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Summary. The closed support  of super Brownian motion in R d is studied. It  
is shown that at a fixed time t > 0 the mass of the process is located in connected 
components  which are single points. 

1. Introduction 

Super Brownian motion is a measure valued process that arises as a limit of 
systems of branching Brownian motions. This limiting procedure and an exact 
definition of super Brownian motion is given in Sect. 2. Let MF(R ~) be the 
space of finite measures with the topology of weak convergence. Then a super 
Brownian motion has continuous paths with values in MF(Rd). We will write 
S(m) for the closed support  of a measure m~MF(Rd). In dimension d > 2  it is 
known (Dawson and Hochberg  [2], Perkins [9]) that S(Xt) is a Lebesgue null 
set for all t > 0  almost  surely. In dimension d > 3  it is known that at a fixed 
t > 0  the measure Xt can be recovered from its support. Indeed from Dawson 
and Perkins [31 Theorem 5.2 

(1) Xt(A)=ca(d)(a(Ac~S(Xt)) for all Borel A ~ R  d 

where ~b(-) is the Hausdorff  measure derived from the function x 2 log + log + (l/x). 
This paper  describes the connected components  of S(Xt). 

The arguments that  lead to the proof  of the lower bound in (1) use covers 
of the support  that  have a structure like a Cantor  set and Don  Dawson asked 
the question: 

For  fixed t > 0  is S(Xt) a totally disconnected set? 

In this paper  we give the following partial answer. 

Theorem 1 Let Comp(x)  denote the connected component of S(Xt) containing 
x. I f  d > 3 then for all m~Mv(R d) and t > O, with probability one 

Comp(x)  = {x} for X t -  a.a.x. 
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The proof of Theorem 1 uses a nonstandard model for super Brownian motion 
involving an infinitesimal branching Brownian motion. This has been used in 
Perkins [-8] and Dawson et al. [4] to study the path properties of the process. 
In Sect. 2 of this paper we give the notation for the nonstandard model and 
in Sect. 3 we give the proof of Theorem 1. We finish this introduction with 
a sketch of the proof. 

The proof of Theorem i uses an accurate estimate for the probability that 
super Brownian motion gives mass to a ball at a fixed time t > 0. Exact asymptot- 
ics for such probabilities (as the size of the ball decreases) have been found 
by Dawson et al. [4]. For  d > 3  there exists a constant c2(d ) such that for all 
x~R a, m~Me(Ra), e>O, t ~ g  2 

(2) P"(Xt(B(x, e))>O)<c2 ea-2 ~ p~+~(x, y)dm(y) 
R a 

where pt(x, y) is the transition density for Brownian motion. This estimate comes 
from the proof  of Theorem 1.3a in Dawson et al. [-4]. 

Using the particle picture we consider the measure X t as a superposition 
of a number of clusters. Each cluster is the collection of particles descended 
from a single particle alive at time t - 8 .  We shall show using (2) that on average 
at least a fixed proport ion of the mass of X t is contained in clusters that are 
isolated from the remaining mass. A zero-one law allows to show that this 
will happen infinitely often along a sequence 6, ~ 0. Hence all the mass at time 
t can be isolated in arbitrarily small clusters. 

2. The nonstandard model 

Super Brownian motion can be obtained using a system of binary branching 
Brownian motions. In these processes a collection of particles move through 
space. They move according to independent Brownian motions between genera- 
tion times. At generation times each particle independently splits into two or 
dies with probability one half. As time proceeds a tree of Brownian motions 
is traced out by the descendants of each initial particle. We now give a construc- 
tion for a binary branching Brownian motion that is taken from Dawson et al. 
[4J including a labelling system first used by Walsh [11] which allow us to 
point to any of the branches of the tree. This labelling system is used throughout  
the proof of Theorem 1. 

Notation. 

N={O, . . . .  } 
R~ = R a w {A } where A is added as a discrete point 

8ix = point mass at x 
k 

Mf~(Ra)= {(1/#) ~, fix,: xl ~Ra, keN} for # =  1, 2 , . . .  
i = 1  

For any metric space M we write D(M) for the space of right continuous paths 
with left limits mapping [0, oo)--+M with the Skorohod topology and C(M) 
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for the space of continuous paths with the topology of uniform convergence 
on compacts. 

Let ((Y~: t > 0), (PoY: y ~ Rd)) be a Brownian motion with state space R e defined 
on some probability space (f2 o, ~o)- Let e be a coin tossing random variable 
defined on (f2~, ~-1, P~) taking the values 0 and 2 each with probability one 
half. 

Let 1=  U (N x {0, 1}"). The elements of I will label the branches of the 
hEN 

branching Brownian motion. If fl=(fio, fll . . . .  , fls)~I we write [31=J for the 
length of the label ft. If fl is of length j then it will label a branch upto time 
( j+  t)/#. Write f l~  t if l fi]l#< t <(1/~1 + l)t# so that fi labels a branch upto the 
first branching time after t. Let fl[i=(flo, .--, fii) for i<j .  Call fl a descendant 
of ~ and write fl>-7 if Y=fi[i for some i<lfil. Let a(fl, 7)=[f i [ - inf ( j :  fllj+Tb) 
be the number of generations back that fi split from 7. 

Let 0 2 = ( D ( R ~ ) x { O ,  1 } ) x ,~2=produc t  a-field. Writing cool22 as co 
=(Y~, e~),~i we define G , = a ( ( Y  ~, e~): la[<n). Fix p e N  and x ieR~ i=0,  1, ... We 
wish to find a probability P on (~?z, ~-2) which satisfies for any measurable 
A ~ _ D(RdA), B ~ _ {0, 1} the initial condition 

(3) P(c~ e 1~ A~xB~) = [ I  P~"~ V[ Pa(eeB~) 
I~I=O I~I-O I~I=O 

and for all n > 0 

(4) P(~:(Y~,e~)l~i=, r  A~• 
I~1 =, 

= 1-~ P~~ -- ~1.-, Y ~, (,/,) - Y. ̂  (./u))(09) I-I P1 (e e B ~) 
I~1 =n I~1 = n  

By an adaption of the Kolmogorov extension Theorem there exists a unique 
probability measure P = P2 (x~ satisfying (3) and (4). It follows that 

P(Y.~eA) = Po~O (Y/, (l~l + 1)/, e A  

so that each Y" has the law of a Brownian motion upto time (]a] + 1)/# when 
it is frozen. Also from (3), (4) (e~: ~EI) are I.I.D. copies of e and are independent 
of (Y~: aeI) .  The e ~ will indicate whether the particles split or die at the branching 
generations and this will be independent of the spatial motion. Finally from 
(3), (4) the random variables (Y~: I~] =n)  are conditionally independent given 
Gn indicating that the particles move independently between branching times. 

Let 
= (R~) N • (22 

= product  a-field. 

P(~')~,- = 3(~)~ x P2 (~)',-. 

Then for a)=((xl)i, (Y~, e~)~x) particles will start at those x~ that are not equal 
to d. Define the death times for the branches as 

0 if % = A  

z ~= min((i + 1)/#: e~l'= 0) if this set is nonempty 

(]~l + 1)/# otherwise 
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To each branch c~EI we associate a corresponding particle which moves along 
the branch until the death time. So the position of the particle on the branch 

is given by 
~_{Yt ~ for t<'c ~ 

N t -  A for t > z  ~. 

Define a filtration where if j~# < t < (j + 1)/# 

~"=a(Y~' ,e~:l~l<j)v ~ a ( Y f : l f l l = j , s < u ) ,  ~r V sCi". 
U > t  t > O  

Now we attach mass 1/# to each particle and define a measure valued process 
N": [0, oQ)~MF(E ) by 

Nt"(A) = (1//0 x :~(NfeA: ~ t )  

=(1/#) Z I(Nt~eA) �9 

For bounded measurable f we write 

NtU(f) = ~ f(x)  dNtU(x)= (l/p) ~, f(N~ ~) 
E a ~ t  

where we shall always take f (A)=0 .  Then NtU~ct for all t and N.~6D(Mv(Rd)) 
almost surely. 

K 

If mu=(1/# ) ~ 6x~MU(E) then we extend (xi)i<=K to (xi)i~ by setting xi=A 
i = 1  

for i>K.  We write pro, for p(x,h,,. This ignores the order of the (x~)~ but note 
that the order does not affect the measure on a(Nf:  t>0)  in which we are 
mainly interested. 

We shall need a strong Markov property. Let Tu=(j/#: j =  1, 2, ...). In Per- 
kins [8] Proposition 2.3 some shift operators are defined and a strong Markov 
property is proved for stopping times taking values in T u. (The construction 
in Perkins [8] for super stable processes is slightly different but the proposition 
applies here). 

Theorem 2 (Watanabe [12].) Suppose m ~ M ~ ( R d ) ~ m ~ M e ( R  a) weakly as # 
..-9, 0(3. T h e n  

(5) Pm~(N"~.)~Q~(.) on D(MF(Rd)) as #~o~.  

The law Qm is supported on the subset of continuous paths. We write Q~ again 
for the restriction to C(MF(Rd)), Xt for the coordinate process and ~t x for the 
canonical completed right continuous filtration. The family (Qm: m6MF(E)) is a 
strong Markov family. 

We now construct the nonstandard model. From Theorem 2 we see that 
by doing calculations on binary branching Brownian motions and using weak 
convergence arguments we can obtain results about super Brownian motion. 
The nonstandard model is simply a binary branching Brownian motion with 
the inter generation time 1/# being a positive infintesimal. This gives us a non- 
standard object and we have to take its 'standard part '  to obtain super Brownian 
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motion. The advantage is that many of the weak convergence arguments are 
built into the model. Cutland [1] gives an introduction to nonstandard analysis 
for probabilists which is sufficient for our needs. 

The binary branching Brownian motions live in a superstructure V(S) where 
S contains the reals and various measure spaces (f2 o, ~o,  Po) e.t.c. The nonstan- 
dard model will live in an proper extended superstructure V(*S). We assume 
the existence of a saturated embedding �9 : V(S) ~ V(*S) that satisfies the transfer 
principle. We will write elements of *R as underscored characters _x, t , . . .  We 
identify real numbers reR  with their images *r. If M is a metric space we 
write ns(*M) for the set of nearstandard points in *M. For  neastandard x e * M  
we write stM(x) for the standard part of x or ~ if the metric space M is clear. 
Indeed for r e *R  we shall often write r for the standard part. 

We can consider the construction of the binary branching Brownian motion 
as a map P:(R~)Nx N ~ M ( O )  where ((xl)~, #) --* P(~')"~. Under the embedding 
we obtain a map *P: *((R~) N x N ) ~  *M(f2). So if # e ' N ,  (xi)~e*(R~) N then *P(~')',, 
is an internal probability on (*f2, *d) .  We also have the embedding of all the 
particle structure e.g. 

*N*P~*RaA for all *fie*l, _te*R+. 

To avoid a notational nightmare we drop the �9 whenever the context makes 
clear we are talking about a nonstandard object. For  instance we write 

N •  =,/?d _t~ "'4 for all fie*I, t_e*R+. 

The transfer principle will allow us to do calculations with the nonstandard 
branching processes as easily as with their standard equivalents. 

For  (X, Y', v) an internal measure space (for example (*R e, *N, Nt) or 
(*f2, *d ,  *P"-)), define a real valued set function ~ on X by 

~176 for all Ae~ '. 

Loeb showed that the finitely additive measure ~ has a a-additive extension 
denoted by L(v) on the a-algebra a(X) generated by Y. Let L(Y') be the comple- 
tion of a ( f )  under L(v). Then (X, L(Y'), L(v)) is a standard measure space called 
a Loeb space. We write (*f2, o~ P"-) for the Loeb space (*f2, L(*d) ,  L(*Pm,)). 
Also when m u is fixed we shall often write P, E, *P, *E for pro,, E"-, .p ro ,  *E"" 
respectively. 

We now state the Theorem that links the nonstandard model to a super 
Brownian motion. Fix p e * N \ N .  

Theorem 3 Let m e M F (R d) and choose m u e * M~ (R d) so that s tMF (Ra) (m u) = m. Then 
there is a unique (up to indistinguishability) continuous Me(R d) valued process 
Xt on (*g2, if, pm,) such that Pm--a .s .  

(6) Xt(A)=L(Nt_U)(st-l(A)) for all _tens(*[0, oo)), and Borel A. 

Moreover 

Pm"(XeC)=Qm(C) for all Ce~(C(MF(Rd))). 
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For nearstandard t~*[O, oo) such that t > 0  the supports o f  X~ and N~_ ~ satisfy 

(7) S (Xt) = s tR, (S (NtU)) P"~ - a.s. 

This theorem is proved in Dawson et al. [-4] Theorem 2.3 and Lemma 4.8. 
Note that the total number of particles in a binary branching Brownian 

motion follows a Galton Watson process. Asymptotics for the probability of 
extinction for a Galton Watson process are well known (see Harris [7] p21-22). 
The following lemma interprets these results for the nonstandard model  

Lemma 4 For nearstandard t_, x_ >-0 such that x, t > 0 

#*p.- 'ao(N~(1) > O) ~ 2 t -  1 

where we write x_ ~ y_ if  x_ and y_ are infinitesimally close. 

3. Proof  of Theorem 1 

It will be convenient to prove the result first for super Brownian motion started 
at a point mass. The following result (Evans and Perkins [6] Corollary 2.4) 
will enable us to extend the result for super Brownian motion started at any 
m~Mv(Rd).  

Theorem5 For any m l , r n 2 ~ M ~ ( R  ~) and s , t > O  the taws Q m ' ( X ~ . )  and 
Qm~ ( X ~ . )  are mutually absolutely continuous. 

Notation. For  _t, _a, _0s T u, fi ~ t  let 

z'~(_.)=# - '  F. x(N~+~ 
y ~ t + a _  2, 7~>-6 

wB(_< _0)=,. -1 Y' X(IN_L,,2- N_fl >_a 0) 
,/~ t +_a% 7~P 

Z~(_a) is the mass of the 'dus te r '  of particles descended from ~ that are alive 
at time _t + a 2. The following lemma shows that there is a good chance, indepen- 
dent of _a, that these particles have not spread more than a distance O(a) from 
their common root. For  m e M F ( R  ~) choose m u e * M } ( R  ~) such that stMF(mu)=m. 

Lemma 6 For nearstandard _a, _0c*[0, oo) such that a = ~  0 = ~  

(8) 
(9) 

P " ,  ( W  ~ (_a, 0_) = 0 [ Z ~ (q) > O) = p (0) 

Em. (Z ~ (a) I (W p (q, _0) = 0) lZ p (a) > 0) = r (0) a 2 

where if OeR, 0 > 0  then p(0)>0,  r (0 )>0  and 

(10) 

(11) 
Q(1/2)a~ 1 (B(0, 0) ~) = 0) = exp (p(0)-  1) 

E(~/2 )a0 (X1 (B (0, 0)) I (X ~ (B (0, 0)9 = 0)) = r (0) exp (p (0) -- 1) 
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Proof This is essentially due to the space-time-mass scaling property of super 
Brownian motion. For/3 > 0 define K~: M e (R e) ~ M e (R e) as follows 

j f ( x ) K ~ m ( d x ) = ~ f ( B x ) m ( d x )  for all measurab le f  

Then for m~MF(R e) the law of the process (Xt: t>O) under Qm equals the law 
of the process (/3-1K~_l/2X~t: t>O) under Q ~Ka~/2m. For a proof see Roelly- 
Coppoletta [10] Proposition 1.8. 

Fix nearstandard _a, _0 such that a, 0>0 .  For/3 such that/31o 4= A define 

p(_a, _0) =*P~ ' (W~(a ,  _0) = 01 zP(_a) > 0). 

The value of p(_a, _0) does not depend on the choice of m, or 13. Take x i = 0  
for i=  1 . . . . .  [#_a2/2] and x i = A otherwise, so that s tm~(In~)= (a2/2)c~ o . Then 

Q (1/2)5~ (X 1 (B(O, 0) c) = 0) 

= Q(,:/2)~o (X,2(B(O, aO) c = O) 

= Pm.(N._: (s t -  1 (B (0, a 0)~)) = O) 

= pm~ (Na~ (B (0, a_ 0_) ~) = O) 

using scaling and the fact that Xi  (OB(0, r))--0, almost surely for any r. So 

Q(1/2)O~ 1 (B(O, O) ~) = O) 
/[#-a2/21 ) 

=pro. { (~ (W~,(a, 0)=0) 
\ i=1 

[~_a2/21 
=o H *Pm"(W~'(-a, O-) =0) 

i=1 
[#_a2/21 

= ~  [ I  *P~"(WX~(a-, O-)=OIZ~*(a-)>O)*pm"(z~(a-)>O)+ *P~"(Z~(a-) =0)  
i=1 

= ~ [(1 + (p(a, 0 ) -  1) *Pm"(z  ~ (a) > 0))t"-~'/2~] 
= exp(~ 0)-- 1) 

since [#a_2/2J*P",(Z~'(a)>O)...1 from lemma 4. So ~ _0) is constant in a 
and (8) and (10) follow taking p(O)= ~ 0). 

The calculation for E(~/2)O~ (B(O, 0)) I (X  1 (S(O, O) c) = 0 ) )  is similar. Finally 
Qoo/2 ( x  I (R e) = 0)= e x p ( - 1 )  so that p(O), r(O)> 0 will follow if we can show 

(12) Q~o/2 (X~ (U (0, O) ~) = O, X~ (R a) ~= O) > O. 

But since the support of the process moves with finite speed (see Dawson et al. 
[4] Theorem 1.1), for small enough s we have 

Qao/2 (x~ (B (0, O) ~) = O, X~ (R e) =t = O) > 0 

and Theorem 5 implies (12) holds. []  

Notation. For  a t (0 ,  oo) define 

Qa = {(y, r, 6)~Q a x Q x Q: r, c5 > 0 ,  [yl < r - 6 ,  [yl +r+cS<a} .  
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For a E [0, oo), m ~ M F (R e) define Ann (m, a) __ R e by 

Ann(m, a)= Q) {x~Ra: re(z: r -cS<lz -x -y l<r+cS)} .  
(y, r, ~)eO~ 

For a_ ~* [0, co), m ~ *M F (R e) define Ann (m, _a)_~ *R e by 

Ann(m, _a)= ~ {x_e*R a" m(_z: r-O<[z_--x_-y[<r+6)}. 
(y, r, ,~)eQ~ 

Ann(m, _a) is defined so that for _xEAnn(m, _a) there is a mass free annulus of 
positive standard rational thickness that disconnects _x from B(_x, _a) ~. 

Note that if xeAnn(Xt ,  a) then Comp (x)___ B(x, a). Thus 

xE (~ A n n ( X ,  n-  1) ~ Comp(x) ~ {x}. 
n = i  

For_t, _a, _ocT u, fl~t_, N~_a :# A define 

ra(_a, _0)--~-~ ~ I(IN~_~- Nf I < 2_a_0). 

Note that if a_,-0, t_~TU, a>O,O<O<l/2, fl~t_ are such that Nt~_,2:#A, 
VPl-t-"-2(_a, 0)= W~l-t-"-:(_a, _0)=0 then there is a particle free annulus surrounding 
Ntf, namely I N,f - Ntf__~ I < a 0 and 

N_~(z: 5a0/4 < I_z-~__~21 < 7_a_0/4)= 0. 

We may shift the annulus slightly to be centered at a rational and have positive 
rational thickness so that ~ P e A n n ( ~ " ,  _a). 

The following lemma shows that on average a positive fraction of the initial 
particles will lie inside Ann(N t", _a). 

Lemma7  For nearstandard _a2, t~T" with 0 < a < l ,  2al/3<t<oo, d>3 if 
s tn(m,)=m~Mv(R d) then there exists a constant p > 0  depending only on d such 
that 

Era-(# -1 ~ I(N~eAnn(Nt ", _a), N[#A))>=pm(Ra). 
7~s  

Proof The remark following the definition of V ~ (_a, -0) shows that 

(13) E(# -1 ~ I(NZ~Ann(Nt", _a), N[#A))  

~E(,//- 1 Z I(N[4:A, w'l~-~"2(_a, -0)=0, rl-~-"-2(a, -0)=0)) 
y~_t 

= E (  ~ Z'(a)I(V'(a, -0)=W'(a, -0)=0)) 
? ~_t-_a2 

=E( F, *e(Z~(a)I(W'(_a,-0)=O)l~_a~)*ew~(_a,_O)=Ol~__a~)) 
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since conditional on sJ_t_~2 the random variables V~(_a, 0) and Z~(a_)I(W~(a_, 0_) 
=0) are *-independent. Now using the *-Markov property (see Perkins [8] 
Proposition 2.3) 

~ 0)=o)1~-~) 
= o ,  pN,_"_ .2 -  ~ - '  ~ ~_ .~ (N_, 2 ( B  ( . ,  2 _a _0)) = 0)  [N~ _ .  2 

= QX,_ o2 (X,2 (B (., 2 a 0)) = 0) Iota,_ o2 

where in the second step we used the continuity in 0 of Q~(X~(B(x, 2a0))=0)  
and the fact that stM(NUt__,_2-la- ~ 5NLa2) =Xt- ,~ .  Also 

~ (W'(a_, 0)=0)1~__.2) 
= o * E ( ~ Z ~  (_a) X (W~(_a, _0) = 0) [ NL.2 4: A) I (~'_ ~ 4: A) 

= o [*E (Z' (_a) I(W'(a,  _0) = 01Z' (_a) > 0)/~*P(Z'(a_) > 01N_tL_.2, A)] I(Nt_L~_2 * A) 

= 2r(O) I (Nt_L~_2 + A) 

using Lemma 6 and Lemma 4. Substituting into (13) we get 

E(# -1 Z I(N2~Ann(N_t u, _a), N[:# A)) 

> 2r(O) E [# - ~ ~ I (N~,_2 +- A) QX~-~ 2a0))--0)loNr_~ 
7~t_ 

= 2r(O)E[ ~ QX'-"2(X,~(B(x, 2aO))=O)dXt_,~(x)] 
R a  

>2r(O)E[- ~ (1--ez(2a0)a-z(2rta:(1 +402)) -a/2 
R a 

�9 ~ exp(-- (x--y)2(Za2(1 +402)) - ~)dXt_.2(y))dXt_,2(x)] 
R a 

using the estimate on hitting balls in (2). Lemma 8 gives an estimate on the 
expectation of this double integral and leads directly to 

E(# -1 ~ I(Nt~Ann(Nt_ ~, _a), N2 + A)) 
"r 

> 2 r (0) m (R d) ( 1 - C 0 d - 2 ( 1 + 4 0 z ) 1 - a/2 (2d/z + m (Ra))). 

Now take 0 > 0 small enough so that the right hand side is strictly positive. []  

Lemma 8 I f O < a <  1, t > a 1/3, d> 3, rn~Mv(R a) then 

Em [~exp(  - ( x -  y)2/Za) d X t d X t  ] < am(Ra)(2 a/z + m(Ra)) 

Proof Let pt(x) be the Brownian transition density with associated semigroup 
P~. We have for positive measurable f, g (see Dynkin [-5] Theorem 1.1) 

t 

E'~[ X t ( f )  Xt(g)] = S Pt f (x) dm(x) S Ptg(x) dm(x) + S dm(x) ~ Pt_,(P, f P~g)(x) ds. 
0 
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By approximating positive 

fi(x) gi (x) we have 

measurable h(x, y) by functions of the form 

(14) E" E[. f h(x, y) dXt(x) dXt(y)] 

= [. dm(zO [. dm(z2) ~ dx  ~ d y h(x, y) p t (X-  Za) p t ( y -  z2) 
t 

+Idm(x)  ~ ds[dyp~(x--y)Idz~ [dzzp~(y--z~)p~(y--z2)h(z~, z2) 
0 

>(m(Rd)) 2 sup E[h(Br Bt2)] +m(R d) i sup EEh(B~ B 2 , s ) ]  
Z I ' Z 2  0 Z I ' Z 2  

where B 1, B~ are independent Brownian motions starting at Zl, z2. For h(x, y) 
= exp ( -  ( x -  y)2/2 a) we have 

sup E [h (B~, B2)] = ~ exp ( - x2/2 a) P2s (x) d x <__ (2 a/a + 2 s) a/s. 
z1,  z2 

Substituting into (14) and using the bounds on a and t gives the result. [] 

Proof of Theorem 1. We prove the result first for the nonstandard model with 
xi=O for i=1  . . . .  #,x i=A for i > #  so that if mu=#-aY'6x,  then P", (X~. )  

i 

= Q6~ From Lemma 7 we have for nearstandard _a, _t~ T u such that 0 < a 
< 1, 2a a/3 < t < oo 

0<p<E( /~  -1 ~ I(N_t~eAnn(Nt ~, _a), NZ =~ A)) 

=E(#  -1 ~, * P ( ~ A n n ( N " ,  a)I~7+A)I(N/4A))  
v~_t 

= P ( ~ E A n n ( ~  u, _a)[~ + A) 

where P(-]N~+A) is the Loeb measure induced by *P(.[~=#A).  Since 
A n n ( ~  u, _a) decreases as a decreases we have for any y - !  

(15) P(Nt~ (~ Ann(Nt_ ~, n-1)]N2#A)>p>O. 

We now use a zero-one law to show this probability is in fact 1. 

Notation. Fix 7~t .  For _u, _v~T u, _u=<_v define 

~._~ : * o ( N $ - N $ - . - 1 ~ . , :  _~ <~-1 ~(p. ~)_< v) v *~(NZ-~'-s:  _~ <_s__<_~) 
~ . . = o ( ~ . ~ )  

~=V~-,,_~ 
n 

n 
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The following two results are due to Ed Perkins (personal communication) and 
are used in the original proof of (1). 

Proposition 9 For Ae~fo+, P(A]Nt_~ 4= A)=O or 1. 

Proposition 10 IfO < ct < 2-4/a then P(. [N~ ~ 4= A) almost surely, for r small enough 

d({N_tB: p -  la(fl, 7)>(2r)~}, NZ) > r. 

For (y, r, 6)E Q,, _u, _v e T", _u <_v define 

~,~,a,.,_dT)= {co: INf-N[-yl~(r-r r+6)  for all fls.t. _u<#-lo-(fl, S)==_v} 

k = l  n = l  (y,r, 6)eQn-1  j = k + l  

If co~ (~ { ~ e A n n ( N ,  n-1)} 
n = I  

imply P (r(7) I N_' 4= A) = 1. Let 

then coeF(?) and so (15) and the zero-one law 

A(7)={co: for small r, d({~P: p-~a(fl ,  7)>(2r)~}, ~ ) > r }  

so that Proposition 10 says P(A (y) [ N_d 4= A) = 1. Then 

~(~- ~ y~ I (cor A(~), N~ + A)) 
7~t_ 

= E ( #  -~ Z *P(c~162  
y~_t 

= P(coq~ F (y) c~ A (7)I NZ 4= A) 

~ 0 .  

A global modulus of continuity for the movement of all the particles (see Dawson 
et al. [4] Theorem 4.5), implies that with probability one all the particles move 
only an infinitesimal distance in an infinitesimal time. So (7) and the above 
imply we can pick a single P null set N such that if o ~ N  we have simultaneously 

(16) ~ ~ I(coCF(y)c~A(y), ~'4=A))=0.  

(17) For all nearstandard _s <_t and fl ~_t, Nf  4= A we have ~P ~ N~f 

(18) s t (s  (N~)) = s (x , )  

Now fix coq~N, 7~_t such that N [ + A ,  coeF(7) c~ A(7). We claim 

~ (~ Ann(Xt, n-l) .  
n = l  
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To show this find k so that 

n = l  (y,r,O)~Qn l j = k + l  

Find r o such that (2ro) t/2 < k - 1  and 

(19) d({~:  ]d-1 o'(fl, y)>=(2ro)'/2}, N_tV)> ro . 

Pick n so that n -1 < r  o and find (y, r, 6)~Q,-1 so that 

(20) co6 ~ Fr, r,O,j-lk-l(~ ). 
j = k + l  

For  f l ~ t  such that p-la([3,7)>(2ro) 1/~, (19) ensures that ] ~ z - N ~ l > n  -1 and 
so I N a - N ~ - y l r  r-I-6). 

For  f l ~ t  such that O<~ y))<k -1, (20) and the definition of 
Fy,,,od_ ,,k-~(7) ensure I~a--N~--yl$(r--6, r+6). 
For  f l ~ t  such that /~-  1 o-(fl, 7 )~0  equation (17) ensures Nr  ~. So 

{zE*Ra: r--fi < Iz--N'--Yl < r +  ~} c~ {N[:/~ ~_t} =0.  

Equation (18) now gives 

{zeRd: r--6 < I z - ~  < r+O }  c~ S(X3=O. 

Since we were free to pick n arbitrarily large this proves the claim. Now Eq. (16) 
and the claim give 

so that for p~o_ a.a.a) 

(21) X~(Rd\ ~ A n n ( X ,  n - l ) ) = 0 .  
n = l  

It is possible to show that the map m ~ m Ann(m, n-  t is Borel measur- 

able. So we can apply Theorem 5 and conclude that for any m~MF(R ~) equation 
(21) holds for Q"-a.a.cg.  []  
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