Skip to main content
Log in

Inequalities for generalized nonnegative polynomials

  • Published:
Constructive Approximation Aims and scope

Abstract

We define generalized polynomials as products of polynomials raised to positive real powers. The generalized degree can be defined in a natural way. We prove Markov-, Bernstein-, and Remez-type inequalities inL p (0<p<∞) and Nikolskii-type inequalities for such generalized polynomials. Our results extend the corresponding inequalities for ordinary polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Arestov (1981):On integral inequalities for trigonometric polynomials and their derivatives. Izv. Akad. Nauk SSSR Ser. Mat.,45:3–22.

    Google Scholar 

  2. T. Erdélyi (1989):The Remez inequality on the size of polynomials. In: Approximation Theory VI, Vol. 1 (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.), Boston: Academic Press, pp. 243–246.

    Google Scholar 

  3. T. Erdélyi (to appear): Remez-type inequalities on the size of generalized polynomials. J. London Math. Soc.

  4. T. Erdélyi (1991): Bernstein- and Markov-type inequalities for generalized non-negative polynomials. Canad. J. Math.,43:495–505.

    Google Scholar 

  5. G. Freud (1971): Orthogonal Polynomials. Oxford: Pergamon Press.

    Google Scholar 

  6. M. von Golitschek, G. G. Lorentz (1989):Bernstein inequalities in L p,0<p≤∞. Rocky Mountain J. Math.,19:145–156.

    Google Scholar 

  7. J. H. B. Kemperman, G. G. Lorentz (1979):Bounds for polynomials with applications. Proc. Konink. Neder. Akad. van Weten., Series A,82:13–26.

    Google Scholar 

  8. G. Klein (1951): On the Approximation of Functions by Polynomials. Ph.D. dissertation, the University of Chicago.

  9. D. S. Lubinsky, P. Nevai (1987):Markov-Bernstein inequalities revisited. Approx. Theory Appl.3:98–119.

    Google Scholar 

  10. A. Máté, P. Nevai (1980):Bernstein inequality in L p,0<p<1, and (C, 1) bounds of orthogonal polynomials. Ann. of Math.,111:145–154.

    Google Scholar 

  11. P. Nevai (1979):Bernstein's inequality in L p for 0<p<1. J. Approx. Theory,27:239–243.

    Google Scholar 

  12. P. Osval'd (1976):Some inequalities for trigonometric polynomials in L p, 0<p<1. Izv. Vyssh. Uchelm. Zaved. Mat.,20:65–75.

    Google Scholar 

  13. I. Schur (1919):Über das maximum des absoluten betrages eines polynoms in einem gegebenen interval. Math. Z,4:271–287.

    Google Scholar 

  14. A. Zygmund (1977): Trigonometric Series Vols. I & II, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by George G. Lorentz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdélyi, T., Máté, A. & Nevai, P. Inequalities for generalized nonnegative polynomials. Constr. Approx 8, 241–255 (1992). https://doi.org/10.1007/BF01238273

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238273

AMS classification

Key words and phrases

Navigation