Skip to main content
Log in

Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals

  • Research papers
  • Published:
CHEMOECOLOGY Aims and scope Submit manuscript

Abstract

The influence of 63 dietary allelochemicals (alkaloids, terpenes, glycosides,etc.) on the feeding behaviour of bees (Apis mellifera) was tested in terms of deterrency and attraction. For 39 compounds a deterrent (mostly alkaloids, coumarins and saponins) and for 3 compounds an attractive response (mostly terpenes) was obtained in choice tests, which allowed the calculation of respective ED50-values. Under no-choice conditions, 17 out of 29 allelochemicals caused mortality at concentrations between 0.003 and 0.6%. Especially toxic were alkaloids, saponins, cardiac glycosides and cyanogenic glycosides. These data show that bees which are confronted with plant allelochemicals in nectar and pollen, are not especially adapted (i.e. insensitive) to the plants' defence chemistry. GLC and GLS-MS data are given on the alkaloid composition of nectar and pollen ofBrugmansia aurea, Atropa belladonna andLupinus polyphyllus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams CM, Bernays EA (1978) The effect of combinations of deterrents on feeding behaviour ofLocusta migratoria. Entomol exp appl 23:101–109

    Google Scholar 

  • Amiot MI, Aubert S, Gonnet M, Tacchini M (1989) Les composes phenolique des miels: etude preliminaire sur l'identification et la quantification par familles. Apidologie 20:115–125

    Google Scholar 

  • Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie 8:349–356

    Google Scholar 

  • Baker HG, Baker I (1975) Studies on nectar constitution and pollinator-plant coevolution. Pp 100–140in Gilbert LE, Raven PH (eds) Coevolution of Animals and Plants. Austin: Univ of Texas Press

    Google Scholar 

  • Barragan de Dominguez MC (1973) Contribucion al estudio de mieles toxicas colombianas. Rev Colomb Cienc Quim-Farm 2:5–31

    Google Scholar 

  • Bentley MD, Leonard DE, Reynolds EK, Leach S, Beck AB, Murakoshi I (1984) Lupine alkaloids as larval feeding deterrents for spruce budworm,Choristoneur a fumiferana (Lepidoptera: Tortricidae). Ann Entomol Soc Am 77:398–400

    Google Scholar 

  • Bernays EA, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Google Scholar 

  • Bernays EA, Chapman R (1987) The evolution of deterrent responses in plant-feeding insects. Pp 159–173in Bernays E, Chapman M, Stoffolano J (eds) Perspectives in Chemoreception and Behaviour. New York, Heidelberg: Springer Verlag

    Google Scholar 

  • Bestmann HJ Claßen B, Kobold U, Vostrowsky O, Klingauf F, Stobel H, Knobloch K (1984) Pflanzliche Insektizide II. Das ätherische Öl aus Blättern des Balsamkrautes,Chysanthemum balsamita L. Insektizide Wirkung und Zusammensetzung. Z Naturforsch 39c:543–547

    Google Scholar 

  • Blades D, Mitchell BK (1986) Effects of alkaloids on feeding byPhormia regina. Entomol exp appl 41:299–304

    Google Scholar 

  • Borg-Karlson A (1990) Chemical and ethological studies of pollination in the genusOphrys (Orchidaceae). Phytochemistry 29:1359–1387

    Google Scholar 

  • Cavin JC, Rodrigues E (1988) The influence of dietaryβ-carboline alkaloids on growth rates, food consumption and food utilisation of larvae ofSpodoptera exigua. J Chem Ecol 14:475–484

    Google Scholar 

  • Christen P, Roberts MF, Phillipson JD, Evans WC (1990) Alkaloids of hairy root cultures of aBrugmansia candida hybrid. Plant Cell Reports 9:101–104

    Google Scholar 

  • Clinch PG, Palmer-Jones T, Forster IW (1972). Effect on honeybees of nectar from the yelllow kowhai (Sophora microphylla Ait.). NZ J Agric Res 15:194–201

    Google Scholar 

  • Culvenor CCJ, Edgar JA, Smith LW (1981) Pyrrolizidine alkaloids in honey fromEchium plantagineum. J Agric Food Chem 29:958–960

    Google Scholar 

  • D'Arcy WG, D'Arcy NS, Keating RC (1990) Scented anthers in the Solanaceae. Rhodora 92:50–53

    Google Scholar 

  • Deinzer ML, Thompson PA (1977) Pyrrolizidine alkaloids: Their occurrence in honey from tansy ragworth (Senecio jacobaea L.). Science 195:497–499

    Google Scholar 

  • Dethier VG, Bowdan E (1989) The effect of allelochemicals on sugar receptors and feeding behaviour of the bowfly. Physiol Entomol 14:127–136

    Google Scholar 

  • Detzel A (1990) Untersuchungen zum Einfluß pflanzlicher Sekundärstoffe auf phytophage insekten am Beispiel vonSyntomeida epilais (Ctenuchidae, Lepidoptera) undApis mellifera (Apidae, Hymenoptera). Master Thesis, Univ. Mainz

  • Devitt BF, Philogene BJR, Kinks CF (1980) Effects of veratrine, berberine, nicotine and atropine on developmental characteristics and survival of the dark-sided cutworm,Euxoa messaria. Phytoprotection 61:88–102

    Google Scholar 

  • Dobson JEM 1988: Survey of pollen and pollenkitt lipids — chemical cues to flower visitors? Amer J Bot 75:170–182

    Google Scholar 

  • Dobson JEM, Bergström J, Bergström G, Groth I (1987) Pollen and flower volatiles in twoRosa species. Phytochemistry 26:3171–3173

    Google Scholar 

  • Free JB (1963) The flower constancy of honeybees. J Anim Ecol 32:119–131

    Google Scholar 

  • Frisch K von (1914) Der Farbensinn und Formensinn der Bienen. Zool J (Physiol) 35:1–188

    Google Scholar 

  • Frisch K von (1934) Über den Geschmacksinn der Biene. Z vergl Phys 21:2–154

    Google Scholar 

  • Gill JS (1972) Studies on insect feeding deterrents with special reference to the fruit extracts of the neem tree. PHD thesis, University of London

  • Harborne JB (1988) Introduction to Ecological Biochemistry. London, New York: Academic Press

    Google Scholar 

  • Holzinger F, Frick C, Wink M (1992) Molecular base for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480

    Google Scholar 

  • Janzen D, Inster HB, Bell EA (1987) The toxicity of secondary compounds to the seed eating larvae of the bruchid beetle,Callosobruchus maculatus. Phytochemistry 16:223–227

    Google Scholar 

  • Kolterman R (1969) Lern- und Vergessensprozesse bei der Honigbiene — aufgezeigt anhand von Duftdressuren. Z Physiol 63:310–334

    Google Scholar 

  • Larson RA, Marley KA, Tuveson RW, Berenbaum MR (1988) Carboline alkaloids mechanisms of phototoxicity to bacteria and insects. Photochem & Photobiol 48:665–674

    Google Scholar 

  • Lüttge U (1977) Nectar composition and membrane transport of sugars and amino acids: a review on the present state of nectar research. Apidologie 8:305–319

    Google Scholar 

  • Masters AR (1991) Dual role of pyrrolizidine alkaloids in nectar. J Chem Ecol 17:195–205

    Google Scholar 

  • Mauricio A, Grafl J 1969. Das Trachtpflanzenbuch. München: Ehrenwirth-Verlag

    Google Scholar 

  • Maurizio A (1945) Giftige Bienenpflanzen. Beihefte zur SBL 1:430–441

    Google Scholar 

  • Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honeybee. Pp 195–217in Barton-Brown L (ed.) Experimental Analysis of Insect Behaviour. New York: Springer Verlag

    Google Scholar 

  • Miles DH, Ly AM, Randle SA, Hedin PA, Burks MLJ (1987) Alkaloid insect antifeedants fromVirola calophylla. Agric Food Chem 35:794–797

    Google Scholar 

  • Nathanson J (1984) Caffeine and related methylxanthines: possible natural pesticides. Science 226:184–187

    Google Scholar 

  • Ribbands CR (1949) The foraging method of individual honeybees. J Anim Ecol 18:47–66

    Google Scholar 

  • Rosenthal GA, Janzen DH (eds) (1979) Herbivores. Their Interaction with Secondary Plant Metabolites. London, New York: Academic Press

    Google Scholar 

  • Stephenson AG (1982) Iridoid glycosides in the nectar ofCatalpa speciosa are unpalatable to nectar thieves. J Chem Ecol 8:1025–1034

    Google Scholar 

  • Schulz-Langner E (1967) Über den Trachtwert der Rosskastanie (Aesculus hippocastanum) unter besonderer Berücksichtigung des Saponingehaltes im Nektar. Z Bienenforsch 9:49–65

    Google Scholar 

  • Scogin R (1979) Nectar constituents in the genusFremontia (Sterculiaceae): sugars, flavonoids, and proteins. Bot Gaz 140:29–31

    Google Scholar 

  • Shaver T, Lukefahr MJ (1969) Effects of flavonoid pigments and gossypol on growth and development of bollworm, tobacco budworm und pink bollworm. J Econ Entomol 62:643–646

    Google Scholar 

  • Spector M, O'Neal S, Racker E (1980) Reconstitution of Na+/K+ pump of Ehrlich ascites tumour and enhancement of effects by quercetin. J Biol Chem 255:5504–5507

    Google Scholar 

  • Stephenson AG (1982) Iridoid glycosides in the nectar ofCatalpa speclosa are unpalatable for nectar thieves. J Chem Ecol 8:1025–1034

    Google Scholar 

  • Sosath S (1984) Honige von Euphorbiaceen als Nahrungs- und Genussmittel. Dissertation at the DKFZ, Heidelberg, Germany

  • Stanley RG, Linskens HF (1985) Pollen. D-Greifenberg: Urs Freund Verlag

    Google Scholar 

  • Thiery D, Bluet, JM, Pham-Delegue M, Etievant P, Masson C (1990) Sunflower aroma detection by the honeybee. J Chem Ecol 16:701–711

    Google Scholar 

  • Towers GHN (1986) Significance of phototoxic phytochemicals in insect herbivores. J Chem Ecol 12:813–821

    Google Scholar 

  • Vogel S (1977) Nektarien und ihre ökologische Bedeutung. Apidologie 8:321–335

    Google Scholar 

  • Wagner H (1988) Pharmazeutische Biologie. Stuttgart-New York: Gustav Fischer Verlag

    Google Scholar 

  • Wells H, Wells PH (1983) Honeybee foraging ecology: optimal diet, minimal uncertainty or individual constancy? J Anim Ecol 52:829–836

    Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Google Scholar 

  • Wink M, Schneider D (1990) Fate of plant-derived secondary metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais andCreatonotos transiens). J Comp Physiol B 160:389–400

    Google Scholar 

  • Wink M (1992) Roles of quinolizidine alkaloids in plant-insect interactions. Focus on insect-plant interactions. Pp 133–169in Bernays EA (ed.) Insect-Plant Interactions, Vol IV. Boca Raton, FL: CRC Press

    Google Scholar 

  • Wink M (1993a) Allelochemical properties or the raison d'etre of Alkaloids. Pp. 1–118in Cordell J (ed.) The Alkaloids, Vol 43. New York: Academic Press

    Google Scholar 

  • Wink M (1993b) Quinolizidine alkaloids. Pp 197–239in Waterman P (ed.) Methods in Plant Biochemistry, Vol 8, Alkaloids and Sulfur Compounds. New York: Academic Press

    Google Scholar 

  • Wink M, Witte L (1991) Storage of quinolizidine alkaloids inMacrosiphon albifrons andAphis genistae (Homoptera: Aphididae). Entomol Gener 15:237–254

    Google Scholar 

  • Wink M, Schiebel JM, Witte L, Hartmann T (1982) Quinolizidine alkaloids from plants and their cell suspension cultures. Planta Medica 44:15–20

    Google Scholar 

  • Wink M, Witte L, Hartmann T, Theuring C, Volz V (1983) Accumulations of quinolizidine alkaloids in plants and cell suspension cultures: generaLupinus, Cytisus, Baptisia, Genista, Laburnum, andSophora. Planta Medica 48:253–257

    Google Scholar 

  • Witte L, Müller K, Arfmann H (1987) Investigation of the alkaloid pattern ofBrugmansia innoxia plants by GLC-MS. Planta Medica 53:192–197

    Google Scholar 

  • Zuniga GE, Corcuera LJ (1986) Effect of gramine on the resistance of barley seedlings to the aphidPhopalosiphon padi. Entomol exp appl 40:259–262

    Google Scholar 

  • Zuniga GE, Varanda EM, Corcuera LJ (1988) Effect of gramine on the feeding behaviour of the aphidSchizaphis graminum. Entomol exp appl 47:161–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detzel, A., Wink, M. Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4, 8–18 (1993). https://doi.org/10.1007/BF01245891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245891

Key words

Navigation