ERRATA
 "HARMONICALLY WEIGHTED DIRICHLET SPACES ASSOCIATED WITH FINITELY ATOMIC MEASURES"

Donald Sarason
Integral Equations and Operator Theory, Vol. 31, No. 2, 1998

1. Confessional

There are two serious errors, uncovered by Anatolii Grinshpan, in the paper [1]. First, Theorem 4 is incorrect. The mistake in the proof occurs at the very end, where it is asserted that a certain constant c must be positive. As Grinshpan points out, the case $c<0$ can also arise. A corrected version of Theorem 4 is presented below, in Section 2.

Second, Lemma 5 is also incorrect. The proof has two mistakes. Toward the end, it is asserted unjustifiably that two polynomials F and G are constant multiples of each other. Subsequently, the oversight made in the proof of Theorem 4 is repeated.

Lemma 5 was used in the proof of Theorem 5. The proof of Theorem 5 in [1] is thus incomplete. The additions needed to complete the proof are given below, in Section 3. The needed tools are already in Section 4 of [1].

All notations below are as in [1].

2. Theorem 4 Corrected

Theorem 4 from [1] should be replaced by the following statement.
Theorem 4. Let $\nu=\sum_{l=1}^{N} \nu_{l} \delta_{\beta_{l}}$ be a positive measure on $\partial \mathbf{D}$, a sum of N atoms. Let the sesquilinear functional W_{ν} on $\mathcal{H}\left(v_{\mu}\right)$ be defined by

$$
W_{\nu}(f, g)=\int \bar{\lambda} f(\lambda) \overline{g^{\prime}(\lambda)} d \nu(\lambda)
$$

If W_{ν} is positive definite, then ν is a positive multiple of μ.
The correction thus consists in the replacement of the condition that W_{ν} be Hermitian with the condition that it be positive definite.

The proof of the corrected Theorem 4 follows the argument in [1] up to the point where the mistake was made. Namely, from the assumption that W_{ν} is Hermitian one
concludes that there is a nonzero constant c such that

$$
\begin{equation*}
1-c \sum_{l=1}^{N} \nu_{l} K\left(\bar{\beta}_{l} z\right)=\frac{\prod_{j=1}^{N}\left(1-\frac{z}{w_{j}}\right)\left(1-\bar{w}_{j} z\right)}{\prod_{l=1}^{N}\left(1-\bar{\beta}_{l} z\right)^{2}} \tag{1}
\end{equation*}
$$

this is equality (2.10) from [1]. As noted in [1], on $\partial \mathbf{D}$, the function on the right side of (1) has a constant argument, the argument of $\prod_{l=1}^{N} \beta_{l} / \prod_{j=1}^{N} w_{j}$, while the range of the function on the left side lies in the ray $\{1+t c: t>0\}$. This leaves only two possibilities: $c>0$ and $c<0$ (the latter being overlooked in [1]). As in [1], the case $c>0$ leads to the conclusion $c \nu=\mu$. It will be shown that, if $c<0$, then W_{ν}, although Hermitian, is not positive definite.

We can reduce the case $c<0$ to the case $c=-1$ by replacing ν by a suitable multiple of itself. We thus assume that (1) holds with $c=-1$. The function on the left side of (1) then becomes

$$
1+\sum_{l=1}^{N} \nu_{l} K\left(\bar{\beta}_{l} z\right)
$$

we denote this function by $\mathcal{K}_{-\nu}$. We know that $\mathcal{K}_{-\nu}$ has a constant argument on $\partial \mathbf{D}$, so, because it tends to $-\infty$ at each point β_{l}, it must be negative on $\partial \mathrm{D}$. The zeros of $\mathcal{K}_{-\nu}$ are the points w_{1}, \ldots, w_{N} and their reflections with respect to $\partial \mathrm{D}$.

We define an indefinite inner product $[\cdot,]_{\nu}$ on $D(\nu)$ by setting

$$
[f, g]_{\nu}=\langle f, g\rangle-D_{\nu}(f, g)
$$

Some of the arguments from Section 2 of [1] can be employed. Define the function χ_{0} by

$$
\chi_{0}(z)=\omega^{1 / 2} \prod_{l=1}^{N}\left(1-\bar{\beta}_{l} z\right) / q_{\mu}(z)
$$

Then $\mathcal{K}_{-\nu}=-\left|\chi_{0}\right|^{-2}$ on $\partial \mathbf{D}$, and the proof of Theorem 1 from [1] shows that, for f in H^{2},

$$
\left[\chi_{0} f, \chi_{0} f\right]_{\nu}=-\|f\|_{2}^{2}
$$

Thus $\chi_{0} H^{2}$, a subspace of $D(\nu)$ of codimension N, is an anti-Hilbert space under the inner product $[\cdot, \cdot]_{\nu}$. However, $D(\nu)$ itself is not an anti-Hilbert space under $[\cdot, \cdot]_{\nu}$, because $[1,1]_{\nu}=1$.

Next, the proof of Theorem 2 of [1] shows that, for f in $D(\nu)$ and g in $\mathcal{H}\left(v_{\mu}\right)$,

$$
[f, g]_{\nu}=-\int \bar{\lambda} f(\lambda) \overline{g^{\prime}(\lambda)} d \nu(\lambda)
$$

In particular, $W_{\nu}(f, g)=-[f, g]_{\nu}$ for f and g in $\mathcal{H}\left(v_{\mu}\right)$. Moreover, the subspaces $\mathcal{H}\left(v_{\mu}\right)$ and $\chi_{0} H^{2}$, whose algebraic direct sum is $D(\nu)$, are orthogonal relative to $[\cdot, \cdot]_{\nu}$. Since $[\cdot, \cdot]_{\nu}$
is negative definite on $\chi_{0} H^{2}$ but not on all of $D(\nu)$, it is not negative definite on $\mathcal{H}\left(v_{\mu}\right)$. From the relation above between $[\cdot, \cdot]_{\nu}$ and W_{ν}, it follows that W_{ν} is not positive definite. This completes the proof of the corrected Theorem 4.

Example. One can make explicit calculations for the case $\nu=a \delta_{i}+a \delta_{-i}$. One finds that $\mathcal{K}_{-\nu}$ is negative on $\partial \mathrm{D}$ provided $a>1 / 2$, and then its zeros in D are the points $w_{1}=\rho, w_{2}=-\rho$, where

$$
\rho=\left[2 a-\left(4 a^{2}-1\right)^{1 / 2}\right]^{1 / 2}
$$

The sesquilinear functional W_{ν} defined as in Theorem 4 on the span of the kernel functions $k_{w_{1}}$ and $k_{w_{2}}$ is Hermitian. Calculations give

$$
\begin{aligned}
& W_{\nu}\left(k_{w_{1}}, k_{w_{1}}\right)=W_{\nu}\left(k_{w_{2}}, k_{w_{2}}\right)=\frac{-2 a \rho^{2}}{\left(1+\rho^{2}\right)^{2}} \\
& W_{\nu}\left(k_{w_{1}}, k_{w_{2}}\right)=W_{\nu}\left(k_{w_{2}}, k_{w_{1}}\right)=\frac{-2 a \rho^{2}\left(3-\rho^{2}\right)}{\left(1+\rho^{2}\right)^{3}}
\end{aligned}
$$

The matrix $\left(W_{\nu}\left(k_{w_{i}}, k_{w_{j}}\right)\right)_{i, j=1}^{2}$ has a negative determinant, implying that W_{ν} is indefinite.

3. Proof of Theorem 5 Completed

The theorem will be restated.
Theorem 5. Let h be a wandering vector of S_{μ}, with inner-outer factorization $h=$ $u h_{0}$. Let Λ^{\prime} be the set of points in Λ at which h vanishes, and let $\nu=\|h\|_{\mu}^{-2}|h|^{2} \mu$. Then

$$
h_{0}(z)=c q_{\nu}(z) \prod_{\lambda_{l} \in \Lambda^{\prime}}\left(1-\bar{\lambda}_{l} z\right) / q_{\mu}(z)
$$

where c is a constant. The equality

$$
\left|v_{\nu}^{\prime}\left(\lambda_{l}\right)\right|=2\left|u^{\prime}\left(\lambda_{l}\right)\right|+\left|v_{\mu}^{\prime}\left(\lambda_{l}\right)\right|
$$

holds for every l such that $h\left(\lambda_{l}\right) \neq 0$.
Much of the proof in [1] can be retained. As explained in [1], the case $\Lambda^{\prime}=\Lambda$ is easily disposed of, so we assume $\Lambda^{\prime} \neq \Lambda$. Let $L=\operatorname{card}\left(\Lambda \backslash \Lambda^{\prime}\right)$. We may suppose without loss of generality that $\Lambda^{\prime}=\left\{\lambda_{L+1}, \ldots, \lambda_{N}\right\}$ (interpreted as the empty set if $L=N$).

By Lemma 3 of [1], the function h_{0} has the form

$$
h_{0}(z)=\frac{c \prod_{k=1}^{M}\left(1-\bar{\alpha}_{k} z\right) \prod_{l=L+1}^{N}\left(1-\bar{\lambda}_{l} z\right)}{q_{\mu}(z)}
$$

where c is a constant, $0 \leq M \leq L$, and $\alpha_{1}, \ldots, \alpha_{M}$ are points of $\overline{\mathrm{D}} \backslash\left(\Lambda \backslash \Lambda^{\prime}\right)$. As was done at the start of the "proof" of the abortive Lemma 5 from [1], we introduce two polynomials,

$$
\begin{gathered}
G(z)=z^{L-M} \prod_{k=1}^{M}\left(1-\frac{z}{\alpha_{k}}\right)\left(1-\bar{\alpha}_{k} z\right) \\
F(z)=\prod_{l=1}^{L}\left(1-\bar{\lambda}_{l} z\right)^{2}-\sum_{l=1}^{L} \eta_{l} \bar{\lambda}_{l} z \prod_{\substack{m \neq l \\
m \leq L}}\left(1-\bar{\lambda}_{m} z\right)^{2}
\end{gathered}
$$

where the numbers $\eta_{1}, \ldots, \eta_{L}$ are so chosen that $F\left(\lambda_{l}\right)=G\left(\lambda_{l}\right)$ for $l=1, \ldots, L$. A calculation gives

$$
\eta_{l}=\frac{(-1)^{L-M} \prod_{m=1}^{L} \lambda_{m} \prod_{k=1}^{M}\left|\lambda_{l}-\alpha_{k}\right|^{2}}{\prod_{k=1}^{M} \alpha_{k} \prod_{\substack{m \neq z \\ m \leq L}}\left|\lambda_{l}-\lambda_{m}\right|^{2}}
$$

showing that the numbers $\eta_{1}, \ldots, \eta_{L}$ have the same argument.
By Lemma 4 of [1] we have the equalities

$$
\sum_{k=1}^{M} \frac{\bar{\lambda}_{l} \alpha_{k}-\lambda_{l} \bar{\alpha}_{k}}{\left|\lambda_{l}-\alpha_{k}\right|^{2}}=\sum_{\substack{m \neq l \\ m \leq L}} \frac{\bar{\lambda}_{l} \lambda_{m}-\lambda_{l} \bar{\lambda}_{m}}{\left|\lambda_{l}-\lambda_{m}\right|^{2}} \quad(l=1, \ldots, L)
$$

As explained in [1], these imply that the functions F and G have the same logarithmic derivatives at $\lambda_{1}, \ldots, \lambda_{L}$. (Detailed calculations can be found in [2].) As F and G are polynomials of at most degree $2 L$ that coincide along with their derivatives at $\lambda_{1}, \ldots, \lambda_{L}$, we must have

$$
\begin{equation*}
F(z)-G(z)=b \prod_{l=1}^{L}\left(1-\bar{\lambda}_{l} z\right)^{2} \tag{2}
\end{equation*}
$$

for some constant b.
The case $M=L$ will be dealt with first. In that case $G(0)=1$, and since also $F(0)=1$, it follows that $b=0$, and $F=G$. The last equality can be rewritten as

$$
\begin{equation*}
1-\sum_{l=1}^{L} \eta_{l} K\left(\bar{\lambda}_{l} z\right)=\frac{\prod_{k=1}^{L}\left(1-\frac{z}{\alpha_{k}}\right)\left(1-\bar{\alpha}_{k} z\right)}{\prod_{l=1}^{L}\left(1-\bar{\lambda}_{l} z\right)^{2}} \tag{3}
\end{equation*}
$$

Because $\eta_{1}, \ldots, \eta_{L}$ have the same argument, the reasoning above in the proof of the corrected Theorem 4 applies to show that there are only two possibilities: either $\eta_{t}>0$ for
every l, or $\eta_{l}<0$ for every l. If $\eta_{l}>0$ for every l, the reasoning in [1] applies and leads to the desired conclusions. It will be shown that the case $\eta_{t}<0$ does not arise for a wandering vector.

Assume every η_{l} is negative, and let η denote the measure $-\sum_{l=1}^{L} \eta_{l} \delta_{\lambda_{l}}$. Let $\mathcal{K}_{-\eta}$ denote the function on either side of the equality (3), a function that is nonpositive on $\partial \mathbf{D}$. Let $v_{-\eta}$ be the Blaschke product for the zero set of $\mathcal{K}_{-\eta}$ in \mathbf{D}. According to Lemma 4 in [1], if h is a wandering vector of S_{μ} then $\left|v_{-\eta}^{\prime}\left(\lambda_{l}\right)\right| \geq\left|v_{\mu}\left(\lambda_{l}\right)\right|$ for $l=1, \ldots, L$. It will be shown that the last condition fails.

Along with the measure $-\eta$ we consider the measures $t \eta$ and $-t \eta$ for $t>1$, and the corresponding Blaschke products $v_{t \eta}$ and $v_{-t \eta}$. Lemma 8 from [1] states that, for $l=1, \ldots, L$, the numbers $\left|v_{t \eta}^{\prime}\left(\lambda_{l}\right)\right|$ decrease as t increases. The proof of that lemma shows that the numbers $\left|v_{-t \eta}^{\prime}\left(\lambda_{l}\right)\right|$ increase as t increases $(l=1, \ldots, L)$. It is asserted that the numbers $\left|v_{t \eta}^{\prime}\left(\lambda_{l}\right)\right|$ and $\left|v_{-t \eta}^{\prime}\left(\lambda_{l}\right)\right|$ have the same limit as $t \rightarrow \infty$.

To prove the assertion we introduce the function

$$
\mathcal{K}_{\infty \eta}(z)=\sum_{l=1}^{L} \eta_{l} K\left(\bar{\lambda}_{l} z\right)
$$

and we let $v_{\infty \eta}$ be the Blaschke product for its zero set in \mathbf{D}. The zero set of $\mathcal{K}_{t \eta}$ is the set of points where $\mathcal{K}_{\infty \eta}$ takes the value $-1 / t$. Fix $\epsilon>0$, and construct open disks of radius ϵ centered at the zeros of $\mathcal{K}_{\infty \eta}$ in \mathbf{D}. Assume ϵ is small enough so that those disks are contained in \mathbf{D} and mutually disjoint. The function $\mathcal{K}_{\infty \eta}$, being positive on $\partial \mathbf{D}$, is bounded away from 0 on the complement in $\overline{\mathbf{D}}$ of the union of those disks. Hence, for t sufficiently large, the solutions in \mathbf{D} of the equation $\mathcal{K}_{\infty \eta}=-1 / t$ lie in those disks, and each disk contains as many solutions as the multiplicity of its center as a zero of $\mathcal{K}_{\infty \eta}$. It follows that $v_{t \eta} \rightarrow v_{\infty \eta}$ as $t \rightarrow \infty$, the convergence being locally uniform off the set of poles of $v_{\infty \eta}$. By the same reasoning, $v_{-t \eta} \rightarrow v_{\infty \eta}$ as $t \rightarrow \infty$, in the same manner. The assertion follows.

From the results in the last two paragraphs we can conclude that $\left|v_{-\eta}^{\prime}\left(\lambda_{l}\right)\right|<\left|v_{t \eta}^{\prime}\left(\lambda_{l}\right)\right|$ for all $t>0(l=1, \ldots, L)$. Now let t be chosen large enough so that the measure $t \eta$ is not dominated by μ. Then, according to Theorem 8 of $[1]$, there is an l such that $\left|v_{t \eta}^{\prime}\left(\lambda_{l}\right)\right|<$ $\left|v_{\mu}^{\prime}\left(\lambda_{l}\right)\right|$, and hence also $\left|v_{-\eta}^{\prime}\left(\lambda_{l}\right)\right|<\left|v_{\mu}^{\prime}\left(\lambda_{l}\right)\right|$. By the necessary condition mentioned earlier, it follows that h cannot be a wandering vector in this case.

It remains to treat the case $M<L$. In that case $G(0)=0$, so the constant b in (2) must equal 1. In place of (3) we now have

$$
\begin{equation*}
-\sum_{l=1}^{L} \eta_{l} K\left(\bar{\lambda}_{l} z\right)=\frac{z^{L-M} \prod_{k=1}^{M}\left(1-\frac{z}{\alpha_{k}}\right)\left(1-\bar{\alpha}_{k} z\right)}{\prod_{l=1}^{L}\left(1-\bar{\lambda}_{l} z\right)^{2}} \tag{4}
\end{equation*}
$$

As noted earlier, the numbers $\eta_{1}, \ldots, \eta_{L}$ have the same argument. Let $\eta=\sum_{l=1}^{L}\left|\eta_{l}\right| \delta_{\lambda_{l}}$. The function on either side of (4) is then a multiple of $\mathcal{K}_{\infty \eta \eta}$. According to Lemma 4 in
[1], the status of h as a wandering vector would entail the inequalities $\left|v_{\infty}^{\prime} \eta\left(\lambda_{l}\right)\right| \geq\left|v_{\mu}^{\prime}\left(\lambda_{l}\right)\right|$ ($l=1, \ldots, L$). The latter condition is not fulfilled, by the reasoning just given for the case $M=L$. Thus, the case $M<L$ does not arise for a wandering vector. The proof of Theorem 5 is now complete.

4. Misprints

The following minor corrections should be made in [1].
Page 193, Line 4-. Replace w^{m} by w^{m-n}.
Page 193, Line 2-. Replace \bar{w}^{m} by \bar{w}^{m-n}.
Page 197, Line 9-. Replace β_{l} on the left side of the equality by β_{m}.
Page 201, Line 10. Replace ν by v.

REFERENCES

1. D. Sarason, Harmonically weighted Dirichlet spaces associated with finitely atomic measures. Integral Equations and Operator Theory 31 (1998), 186-213.
2. D. Sarason and D. Suarez, Inverse problem for zeros of certain Koebe-related functions. Journal d'Analyse Mathématique 71 (1997), 149-158.
```
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720
sarason@math.berkeley.edu
1991 Mathematical Reviews Subject Classification Numbers 30H05, 46E20, 47B38, 47A15
```

Submitted: August 26, 1999

