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Summary. We establish connections between positive solutions of one class of 
nonlinear partial differential equations and hitting probabilities and additive 
functionals of superdiffusion processes. As an application, we improve results 
on superprocesses by using the recent progress in the theory of removable 
singularities for differential equations. 

1. Introduction 

1.1 We consider positive solutions of a differential equation 

(1.1) -Lv(x)+O(x, v(x))=,o(x) for x~D 

where L is a strongly elliptic differential operator in N J, D is a domain in 
IR e, p__>0 and ~ belongs to a convex cone ~P which contains, in particular, 
all functions 

(1.2) O(x, z)=7(x)F', 1 < e < 2  

with positive bounded Borel 7- 
The differential operator L is the generator of a diffusion process r = (r Hx) 

in IRe (see Theorem 0.1 in the Appendix)). If 0 = 0, then (1.1) is a linear equation 
which can be studied probabilistically using paths of 4. Analogously, the Eq. (1.1) 
for any 0~  7 ~ can be investigated by using the superprocess corresponding to 
(r ~). In particular, we establish (under some restrictions on L and ~) that 
a compact set K is a removable singularity for (1.1) if and only if the superprocess 
started outside K does not hit K. Removable singularities for (1.1) have been 
studied in [LN],  [BV], [L], [-V1]-[V4], [BP], [VV], [RV] ... (see the survey 
of literature in Sect. 5). Independently, hitting probabilities for superprocesses 
have been investigated in [I], [DIP],  [DP],  [D4], [P] .... It seems that both 
theories can gain from an interplay between probabilistic and analytic methods. 

* Partially supported by National Science Foundation Grant DMS-8802667 
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The cone ~g mentioned in the first paragraph is the set of functions 

(1.3) ~ (x, z) = a(x) z + b(x) z 2 + ~ (e-"Z-  1 + u z) nx(du) 
0 

where n is a kernel from IR d to (0, + oe) and a(x), b(x) and A(x)= 5 u a u 2 nx(du) 
o 

are positive bounded Borel functions. The function (1.2) corresponds to a = n = 0, 

b = y i f c ~ = 2 ,  a n d t o a = b = 0 ,  nx(du)= 7 ( x ) u - l - = d u w h e r e c = 5 ( e - U - l + u )  
u - l - e d u  if 1 < e < 2 .  o 

1.2 The superprocesses can be constructed in a very general setting (see, [D2], 
[D4], IF]). Here we describe a particular case of this construction assuming 
that ~ = (~r, Hx) is a right Markov process in a locally compact Hausdorff space 
E with a countable base (all diffusion processes are in this class). Denote by 
8 the Borel a-algebra in E, by M the set of all finite measures on g and by 
J{  the o--algebra in M generated by the functions fB(#)=#(B), Beg .  There 
exists a Markov process (Xt, P,) in (M, Jg) such that: 

1.2.A If f is a bounded continuous function, then ( f ,  Xt)  is right continuous 
in t on N + =[0 ,  oo) (writing (v, p )  means the integral of v with respect to 
#). 

1.2.B For  every # e M ,  

(1.4) P~ exp ( - f  X t )  = exp ( - v,, #),  

where_~_v_v is the unique solution of the integral equation 

(1.5) vt(x) + i Hx t)({,, vt_~({~)) ds = II]f(~t). 
0 

Moreover, to every set DeN there correspond random measures X~ and Y~ 
on (E, g) associated with the first exit time ~ = inf {t: ~t q~D} from D by the formula 

(1.6) P~ exp { -- (p, Y~) - ( f ,  X~)} =exp  ( - v, #) ,  

where 

(1.7) 
0 

(see Theorem 1.4 in [D4]). The superprocess X with parameters (4, 0) is the 
collection (Xt, X~, Y~; P,). [In fact, X~ and Y~ subject to conditions (1.6), (1.7) 
can be defined for all coanalytic sets D.] If ~ is a diffusion with the generator 
L, then we call X the superdiffusion with parameters (L, t)). 

The heuristic meaning of random measures X t and X~ and Y~ can be explained 
in terms of branching particle systems. Particles are distributed at time 0 accord- 
ing to the Poisson point process with intensity measure # eM.  The motion of 
each particle is governed by the process ~. The life time is distributed exponential- 
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ly with parameter k. A dying particle gives birth to n offsprings with probability 
p,(x) depending on the death place x. We assume that ~ n p , ( x ) < l  and we 
put q~(x, z )=~p,(x)z ' .  The historical path w~ of a particle a consists of its 
own trajectory and the trajectories of all its ancestors (the law of w a is identical 
to the law of 0- If particles have mass fl, then 

X~ (B) = fi ~ 18 (w~) 
a 

is the mass distribution at time t. (The sum is taken over all particles which 
live at time t.) We set 

X~ (B) = f ly '  1B (W~o), 
a 

~a  

Y~P(B)=flZ ~ 1B(w~)ds 
a 0 

where Za=inf{t: w~r (The terms in these two sums are in a 1-1 correspon- 
dence with particles which exit from D assuming that each particle does not 
move, die or procreate after time ra.) Random measures X~, X~ and Y~ converge 
weakly to Xt, X~ and Y~ as fl ~ 0 assuming that k~ = 1/fl, #~ =/~/fl and that 

[q~(x, 1--flz)--(1--flz)] fl- 2 --* O (x, z) 

uniformly on E x [0, c] for every c. 

1.3 Consider the first exit time ~ of ~ from D and put 

(1.8) u ( x ) = H x [ i P ( ~ ) d s + f ( ~ )  ] 

(f(r if z=  oe). Under broad assumptions (see Theorems 0.2 and 0.3) u is 
the unique solution of the Dirichlet problem 

(1.9) - -Lu=p in D, 

(1,10) u(x)~f(a)  as x ~ a e ~ D ,  xsD. 

Under the same assumptions, the solution of the Dirichlet problem for the 
equation (1.1) is given by the formula 

(1.11) v(x)= - logP~ e x p { - ( p ,  Y~)- ( f  X~)} 

where 5ix is the unit measure concentrated at x. More precisely, we have: 

Theorem 1.1 Let X be a superdiffusion with parameters (L, tp) where L is a differen- 
tial operator with properties 0.2.A, B and OE 7 t satisfies the condition: 
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1.3.A For every compact set K c D  and for every N, there exists a constant C 
such that 

(1.12) I@(Xl, Z)-@(x2, z ) l ~ C l x l - x 2 [  )~ &rail x , , x 2 ~ K  , z~[0, N] 

(the exponent 2~(0, 1] is independent of K and N). 
I f  D is a bounded regular domain, p is bounded and belongs to C~ and 

f is a positive continuous function on ~?D, then formula (1.11) defines a unique 
solution of (1.1) which satisfies the boundary condition 

(1.13) v (x )~ f (a )  as x~a~OD,  x~D. 

1.4 Starting from this point we assume that ~ is given by the formula (1.2) with 
a H61der continuous function 7(x) subject to the condition 

(1.14) inf 7 (x) > 0. 
x 

Theorem 1.2 Under the conditions of Theorem 1.1, 

(1.15) v(x) = --log P~x {X~ = 0} 

is the minimal positive solution of the problem 

(1.16) Lv(x)=~(x) v(x) ~ in D, 

(1.17) v(x)-*+oo as x~aEOD, xeD 

(that is v<=u for every u>O subject to (1.16), (1.17)). 

The uniqueness of a solution for the problem (1.16)-(1.17) has been estab- 
lished for some particular cases in [LN] and [I] (see more details in Sect. 5). 
Under rather mild conditions on L and D, it has been proved recently by Veron 
[V4] and by Kondrat 'yev and Nikishkin [KN]. 

1.5 For every e>0,  we denote by ~ the minimal closed set which contains 
the supports St of Xt for all t__> e. The set N = N0 is called the range of X. 

Theorem 1.3 Under conditions of Theorem 1.2, the range ~ of X is compact P~-a.s. 
for every #EM with compact support. For an arbitrary open set D formula 

(1.18) v(x)= --logP~ {~ c D} 

determines the maximal positive solution of the Eq. (1.16) in D (i.e., v>u for 
every positive solution u of (1.16)). 

1.6 In Sect. 2.5 we show that, i fB is an analytic set, then the set {co: N c~B=t=qS} 
belongs to the universal completion (r of the a-algebra (r generated by 
{Xt, t~]R+}. We say that B is S-polar if, for every # ~ M  and every e>0,  there 
exists an analytic set A ~ B such that P~ { ~  ~ A 4= ~b} = 0. Clearly, 

(1.19) P u { ~ B 4 O } = 0  forall e>0,  #~M. 
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For  the superdiffusions in this paper  we prove in Lemmas  2.4 and 2.5 that 
an analytic set B is S-polar if and only if 

P0x(R c~ B =# ~b) = 0  for all xCB. 

Theorem 1.4 Each of the following conditions is necessary and sufficient for a 
closed set F to be S-polar: 

1.6.A I f  v>O satisfies (1.16) in D = F  c, then v=0 .  

1.6.B The maximal solution of (1.16) in D is bounded. 

Example. Put 

(1.20) 
2r 

If d < G,  then 

(1.21) v(x) = [(~-- 1)- 1 (G - d)] l/(e- 1) ix I - 2/(e- 1) 

is a positive solution of the Eq. 

(1.22) �89  ~ in lRa\{0} 

and it tends to + oe as [ x ] ~  0. Hence singletons are not S-polar sets if d <  G.  
If  d > G,  then, according to [-BV], every positive solution of (1.22) is bounded 
near 0 and therefore the singletons are S-polar. (See Corollary 1 to Theorem 1.6 
for an analogous result for more general equations.) 

Theorem 1.5 Suppose a compact set K is contained in an open set D. I f  K is 
S-polar, then the maximal solution g in D = D \ K  coincides in D with the maximal 
solution v in D. Hence ~ is bounded in a neighborhood of K. Conversely, if 
is bounded near K, then K is S-polar. 

1.7 The Newton potential of a measure t/is defined by the formula 

(1.23) n , (y)= j" r/(dx) ka(x, y) 
Ra 

where 

(1.24) k a ( x , y ) = l x - y l  2-a for d>2 .  

For  d = 2, an analogous role is played by the logarithmic potential which corre- 
sponds to 

(1.25) kz(x, y ) = l o g  + I x - y 1 - 1 .  

Put AeQ~ o if there exist no finite measure q, concentrated on A (except q = 0 )  
such that n, is bounded. Let ~ be the Brownian motion in Na. If  A ~ Q oo, then 

(1.26) H:,{r for all t>0}  = 1 for all XEII.d; 

conversely, if A satisfies (1.26), then A ~ Q~ (see, for instance, [C]). 
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The class Q~o does not change if we replace k d by the Bessel kernel 

co 

(1.27) ~a(x, y)=  ~ e -t/2 pt(x, y) dt  
0 

where 

(1.28) Pt(X, y) = (2 rc t)-  d/z exp { - I x -  y 12/2 t} 

is the Brownian transition density in IR d. The Bessel potential ~, of a measure 
q is defined by formula (1.23) with k~ replaced with ~'d. 

We introduce, for every e >  1, a class Q~ by replacing the condition "n,  
is bounded"  by the condition ~eU(lRd). Class Q~ consists of all sets A such 
that Cap~ A -- 0 where 

(1.29) Cap~ A = sup v(A) 

with the supremum taken over all measures v concentrated on A and such 
that 

(1.30) ~ [ ~ v (dx )~d(x , y ) ]~dy<l .  
R d  R a  

Let g(x, y) be Green's function for L in D. If a compact K c D ,  then there exist 
constants 0 < Cl < c2 < ~ such that 

Cl~d(x,y)<g(x,y)<c2V:d(x,y)  for all x, y e K  

(see [Mi], Sects. 8-10). Therefore KCQ~ if and only if S q(dx) g(x, y) belongs 
to L~(D) for some ~ + 0  concentrated on K. o 

Theorem 1.6 Let X be a superdiffusion with parameters (L, ~) where L has the 
divergence form described in Sect. 0.4 and ~ = z ~. Then the class of S-polar sets 
coincides with Q~. 

Corollary 1 A singleton {c} is an S-polar set if and only if d > ~  where ~c~ is 
given by formula (1.20). 

Indeed, ~neL'(IR d) for a measure 7 # 0  concentrated at {c} if and only if 
i 

r d- 1 + (2 - d), d r < oe which is equivalent to the condition d < x~. 
0 

Corollary 2 Let K be a compact S-polar set and let D be an open set which 
contains K. Then every positive solution u of the equation 

L u = u  ~ in D \ K  

can be continued to a function which belongs to class Cl')t(D)for all 2 <  1. 

In combination with Theorem 1.5 this result can be interpreted as follows: 

A compact set K is a removable singularity for the equation Lu = u ~ if and 
only if K is S-polar. 
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1.8 Put tleYiC~(D ) if t/ is a finite measure on D which charges no set AeQ~. 
Denote by M~ the set of all measures # e M  of the form #(dx)=f (x )dx  with ( 1 1 )  
f sU'(IR d) here ~ + ~ - =  1 . The proof  of Theorem 1.6 is based on the following 

result which is also of independent interest. 

Theorem 1.7 Let X satisfy the conditions of Theorem 1.6. To every domain D 
and to every rl~JT'~(D) there corresponds a positive N*-measurable function Y~ 
such that: 

1.8.A The function 

(1.31) 

satisfies the equations 

(1.32) 

v(x) = -- log P~, exp(--  Y~) 

v(x)+ I g(x, y)v(y)~dy= ~ g(x, y)tl(dy)a.e, on D 
D D 

where g(x, y) is Green's function for ~ in D. I f  D is bounded and has a smooth 
boundary and if the function in the right side of (1.32) belongs to L~(D), then 
(1.32) determines v >= 0 uniquely up to equivalence. 

1.8.B I f  # ~ M~, then 

(1.33) Pu e x p ( -  Y~)= e-~v,u>. 

1.8.C I f  t l(dx)=f(x)dx,  then Y ~ = ( f  Y~) where z is the first exit time of 
from D. 

1.8.D gff+~"= ~' ~" Y~ + Y~ and Y[f = c Y~ for any constant c > O. 

1.8.E I f  DcD' ,  tl<=t f then Y~< Y~J. 

1.8.F I f  tl,Ttl, D, TD, then Y'"'*D, �9 Y~ Pu -a.s. for all #eM~. 

1.9 Suppose h is an increasing positive function on an interval [0, Co] such 
that h(0)=0. For  any A e N  d and any 0 < e < e o  we set 

H"(A)=infZh(ri) 
i 

where infimum is taken over all countable coverings of A by open balls U(xi; ri) 
of center x~ and radius ri<e. The Hausdorff  measure H corresponding to h 
is defined by the formula 

H (A) = lim H e (A). 
e--*0 

Let H~ 

(1.33) 

and H~,p be the Hausdorff  measures corresponding to the functions 

h~(r)=r ~, 7 > 0  and h~,~(r)=r ~ log + ~=>0, f l>0.  
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The Hausdorff dimension H - - d i m  A is defined as the supremum of 7 such that 
Hy(A)>0. The Carleson logarithmic dimension L - d i m A  is the supremum of 
fl such that Ho,~(A) > O. 

Theorem 1.8 Put 7 = d-~c a. I f  7 < O, then the only element of Q~ is the empty 
set. I f  7>0,  then Q~ contains all sets A c l R  d for which H~(A)< oo; on the other 
hand, H~,p(A)=0 for all AeQ~ and all f i > ( a - 1 )  - I .  Finally, if 7=0,  then Q~ 
contains all sets A for which Ho,~(A)<oo with f l=(c~- l )  1; and Ho, r  
for all AEQ~ and all fi>(c~- 1) -1 

Corollary. I f  d>tG, then the sets A c I R  d with H - d i m A < d - t c ~  are S-polar 
and the sets with H - d i m A > d - t c ~  are not S-polar. In the case d=~c~, A is 
S-polar if L -  dim A < (~ - 1)- 1 and A is not S-polar if L -  dim A > (e - 1) - 1. 

130 A general part of theory which is applicable to arbitrary right processes 
is presented in Sect. 2. In Sect. 3 we deal with classical solutions of (1.1) and 
in Sect. 4 with generalized solutions in Sobolev spaces. In Sect. 5, the present 
results are compared with those in literature. We also state a few open problems. 
The Appendix contains some basic facts on elliptic equations and their relation 
to diffusion processes and on Sobolev spaces. 

2. Range of X and S-polar sets 

2.1 In this section ~ is a right process in a locally compact Hausdorff space 
E with a countable base and X is the corresponding right superprocess which 
implies condition 1.2.A. Let N be the a-algebra generated by Xt, telR +. It 
follows from 1.2.A that, for every Borel set B, Xt(B) is B0 R  § x N-measurable 
in (t, co) and therefore 

ao  

(2.1) Y(B) = ~ Xt(B) d t  
0 

is N-measurable in co. 

2.2 The range N of X was introduced in Sect. 1.5. We claim that 

(2.2/ = r }  = { Y(r  o) = 0} e N  

for every closed set/2. Indeed, {St c r}  = {Xt(C c) = 0} and therefore 

(2.3) {~ c r}  = {Xt(F c) = 0 for all t elR + }. 

There exists a positive bounded continuous function f such that F =  {f=0}.  
By 1.2.A, { ( f  Y ) = 0 } = { ( f ,  X t ) = 0  for all t eN+}.  Thus {Y(FC)=O}={Xt(F c) 
= 0  for all t e n  +} and (2.2) follows from (2.3). 

Lemma 2.1 Let z be the first exit time from an open set D. I f  B ~ D c F and 
if B, F are closed, then 

(2.4) {N c B} c {X~ = 0} a {~ c F} a.s. 

(Writing "a.s." means "P~-a.s. for all finite measures #".) 
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Proof. By the special Markov property (see Theorem 1.5 in [D43), 

(2.5) P, {X,= 0, Y(FC)>0} =Pv{X~=0; Px,[Y(U)>O]}. 

Since Po {Y=0} = 1 by (1.4), the right side vanishes, and the second part of (2.4) 
follows from (2.2). 

Let B =  { f=0}  where f is a positive bounded continuous function. By Theo- 
rem 1 in the Addendum to [D4], 

{(f ,  Xt) = 0  for all t>0}  c {(f,  X~) =0} a.s. 

for every stopping time z. Therefore {NcB}c{X~(Bc)=o} a.s. Since X , (B)=0  
a.s. by (1.6), (1.7), we get the first part of (2.4). 

2.3 For  every open set D, we denote by O D the union of the sets {~  c F} over 
all compact sets F c D. Note that, if N is compact, then 

(2.6) f2 D = {N c D}. 

Consider an arbitrary sequence D, with the properties: 

(a) D, are open sets; 
(b) F, = / ) ,  is compact and F, c D, + a ; 
(c) D.eD. 

Clearly, 

(2.7) (2 D = ~ {~ c F,}. 
n 

Let % be the first exit time from D,. Since F,_ 1 ~ D, c F,, we have, by Lemma 2.1, 
that {N c F,_I } c {X~. = 0} c {N = F,} a.s. and therefore 

(2.8t f2 o = Q) {X~, = 0) a.s. 
n 

By Theorem 2 in the Addendum to [D4], (X~,, P~) is a Markov process with 
an absorbing state 0. Therefore 

(2.9) Pu {X~ = 0} TP~(f2o). 

2.4 If v is the first exit time from an open set D, then 

(2.m) 

By (1.6), 

(2.11) 

where 

(2.12) 

By (2.10), 

(2.13) 

Puexp(-k,X~>.lPu{X~=O} as kToo. 

P, exp ( - k, X~) = exp ( - Vk, #) 

Vk (X) = -- log Pax exp ( -- k, X,) .  

Vk (X) T V (X) = -- log Pax {X~ = 0} 
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and 

(2.14) Pu {X, = 0} = e  -<v'u> 

By applying this to stopping times rn introduced in the previous section, we 
get 

(2.15) Pu {X~ = 0} = e  - <v"'u>, vn(x) = - l o g  Pax {X~ = 0}. 

By (2.9) and (2.15), 

(2.16) v"(x),[vD(x) = - log Pa~ (faD). 

If for some n, Pu{X~ = 0} >0,  then (v", #> < o% (v", #} --+ (vD, #> by the domi- 
nated convergence theorem and 

(2.17) P, ((2D) = exp ( -- VD, #}. 

Formula (2.17) holds if v" are locally bounded in D, and if the support of 
# is compact and is contained in D (we write #eM~(D)). 

Suppose that Z ,  is a sequence of mappings from f2 to a measurable space 
(M, ~ )  and let Y be a function from f2 to [0, + oo]. We say that Y is a shift- 
invariant functional of {Z,} if there exists a measurable function F on (M% J/l ~~ } 
such that 

Y(co)=F(Z,,(co),Zm+I(co) . . . .  ) forall  co andall  m. 

Put coeOD if X ~ = 0  for all sufficiently large n. Clearly, lad is an invariant 
functional of {X~.}. Since (X~,, Pa~) is a Markov process, and since lad = I~D 
PaSa.s. for xeD, we have 

(2.18) lim Px~(QD)=O or 1 Pa-a.s. 
n--+ ao 

which implies 

(2.19) lira @D, X,,,} = 0 or oe Pax-a.s. 

Suppose that v D is bounded. Then 

(2.20) (VD, X~,} < (N, X~.} 

for some constant N. It follows from (1.6), (1.7) that P~(1, X~} =< (1, #> for every 
# e M and every z and, by Fatou's lemma, 

P~ lim inf(vD, X~.> < N. (2.21) 

By (2.19) and (2.21), 

(2.22) <VD, X~.} --~ 0 P~x-a.s. 

2.5 Let co--+F(co) be a mapping from a measurable space (t2, if) to the space 
of all closed sets in E. For  every A c E  we put ~a={co:F(cg)~A:#~}. We 
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say that F is a random closed set if ~2K~ for all compact sets K. This is equivalent 
to the condition f2veN for all open sets U. It is known (see, e.g., [MT],  Chap. 2) 
that, for every analytic set B in E, f2Be~f * and, for every probability measure 
P o n ~ ,  

(2.23) P(f2 B) = sup P (~2 K) = infP(f2 v) 

where K runs over all compact subsets of B and U runs over all open sets 
which contain B. 

We say that an analytic set A is B-polar if 

(2.24) Hu{~t~Bfora l l t>O}=l  for all #EM. 

The diffusion processes considered in this paper have the following property: 

2.5.A There exists a measure m and a strictly positive measurable function 
pr(x, y) such that, for every t > 0 and every Beg* ,  

Hx{~teB} = I pt(x, y) m(dy). 
B 

Lemma 2.2 Under condition 2.5.A, an analytic set B =t = E is B-polar if and only 
if 

(2.25) Hx{~tr for all t>0}  = 1 for all xCB. 

The condition (2.25) is equivalent to 

(2.26) P~x{X~=0} = 1 for all x6B 

where ~=inf{t :  ~teB}. 

Proof. Clearly (2.24) implies (2.25). On the other hand, by the Markov property, 

(2.27) Hu{~t~B for some t>e} = n u u ~ { ~ t ~ B  for some t>0}.  

By 2.5.A, i f / L { ~ e B }  = 0  for some x, then H , { ~ e B }  = 0  for all # e M  and (2.24) 
follows from (2.25) by (2.27). 

By (1.6) and (1.7), 

P~x exp < - 1, X~) = e v(x) 
where 

v(x)+ n~ ~ 0(~,  V(~s))ds=II~{z < oo}. 
0 

Clearly, (2.25) and (2.26) are both equivalent to the condition: v (x)=0  for all 
xCB. 

2.6 For  every e > 0, ~ introduced in Sect. 1.5 is a random closed set. We denote 
by ~23 the union of sets {N~cF} over all compact F ~ D  and we put @(x)=  
- log ~ (~5). 

Lemma 2.3 For every #~M, 

( z  2s) P. (~5) = e - <~ ' "  >. 
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Proof Consider a sequence D, described in Sect. 2.3 and put ~,(e)=inf{t:t>e, 
~,r By the Markov property of X, 

(2.29) Pu {X~(~) = 0} = Pu Px~ {X~, = 0} > Pu {X~ = 0}. 

The right side is equal to the limit as k --+ c~ of 

(2.30) Pu e x p ( - k ,  X ~ ) = e x p ( - v ~ , / ~ )  

where v~ is the solution of (1.5) with f =  k. By computation we check that 

v~ = [(c~ - 1) t + k 1 - ~] - 1/<~- ~ .  

Clearly, 
lim <v~, #> = <1, #> [ (~ -  1) e] - 1/(~- 1)< oe. 

k ~ 3  

By (2.29) and (2.30), Pu{X~,(~)=0} >0, and (2.28) follows by the same arguments 
as in Sects. 2.3 and 2.4. 

It will be proved in Sect. 3.4 that all superdiffusion have the property: 

2.6.A For every x, P0~ {~ is compact} = 1. 

Lemma 2.4 Under conditions 2.5.A and 2.6.A, every analytic set B # E such that 

(2.31) Po~{NnB#~b}=0 foralI xCB 

is S-polar. 

Proof Let x~ For every s>0,  

0=P~o { & n B + ~ }  >=~o{X~(B)#0}. 

By (1.4), (1.5), this impl ies : /7~o{~B} = 1 for all s>0.  By 2.5.A, for every #~M, 
IIu{~s~B } = 1 and therefore, by (1.4), (1.5), P~{Xs(B)=O} = 1. 

Let s < e and let t = e - s .  By the Markov property 

(2.32) P u { ~ B = O } = P u { X ~ ( B ) = O  , ~ n  B=qS} 

= Pu {X~(B)= 0, Px.(~,nB=~))}. 

Let K be a compact subset of B and let D=Kq By Lemma 2.3, for every veM, 

P~ { N ~  K =  qS} > P~(f2~) = exp ( - -  @, v). 

By 2.6.A and (2.6), for every x~B, 

exp{--@(x)}>=P~{NcD}>=Pa~{NnB=O}=l and therefore v~(x)=0. 

Hence, if v(B)=0, then P~{N~nK=q~} = 1 for all compact K c B  and therefore 
P~ {N, n B = ~b} = 1. The statement of lemma follows from (2.32). 

2.7 Now we introduce the following condition: 

2.7.A For every xeE  and every neighborhood U of x, 

inf{t: Xt(U~)> 0} >0  Pa -a.s. 
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If X is a superdiffusion and if 0 = �89 z 2, then 2.7.A follows from the results in 
Sect. 8 of [DP]. The arguments in [DP] can be extended to all ~ described 
at the beginning of Sect. 1.4. 

Lemma 2.5 Under condition 2.7.A, every S-polar analytic set B has the property 
(2.31). 

Proof By 2.7.A, ~ c S o u N +  a.s. where N+ is the union of N~ over all e>0.  
Therefore 

P~ {~ c~ S =# ~b} < P~ {~ + c n S ~ } + P ~ { S o c ~ S # c ~ } .  

If B is S-polar, then the first term is equal to O. The second term vanishes 
for all x~B  because P ~ X o ( E \ x ) < H ~ { ~ o e E \ x }  =0. 

3. Proofs of Theorems 1.1 through 1.5 

3.1 Proof of Theorem 1.1 We get (1.11) by setting It=fix in (1.6). The Eq. (1.7) 
can be rewritten as 

(3.1) v+ F l = h +  f 

where h and F are given by (0.3) and (0.6) and 

z 

FI(X)=Hx ~ ~l(~s, v(~s)) d s .  
o 

By 0.3, F is bounded and therefore v is also bounded. It is clear from (1.3) 
that pl(x)=O(x,  v(x)) is bounded. By 0.3.B, F and F 1 belong to C~ By 
Theorem0.2, heC2"~(D). We conclude from (3.1) that v~C~ B y  1.3.A, 
pl~C~ Hence F1EC2"Z(D). Now 0.3.C, (0.4) and (3.1) imply (1.1). Formula 
(1.13) follows from 0.3.A and (0.5). The uniqueness of the solution follows from 
the Maximum Principle (Theorem 0.5). 

3.2 Lemma 3.1 Let U={x :  ] x - x ~  and 

(3.2) u (x) = )o(R 2 -- r 2) - 2/(~- 1) 

where 2 is a positive constant and r= [ x - x  ~ I. We have 

(3.3) lim u(x)=oo forall aeOU 
x~a,x~U 

and, under conditions 0.2.A, B and (1.14), 

(3.4) Lu--yu~<=O in U 

for 

(3.5) 2=c(1 v R) 3/~ 1) 

where c is a constant which depends only on ~, the dimension d and the upper 
bounds for ghj = aij/~ and bl = bJ~ in U. 
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Proof By a direct computation we get 

(3.6) L u -  7 u~ 
=2(R2--r2) - 2~/(~ 1){c1~ aijzizj+c2(R2-r2)(~ au+ ~J~ blzi)-7 )~7-1 } 

where zi =xi - -x  ~ cl = 8(c~ + 1)(c~-1) -2,  C 2 =4(C~- -1 ) -1 .  Let A(x) be the biggest 
eigenvalue of the matrix aij(x) and let B(x)2=~bi(x) 2. Let A and B be upper 
bounds for A(x) and B(x) in U. Note that y ' a , < A d  in U. Clearly (3.6) implies 
(3.4) if 

(3.7) cl A r 2 + C 2 dA(R 2 - - r Z ) + c z B  R 3 --  ) ,~- 1 ~ 0  

for all 0 _< r _  R. The condition (3.7) holds if 

2~- 1 > (q  + c2 d) A R 2 + c 2 B R 3 

which is true for 2 given by (3.5). 

3.3 Proof of Theorem 1.2 By Theorem 1.1, the function v k determined by (2.12) 
satisfies (1.16) and the boundary condition 

(3.8) lim vk(x)=k. 
x~a,xEO 

Let U = { I x - x ~  and let u be defined as in Lemma 3.1. By the Maxi- 
mum Principle (Theorem 0.5), Vk<U in U. By (2.13), Vk}V where v is defined 
by (1.15). The functions Vk are uniformly bounded on every compact set F c  U 
and the same is true for their partial derivatives of the first and second order. 
Hence Vk(X ) converge uniformly on F to a solution of (1.16) (see, e.g., Chap. 6 
in [GT]). Since v > Vk for all k, we get 

lim inf v(x) > k 
x~a,xeD 

for all k which implies (1.17). 
Let u__>0 satisfy (1.16) and (1.17). Then, by the Maximum Principle, Vk<--_U 

in D and therefore v _< u. 

Remark. The argument in the last paragraph is applicable to any function u__> 0 
which satisfies the inequality Lu-yu~<O in D and the boundary condition 
(1.17). In particular, if D = { ] x - x ~  and if u is the function given by (3.2) 
and (3.5), then, for every #eMc(D), 

(3.9) P~ {X~ = 0} >e  - <"'"> . 

3.4 Proof of Theorem 1.3 Let ~g be the first exit time from UR={lxI<R}. By 
Lemma 2.1, { N o  U2R} ~ {X,,=0}.  Consider the function U=UR defined by (3.2) 
and (3.5) (with x~ For every x, UR(X)-+O as R--+oo uniformly on every 
compact set. If follows from (3.9) that N is compact P~-a.s. if # has compact 
support. 

Consider a sequence of regular domains D, which satisfy conditions (a), 
(b), (c) of Sect. 2.3. By (2.15), (2.16) and (2.6), v"=-logPa~{X~ =0}J,v where 
v is given by (1.18). By Theorem 1.2, v" satisfies (1.16) and (1.17) in D,. Same 
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arguments as in proof of Theorem 1.2 show that v satisfies (1.16) in D. If u 
is an arbitrary positive solution in D, then u<vn in D, by Theorem 0.5. Hence 
U~m~/)D . 

Remark. For the sake of brevity, we call v the maximal solution in D. Note 
that v > u for every positive u such that Lu- -7  u s> 0 in D. 

3.5 Proof of Theorem 1.4 By Lemmas 2.4 and 2.5, the condition (1.19) is equiva- 
lent to 1.6.A. Clearly, 1.6.A implies 1.6.B. On the other hand, if 1.6.B holds, 
then, by (2.22), (vo, X~,) ~ 0 Pax-a.s. for all x e D  where vD is the maximal solution 
in D. We can assume that the open sets D, are regular and then, by Theorem 1.1, 

e x p [ - v o ( x ) ]  =P~x exp( -vD,  X~,) in D 

for every n. Passing to the limit as n ~  co, we get that vD(x)=0. Hence 1.6.B 
implies t.6.A. 

3.6 Lemma 3.2 I f  K is a compact set then the maximal solution v in D = K  c 
tends to 0 as I x[ -~ co. 

Proof Since K is contained in a ball B={x :  [x]=<p} for some p and, since 
the maximal solution in a larger domain is smaller, it is sufficient to prove 
the lemma for K = B .  tf [x~  and R > p ,  then U = { I x - x ~  c and, 
by Theorem 0.5, 

v (x)_<_ u (x) in U 

where u is given by (3.2) and (3.5). In particular, v(x~176 v R)-1/(~-1) 
Hence v(x~ as Ix ~ ] ~ co. 

Proof of  Theorem 1.5 Clearly, {Nc/5} = { N c D ,  NmK~}. If K is S-polar, then 
P~{~ mK ~} = 1 for all x ~ K  ~ and, by (1.18), v =g  in/5. 

On the other hand, the maximal solution u in K c does not exceed g in 
/5. If g is bounded near K, then u is bounded by Lemma 3.2, and K is S-polar 
by Theorem 1.4. 

4. Proof  of Theorems 1.6, 1.7 and 1.8 

4.1 It is known (see [BP]) that W-2'~(D)m ~r Note that W-2'~(D) contains 
all measures q for which the function 

u(x)= f ~(dy) ~(x, y) 
D 

belongs to U(D). Indeed, if (pc C~ (D) and if f =  -Lq0, then, by Theorem 0.3, 

r ~ g(x, y ) f ( y ) d y  
D 

and 

[ ~ q0(x) q(dx)] = I ~ u(y)f(y) dyl _-__ IluH~ Ilfll~, 
D D 

by H61der's inequality. Since IIfll~,__<const.]l~0]12,~,, we conclude that 
r/e W-  2,~(D). 
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4.2 Proof of Theorem 1.7 1 ~ Consider a function 7 > 0  of class C~(IR d) such 
that ~7 dx = 1. For every finite measure q, the function 

(4.2) P~(X)=e-a ~ 7 ( ~ - )  tl(dx) 
N.a 

belongs to C ~~ (iRa). Put pa~ = (pp + p,)/2. 
Suppose that D is bounded and O D is smooth. By Theorem 1.1, 

(4.3) va~(x) = -- log P~ exp ( -- pa~, Y~) 

satisfies the conditions 

(4.4) --Lvar in D, 

vr as x~aeOD, xeD. 

It is known (see [ADN] and [Ko]) that Ilul]2.~<c~ []Luil=. Since pa, and var 
are bounded in/) ,  we conclude from (4.4) that va~ W 2'~. Clearly, va~ is a solution 
of the problem 

(4.5) va~6 Wo L1 (D) ~ U(D), 

-Lvp~+v}~=p~ in C~(D). 

Note that IIPB~tlI=~(IRd)<~. By Theorem 0.4, v~ is the unique solution of 
(4.5) and 

(4.6) 

F d ~ 
for an arbitrary qs[1, d~- l ) .  Let flk$0 and ek$O. One can choose a sequence 

L / 

k,-~oo such that v"=vp~k, converges weakly both in W~'~(D) and in U(D) 
to a g~Woa'a(D)c~U(D). By Kondrashov's theorem (see [GT], Theorem 7.22), 
W~'I(D) is compactly imbedded in U(D) and therefore there is a subsequence 
of v" which converges in Lq(D). Taking a subsequence once more, we get a 
sequence which converges a.e. in D. Call it ~,. 

Suppose that tl~W -2'~. Arguments in [BP], pp. 195, 196 show that: (a) ~,~ 
are uniformly integrable and therefore ]l g - g ,  lJ~ ~ 0; (b) g is the unique solution 
of the problem 

(4.7) Oe W~" I (D) c~ U(D), 

- L ~ + U = t /  in C~(D). 

This is sufficient to conclude that [] vp~-~[1 ~ ~ 0 as fl, e $0. 
By (1.6), 

( 4 . 8 )  pu[exp(_�89 y ~ ) _ e x p ( _ l p ~ ,  y~)]2 

=exp(--v~t~, #)  +exp ( - v ~ ,  # ) - - 2  exp ( - -v~ ,  #). 
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If #~M, ,  then (vaa, p), (v~, g )  and (va~, #5 converge to (g, #5 and therefore 
(p~, Y~) converges in Pu-probability. The limit can be chosen independently of 
# by the formula 

(4.9) u =l im med(pl / , ,  Y~) 

(see, e.g., the Appendix in [D4]). We can choose a sequence ek= 1/nk such that, 
for almost all x, v~,(x)~g(x)  as k, t ~ o o .  If, for some x, v~,(x)~g(x),  then 
(&~, Y~) ~ Y~ in P0 -probability and therefore 

P~ exp(  - p ~ ,  Y~) ~ P6~ e x p ( -  Y~) 

which implies that g(x)=v(x) where v is defined by (1.31). Let us prove that 
v satisfies (1.32). Let ~oeC~ Then by Theorem 0.3 (applied to L*), 

F(y) = j dx ~o(~) g(x, y) 
D 

belongs to C2'a(D). By (4.4), 

(4.10) j" q~ (x) v~ (x) d x + ~ F (y) v~ (y) d y = j" F (y) p~ (y) d y. 
D D D 

By passing to the limit as e ~ 0, we get 

(4.11) ~ co(x) ~(x) dx + ~ F(y) Y(y) dy = ~ F(y) t/My ). 
D D D 

Therefore (1.32) holds for ~. Since v = ~ a.e., (1.32) holds also for v. 
Now suppose that v is an arbitrary positive solution of (1.32) such that 

the right side belongs to U(D). Then veL~(D) too and v(x)= ~ g(x, y) 0(dy) where 
D 

71(dy)=rl(dy)-v(y)~dy is a finite signed measure. The arguments used for v~ 
can be applied to u~(x)= ~ g(x, y) p~(y)dy and they demonstrate that ve W01' I(D) 

D 

and that - L v =  0 in C~(D) which implies that v is a solution of the problem 
(4.7). Since the solution of (4.7) is unique, the same is true for (1.32) as well. 

Clearly, Pu exp ( -  Yg) = lim Pu exp ( - p,, Y~) = lira exp ( - v~, #)  which implies 
1 . 8 . B .  ~10 ~10 

2 ~ For every bounded domain D with smooth boundary, formula (4.9) defines 
a family Yo", t/e W-2'~ which satisfies 1.8.A, B and D. Let r/ be an arbitrary 
measure of class ~ ( D ) .  By Lemma 4.2 in [BP], there exists a sequence q,~ W-2,~ 
such that t/,Tt/. By 1.8.D, the corresponding sequence Y~- is monotone increasing 
and therefore there exists a limit 

(4.12) Y~ = lim Yd-. 

We claim that Y~ is defined by this formula uniquely up to Pu-equivalence 
for all #~M~. Indeed, let t/',~W -2,~, t/',Tt/. First we assume that q',__<q,. Let 
Y,= Y~nT Y,, Y'= Y~;~'[ Y'. For every p~M~, by 1.8.A, B, 

(4.13) P, exp(-- Y,)=exp( --v,,/~) 
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where 

(4.14) 

satisfies the equation 

(4.15) 

Clearly, 

(4.16) 

v. (x) = - log Pa~ exp ( -- Y.) 

v~(x) + ~ g(x, y) v,(y) ~ dy = ~ g(x, y) ~/~(dy) a.e. in D. 
D D 

p~ e - r  =e-<~,,> 

where v = lira v, satisfies (1.32). Analogously, 

(4.17) P ~ e - r ' = e  -<~''~> 

where v'=limv',  also satisfies (1.32). By Theorem 0.3 (applied to L*), ~ dx g(x, y) 
D 

is bounded and therefore ~ g(x, y)~(dy)< oo a.e. in D for every finite measure 
D 

q. Since v'<v, we conclude that v'=v a.e. in D. By 1.8.D, Y'< Y and, by (4.16), 
(4.17), Y= Y' Pu-a.s. 

Let now r/'n, t / "eW -2'~ and ~/',,l"q, r/~'l"q. Denote by ~n a measure defined 
by the formula dr l ,=a 'va"dt  1 where a'=d~/'/dt/, a"=drf'/dr I. Clearly, 
r/n~ W-2,~ and qnTt/. Therefore 

lim Y~;' = lim Y~;; = lim Y~- Pu-a.s. 

It is easy to see that Yz] defined by (4.12) satisfy conditions 1.8.A, B, D, E, 
F (to get 1.8.E, note that Y~ is monotone increasing in z by the Addendum 
to l-D4] (see (2)); and to obtain 1.8.F, use that g,(x, y)i"g(x, y) if DnTD). 1.8.C 
follows from (4.9) if f is bounded and continuous because in this case p~---, ~o 
as e$0. By 1.8.D and F, 1.8.C holds for all positive Borel f. 

3 ~ If D is an arbitrary domain and if t/~Y~(D), then we consider a sequence 
of bounded domains with smooth boundaries which satisfy conditions (a)-(c) 
of Sect. 2.3 and we denote by t/, the restriction of q to D,. By 1.8.E, YD2 increase 
and we put 

(4.18) Y~ = lim Y~,~. 

Clearly, the limit does not depend on the choice of D,, and Yo" satisfy conditions 
1.8.A through F. 

4.3 Proof of Theorem 1.6 Class Q~ has the properties: (i) if BsQ~, then Q~ con- 
tains all subsets of B; (ii) if B is a Borel set and if Q~ contains all compact 
subsets of B, then B~Q~. The class of S-polar sets also possesses these properties. 
Therefore it is sufficient to prove the theorem for compact sets K. 

Suppose that K sQ~ and let K c U c U c D  where U and D are bounded 
domains with smooth boundaries. By Theorem 3.1 in [BP] every positive solu- 
tion v of the equation 

(4.19) Lv=v ~ in D \ K  
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belongs to W2'p(u) for all p>  1 and, by the Sobolev imbedding theorem (see, 
e.g., [Al, p. 97) v~CI'~(U) for every 2< 1. In particular, the maximal positive 
solution in D\K is bounded near K, and K is S-polar by Theorem 1.5. 

t "  

Now suppose that K is S-polar and consider the domains Dn=~x: d(x, K) 
I. 

< and the first exit time z from D = D 1. We have 

(4.20) {NcK c} c U { NcDc} = ~) {Xt(D,) =0 for all t>0}. 
n n 

Let f ,  be a bounded positive continuous function such that {f, >0} = D n. By 
Theorem 1 in the Addendum to [D4], 

(4.21) {X,(D,)= 0 for all t>0} = {(f~, X,)=0 for all t>0} 

= {(f~, Y~)=0} = {Y~(D,)=0} a.s. 

Suppose that t/~W -2'~ is concentrated on K and let Pc be given by (4.2). By 
(4.20), (4.21) and (4.9) 

( ~=Kc} = U { Y~(D,) = 0} = U {(pl/,, Y~) =0} c {Y~= 0} a.s. 
n n 

Since K is S-polar, P~x{Y~=0}>P~{N~KC}=I for all x(~K. By 1.S.A, 
g(x, y) t/(dy)=0 a.e. on D. Since g(x, y)>0 for all x, y~D, we conclude that 

o 
~/=0. By Sect. 4.1, this implies K~Q~. 
Proof of Corollary 2. By Theorem 3.1 in [BP], u can be continued to a function 
v which belongs to the class Wz'P(U) for every p>  1 and every bounded open 
set U such that U=D. If U has a smooth boundary, then wCI')'(U) by the 
Sobolev imbedding theorem cited in the proof of Theorem 1.6. 

4.4 Proof of Theorem 1.8 is based on results in EMey] and [-AM] about the 
relationship between Hausdorff dimension and the Bessel capacity B~,p. For 
every analytic set A, Cap,(A) defined by (1.29)-(1.30) is equal to [Bz,~,(A)] 1/~" 

where 1 + i = 1. Therefore A ~ Q~ if and only if B2,~, (A) = 0. 
Cg 

By Theorem 20 in [-Mey], the empty set is the sole element of Q~ if 7 =d-~:~ 
= d - 2 e ' < 0 .  

If 7>0, then, by Theorem 4.2 in [AM], H~(A)<oo implies A~Q~ and, by 
Theorem 4.3 there, H~,p(A)=0 for all AEQ~, fl>a'- 1. 

Finally, by Theorem 4.1 in [AM], Ho,~,_I(A)< oo implies that AEQ~; and 
Ho,a(A)=0 ifA~Q~ and f l > e ' - 1 .  

Corollary follows immediately from Theorems 1.5 and 1.7 and the following 
remark: if H-dimA=b, then Hr(A)=0 for y>b  and H~(A)= oo for 0 < 7 < b ;  
and ifL--dimA=c, then Ho,~(A)=0 for fl>c and Ho,~(A)= oo for 0<f l<c .  

5. Survey of literature. Concluding remarks 

5.1 In 1974 Loewner and Nirenberg [LN l have established a number of interest- 
ing properties of positive solutions of the equation 

(5.1) A v= v ~d+ 2)/~d- 2)" 
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(a) If D is a bounded domain with a smooth boundary, then (5.1) has a unique 
positive solution in D which tends to + oo at the boundary 
(b) For  an arbitrary domain D, there exists the maximal positive solution vv. 
(c) Suppose that 0D is compact and D = D \ K  where K c D  is compact. If 

d 
H - d i m K < ~ - - 1 ,  then v~ is bounded near K; if K is a smooth hypersurface 

d 
with of dimension > ~ - 1 ,  then v b ~  +Go as x tends to K. (To compare this 

d 

with the results in Sect. 1.9, note that ~ -  1 = d -  G for e = (d + 2) / (d-  2).) 
A 

5.2 Isolated singularities of the Eq. 

(5.2) Au=lu]  ~ lu, c~>l 

have been studied in [BV], ELI, I-V2]. If we consider only positive solutions 
(which is natural from the probabilistic point of view), then (5.2) is equivalent 
to 

(5.2 a) A v = v ~. 

[-Recall that a probabilistic interpretation is known only for 1 < c~ < 2.] It was 
established in [-BV] and [L] that the singularity is removable for d_>_ G. The 
most complete results for d < G  have been obtained in [,V2]. In particular, it 
is proved that, if 3__<d<~%, then every positive solution v in D\{0} has either 
the form 

(5.3) 

or the form 

(5.4) c ix 12-a[-1 + e(x)] 

where e (x) ~ 0 as x ~ O, G, a = [-2 (~ -- 1) - 1 (G - d)] 1/(~ - 1) and c > 0 is a cons rant. 
A solution of the form (5.3) can be obtained by the probabilistic formula 

v(x) = - l o g  P~x {r c D\{0} }. (5.5) 

In particular, 

(5.6) - l o g  Pox {N clRa\{0}} =G,e Ix1-2/~-"  

(this follows from Lemma 3.2 and a slight modification of Theorem 0.5). A solu- 
tion of the form (5.4) is given by the formula 

(5.7) v(x) = - l o g  P6x exp { - c YD ~176 

where y~o corresponds to Dirac's measure by Theorem 1.7. 
Isolated singularities for the equation A v = 0(v) with a continuous increasing 

function 0 have been studied in [VV], [,V3] and [,RV]. (Note that all functions 
of the form (1.3) satisfy these conditions.) 

5.3 In the present paper we use extensively a general theory of singularities 
developed by Baras and Pierre in [BP]. Most results are obtained for the case 
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(z) = z ~ but one sufficient condition of removability is given in terms of behavior 
of ~,(Z) as z---, +oo.  (Earlier an analogous criterion was established in [V1] 
in a more classical setting.) 

5.4 The class of measure-valued Markov processes which we call superprocesses 
was introduced by S. Watanabe and D. Dawson. An enriched model including 
measures X~ and Y~ at random times ~ was considered, first, in [D4]. A number 
of authors (Dawson, Perkins, Iscoe, Fitzsimmons, Roelly-Copoletta, Le Gall, 
Le Jan and others) contributed to the recent progress of the theory of superpro- 
cesses. We refer to bibliographical notes in [D3], [D4], [DIP] and [DP] for 
more details. 

Dawson et al. have studied hitting properties of X for the super Brownian 
motion with the branching mechanism determined by ~ (z)= l z  a. The Eq. (1.16) 
has in this case the form 

(5.8) A v = v 2. 

Using rotation invariance and self-similarity arguments, Iscoe has established 
in [I] that (5.8) has a unique solution u in the unit ball B = { l x l < l }  which 
tends to + oo as Ix] --+ 1 and that, for every finite measure # on B, 

Pu {Xt{]xl >R} = 0  for all t>0}  = e x p ( - u R ,  # )  

where Ug (x) = R -  2 u (x/R). 
In [DIP]  a sufficient conditions for S-polarity was given in terms of a Haus- 

dorff measure. In [P] Perkins proved that A is S-polar if C a p 2 A = 0  and he 
has conjectured that the converse statement is also true. Dawson et al. have 
studied also the set of "k-multiple points" of X (which coincides with the range 

for k =  1). An extension of these results to the case a < 2  is a challenging 
open problem. 

5.5 Suppose that L and ~ satisfy the conditions of Theorem 1.1 and, in addition, 
a = 0  in formula (1.3). It follows from (1.6)-(1.7) that 

(5.9) Pu ( f ,  X~) = / / , f  (r 

Let D be an arbitrary open set and let r ,  be a sequence of exit times constructed 
in Sect. 2.3. If v is a positive solution of the equation 

(5.10) Lv(x)=O(x ,  v(x)) in D, 

then l l xv(~O>v(x  ) and ( v ,X~ , )  is a submartingale relative to Pu. The same 
is true for exp ( -  v, X~.). Therefore the limit 

(5.11) Z =  lim (v, X~.) 
? 1 ~ o O  

in topology of [0, + c~] exists a.s. Clearly: 

5.5.A Z is a shift-invariant functional of {X~,}. 

5.5.B For  every #eMc(D), Pu e-Z=e-<V'u> where 

(5.12) v(x)= - logPa  e -z .  
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5.5.C P ~ { Z <  or}>0 for all x~D. 

Conversely, if a function Z from O to [0, + oo] satisfies conditions 5.5.A, 
B, C, then v given by (5.12), is a positive solution of the Eq. (5.10). Indeed, 
by the special Markov property and 5.5.B, P~= e-Z=P6= e x p ( - v ,  X: ,)  for xeD=, 
and (5.10) follows from Theorem 1.1. 

We see that description of all positive solutions of (5.10) can be reduced 
to the description of all random variables Z subject to conditions 5.5.A, B, 
C. This class contains Z = ( f ,  X~) for every Borel function f from 0D to [0, 
+c~].  Suppose that D is bounded and regular and that f is continuous in 
the topology of [0, + oo]. It can be proved that 

v(x)--+f(a) as x ~ a E O D ,  xeD.  

Theorem 1.2 is a particular case of this result. 

Appendix 

0.1 Let D be a domain in IRd. We denote by 0D the boundary of D and we 
put / 5=DuOD.  The class of all k times continuously differentiable functions 
in D is denoted by Ck(D). 

Let f be a real-valued function on /5 and let 0 < 2 <  1. We put feC~ 
if f is H61der continuous on /5  with exponent 2 that is if there exists a constant 
c such that [ f ( x ) - f ( y ) l < c l x - y l  ~ for M1 x, ye/5. Put f~ck'~(/5) if feCk(D) 
and if the derivatives of order < k have extensions to /5  which belong to C~ 
The class Ck'Z(D) consists of functions f which belong to Ck'Z(/51) for every 
domain D1 such that/51 ~D. 

We say that 0D is of class C k'z if it can be described locally by functions 
of class C k'z. As usual, a condition "#D is smooth" means that ODeC k')" for 
a sufficiently big k. 

0.2 Theorem 0.1 Put Di=~/Oxi. Let 

(0.1) L= 2 aij Di D ~ + ~ b i Di 
i , j  i 

be a differential operator in IR e such that: 

0.2.A Functions aij= a;i and b i are bounded and belong to C~ 

0.2.B There exists a constant 7 > 0 such that 

~ aij(x) uiu~>7 ~ u~ 

for all x MR d and all u 1, ..., ud. 
Then there exists a Markov process ~ = (it, Hx) in 1R a with continuous paths 

such that, for every bounded continuous function f on IRd, 

F,(X) = H ~ f  (~t) 
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is the unique solution of the equation 

8 F / S t = L F  

with the property Ft(x) ~ f (x) as t $ O. 

(Cf. Theorem 5.11 in [D].) 
We call ~ the diffusion with the generator L. 

0.3 Let 

(0.2) "c=inf{t: t>0 ,  ~t~D}. 

A point a~?D is called regular if Ha{z=0}- -1 .  A domain D is regular if all 
points a ~ D  are regular. Every smooth domain is regular. 

Theorem 0.2 Let f be a bounded BoreI function on O D and let 

(0.3) h(x )=Hxf (~ ) .  

Then h~C2"~(D) and 

(0.4) Lh=O in D. 

I f  a is a regular point of O D and if f is continuous at a, then 

(0.5) h(x)--,f(a) as x ~ a ,  xED. 

(Cf. Theorems 12.12, 13.3 and 13.9 in [D].) 

Theorem 0.3 Let p be a bounded Boret function in a bounded domain D and 
let 

F ( x ) = n ~  ~ P(~s) ds. 
0 

(0.6) 

Then: 

0.3.A F is bounded and 

(0.7) F(x)---,O as x ~ a ,  xeD 

for every regular point a of ~ D. 

0.3.B F~C~ 

0.3.C I f  peC~ then F~CZ'~(D) and 

(0.8) L F = - - p  in D. 

0.3.D I f  D belongs to class C 1'~ and if psC~ then FsC2';'(/)). 

Proof By Theorem 13.7 [D], the function re(x)= FI x z is bounded and m(x)---, 0 
as x ~ a ,  x e D  if a is regular. This implies 0.3.A. According to Sect. 13.23 in 
[D], (0.6) is equivalent to 

(0.9) F (x )=  ~ g(x, y) p(y) dy 
D 
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where g is a continuous function from D x D to (0, + oo] called Green's function 
of L in D. For a smooth domain D, Giraud constructed g(x, y) as a solution 
of integral equations. It follows from his construction that F satisfies 0.3.B, 
C and D (see [Mi], Sects. 21 and 13; for the case L=A,  a very clear presentation 
can be found in [-GT], Chap. 4). 

To extend 0.3.B and C to an arbitrary bounded domain D, consider a smooth 
domain U such that [7 ~ D. Let a be the first exit time from U. By the strong 
Markov property, F = ff + h in U where 

c~ 

F(x) = F/~ y p(~) ds, h(x)=lI~F(~r 
0 

By Theorem 0.2, h~C2'~(/2). If psC~ then, by 0.3.D, C2'~((7) contains ~V 
and therefore it contains F. Hence (0.8) holds in U which implies 0.3.C. For 
an arbitrary bounded Borel function p, P~C~ Hence F~C~ which 
implies 0.3.B. 

0.4 If the coefficients azj and bl are sufficiently smooth, then the operator L 
can be represented in divergence form 

(0.10) Lv = ~, Dj [aij Di v] -- ~,, D i [~i v] - c v 
i , j  i 

where 

and 

~i ~- --bi + s Djai) 
J 

i 

We assume that c > 0  and that a~j and b'i belong to CI(IR). It is known (see 
[-Mi], Sects. 10 and 21) that Green's functions of the adjoint operator 

(0.11) L*u= ~ Di[aijDju ] + Y" ~iDiu--cu, 
i,j i 

is connected with Green's function for L by the formula g* (x, y )=  g(x, y). 

0.5 The Sobolev space Wk'~(D) is defined as the Banach space of all functions 
in L~(D) which have weak derivatives up to order k belonging to L~(D). (Two 
functions represent the same element of W k'~ if they coincide a.e. in D.) We 
denote by C~ ~ (D) the class of all infinitely differentiable functions in D, with 
compact supports and by Wok'~(D) the closure of C~(D) in Wk'~(D). We use 
notations ]l" II~ and 11" []k,~ for the norms in L ~ and in W k'~. 

Let t/be a finite measure on D. We set t l~W -k'~ if 

I f qo(x) r/(dx)l~C(~)[l~011k,~, 
D 

for all (peCk(D) (here 1/c~+ 1/e '= 1). 
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Writing 

(0.12) 

means 

(o.13) 

L v = f  in C~(D) 

L* ~o(x) v (x )dx= ~ q)(x) f (x)dx  for all q)eC~(D). 
D D 

(Writing L v = t  I in C~(D) has an analogous meaning with f ( x ) d x  replaced by 
r/(dx) in (0.13).) 

We need the following result proved in [BS], p. 577. 

Theorem 0.4 Suppose that L satisfies the conditions in Sect. 0.4, that D is bounded 
and has a sufficiently smooth boundary and that g(u) is a continuous increasing 
function with g(0)= 0. I f  p ~L 1 (D), then there exists a unique solution of the prob- 
lem 

(0.14) u~W~'I(D), g(u)~Ll(D), 

- -Lu+g(u)=p  in C~(D). 

Moreover, for every 1 <q <d/(d-1) ,  u belongs to WI'q(D) and 

(0.15) 1lull 1,q-q- [[g(u)[] 1 ~ C(q)lip I11. 

0.6 Theorem 0.5 (Maximum principle) Let L be an elliptic operator in a bounded 
domain D and let t~: D • ~ + ~ ]R + satisfy the condition 

(0.16) ~p(x, u)>=tp(x, v) forevery u>=v~]R + andevery x~D. 

I f  u, v >= 0 belong to C 2 (D) and satisfy the conditions: 

(0.17) L u ( x ) - ~ ( x ,  u(x))> Lv(x)--~(x,  v(x)) in D 

and 

(0.18) lim sup[u(x)-v(x)]__<0 for all ae~?D, 
x ~ a , x ~ D  

then u(x) < v(x) in D. 

Proof Let w=u--v .  If our statement is false, then /3={x:  x~D, w(x)>0} is 
not empty. By (0.16) and (0.17), Lw(x)>O(x,  u(x))--O(x, v(x))>O in/3. By (0.18), 
lira sup w(x)< 0 as x--* a t  0/3 which contradicts the Maximum Principle for lin- 
ear elliptic equations (see, e.g., [-GT], p. 32). 
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