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1. CONFESSIONAL

There are two serious errors, uncovered by Anatolii Grinshpan, in the paper [1]. First,
Theorem 4 is incorrect. The mistake in the proof occurs at the very end, where it is asserted
that a certain constant ¢ must be positive. As Grinshpan points out, the case ¢ < 0 can
also arise. A corrected version of Theorem 4 is presented below, in Section 2.

Second, Lemma 5 is also incorrect. The proof has two mistakes. Toward the end, it is
asserted unjustifiably that two polynomials F' and G are constant multiples of each other.
Subsequently, the oversight made in the proof of Theorem 4 is repeated.

Lemma 5 was used in the proof of Theorem 5. The proof of Theorem 5 in {1] is thus
incomplete. The additions needed to complete the proof are given below, in Section 3.
The needed tools are already in Section 4 of [1].

All notations below are as in [1].

2. THEOREM 4 CORRECTED
Theorem 4 from [1] should be replaced by the following statement.

Theorem 4. Let v = Efil vibg, be a positive measure on 0D, a sum of N atoms.
Let the sesquilinear functional W, on H(v,) be defined by

Wi(f9) = [TIOV T ().
If W, is positive definite, then v is a positive multiple of p.

The correction thus consists in the replacement of the condition that W, be Hermitian
with the condition that it be positive definite.

The proof of the corrected Theorem 4 follows the argument in [1] up to the point
where the mistake was made. Namely, from the assumption that W, is Hermitian one
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concludes that there is a nonzero constant ¢ such that

N z

: 1 (1-2)a-w2

(1) 1-c S uK@z) = 2 :
t=1 [1(1-52)?

=1

this is equality (2.10) from [1]. As noted in [1], on 8D, the function on the right side of
(1) has a constant argument, the argument of H, 20/ H _1 Wj, while the range of the
function on the left side lies in the ray {1+ tc: ¢ > 0}. This leaves only two possibilities:
¢ > 0 and ¢ < 0 (the latter being overlooked in [1]). As in [1], the case ¢ > 0 leads to the
conclusion cv = p. It will be shown that, if ¢ < 0, then W,, although Hermitian, is not
positive definite.

We can reduce the case ¢ < 0 to the case ¢ = —~1 by replacing v by a suitable multiple
of itself. We thus assume that (1) holds with ¢ = —1. The function on the left side of (1)
then becomes

N
1+ uK@pz);
=1

we denote this function by K_,. We know that K_, has a constant argument on 9D, so,
because it tends to —oo at each point 3, it must be negative on 8D. The zeros of K_,
are the points wy, ..., wy and their reflections with respect to 8D.

We define an indefinite inner product [, ], on D(v) by setting

[f’g]ll = <f7g> - Du(f7g)‘

Some of the arguments from Section 2 of [1] can be employed. Define the function Xo by

N
xo(z) = W [T(1-B12) / qu(2).

=1

Then K_, = -—| XO' on 0D, and the proof of Theorem 1 from [1] shows that, for f in
H2
[ofixof], = ~|£1;-

Thus xoH?, a subspace of D(v) of codimension N, is an anti-Hilbert space under the
inner product [-,-],. However, D(v) itself is not an anti-Hilbert space under [,:],, because
1,1, = L

Next, the proof of Theorem 2 of [1] shows that, for f in D(v) and g in H(v,,),

Frgly = - / X ) TN ().

In pa.rtlcular, Wo(f,9) = —[f,g], for f and g in H(v,). Moreover, the subspaces H(vy)
and xoH?, whose algebraic direct sum is D(v), are orthogonal relative to ['-]u- Since [-, "],
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is negative definite on xoH? but not on all of D(v), it is not negative definite on H(v,).
From the relation above between [-, -], and W,,, it follows that W, is not positive definite.
This completes the proof of the corrected Theorem 4.

Example. One can make explicit calculations for the case v = aé; + ad_;. One finds
that K_, is negative on 0D provided a > 1/2, and then its zeros in D are the points
wy = p, wa = —p, where

p = [2(1 - (4a2 - 1) 1/2] i .

The sesquilinear functional W, defined as in Theorem 4 on the span of the kernel functions
kw, and ky,, is Hermitian. Calculations give

—2ap?
Wu(kwnk'wl) = Wv(szvsz) = (1+p2)2

—2ap?(3 — p?
Wv(kwnsz) = Wu(sz,kw1) = (1 +(P2)3 )

2

The matrix (W,,(kw,,, L ))1 =1 has a negative determinant, implying that W, is indefinite.

3. PROOF OF THEOREM 5 COMPLETED
The theorem will be restated.

Theorem 5. Let h be a wandering vector of S,,, with inner-outer factorization h =
uho. Let A’ be the set of points in A at which h vanishes, and let v = ||h||;?|h|?u. Then

ho(2) = ea,(2) [T (1-%2)/au(),
ALEAY
where ¢ is a constant. The equality
o (M)l = 21w (0] + v (M)
holds for every | such that h()\;) # 0.

Much of the proof in [1] can be retained. As explained in [1], the case A’ = A is easily
disposed of, so we assume A’ # A. Let L = card(A\A’). We may suppose without loss of
generality that A’ = {A,1,..., Ay} (interpreted as the empty set if L = N ).

By Lemma 3 of [1], the function hg has the form

M N
e [Ta-a2) J[ @-%2)
hO(Z) — k=1 I=L+1 ,

qu(2)
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where ¢ is a constant, 0 < M < L, and qy, ..., ay are points of D \(A\A’). As was done
at the start of the “proof”of the abortive Lemima 5 from [1], we introduce two polynomials,

G(z) = 24~ MH(I—E]:)(I—akz)

k=1
L _ L _ _
F(z) = [Ja =222 =Y 2z [[ 1 - Xn2)?,
=1 I=1 mytl
m<L

where the numbers 7:,...,7n; are so chosen that F(N) = G(\) for I = 1,...,L. A

calculation gives
L M
~1)L-M H Am H I\ = agl?
m=1 k=1

T]l = M ?
[Tex IT -
k=1  m#
m<L
showing that the numbers 7, ..., 7. have the same argument.

By Lemma 4 of [1] we have the equalities

M —_— i —
Aoy — NG AAdm — MAm
Sl IR i === == (=1,...,L).
2 [Ar — al? ; |Ar = Amf? ( )
m<L
As explained in [1], these imply that the functions F and G have the same logarithmic
derivatives at A1,...,Ar. (Detailed calculations can be found in [2].) As F and G are
polynomials of at most degree 2L that coincide along with their derivatives at A1,..., A,

we must have
L
2) F(z) - H (1- Xi2)?

for some constant b.
The case M = L will be dealt with first. In that case G(0) = 1, and since also
F(0) = 1, it follows that b = 0, and F = G. The last equality can be rewritten as

[I (1--—) (1 - @z)

(3) 1- Zn,K(Alz =
=1 H(1 = N2)?
=1
Because 71, . ..,m. have the same argument, the reasoning above in the proof of the cor-

rected Theorem 4 applies to show that there are only two possibilities: either n, > 0 for
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every I, or , < Q for every I. If 5, > O for every [, the reasoning in [1] applies and leads
to the desired conclusions. It will be shown that the case n, < 0 does not arise for a
wandering vector.

Assume every 7, is negative, and let n denote the measure — E{;l 0. Let K_p
denote the function on either side of the equality (3}, a function that is nonpositive on
OD. Let v_y, be the Blaschke product for the zero set of KX_, in D. According to Lemma
4 in [1], if A is a wandering vector of S, then [v’, (A)| > Juu(Ay)| for I =1,..., L. Tt will
be shown that the last condition fails.

Along with the measure —7n we consider the measures tn and —tn for t > 1, and
the corresponding Blaschke products v, and v_s,. Lemma 8 from [1] states that, for
l=1,..., L, the numbers |v;,(\;)| decrease as ¢ increases. The proof of that lemma shows
that the numbers |v”,,(\;)| increase as ¢ increases (I = 1,...,L). It is asserted that the
numbers |vg, (A;)] and [v,,(Ai)] have the same limit as ¢ — co.

To prove the assertion we introduce the function

L
Koon(2) = Y _nKNz),
=1

and we let voon be the Blaschke product for its zero set in D. The zero set of Kty is the
set of points where K, takes the value —1/t. Fix ¢ > 0, and construct open disks of
radius € centered at the zeros of Kooy in D. Assume ¢ is small enough so that those disks
are contained in D and mutually disjoint. The function Ke, being positive on 8D, is
bounded away from 0 on the complement in D of the union of those disks. Hence, for £
sufficiently large, the solutions in D of the equation Koo, = —1/¢ lie in those disks, and
each disk contains as many solutions as the multiplicity of its center as a zero of Koo
It follows that vy — veoy as t — 0, the convergence being locally uniform off the set of
poles of voop. By the same reasoning, v_;; — voon 8s t — 00, in the same manner. The
assertion follows.

From the results in the last two paragraphs we can conclude that [v_, ()| < |vi, (A1)
forallt>0(l=1,...,L). Now let t be chosen large enough so that the measure 7 is not
dominated by 4. Then, according to Theorem 8 of [1], there is an I such that |v}, (A)] <
[v,(M)], and hence also [v”_, (A;)| < [/, (Ar)]- By the necessary condition mentioned earlier,
it follows that A cannot be a wandering vector in this case.

It remains to treat the case M < L. In that case G(0) = 0, so the constant b in (2)
must equal 1. In place of (3) we now have

M z
L-M _Z _=
L ~ z 11 (1 ak) (1-ax2)
(4) =Y nKz) = = :
=1 H(l _ 'XZZ)Q
=1
As noted earlier, the numbers 7,,...,7. have the same argument. Let n = Z{;l 17,16, -

The function on either side of (4) is then a multiple of Kooy According to Lemma 4 in
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[1], the status of h as a wandering vector would entail the inequalities v/, (\;)| > v, (A
(I =1,...,L). The latter condition is not fulfilled, by the reasoning just given for the
case M = L. Thus, the case M < L does not arise for a wandering vector. The proof of
Theorem 5 is now complete.

4. MISPRINTS
The following minor corrections should be made in [1].

Page 193, Line 4—. Replace w™ by w™ ™",

Page 193, Line 2—. Replace W™ by w™ ™.

Page 197, Line 9—. Replace 3 on the left side of the equality by &,,.
Page 201, Line 10. Replace v by v.
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