Corrigendum

q-Identities for Maass waveforms

H. Cohen

Laboratoire d'Algorithmique Arithmétique et Expérimentale, U.F.R. de Mathématiques Et Informatique, Université Bordeaux I, 351 Cours de la Libération, F- 33405 Talence Cedex, France

Invent. math. 91, 409. 422 (1988)
§1. There was an error in the formula given for χ_{3} in Theorem 2.1 (ii). It should read instead

$$
\chi_{3}(\mathfrak{a})= \begin{cases}i^{x y / 2}\left(\frac{24}{x}\right) & \text { if } y / 2 \text { is even } \\ i^{x y / 2+1}\left(\frac{24}{x}\right) & \text { if } y / 2 \text { is odd }\end{cases}
$$

The other formulas deduced from this such as (8) are unchanged.
I take this occasion to mention that the notation x^{-1} which is used in the paper is the inverse of x modulo 8 , and that since x is odd, we have $x^{-1} \equiv x$ $(\bmod 8)$, so one can replace everywhere x^{-1} by x.
§2. There were a number of sign errors, which again did not have any consequence since they came by pairs. The functional equation on top of page 412 should read

$$
A(1-s)=A(s)
$$

with a plus sign, and not a minus sign as in the paper. Indeed, instead of computing some Gauss sums, we can either use a theorem of Fröhlich-Queyrut [1] which tells us that for an orthogonal character the sign is always +1 , or use the fact that $L\left(\chi_{j}, s\right)$ is equal to the quotient of two zeta functions.

This sign error is compensated on page 416 by another one. After shifting the line of integration and changing s into $-s$, the formula should read with C instead of $-C$ in front of the integral sign.

Similarly, on page 416 line -3 the correct functional equation is $\Lambda^{\prime}(1-s)=$ $\Lambda^{\prime}(s)$, and on line 6 of page 417 the constant in front of the integral sign should read C^{\prime} and not $-C^{\prime}$, compensating the other sign error.
§3. Finally it has been pointed out to me by several people that reference [6], by T. Hiramatsu, is incorrect, hence that, contrary to what is stated on top of page 419 , it does not seem possible to compute the dimension of the space
of holomorphic forms of weight 1 from the dimension of the space of Maass forms of weight 0 and eigenvalue 1/4.

References

[1] Fröhlich, A., Queyrut, J.: On the functional equation of the Artin L-function for characters of real representations, Invent Math. 20 (1973) 125-138

