of the Bartlett identities, 

CUmp(~tl~) = (-1)P+123p~.B2p{(M,~. ~ M ) t  + ~ [ ~ ] t } ,  

2p times 2p times 

(3.7) 

I B4 = - - 3 ~ '  B6 4~' e t c . ) ,  s e e  where B2t is the 2kth Bernoulli number (B2 = ~, = 
pp. 804-810 of Abramowitz and Stegun (1972). 

Any c is compatible with the Bartlett identities. We do not know, however, 
whether there is an embedding for every value of c. It is clear, for example, 
that unless the predictable jumps (or increments) of (M~) are bounded, the 
nonnegativity of (3.6) implies that 

c>_O. 

The embeddings we do know of are the following: 

Theorem 1 (Embedding theorem) Let M,  t > O, be a chdl@ martingale for 
which [M, .... M]t (the order 2p optional variation, p integer) is integrable. 
Then there is an extension of the original probability space with a filtration 
(Nt), a (Nt) Wiener process (Wt) and a family ~(t) of (~t) stopping times, 
with conditionally independent increments given the data, so that the process 
W(r(t)) is indistinguishable .from Mr, and so that the embedding has explicit 
structure up to order p. In particular, (3.5) is satisfied I f  p > 2 and c is a 
nonrandom number satisfying 

16 136 
47 < C < - -  (3.8) = 315 ' 

the embedding can be chosen to satisfy (3.6). 

Whether embeddings exist for c's not satisfying (3.8) is not known to the 
author in the general case. We have also not investigated the formulas for 
higher order embeddings for other than quasi-left continuous martingales. 

The results on Bartlett identities can be formalized as follows. 
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Theorem 2 (Bartlett identities) Let (Mr) be a martinoale with at least pth ab- 
solute moment  ( p  > 1, integer), and assume that it is embedded in a Brow- 

Ak) k =  1, . , p ,  be ~]iven nian motion in such a way that Er p/2 < oc. Let  ~t , .. 
by (3.2). Then the first p ordinary Bartlett  identities hold, in the sense that, 
j b r q < _  p, 

q! E f }  l)ql - ..S} ~')qk . . . .  0 (3.9) 
rI(k! )qi~qk ! 

and 

q! cum(cP(1 )ql ,,(k)q/, Z , ,  . . . . .  ~, , . . . )  = 0 ,  (3.10) 
II(k ! )q~ qk ! 

where the sum is over all qi, q2 . . . .  so that ql + 2q2 + . . .  + kqk + . . . .  q, and 
where each combination only occurs once. If, in addition, zf has independent 

increments 9iven the data, and i f  the dl k) are adapted and c3dI@, then the 
p first moment  and cumulant Bartlett  identities o f  type (3.3) also hold, in 
other words 

l{< . . . . .  d<'; . . . . .  = 0  

ql times qk times 

(3.11) 

and 

II(k!)qkqk!q! ~C(((1) . . . . .  ~ {(1) . . . . .  s "' rick)" �9 �9 = 0.  (3.12) 

ql times qk times 

Similar results hold for interpolation of martingales, which can also be 
done for multivariate martingales. If (Mr 1 . . . . .  M p)  is a martingale, embedded in 
- - 1  - - p  

( M  t . . . .  , M  t ), the likelihood would be such that ~?dt/~O ~: = M~, c~2P+l dt/O0~ ... 
00~2p § = 0, and 

~O0:l . . .  GO:X2p 
- -  ( - -  I )P ~ cum2p ( { ~ f f l ,  ~ 2 )  . . . .  , ( ~ i s= ; - ,  , i ls2,~) ,  I s )  , 

where the sum is over all ways of  partitioning {~l,...,:~2p} into pairs 
{{fil,fi2} . . . . .  {fi2p-i, f i2p}}. The formula assumes that the ~'s are distinct. 
(If  they are not, one should pretend that they are when carrying out calcu- 
lations). 

The generalization of  Theorem 2 would be in the form indicated in Chap. 7 
of McCullagh (1987). In particular, note that they imply that for martingales 
(Mr) and (Nt), 

E((M,N) , I -~ )  = �89 + 
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and 

--2r - - f l  cov(/M ,M )t, (MY,M~ 

C_rM~ M/J x ( ~  - c) [IM~,M/~), IM'~,M6}]t [3] + 2~ , , IMT,M~)]t [6] 

~ [ M  ~, tc(M/~, M y, M ~ )1~ [41, (3.13 ) 

where [3], [4] and [6] indicates summation over all relevant combinations, 
see, for example, McCullagh (1987). By expanding the conditional variance 
given the data of  IM + N , M  + N)t = (M,M), + 21M, N)t + (N, Nt}, it is eas- 
ily seen that when embedding more than one martingale, c must be the same 
in all the possible formulas (3.13) (var((M,M)t lY) ,  cov(tM, N)t, ( M , M ) t l Y ) ,  
c o v ( / M , N } t I J  ), etc.). Hence, however many martingales are embedded (on 
the same space), there is only one degree of  freedom for the conditional 
covariances. 

The formal interpolation result is as follows. 

Theorem 3 (Interpolation theorem) Let Mr, t = O, 1,2,... be a (vector) mar- 
tingale whose increments have moments of  order at least 2s (s > 1). Then 
there is a continuous martingale Mr, t >_ O, on an extension of the probabil- 
ity space, so that Mt = Mt for all integer t >= O, and so that the embedding 
has explicit structure up to order s. Furthermore, (M,M)t, t = 0, 1,2 . . . .  has 
conditionally independent increments given the data. 

4 Relationship to some other embeddings 

A number of  the constructions in the literature use dichotomous transitions. 
Martingale increments are either embedded as a conditionally binary random 
variable (Skorokhod, 1965), or as a succession of  such variables (Sawyer, 
1967; Chacon and Walsh, 1976; Az6ma and Yor, 1979; cf. Meilijson, 1983). 
Our procedure also uses multistage dichotomous increments, but unlike the 
Chacon Walsh family, the two values are random. 

It is possible to use (3.5)-(3.6)  to say something about the (non-sequential 
and sequential) dichotomous procedures. I f  Ml is the object to be embed- 
ded, and the transitions happen at countable times t E (0, 1) with associated 
a-fields ~ ,  then the mean and variance given Yl is on the form (3 .5)~3.6) .  
Since binary martingales are extremal, a simple argument involving Bartlett 
identities (fi la the one that led to (3.6)) shows that the conditional cumu- 
lants are unique, so one can set c = 0 in (3.6). This yields a formula for the 
conditional cumulants. 

Obviously, however, the predictable variations are now no longer formed 
with respect to the original filtration, so the sequentially dichotomous procedure 
does not yield explicit structure in general. We have not investigated whether 
exceptions can occur. 
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Finally, it is worth observing that embeddings with explicit structure do 
not, in general, have the minimum variance property of Rost (1976). It is 
easy to see that (3.5)-(3.6) imply that var(rt) is independent of c, and that 
(in the general case) there are several embeddings corresponding to this vari- 
ance (cf. Theorem 1). This result then follows from the Corollary on p. 203 of 
Rost (1976). 

5 Asymptotic expansions 

The existing results on asymptotic expansions for martingales (Mykland, 1992, 
1993, 1995) are only concerned with one-term expansions. With the help of 
the current embedding, however, these results can be generalized substantially. 

The results concern the asymptotic behavior of Eg(Mt), where ~ is a 
martingale and g is a sufficiently smooth function. Consider first the time- and 
samplepath-continuous case. 

Theorem 4 (Expansion for continuous martingales) Let Hit be a (triangu- 
lar array of) Brownian motion(s), and let z be stopping times. Then, if  

=/~2 + Op(l), for nonrandom #2, 

k 
Eg(Wr = Eg(N(O, 112)) + ~ ( - 1 )  / - I  1,E{z - #2]Jg(2J)(wr + A 

/=l j!2: 
(5.1) 

where 

[AI ~ E [suplg(2k)(Ws) -- g(2k)(wz)'l'c-- ]121k I , 

the supremum being over s between t~2 and z. 

The proof is quite straightforward. 

Proof o f  Theorem 4. Write 

and 

-[ 

u~ = E f (s m)k-~g(2k)(W,)ds, 

V k -- E(T -- ]Az)kg(2k)(~/Vz) 

f ( t , x )  - -  ( t  - -  ]12)kg(2k)(X). 

As in Lemma 5.1 of Mykland (1992), one can use ito's formula on f (% We) - 
f(/~2, W~2) to get that 

vo = Eg(N(O, b2)) + 1 

and 
I vk=kuk+~uk+l  for k >  0. 

Solving this recurrence relation gives the result of the lemma. 

Clearly, if one has an embedding with explicit structure, one can use Theorem 4 
to find an expansion of Eg(Mt) in terms of optional and cumulant variations 
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of (Mr). For example, if the martingale is quasi-left continuous, one can now 
use (3.7) in conjunction with (5.1). 

For general martingales, with our knowledge of the first two conditional 
moments, we can get a second order expansion. Set 

2 (M,N)t. (5.2) (M,N)t = �89 + 

Using (3.5)-(3.6) yields that, for a general martingale, and for c satisfying 
(3.8), 

Eg(Mt ) = Eg(N(O, #2 )) + �89 E((M, M), - #2 )gn(Mt ) 

- gEl {((M,M)t - #2) 2 + 4~c4(M)t 

- c[M, tc3(M)]t + (~  c)[(M,M}, (M,M)], 

+c[M,M, (M,M)], + ~5[M,M,M,M]t} 9('~)(Mt) 

+ O(EB([M,M]~ - #2) 2 + EB[M,M,M,M],) (5.3) 

where B is bounded and Op(1). This is provided g has four continuous deriva- 
tives, with g(i~) bounded, and 

E([M,M]t - #2) 2 § E[M,M,M,M]t = o(1).  (5.4) 

We have here used Lenglart's inequality (see, e.g., p. 35 of Jacod and Shiryaev 
(1987)). Also, in (5.4) and the error term in (5.3), we have used that 
var([M,M]t - (M,M)t) = E[M,M,M,M]t - E[(M,M), (M,M)]t and that [M, lc3 
(M)]t, [(M,M), (M,M)]t and [M,M, (M,M}t] are all bounded by [M,M,M,M]t 
+ (M,M,M,M)t. 

By combining (5.3) for two different c's, the c-terms can be made to vanish. 
This yields the following result. 

Theorem 5 (Second order expansion for general martingales) Let Mt be a 
(triangular array of) martingale(s), and suppose that (5.4) holds. Then, for 
4 times continuously differentiable gs, with g(i~) bounded, 

Eg(M, ) = Eg(N(O, #2 )) + �89 E((M, M), - #2 )g"(M~ ) 

~-E {((M,M), - #2) 2 + ~ 4 ( M ) ,  

+~[M,M,M,M], + 4[(M,M), (M,M)]t} g(iV)(M,) 

§ O(EB([M,M]t - p2) 2 + EB[M,M,M,M]I). (5.5) 

To turn this into an ordinary Edgeworth type expansion, one can now use 
a suitable central limit theorem on all terms except E((M,M) t -  #2)on(Mr). 
A martingale approach to this would be to approximate (M ,M) t -  #2 by a 
(triangular array of) martingale(s). One can then use the following theorem. 
The proof is given in Sect. 9, and has some independent interest. 

Theorem 6 (Expansion for ENtg(Mt)) Let (Mr) and (Nt) be triangular arrays 
of martingales. Assume (5.4) and also that E sup[ANt I = o(1) and [N,M]t = 
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v + %(1 ), where v is nonrandom. Then, .for thrice continuously dilferentiable 
gs, with g(r) bounded for v -  0 . . . .  ,3, 

EN, g(M~) Eg ' (Mi) (N,M)t -  �89 #2)E(N,M)t 

1E :: M + ~ g ( ,)N,((M,M)t - I~2) 

+ O((E[N, N]t)I/2(EB((M, M): - ~t2)2 )1/2 ) ,  (5.6) 

where B is bounded and Op(1). 

6 Using the expansion results 

The expansion results will mostly be relevant in cases where sums are of  
Op(t), so we shall in the following make the normalization explicit: Mt/ , f i  is 
asymptotically normal, and so on. This also makes it possible to state the order 
of  convergence in terms of t. 

As indicated above, our main assumption is that 

[M,M]t - #2 = Nt + R,  (6.1) 

where (Nt) is a martingale or a triangular array of  martingales, and R is a 
remainder term of  order Op(1). 

Theorem 7 (Standard edgeworth expansion) Assume (6. l). Also assume that 

t ' /2([ . . . ] ,  E[ . . . ]~)  

is uniJormly integrable and converges to a normal limit jointly with M~/x/7, 
where [ . . . ] t  is (N ,M) ,  [M,M,M,M]t, [(M,M),(M,M)]~ and ~c(M,M,M,M)~ 
(or (M,M,M,M)t). Also suppose that [N,N]t/t is uniJormly integrable, and 
that Esup]ANfl = o(tl/a). Finally, let R be uniformly integrable and asymp- 

2 is totically independent of  Mt/xfi. Set a 2 = E[M,M]~, and suppose that ~t 
not o(t). Then 

Eg(mt/c;t) = f g(x)O(x))~(x) dx + o(t-I ) 

for all functions g that are bounded and have five bounded continuous deriva- 
tives, where 

/~(Z) = 1 -- 1,0383(z ) @ I D 4 h 4 ( z  ) @ 1 D ~ h 6 ( z  ) . 

h3,h4 and h6 are the relevant Hermite polynomials, and P3 and P4 are the 
standardized cumulants, given by Pk = cumk(Mt/a~). 

We emphasize that the theorem is valid for triangular arrays. If one re- 
places [M,M]~ by (M,M)t in (6.1), the result is a straightforward consequence 
of  Theorems 5 and 6 above, and of  the Bartlett identities for martingales 
(Mykland, 1994). Since [M,M]t -  {M,M)t is a martingale satisfying the re- 
quirements imposed on Nt in the theorem, the stated result follows. 
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The condition (6.1) is satisfied in a number of  standard situations. For 
example, if we are in discrete time and AM,, is a stationary and mixing sequence 
of  martingale increments, we can set 

OQ 

k~7l 

(6.2) 

cf. Chap. 5 of  Hall and Heyde (1980). The same approach works with Markov 
processes, cf. pp. 447-448 of  Jacod and Shiryaev (1987). 

7 Bartlett identities proofs 

Here we show formulas (3.5) and (3.6), and then Theorem 2. Theorem 1 is 
shown along with the proof  o f  Theorem 3 in the next section. 
To see (3.5), assume explicit structure: 

E(zt]J) = c,[M,M]t + c2(M,M};. (7.1) 

The second identity in (3.4) implies cl + c2 = 1. The third identity yields 

tc3(M)~ - 3cl;c(M,[M,M])t - 3c2~c(M, (M,M})t = 0.  (7.2) 

Since ;c(M, (M,M))t = 0 and ;c(M, [M,M])t  = ~c(M,M, M)t, the result follows 
prov ided  tc3(M)t is not zero a.s. 

Turning to (3.6), write 

var(zt [ ~ )  = c l to(M, M, M, M)t  § c2 [M, M, M, M]t 

+ c3[(M,M}, (M,M}]t § c4[M,M, (M,M}]t 

+ cs[M, tc(M,M,M)];. (7.3) 

Assuming (3.5), the fourth identity in (3.4) becomes 

~c4(M) - 2~c(M,M, [M,M])t + �89 + 3tc(var(z.(Y))t  - 0 ,  (7.4) 

since tc(M,M, (M,M}); = 0 and since ~c2(E(z.lff))t = ~c2([M,M]);/9. 
Furthermore, 

K(M,M, [M,M])t = K2([M,M])t 

= K4(M)t § 2[(M,M),  (M,M}]; .  (7.5) 

Substituting (7.5) in (7.4) and comparing to (7.3) yields 

2 and - 3 c 1 + c 3 + c 4 -  g ,  Cl @ C2 : ~ __ 4 (7.6) 

unless K 4(M)t and [(M,M}, {M, M} ]t are linearly dependent. Similarly, inserting 
(3.5) into the fifth identity in (3.4) yields 

Ks(M)f - IQtc(M,M,M, [M,M])~ + !~:(M, [M,M], [M,M]); 

+ 15~c(M, var(r.l.Y)), = 0.  (7.7) 
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Since 

and 

~cs(M)t = (M,M,M,M,M)t-  lO[tc2(M),tc3(M)]t, 

~c(M,M,M, [M,M]): = (M,M,M,M,M)~ - 4[~c2(M), tc3(M)]t 

~c(M, [M,M], [M,M])t - (M,M,M,M,M), - 2[~c2(M), tc3(M)]t, 

and since, by (7.3), 

~c(M, var(v.IS)) t  = c2(M,M,M,M,M)t + (c4 + cs)[~c2(m),~c3(M)]t, (7.8) 

(7.7) yields 

C2 = T5 and c4 § c5 = 0 ,  (7.9) 

provided IM, M,M,M,M)t and [lc2(M),Ig3(M)] t are not zero a.s. Setting c4 = c 
and solving (7.6) and (7.9) yields (3.6). 

The above assumes that there is no (nonrandom) linear relation between the 
variations used. If  there are linear relations, the above shows only that (3.6) is 
one of  several possible representations. [] 

We now turn to the proof of  the Bartlett identities. 

ProoJ" of  Theorem 2. We begin with the unconditional identities. Set r N 

~t A N, M~ (N) = WeN and S(N) = a(.~-,M(,0, n > N).  Obviously, the identities 

hold for finite N. As N ---+ oc, for q < p, CUmq(zN]Y (ml) e CUmq (z t ]Y)  by 
the reverse martingale limit theorem. Also, if ql + 2q2 + - .. + kqk ~ q, then 

]M}N)Iql ~IY=2 ]CUmq: ('cNI~(N))] is dominated by a constant times ]Mr 
((T~)(q-q~)/2l~--(N)). Hence, by letting N ~ ~ ,  the unconditional identities 
remain valid. 

In the conditional case ((3.3) and so on), the rigorous proof is more con- 
voluted, and the likelihoodization is more of  a heuristic (though it does give 
the right answer). The rigorous argument begins with the "local" likelihood 

1 O-2 [.C ~exp(O(W~,i+~ - W~i) - ~ ~ 0+, - ~,:)) (7.10) 

by appropriate stopping and then differentiating, and then letting max(t:+1 - t i )  
go to zero, one gets Bartlett identities on the form that for q < p, 

q! ( - -1 )  q2 
q, !2q2q2! rA/t ,~/t ~- ~ - t ~ , ~ ] t  (7.11) 

ql times q2 times 

is a martingale. Hence, 

q!(--1)q2 

ql ]2q2 q2 ! 
- - [ M  . . . . .  M, e ( [~  . . . . .  q.lJ~-)], (7.12) 
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is a martingale with respect to the original filtration (E([z . . . .  , r ] t l@)  being 
cfidlfig and adapted by (7.14) below). It follows that 

q!( - -1)  q2 
q~ !2q2q2! (M, . . . .  M, E([z . . . . .  J .]-~))~ = O. (7.13) 

On the other hand, by the conditional independence assumption and the defi- 
nition of  cumulants, 

r! 
E ( [ r ~ z ] t  I g )  = H(k!)",,r~.! [',cumk(rly) . . . . .  ~ cum~(z.[~),  . . . .  ]t .  

r times r k times 

(7.14) 
Combining (7.13), (7.14) and (3.2) now yields (3.11), keeping in mind that 
r - q and that r~ = q2~ in the notation of  (3.11). (3.12) then follows as outlined 
in Exercise 7.1 (p. 222) in McCullagh (1987). [] 

8 Proof of the existence of embedding with explicit structure 

Proof o f  Theorems l and 3. With the exception of  (3.8), Theorem 1 is an 
obvious consequence of  Theorem 3. This can be seen by inspecting the proof  of  
Theorem 11 (pp. 1300 -  1301) of  Monroe (1972). For Theorem 3, it is enough 
to show that the result holds for t -- 1 and with ~0 as the trivial a-field. 

The construction is as follows. Set Atl M1, and then iteratively, for n : 
0, 1,2 . . . . .  let M' 2-,, be an independent copy of  M2 .... let ,--2(~(1),,' M2_. ) - ( 2 )  be 

drawn at random from - - '  M '  &t2-n probability p (M 2 .... M2_,,) and ( 2 .... ) with and 
1 - p, respectively (0 < p < 1), independently of  everything else in sight, 
and set 

j~f2_  (,,+ i ) _ ~'~Ar(1 ) : + (1 - p)  22, 

The accompanying filtration is given by . ~  (,,+l) : ot~v~2-'C'~(l),,Jw2~(2) .... ~V~z-k'~2-k'~ ~ ,  

k > n + 1) and .~  = cr(M 2 /,, k,k > 0). 

Since 

2 

.... 2_n } ] ~ 2 - ( n + l )  ) 
i=1 

= m 2 (n+l) , 

At 2 , is a martingale with respect to the filtration ~&2 .... Since 

-(1)  
M2_ n -M2-(n+l ) ---- (1 - p ) ( ~ _ ! ,  M2,)-(2) 

and 
(2) -- m2_, _ M2 (,+') : _ p ( ~ l _ )  M2 ,)  , -  (2) 

it follows that a continuous martingale Mt can be created by setting, for 
2 -( '+1) __< t < 2 -n, 

~ !  j ~ 2 _ ( n + l  ) _]_ (j~r~ 1_) - - ( 2 )  ,[(n) 
- -  M 2 _  n / ~ 2 n + l t _ l  



488 P.A. Mykland 

where the L] n) are embeddings of  the two point martingale which takes values 
,~(l) ~ ( 2 )  

(l - p )  and - p .  Note that LI ") is dependent on whether sw2_ . or M2_,, is, 

indeed, ~t  2 .... 

Clearly, Mt is a continuous martingale, with MI = Ml. Also, Mo = 0 since 

var(fl~/2_(,,+,) ) = (p2 + (1 -- p)2)var(J~r 
= (p2 + (1 p)2)n+tvar(M~) 

--*0 

as n ---+ cxD, i f 0  < p < 1. 

Since 

n=0 

= ?2 (M~_, ,  - . . . ~ _ , , , , _ 2  ,, - , , ) ( U " ) ) , ,  
n = O  

by embedding of  two point martingales, it follows that cum({M~IL,M~2)l,. . . ,  
/ M ~ , M % 2 ) I  ]~q) has explicit structure with respect to A4t. It further follows 
by the iterated conditioning formula for cumulants (cf. Brillinger, 1969; Speed, 
1983) that the embedding has explicit structure. It remains to pin down the 
coefficients of  the conditional variance to show (3.8). Let Mt be scalar, and set 

var({m) 1 ]M1) a0 cum4(Ml ) + bo M4 

+ co var(M1 )2 + doM( var(M1 ) + eoMl cum3(Ml ). 

The way the construction is carried out, however, it is also true for n => 1 that 

var(<H)z ,,I.%) = a .  cum~(J)z ,,) + b.j74_,, 

4-  c. var(3~t 2 ,, )2 4-  dn~/~2_n v a r ( ] ~ f 2  ,, ) 

q-  c~  ,, c u m 3 ( ~ f 2 - , ,  ) , 

where ~n = a(M2-s- ~t(l) ~(2) ~ k < n 1). A tedious but straight- ' ~ 2  k,  2--k~ 2 - k - l ,  ~ - -  

forward calculation then shows that var((M)2 ,+, ]N,,-I ) can be represented as 
the sum of  terms given by Table 1, 

m 
TabLe 1. var((M)2 .... i 1~,~ 1 ) 

1 p ( l  - p )  p2(1 _ p)2 

2 0 cum4(/~2 ,~+1 ) a,, -4a,~ + b,~ + 
2 2 5b  n _ M 4 ,)L+ ~ bn -5bn + 

vat(M2_,,+ ~ )2 cH 3b,, + 4c,~ + d,, + 2 -9bn + 4cn 2tin - -- 
~ ..... va r (~2  .... ) d,, -Sd,, + ? 6b. + 6d,, - 
M 2 . . . . .  CUlTI3(M 2 .... ) e,, --5e,, 169 4b,, + 6e, + 
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where, for example, entry (2,3) says that the coefficient in front o f  ~4 p2 M ; - n +  I 

( l - p ) 2  is 5b~ 2 
9"  

Assume first that EIM~ 15 < oc. Then we know that the representation (3.6) 
must hold, i.e. 

- -  2 ~ 4 4 4  - -  2 var((M)2-,, INn) = ~5 cum4(M2-,, ) + 4sM;_,, + ~var(M2-, ,  ) 

+ d.(_var(3~2_,, )2 + ~ 2  var(~t2 ,, )_M2_,,cum3(~t2_,, )). 

By the central limit theorem, M2- , , /a (p  2 + ( 1 -  p)2),,/2 ~ U, where U is 
N(0,  1) and a 2 = var(Ml).  Also, obviously, E~44, , / (p  2 + (1 - p)2)2,, ~ 3a4, 

and hence var( (M) 2-,, I(r )/(P2 + (1 - p)2)2, is Op(1) in view of  Burkholder 's 

inequality. Hence, one can write c~,7 = d,,fi,,, where c~,, Op(1) and ft, 
a4(U 2 - 1). Hence d,, = O(1). 

One can now use Table 1 and the fact that b,, = ~ to set up the recursion 
formulas (d~ is the same as c in formula (3.6)) 

d,,_j = dn(1 - 5p(l  - p )  + 6p2(1 - p)2) + ~ p ( l  - p )  - 16 2 . ,  E p  (l - p)2 

from which one gets 
do - y 

dn -- + 7, ~ n  

where y = (-~p(1 p)  _ 16..2,, - ~SP t~ - P)2)/( 1 - ~) and ~ = 1 5p(1 - p)  + 6p 2 
( 1  - -  p)2. Since 0 < p < 1, it follows that ]c~[ < 1. Since d,  = O(1), one must 
have do = 7, i.e. 

16 5 - 3p(1 - p )  
d 0 -  

45 5 -  6p(1 - p )  

This specifies the formula for var((M)j  IMl ), and a simple limiting argument 
shows that one can reduce the moment requirements to EM~ < oc. By letting 
p vary in (0, 1), one gets (3.8). [] 

9 The E N t g ( M t )  results 

These are the results which permit us to turn the expansions (5.1) and (5.5) 
into ordinary Edgeworth expansions. We first present an exact result. Define 

A = inf{t :  (M,M)t  = #2}. (9.1) 

Theorem 8 Let  (Mr) and (Art) be continuous martingales. Provided the rele- 
vant expectations exist, the following is true: For all g G (g3, 

I 

ENtg(Mt) =Eg' (Mt)(N,M)L �89  d ( M , M ) ,  
A 

l 

+ 1Efg" (Ms)Nsd(M,M)s  
A 

(9.2) 
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and for atl g ~ ~1, 

and 

ENAg(MA) = Eg'(MA )(N,M)A , 

ENtnA g(MA ) = Eg'(MA )(N, M)AAt 

EN, g(MA ) = Eg'(MA )(N, M)Ant. 

(9.3) 

(9.4) 

(9.5) 

Proof of Theorem 8. Let h > 0, and consider the martingale 

~/lh = Mt + hN,. (9.6) 

Set 
A(h) = inf{t: (Mh,Mh}f --/~2}. (9.7) 

Suppose g is a function with four bounded and continuous derivatives. By Ito's 
lemma, 

t 
1 t , :  ~ . h  Eg (Mr h) = Eg(N(O,,u2)) + 5 f 9 VvJs )d(Mh, Mh)s �9 (9.8) 
A(h) 

Differentiating with respect to h and setting h = 0 now yields 

t 

EN, g' (M~ ) = Eg" ( MA )(M,N)A + E f g" ( Ms ) d (M,N)s 
A 

t 

+ �89 d(M,M)s. (9.9) 
A 

Note that this differentiation presupposes that (M, m)t, (M,N)t and (N,N)t are 
continuously differentiable. If this is not the case, the result is shown first for 
Mt's and Nt's satisfying this condition, and the result for general Mt and Nt 
then follows by taking limits. Using Ito's formula again yields that 

l 

Eg" (Mt )(M, N)t -- Eg" (MA )(M, N)A + E f g" (Ms ) d (M, N)s 
A 

t 

+ �89 d(M,M)~. (9.10) 
A 

Merging (9.9) and (9.10) yields that 

t 

ENtg' (Mt ) = Eg" (Mt )(M,N)t - 1E f g(i~)(Ms )(M,N), d (M,M)~ 
A 

t 

+ �89 d(M,M)s. (9.1 l) 
A 

Replacing g' by g and taking limits yields the result (9.2). 
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On the other hand, another application of Ito's formula yields 

t 

EXt 9'(Mr) = ENA 9'(MA ) + E f g"(Ms ) d (M, N)s 
A 

t 
+ 1Efg'"(M~)N~d(M,M)s. (9.12) 

A 

Merging (9.9) and (9.12) now yields 

ENA 9' (MA ) = Eg" (MA ) (M, N)A . (9.13) 

Again, replacing 9 t by 9 and taking limits yields (9.3). 
Finally, let N, = Art for s > t. Then, (9.3) reduces to (9.4). Since (9.4) 

only uses properties of Ns up to t A A, this then holds for general (Ns). The 
martingale property of N~ then yields (9.5). [] 

Proof of Theorem 6. Assume first that (Mr) and (Art) are continuous, and that 
(M,M)t < #2 + 1. Then, in view of (5.4), (9.2) and the Mean Value Theorem, 
(5.6) holds. If (M,M)t is not bounded, note that, for example, 

[Eg'(Mt)((N,M)t - (N,M)tAr < t)[ 

=< sup [g'(x)I(E(N,N)t)I/2(E((M,M)t-/~2)2I(z < t)) 1/2 
x 

by the Kunita-Watanabe and H61der inequalities, where v = inf{s" (M,M)~ > 
#2 + 1 }. By using two interpolations and making a linear combination to get 
c = 0, the result now follows for discrete time and hence (by taking lim- 
its, since the order of convergence is really a small sample bound) general 
martingales. This is provided we can show that the assumption of the theo- 
rem implies that (when embedding in continuous time martingales M and N), 
(N,M)t = v + Op (1). However, for discrete time martingales 

ti+l ti+I 

i ti i ti 

which, by Lenglart's inequality (see Jacod and Shiryaev, 1987, p. 35) is Op (1) 
provided 

li+ I ti+ I 
f ( m s  - m t i )  2 d ( N ) s  + ~ f ( N s  - N I , )  2 d ( m ) s  

i t i i ti 

is %(1). This is true by the same reasoning as in Mykland (1994), since 
Esup[AM~, l = o(1) and Esup[ANs[ = o(1). The latter is assumed, the former 
follows from (5.4) since 

4 

( sup [AMsI] < [M,M,M,M]t. [] 
\O<-s<t / 
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