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Summary. We study a quantum random walk on d(SU(n)) ,  the von Neumann  
algebra of SU(n), obtained by tensoring the basic representation of SU(n). Two 
classical Markov  chains are derived from this quantum random walk, by restric- 
tion to commutat ive subalgebras of d(SU(n)) ,  and the main result of the paper  
states that these two M arkov  chains are related by means of Doob ' s  h-processes. 

O. Introduction 

In E33, E4], we have studied a quantum generalization of the Bernoulli r andom 
walk on 28. This quantum Bernoulli r andom walk can be interpreted as a quan- 
tum Markov  chain (in the sense of Accardi et al. [-1]) on the dual of the compact  
group SU(2), which is to be understood as the "non-commuta t ive  space" whose 
algebra of bounded functions is the group yon Neumann  algebra of SU(2). 
Natura l  generalizations of this quantum stochastic process are obtained when 
one replaces SU(2) by other compact  topological groups (see Biane E3], [4]; 
Par thasarathy [8]). We would like to study probabilistic properties of these 
quantum stochastic processes, like recurrence, transience, or asymptotic  behav- 
iour, but for such problems it is easier to deal with classical (commutative) 
Markov  chains, so it is natural  to look for classical Markov  chains which can 
be " imbedded"  into these quantum Markov  chains. 

In [3] it was shown that two interesting classical processes could be obtained 
from a quantum random walk on the dual of a compact  group, by restriction 
to suitable commutat ive subalgebras of the group yon Neumann  algebra. In 
particular, in the SU(2) case, it was proved in [3], [8], [-10] that the restriction 
to a one-dimensional subgroup algebra is a Bernoulli r andom walk on 7/, while 
the restriction to the center is a Markov  chain on N obtained from the Bernoulli 
r andom walk by conditioning it to "reach oo before 0" in the sense of Doob ' s  
h-processes. The purpose of this paper  is to prove that a similar result holds 
for SU(n). More  precisely, we will construct a quantum Markov  chain on the 
group yon Neumann  algebra of SU(n) and interpret the restriction of this quan- 
tum Markov  chain to the algebra of a maximal  torus of SU(n) as a random 
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walk on the lattice of integral forms of SU(n) with respect to this maximal 
torus. Then, we will see that the restriction of the quantum Markov  chain 
to the center of the von Neumann  algebra will be a Markov  chain on the 
same lattice, obtained from the preceding by conditioning it (in Doob ' s  sense) 
to exit a Weyl chamber  by a Mart in boundary  point at oo. 

This paper  is organized as follows: 
In the first section, we recall the construction of a quantum random walk 

on the dual of a compact  group, introduced in [3]. In Sect. 2 we recall some 
useful facts about  the Cartan-Weyl theory of root  systems and representations 
of compact  Lie groups with a view on the SU(n) case. In Sect. 3 we introduce 
the (classical) Markov  chains associated to a maximal torus algebra and to 
the center of the group algebra, and interpret them as Markov  chains on the 
lattice of integral forms of SU(n) with respect to the maximal torus. In Sect. 4, 
we state the main result of this paper, that the process on the center can be 
recovered from the process on the maximal torus by means of a Doob  condition- 
ning. The Doob  conditioning is then related to the Mart in boundary  in Sect. 5. 

I would like to thank Martine Babillot for useful conversations about Sect. 5. 

1. Construction of  a quantum Markov  chain on the dual of  a compact  group 

We recall here the construction of [-3]. 
Let G be a compact  group, and ~ be its group von Neumann  algebra. 

This is the von Neuman  algebra of operators  on LZ(G) generated by the left 
translation operators 2g: 2g(f(h))=f(g-lh), g~G (see Dixmier [6]). Let ~o be 
an irreducible representation of G, of dimension d, and ~2 = Me(C). 

Let v and p be normal  states on N and 
Let ~ =  ~@~Ar@ ... @.At@ ..., the tensor product  being taken with respect 

to the product  state co = p  @ ... @ p @ ... on X @  ... @mr@ ... .  
The formula -c(2g)=)~g @ (p(g) extends to a unique morphism of W* algebras 

from ~ to ~q@~. 
We define T: ~ K  by: T=v@s where s: X[l '~176 ~2,~f is the right 

shift. 
We can construct morphisms Jk: ~ # / "  by putting Jk= Tk~ where i: N ~  

is the canonical injection. 
For  g~G, one has: jk()~g)=2g@~O(g)@ . . .~0(g)@I@ ... @ I @  ... with k 40(g) 

factors. Let Q be the completely positive map  defined by: 

Q = ( I @ p ) o v :  N ~ .  

Then one has, for any q$o, ~bl, -.-, q$,~N: 

( I . l )  v@~o[jo((ao)j,((oO...j.((~.)]=V(r 

this shows that under the state v @ co, the morphisms (Jk) form a quantum Mar-  
kov chain with generator Q and initial law v, in the sense of Accardi et al. 
[ i ] .  
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In the rest of this paper, we will use this construction with G=SU(n) ,  and 
~o the n-dimensional basic representation of SU(n). Furthermore we will take 
p to be the tracial state p(X)= n-1 tr (X). 

2. Some facts about compact Lie groups 

This section contains some classical facts about compact Lie groups and their 
representations, specialized to the case of SU(n), which can be found, for example 
in Br6cker, tom Dieck [5]. 

Let T c S U ( n )  be the subgroup of diagonal matrices. This is a maximal 
torus in SU(n), of dimension n - 1 .  The Lie algebra LT of T is composed of 
purely imaginary diagonal matrices of zero trace. 

Let P c (LT)* be the lattice of integral forms. 
P is an n - 1  dimensional lattice generated by the element of (LT)* 

el, e2, ..., e, where 

U O) 1 
el( 0 "'" u, ) = ~ u J "  

These elements satisfy the relation: ea + . . .  + e,--0.  
LT and its dual (LT)* are endowed with the (2~)-2 x Killing form, so that 

1 
(el, ej} = ~ij----. 

n 

The roots of SU(n) with respect to T are ei-e j ,  1 <iNn, 1 <j<n, i=#j. 
The Weyl group of SU(n), W is generated by the reflections with respect 

to the roots. It is isomorphic to the group of permutations of {ea, ..., en}, the 
reflection with respect to e i -  ej acting by transposition of ei and ej. 

For  such a reflection of the Weyl group, the hyperplane H~,j generated by 
the ek with k 4= i, j is fixed. The complement in (LT)* of the union of these hyper- 
planes is composed of n! connected components which are permuted by the 
Weyl group, and which are called the Weyl chambers; the hyperplanes bounding 
a chamber are the walls of this chamber. 

We shall choose the lexicographic order on (LT)* with respect to the base 
el, ..., en_l, so that the set of positive roots will be ei-e j ,  1 <=i<j<n. 

Let C + be the Weyl chamber containing the root  e i -  e~, and C + its closure. 
Let P+ + = P • C + § and P+ = P c~ C + then 

(2.1)P++={mlea+.. .+m,_le,_l ,  mi~N, ml>m2>. . .>m,_ l>O}  while 

P+ = {ml ea + ... +ran-1 en-1, mieN, ml >=m2 >= ... >=ran-1 =>0}. 

We know from the Cartan-Weyl theory, that the equivalence class of an irreduc- 
ible representation of SU(n) is determined by its highest weight which is an 
element of P§ In particular the basic n-dimensional representation of SU(n) 
has weights el, ..., e, and highest weight el. 

Let q5 be the half sum of positive roots then q5 -- ( n -  1) e~ + ( n -  2) ea...  + e, _ 1- 
The following two lemmas will be useful in Sect. 5: 
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L e m m a  2.1 P+ + = P+ + q~. 

Proof. This follows from (2.1). 

L e m m a  2.2 i) I f  x~P+ +, then x + e j s P +  for each j = l ,  ..., n. 
ii) I f  x~P+ + and x + e j e P + \ P +  + then j>=2 and x +ejEHj, j_ 1. 

Proof i) If j =  1 . . . . .  n-- 1 this is clear from (2.1). 
If j =  n, recall that e, = - ( e  1 + . . .  + e,_ 1) and use again (2.1). 

ii) by (2.1) x = m  t e l + . . . + m . _  le ._~ with m l > m 2 > . . . > m , - l > 0  
if j = 2 , . . . , n - 1  then, since x + e j ~ P + \ P + +  one has m j + l = m j _ l  thus x 
d - e j c H j ,  j - 1  

i f j  = n, m,_ ~ must be one, and thus x + e, e H,. ,_ 1. 

If x e P  one can define a function e(x) on T by the formula: e(x)(expX) 
=exp  (2i~x(X)) for X~LT.  The map x--, e(x) is a group isomorphism between 
P and the character group of T. 

Let ~ be the irreducible representation of G of highest weight x~P+,  the 
restriction of its character X0 to T is given by Weyl's formula: 

detw e(w(x + ~)) 
(2.2) X~ = ~w . 

detw e(w(c~)) 
w~W 

One has: 

(2.3) ~ detw e(w(O))= 1~ ( e ( e ) - e ( c ~ ) )  
w~W ~ > 0  

where the product  is taken over the positive roots. 
In the sequel we shall use the notation ~ det w e (w (~b))(0)= ((0). 

weW 

We denote by ~c the normalized character of the basic representation of 
SU(n). For  any OcT: 

(2.4) ~c(o)= ln (e(eO+... +e(e,))(O). One has, for gEG, Q(2~)= ~:(g)2~. 

3. Two classical Markov  chains 

In this section, we will consider classical Markov chains obtained by restricting 
the morphisms Jk to commutative subalgebras of N. 

Let J -  be the commutative subalgebra of N generated by {20, OCT}. 
By decomposing the Haar  measure of G, we find an isomorphism L2(G) 

~L2(T) |  such that 2o acts by I on the second factor. It follows that 
~-- is isomorphic to the group yon Neumann algebra of T, which is itself 
isomorphic to the algebra of bounded functions on the dual group of T. Using 
this and the isomorphism between P and i", we have: 

L e m m a  3.1 There is an isomorphism of W*-algebras 4: 3---~ L ~ (P) such that 4(2) 
is the function (x -~ e(x)(0)). 
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In this isomorphism, the element of Y defined by ~ e(y)(0)20 dO corresponds 
to the indicator function of y. 

Using this isomorphism we identify Y with L ~176 (P). This allows us to identify 
the law of the restriction of (]k) to J - :  

T h e o r e m  3.1 The restriction of (Jk) to 3- defines a random walk on P such that 
the increments have law n - 1 (be, + . . .  + 3e,). 

Proof Let Jr c M,(II2) be the algebra of diagonal matrices. Then, the morphism 
z of Sect. 1 sends Y into J |  and by recurrence, each Jk sends r into 
the subalgebra ~- | ~ | 1 7 4  ... of ~ .  Since J - | 1 7 4  . . . J r174 ... is a commu- 
tative algebra, and Q sends J -  into ~,  we see that the Jk define a commutative 
process on Y, which is, by formula (1.1) a Markov chain with generator QIg-- 

1 tr (~0(0)). Using the identification of Lem- For OcT, one has Q(20)=20n 

] j = n  

ma 3.1, we see that Q(e(-)(0))= n ~ e(- +ej)(0). Since linear combinations of 
J = i  

the functions e(-)(0) are dense in L~(P), we see that for any feL~(P) ,  Q(f ( . ) )  
1 j=n 

= -  ~ f ( -  +e~), and this proves Theorem 3.t. 
F/ j = l  

We denote by pk(X, y) for keN,  x, yeP++,  the transition probabilities of 
the random walk of Theorem 3.1. 

L e m m a  3.2 I f  weW, k e N ,  pk(W(X), w(y))=pk(X, y). 

Proof By Theorem 3.1, the law of the increments of the random walk is invariant 
by the Weyl group, and the lemma follows. 

Proposition 3.1 pk(x, y)= ~ e(x)(O) e(y)(O) ~ck(o) dO. 
T 

Proof Denoting the indicator function of x~P  by 1 x, one has: 

Qk(ly) lx=pk(X, y) lx, or 

Qk(~e(y)(O)2o dO)oe(x)=pk(X, y) e(x) (o is the product in fr but 

Qk(20) = ~ck(O) 2O SO that ~ e(x) (0) e(y)(0) ~ck(O) dO e(x) 
T 

= Pk (X, y) e (x) which proves the formula. 

Let ~ (f~) be the center of N. 
For each irreducible representation t) of SU(n) with character •q, and dimen- 

sion d 0, l~o=do  ~ zo(g)2gdg is an element of ~e(N), and these elements are 
G 

the minimal projections of this center (cf. Dixmier [6]). In the sequel, we shall 
identify an equivalence class of irreducible representations of SU(n) with the 
element yeP++ such that y-q9  is the highest weight of the representation, 
and we will denote by Zy and dy, respectively its character and its dimension. 
With this identification, we see that ~(fr is isomorphic as a W*-algebra to 
I ~ (P+ +). 

T h e o r e m  3.2 The restriction of (Jk) to ~(f9) is a Markov chain with generator 
Qla'(*)- 
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Proof It is enough to prove two things: 
i) for any q~o, ~ l ~ f ( f f ) ,  and k, leN,  jk(c~o) andjl(~b 0 commute 
ii) for any q~0eSe(ff), Q ( ~ b o ) ~ ( ~  ) because then we can conclude with formula 
(2.1). 

i) Suppose that k < l, then 

j~((Oo)jl((ol) = Tk(i((flo)) Tk(T ~ k(i(431))) 

= Tk(i(~bo) T~-k(i((21))) 

= Tk(Tl-k(i(~O) i(~bo) ) because i(~bo) is in the center of ~/~ 

= T'(i(~l)) Tk(i((ao))=jz(dPl)jk(~bo) 

ii) Q(170)= Q(d~0 ~ z0(g)2g dg)= d o ~ Zq,(g)lC(g),)~g dg. Since Z~, and • are cen- 
G G 

tral functions on G, their product is also central, so that ~ )(o(g) ~c(g)2g dgs~e(N) 
G 

and Q (17o)e ~ (~). Since 170 generate y'(N), the result follows. 
We denote by qk(x, y) for k e N ,  x, y~P++ the transition probabilities of 

the Markov chain of Theorem 3.2. 

ds 
Proposition 3.2. qk(x, y ) = ~  ~ z~(g) )~y(g) ~k(g) dg. 

Proof One has, for x, yEP+ + : 

Qk(17y)=dy ~ Z~g) Kk(g) 2g dg. 
G 

The central function Z~ ~ck decomposes into a linear combination ~ c% ~ ,  where, 
because of the orthogonality relations of the characters, 

~ = ~ ~ 'ok(g) z~(g) dg. 
G 

Thus, we have: Qk(Hy)=~  qk(X, y)Fix with 
x 

dy 
qk(X, y ) = ~  ~ z~(g) Z~,(g) ~ck(g) dg. 

O 

4. A relation between the two Markov chains 

In the preceding section, we have derived from the quantum Markov chain 
(Jk) tWO classical Markov chains on P and P+ + respectively. We give now the 
main result of this paper (Theorem 4.1) which gives a relation between these 
two processes in terms of h-processes. Let us call X and Y Markov chains 
with transition probabilities as in Propositions 3.1 and 3.2. 

We start by killing the process X at the boundary of the Weyl chamber 
C+. We obtain a Markov chain on P§ + whose generator is given by the submar- 
kovian kernel Pl(X, y) on P+ + (of course this kernel can be made markovian 
by adjoining a cemetary point ~3 in the usual way). 
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We call p~(x, y) the transition probabilities of this Markov chain. 

Lemma 4.1 For each keN*,  x, y~P+ + 

1 
p~(x, y)= ~ det(w)pk(x, w(y))= ~ Y', ~, det(vw)pk(v(x), w(y)). 

w ~ W  I ' '  I v ~ W  w E W  

Proof. This can be proved by counting the paths of k steps from x to y which 
do not cross the boundary, with the help of the reflection principle for random 
walks (see Feller [-71, Vol. 1), but we give here a direct proof of the result by 
induction. 

First remark that the second equality is a consequence of Lemma 3.2. 
By Lemma 2.2 we see that pl(x, y)=0  if x s P + +  and yCP+, so that in the 

sum ~ det (w)p~(x, w(y)) the only term which contributes is w=Id ,  and the 
w ~ W  

equality p~(x, y)= ~ det (W)pk(X, w(y)) is true for k=  1. 
wEW 

Using Chapman-Kolmogorov equation we get 

p~+l(x,y)= ~, p~(x,z) p~ ~ Y' det(w)pk(x,w(z))p~(z,y) 
z~P++ zEP++ w 6 W  

= ~ ~, det(wlPk(X, w(z)) ~, det(vlpl(z, v(y)) 
zeP++ w ~ W  y e W  

= ~" ~ det(w)pk(w(x),z) ~' det(v)Pl(Z,v(y)). 
z~P++ w e W  v ~ W  

By Lemma 3.2 again, one has for any u~W 
det (w)Pk(W(X), Z) det (v) Pl (z, v(y)) 

= det (w u) Pk (U W (X), U (Z)) det (v u) p 1 (u (z), u v (y)) 
so that 

1 
p~+l(x, Y)=lW~ ~ ~ ~ ~' det(wu)pk(uw(x), u(z)) det(vu)p~(u(z), uv(y)) 

zEP++ w ~ W  u ~ W  y E W  

1 
- [ W I  Z ~ ~ Z det(w)pk(w(x),u(z))det(v)pl(u(z),v(Y)) 

z~P++ w 6 W  u ~ W  y E W  

1 
- [ W I  Z Z Z Z det(w)pk(w(x),z)det(v)pl(z,v(y)) 

u ~ W  zeu(P++) w ~ W  y e W  

if z e P \  ~ u(P++) then z belongs to one of the Hit so that it is fixed by a 
u ~ W  

reflection Vo of W, consequently, 

det (v) P l (z, v (y)) = ~ det (v) P l (v (z), y) = ~ det (v) P l (V V 0 (Z), y) 
v~W y e W  y E W  

det (v Vo) P l (v (z), y) = - Z det (v) P l (v (z), y) = 0. 
v ~ W  y E W  
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We see that 

1 
p~+~(x, y)= IWf ~' ~ ~ det(w)pk(w(x), z) det(v)p~(z, v(y)) 

z c P  w e W  y e W  

1 
-IWI ~ ~ det(wv)pk+l(W(X),v(y)) 

w ~ W  w W  

by Chapman-Kolmogorov equation for p. Lemma 4.1 follows by induction. 

Lemma 4.2 p~(x, y)= ~ Z~(O) e(y)(0) xk(o) ~(0) dO 
T 

1 
- I WI ~ Zd0) Z,(0) ~?(0)I~(0)1 ~ dO. 

Proof Applying Proposition 3.1 and Lemma 4.1, we obtain 

o 1 ~ ~ ~, det(vw)e(v(x))(O)e(w(y))(O)~:k(O)d 0 
p~(x, y)=FW~ ~ ~w w~w 

1 
-- I Wl ~ (o~w ~ det (v) e(v(x))(O))(w~W ~ det (w) e(w(y))(0)) Kk(o) dO 

1 
- [WI r ~ Zx(O) zr(O) Kk(O) l((O)[ 2 dO by Weyl's formula (2.2). 

We can now state the main result of this section: 

Theorem 4.1 i) x ~ dx is a p~ function on P+ +. 

ii) qk(x, y) =~__ p~,(X, y), SO that Y is the h-process of X killed at the boundary 

of C+ +, with respect to the harmonic function d. 

Proof Since Q(2e)=2e, ql is a Markovian kernel, so that it is enough to prove 
dy 

formula ii). By Lemma 3.2, qk(X, y ) = ~ - ~  )~x(g)zy(g)Kk(g)dg, where Zx, Zy, and 

~c are central functions, so that, by Weyl's integral formula (see [5]), one has 
1 

qk(X' Y)=~W~ ~ zx(0)zy(0) Kk(0)I~(0)12 d0 which is p~(x, y), by Lemma 4.2. 
1 

We will see in Sect. 5 that the harmonic function d corresponds to a Martin 
boundary point of P+ +. The next proposition states that this Martin boundary 
point is minimal. 

Proposition 4.1 The function d is a minimal p~ function. 

Proof Let h e n  and 5 be a permutation of {1 . . . .  , n}, ~ acts on the algebra 
X | 1 7 4  |  by the formula: 

~(q5 | xl | ... | 1 7 4 1 7 4  ... | 1 7 4  ...)= ~ | X~(1)| ,., | X~(n)|174 ... |  .... 

By an easy adaptation of the proof of Hewitt and Savage's 0 or 1 law (see 
Feller [1]), it is possible to prove that any self-adjoint projection invariant 
by all the 5 has expectation under p | ... | p. . .  0 or 1. 
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Because of Theorem l i), Proposition4.1 is equivalent to the fact that 
bounded q-harmonic functions are constant. By Revuz [9~ Chap. 7, this is equiv- 
alent to the fact that the algebra of invariant events of the Markov chain Y 
is reduced to sets of probability 0 or 1. Using the construction of Sect. 1, we 
see that this follows from the 0 or 1 law above, since indicator functions of 
invariant events for Y are permutation invariant self-adjoint projections. 

5. Asymptotics of the potential kernel 

The purpose of this section is to provide an asymptotic analysis of the potential 
kernel of the killed process, in order to identify the p~ function d 
as the Martin function corresponding to the Martin boundary point of C§ § 
obtained by taking limits inside cones with compact base included in C+ +. 

Let g~ y) be the potential kernel ~ p~(x, y). 
k e n  

~(0) dO. Lemma 5.1 g~ y)= [. Zx(O)e(y)(0) 1 -  ~(0) 
T 

Proof This follows from Lemma 4.2 and the definition of gO. 

In the following we use the expression above for gO (x, y) to find its asymptot- 
ics. This amounts to the study of a singular integral, and we do it by a method 
inspired from Babillot [2]. 

Let ~ be a ~ function on T which is 1 in a neighbourhood of I, .  

Lemma 5.2 S zx(O)e(y)(O) dO=o(lyl-~) for any N~N. 
T 

~(0) is Proof By (2.4), we have I~(0)l<l for O+I,, so that Xx(0) ( l -q(0) )  1-~c(0) 

a ~oo function on T. Lemma 5.2 follows by well known properties of Fourier 
series. 

We will identify functions on T with functions on (LT)* periodic with respect 

zx(O)e(y)(O) ((0) to P, and write the integral S, ~ dO as an integral on a funda- 

Thus, mental domain of (LT)*. T 

~(0) dO= ~ e -i<y' "> ((u) du S zx(o)  e (y) (0)  1 - ~(0)  ~ - ~c(u) 
T A 

where A is a fundamental domain in (LT)*. 

1 i = n  

Lemma 5.3 i) 1 -  ~c(u)=~ i~1= <ei, u>2+ O([u?) in the neighbourhood of 0. 

i = n  

ii) ~, (el, @2 = lui2. 
i = i  

Proof i) follows from (2.4). 
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quadratic form on (LT)* u ~ 1 i=)_.~., ii) the 9-f i= - .  (ei '  @2 is invariant by the Weyl 

group, and so its eigenspaces are also invariant. Since the Weyl group acts 
irreducibly on (LT)*, this quadratic form is a multiple of ( ' ,  "). Since 
i=n 

(ei, e l )  2=1  1 = @ 1 ,  e l ) ,  we have the result. 
n i = l  

Let C be a cone included in C + + w {0}, with compact base, then there exists 
a constant e(C)> 0 such that (y, ~ ) >  8(C)lyl for all y e C, and all positive root 
e. In what follows, we fix such a cone and let y go to oo inside this cone. 

We will use the notation c, to denote a constant whose exact value can 
be computed and depends only on n. In the following each such constant is 
designated by the same c, although its value changes from place to place. The 
rest of this section is devoted to the proof  of the following proposition: 

Proposition 5.1 For any (go~ function t 1 with compact support on (LT)*, one has: 

lim ]yln2-3 

(LT)* 
y~C ~ > 0  

((u) 
e -  i<y, 4> q (u) ~ du = c. r/(0). 

Combining this proposition with Lemmas 5.1 and 5.2, and using Zx(0)=dx we 
see that 

F[ (Y, ~) 
~>o dx so that g~ ]y]n2-3 

g~ 
gO(~o, y) + dx when y--* cc inside the cone C. 

This proves that d is the harmonic function corresponding to the Martin bound- 
ary point of P+ + obtained by taking limit at oo inside any cone with compact 
base in C+ +. It is plausible that Proposition 5.1 is still true if y is not restricted 
to stay in a cone, and so that there exists only one Martin boundary point 
at infinity for the kernel pO, but we have not been able to obtain sufficiently 
precise estimates on the potential kernel gO to prove this. 

We now proceed with the proof of Proposition 5.1. We will begin by compar- 
ing 

S e-'<"~> ' "  ~ ( u )  . , ~ ( u )  {L,)* t l t U J ~ O U  with (L,)*5 e-i<Y'">'l(u)7~du 

where r(u) = �89 lul 2. 
The difference of these two expressions is 

(5.1) 
~ (u) (r(u)-- 1 + ~c(u)) 

e-i<Y' u> t/(u) (1--~c(u))r(u) du. 
(LT)* 

In order to evaluate 5.1, we remark that the function 

(u) (r (u)-- 1 + ,c (u)) 
t/(u) is cg~ in (LT)*\{0}. Furthermore:  

(1 - ~ ( u ) )  r (u )  
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3 a a 
Lemma 5.4 Let D (k) = be a differential operator of order k on 

~Ui 1 ~Ui 2 "'" ~Uik 
(LT)*, one has the following bounds in the neighbourhood of 0: 

~(~ 1) k) 
i) P(k)(((u))=O([u[ 2 

ii) D ~k) ( 1 ~ = O([u[-2 -k) 
~1 - ~ ( u ) ]  

iii) D ( k ) ( r ~ ) = O ( l u l - 2 - k  ) 

iv) D~k)(r(u)-- 1 + ~c(u)) = 0 (lul 3 -k) 

vt J o l.l/' 

Proof i) follows from formula (2.3) and iv) from Lemma 5.3. 
ii), iii) and v) can be proved using Leibnitz rule as in Babillot [-2] Proposition 

(2.31). 

We can conclude from Babillot [2], Corollaire 2.18, that (5.1) is 

~(~-1) ~+3) 
O([ul 2 at oo. 

t(u) We now study the expression: ~ e-i<y, u> FI(U)r(u ~ du. 
(LT)* 

Lemma 5.5 For n >_ 4 

_ ((u) du c ~. O(z) ~ det(w) e i<"">.(u) r T ;  = "~.-1 
(LT)* w e W 

1 
i z _ y _ w ( r  3 dz 

~ r n = 3  

S e i<y,,> , , ( (u)  (LT)* rttU) r(u) du=c3 ~2S el(z) w~V~w d e t ( w ) l o g l z - y - w ( r  

Proof This follows from Plancherel formula, and the fact that the Fourier trans- 
[ ~  Cn . 

form (in the distribution sense) of , is ~ if n > 4, and c2 log Izl, if n = 3. 

In the following we consider the case n > 4, but the case n--3 can be treated 
in the same way. 

Lemma 5.6 i) For any u in (LT)*: 

det (w)(w(r u ) l = 0  if l < � 8 9  
w~W 

ii) for any polynomial function 
det (w) P(w(qS))-- 0. 

w~W 

P on (LT)* of degree (n (n - l ) ,  one has 
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Proof i) Expand relation (2.3) near 0. 
ii) follows from i) by polarization. 

We now use Lemma 5.6 to obtain an asymptotic of ~ det (w) 
wEW 

L e m m a  5.7. Let N e N  be >n(n-1),  then 

I z -y -w(~)]  "-3" 

II (c~, y) 
det  (w) 1 ~>o ~(~- 1) ~+3) 

w~w i z _ y _ w ( c ~ ) l . _ 3 = c ,  lYl.=_3 ~-o([yl 2 

and this estimate holds uniformly on Izl < lYl I/N. 
3 n 

1 a , /  2(Y,Z-W(~)}+lz-w(O)[2~ 2 
Proof. We expand iz_y_w@)l,,_ 3 =Iyl - ~1+ ryl2 ] 

=]yl 3-" ak - ~  
k=o ~ lYl 2 

n(n 1) 

where the o(lYl 2 ) is uniform on Izl<lYl x/u and the ak are nonzero coeffi- 
cients. 

I f k < l n ( n - - 1 )  ~ w  y" det(w)(-2(Y'Z--W(4))}+lz-w(O)[2) : 0  

by Lemma 5.6 ii). In the term 
n ( n -  1) 

~. det(w)(_2(y,z_w(4)}+lz_w((~)[2) 2 
w~W lY[ = 

we can develop and obtain 
n ( n -  1) 

det (w) [2 ( y - z ,  w(qS)}_~ 2 
Z \ [yl2 } +o(lYi 

w ~ W  

but 

~(n- 1) 
2 ), 

~(~-1) [ I  (2(y--z),  e} 
2 det(w) ( 2 ( y - z '  w(qS)}~ 2 ~>o 

w ~  \ ~ ] =~" lyl " ("-~  
]-I (2y, c~} 

__C n ~ > 0  lyl,(,_l) ~-o([yl 2 ) 

uniformly on Izl < ly] 1/N. 

by Lemma 5.6 

~(n-1) 

L e m m a  5.8 
lyl "2-a 1 

lim c~ ~ O(z) 2 det(w) d z =  S 
, ~  I ]  <~, y> ~ . . . . .  ~ I z - y - w ( 4 ) l  ~  ~o-~ 
y~C ce>O 

O(z) dz. 
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n(n- 1) 
Proof. Since yeC(,y, ~)=>e(C)lyl, so that  1-1 (Y, c~)_->(e(C)lyl) 2 

~ t >O  

129 

(5.2) 
ly[ "2-3 1 

l~  (~, Y) J" 0(z) ~ det (w) dz 
izl<l~w~, ~,~w I z - y - w ( c ) ) l  " - 3  

~>o 
= ~ O(z)dz+o(1) by L e m m a  5.7. 

Izl <lyl 1/N 

Let By be the union  of  the balls B(y-w(O), 1), w~W, then:  

~lzl ~ O(z) ~ det(w) 
> lyI1/N}kB w e W  

[ z - y - w ( q S ) l  " -3  Izl>lyllm 
10(z)l dz 

since q is cg~o, 10(z)l is 
is o(lyl -K) for all K > 0 .  

o(Izl -K) for any K > 0 ,  so that  the expression above  

(5.3) 
{Izl ~" > lyl lm}\By 

>_0. 

O(z) ~ det(w) 1 :o(lyl K) for all K 
w~w I z - y - w ( ~ ) l  "-3 

Finally, for all K > 0 ,  on By 10(z)l is uniformly o(lyl -K) so that :  

1 
(5.4) [. O(z) 3 dz=~ -to) for all K_>0. 

B, Iz-y-w((o)[ ' -  

The lemma follows f rom (5.2), (5.3), (5.4). 
Propos i t ion  1 follows f rom L e m m a  5.8 and Four ier  inversion formula  for 0- 
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