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Summary. Let X be a diffusion in natural  scale on (0, 1], with 1 reflecting, 
and let c(x)=lE(Hx) and v(x)-var(Hx),  where H x = i n f { t : X t = x  }. Let ~x 
=sup{ t :  X t = x } .  The main results of this paper  are firstly that (i) c is slowly 

varying; (ii) c(Xt)/t ~' ~ 1; (iii) Hx/c(x) ~' , 1; (iv) aJc(x)  n, ~ 1 are all equiva- 

lent: and secondly that (v) c(Xt)/t .... ,1 ;  (vi) Hx/c(x) .... } 1; (vii) c~Jc(x) .... } 1 
are all equivalent, and are implied by the condition ~ c (x)- 2 d v (x) < oo. Other 

o+ 
partial results for more general limit theorems are proved, and new results 
on regular variation are established. 

1. Introduction and notation 

Limit theorems for transient one-dimensional diffusions have been studied before 
by Gikhman  and Skorokhod [3], Keller et al. [5] amongst  others. The starting 
point in these works is to take the diffusion in the form of the solution of 
a stochastic differential equation (SDE) 

d Xt = a (X,) d B, + b (X,) d t 

and impose conditions on the coefficients a and b. Broadly speaking, these 
conditions amount  to saying that the drift b will drive a transient ordinary 
differential equation when a is replaced by 0, and the diffusion co-efficient o- 
is small enough not to perturb the solution of the SDE significantly from the 
deterministic trajectory. The case where both o- and b are positive constants 
is the paradigm example. However, the conditions one obtains change in appear-  
ance whenever one changes scale, and this seems an unnatural  property for 
a limit theorem; two diffusions related by a scale change are essentially the 
same, and any theorem one proves for one should hold for the other. Motivated 
by these considerations, our  aim here has been to establish limit results for 
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one-dimensional diffusions in natural  scale, which can then be used on the 
general one-dimensional diffusion. Specifically, we shall investigate the limit 
behaviour of f(Xt)/g(t), where f and g are suitable functions. It  turns out that 
there is a very close link between limit behaviour of the diffusion X and of 
the first-passage and last-exit times. 

We shall consider a one-dimensional diffusion X in natural scale with speed 
measure m supported in (0, 1). Suppose that X starts at 1 and tends to zero, 
but does not hit zero in finite time. This is no real loss of generality, because 
if the diffusion is in natural  scale in (0, oo), say, it will almost surely spend 
only finite time in (1, oo), and by time-changing out this finite amount  of time, 
we get a diffusion on (0, 11 which will obey the same limit laws as the original. 
We shall assume that 1 is instantaneously reflecting. For  background on one- 
dimensional diffusions, see Chap. V of Rogers and Williams [8]. The condition 
on m for 0 to be approached but not reached in finite time is simply ~ xm(dx) 

= oo. For  0 < x < 1 define o + 

Hx =inf{t :  Xt=x},  a~= sup{t: Xt=x} .  

We shall frequently use the abbreviations 

E(H~)-c(x), var(H~)=-v(x). 

The following expressions in terms of the speed measure m will also be used: 

1 

(1) IE (H~) - c (x) = 2 S (Y - x) m (d y) 
x 

1 

(2) = 2 f m (y) d y 
x 

and 
1 

(3) var (Hx) -= v(x) = 8 S (Y -- x) m(y) 2 dy  
x 

1 1 

(4) = 8  ~ dy  ~ dz m(z) 2. 
x y 

Here, we have used the shorthand m(x)=m(x, 1). For  a proof  of these relations, 
see Sect. 4. It  follows easily from (2) and (4) and the fact that re(x) is a decreasing 
function of x that v(x) < c(x) 2. 

Throughout ,  we shall take f :  (0, 1] ~ I R  + and g: IR + ~ I R  + to be unbounded 
continuous functions, respectively decreasing and increasing; we shall frequently 
take g to be the identity function. Here are our main results. 

Theorem 1.1 The following are equivalent: 

i) c(x)=-IE(Hx) is slowly varying, 
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Hx F ,1, 
ii) IE(H~) 

iii) c(Xt) F 1 ' 
t 

ax F ,1. 
iv) IE(H~) 

Moreover, if for F non-degenerate 

then 

f (x) ~ , F, f (x) ~ , F 
H x (7 x 

f ( x )  
- - - ~  2E(O, ~) 
c(x) 

and F is a point mass. 

Keller  et al. [5] showed tha t  if var(Hx) --, oo and  

(5) var  (H~)/c (x) 2 ~ 0 

then H~ obeys a Cent ra l -Limi t  T h e o r e m  type  result:  

H x - c ( x )  
, N(0,  1). 

VvarHx 

We show using T h e o r e m  1.1 tha t  the condi t ion of Eq. (5) is equivalent  to c(x) 
slowly varying.  

Theorem 1.2 The following are equivalent: 

i) c(Xt) .... ,1, 
t 

ii) H . . . . .  
E(Hx ) ,1, 

O'x a.s. ) 1. 
iii) lE(Hx) 

A necessary condition for any (all) of the above is c(x) slowly varying; a sufficient 
condition is c(x) slowly varying and 

1 

m(y, 1) 2 d y  

x c(x) 2 d x  < oo. 
O+ 
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These are our  results for the case g = i d ,  but  we also establish a n u m b e r  of  
' s t ruc tu ra l '  results for the convergence off(Xt)/g(t) ,  f(x)/g(Hx), and f(x)/g(ax). 
Typical  of these is the following. 

Proposi t ion 1.1 i) Suppose any two of the following conditions hold for a non- 
degenerate distribution function F: 
(a) f is slowly varying, 

(b) f (x)/g(H~) ~ , F, 

(c) f (x)/g(ax) ~ , F. 

Then so does the third, and f (Xt)/g(t) ~ , F. 

(ii) Consider the conditions: 

(d) f (Xt)/g(t) .... , Z, 

(e) f (x)/g(Hx) .... , Z, 

(f) f (x)/g(o=) .... , z .  

Then (d) implies (e) & (f), and (e) & (f) implies (d). 

Remark 1.1 In  i) the o ther  implicat ions fail in general. Fo r  an example  in which 
f(Xt)/g(t), f(x)/g(Hx) and f(x)/g(ax) have  different weak limits let X be BES (3), 
f ( x )  = x 2 and  g = id. Then  it is well k n o w n  tha t  (with 0 = (2 2) 1/2) 

E exp ( - 2 Hx) = 0 x/s inh 0 x; 

lE exp ( - 2 ~rx) = exp ( -  0 x); 

lie exp( - 2 X2/t) = (1 + 2 2) -  s/2; 

and thus the three limit laws exist, but  are distinct. 

Remark 1.2 T h e o r e m  1.2 improves  on Propos i t ion  1.1 in the special case where 
g is the identi ty function;  then (d) <=> (e) <=~ (f). I t  is na tura l  to ask whether  
this i m p r o v e m e n t  is possible in the general  case. R e m a r k  3.1 answers this ques- 
t ion in the negative by  providing a coun te rexample  to (d) r (e). R e m a r k  3.1 
also includes an example,  this t ime with g = id ,  of  a weak  limit which is not  
an a lmos t  sure limit. 

Remark 1.3 R&sler [9];  Fr is tedt  and  Orey [2] showed tha t  if ~-  is the tail 
a-field of  X then J -  is non  trivial if and  only if l i m v a r ( H = ) < c o .  (See also 

x--*0 

Rogers  [7] for a survey of this area). In this case f(Xt)/g(t) has a non-degenera te  
a lmost  sure limit with g ( t ) =  e ~ and  f ( x ) =  e c(x). 
The  p roo f  of Propos i t ion  1.1 is based on the obse rva t ion  that  

VeE(O, 1), Vx~(O, 1), IP(H=~<o-~)=~ 
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and the simple implications H~> t ~ X t > x  ~ ax> t. The method is then to 
'sandwich'  the family of distributions of interest between two families with a 
common limit. 

The contents of the remainder of the paper are as follows. In Sect. 2 we 
deal with weak convergence results, and in Sect. 3 with almost-sure-convergence 
results. The final section, Sect. 4, contains a number of useful results on slow 
variation and a derivation of the expressions for c(x) and v(x) quoted above. 

2. Weak convergence 

In this section we detail our results concerning the convergence in distribution 
of f(Xt)/g(t ). Our approach is first to consider the laws of f(x)/g(Hx) and 
f(x)/g(a~); we deduce our general results by comparing their respective limits. 
It is natural to consider these families of distributions because, provided a suit- 
able transformation is applied to the function f, they are independent of the 
scale of the diffusion X. 

Recall that f :  (0, 1] ~ I R  + and g: IR + --+~+ are assumed to be unbounded 
continuous functions, respectively decreasing and increasing. A hypothesised 
limiting distribution F is to be assumed non-degenerate, by which we mean 
that F has no mass at infinity and F is not the unit mass at 0. 

We wish to find conditions on our functions f and g, which will be necessary 
and/or sufficient for convergence off(Xt)/g(t). 

Proposition 2.1 Suppose any two of the following conditions hold: 
i) f is slowly varying, 

ii) f (x)/g(H~) ~ , F, 

iii) f (x)/g(a~) ~ , F. 

Then so does the third, and f(X,)/g(t) ~ , F. 

Proof. Let d be a continuity point of F, and let t x = g-1 (f(x)/d). Then 

f (x) < IP [g~7)~) =d]= lP[Hx>= tx] <=lP[ax> t j  = lP [ f (x) Lg(~) <d]. 
For  any O < s < l  

]P[a~>:tx]<S+~'[a~>t~; a~<H~] 
, r e [ f  @x) < .  f@x) l  < s t  ~ _ a - -  �9 

whence if f is slowly varying then ii) and iii) are equivalent. Conversely, to 
prove that ii) & iii) implies i) note that 

]P[a~>=tx]:lP[a~>=t~; ax < H~j  +lP[a~_>_t~; a~> H~] 
> IP [H~>=t~; a~ < H~] + lP[H~x> tx; a~> H~] 
=(1 --s) l P [ U ~ t j  + eIP[H~>= t~] 

Lg(Hx)-- ] Lg(H~x)= f(x) J" 
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For the final part: 

(6) 

and 

(7) 

[f(X,~) 
~? [ f (x )  <dl=lP[H >t,j<lP[Xtx>x]=]p [ g(tx) _-<d] = j 

IP If(x) <dl= lPEcr,,~ tx] >=lP[Xt>x] =IP [f(Xt~) <d] 
Lg~(-~) = J k g(tx) = " 

[] 

We now specialize to the case g - i d .  In this case the natural choice for 
f is f(x)-c(x).  Indeed, up to asymptotic equivalence and a multiplication by 
a scalar, this is the only suitable choice. 

Lemma 2.1 Suppose H~/f (x) and ax/f (x) ~ , F. Then 

f (x) 
- - - ~  ~ ( 0 ,  ~). E(Hx) 

In particular IE(H~) is slowly varying. 

Proof Since v(x)< c(x) z the random variables {H~/c(x): 0 < x < 1} are bounded 
in L 2 and hence uniformly integrable. Iff(x,)/c(x,) ~ ee(0, oo), where x,+0, then 
{H~./f(x,): heN}  is again a uniformly integrable family, and 

c(x . )  -+ S x F ( d x ) .  IE(Hx"/f (x")) = f (x,) 

Thus ~ = (S x F(d x))-1 is the only possible limit value of f(x)/c(x). [] 

Lemma 2.2 If  IE(H~) is slowly varying then 

Proof 

Hx L2)1" 
E(Hx) 

(EHx)2-c(x)2=4i idydzm(y)m(z)=ai(fm(y)dy)m(z)dz, 
x x 2c 

sofrom(3), 

But 

by Lemma4.1. [] 

1 

S (z-x)re(z) 2 dz 
Var(H~) _ 

c(x) 2 

( z - -  x) rn (z) < 2 z m (z) ~ 0 
1 - c ( z )  

re(y) d y 



Limit theorems for transient diffusions on the line 67 

Theorem 2.1 Suppose 

then 

and F is a point mass. 

f ( x )  ~ , F 
H~ 

and f(x) ~,F, 
Gx 

f (X t )  ~ , F  

Proof Proposition 2.1 and Lemmas 2.1 and 2.2. [] 

Henceforth we may (and indeed we shall) assume that f(x)=-c(x). If c(x) 
is not slowly varying then Hffc(x) and affc(x) do not share a common non- 
degenerate limiting distribution. However, if c (x) is slowly varying, then Hx/c (x), 
afro(x) and c(XO/t all converge weakly to the unit mass at one. Our main 
Theorem of this section states that the reverse implications also hold. 

Theorem 2.2 The following are equivalent: 
i) c(x)=-]E(H~) is slowly varying, 

H x  F 
ii) E(H~) ,1,  

iii) c(X~) r 1, 
t 

ax r ,1.  
iv) IE(H:,) 

Proof 

i) ~ ii) 
Lemma 2.2. 

ii) ~ i) 
Fix 2 > 1, and let Xn -- XZ, = C- 1 (2n). Let H n = Hx . Then 

Xn - -  Xn + 1 

X n -  1 - - X n +  1 
= Px, (hit x,_ 1 before hitting x, + a). 

We prove that a , ~ 0 ;  then Lemma 4.1 implies that c(x) is slowly varying. Fix 
n, and take i.i.d, copies YI, Y2 . . . .  of H , - H . _  1. By considering only time spent 
on downcrossings from x,_ 1 to x, we see that 

N 

H, + 1 - H ,  is stochastically larger than ~ Yj 
j = l  

where N is independent of the Yj, and IP(N = k)= ak,(1- a,). 
Suppose that lim sup ~, = 2 ~ > 0. By hypothesis 

2 - " (H . +I - -H . )  ~ , ( 2 - - 1 )  and 2 - ~ ( H . - - H . _ O  r , (2 - -1 ) / ) . .  
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Choose m > 3 2, and no so large that, for n > no 

I p ( H " + ~ - H "  ( 2 - 1 ) > 2 - 1 ~ <  1 

Choose n > n  o such that e ,>5 .  Let e=am; then P ( N > m ) > e  and 

j 1 

( __>P N>m;Y~,. . . ,  Y,~> 2)~ ] 

> 
= 2 "  

But this contradicts the assumption that 2-"(H,  + i -  H,)  ~e , 2- -1 .  

i) and ii) ~ iii) and iv) 
Proposition 2.1. 

iii) ==> ii) 
By inequality (6), any limit distribution of Hx/c (x  ) is concentrated in [0, 1]. 

But {Hx/c(x): xE(O, 1]} is an L 2 bounded and therefore uniformly integrable 
family, each member of which has mean 1. 

iv) ~ ii) 
As above but combining inequality (7) with (6) for the first stage. [] 

3. Almost sure convergence 

Recall that f and g are assumed unbounded continuous functions, decreasing 
and increasing respectively. Recall also that f ( X t ) / g ( t  ) has a non-trivial almost 
sure limit only if l imv(x)<oo.  Throughout this section, the hypothesis that 

x+0  

a limiting random variable Z exists contains the implicit assumption that Z 
is non-degenerate, in particular P (Z  > 0) > 0. 

Suppose f (X~)/g(t)  .... , Z; clearly f ( x ) /g (Hx)  .... , Z and f (x ) /g (ax)  .... , Z.  

Conversely if f (x)/g(Hx) .... , Z and f (x)/g(ax) .... , Z, then 

f (Xt) > f (Xt) > f (Xt) 
g(Hx~)= g(t) =g(ox~) 

and f (X~)/g(t)  .... , Z. 

Consider first the case g--id where we have our most complete results. 
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Theorem 3.1 The following are equivalent: 

i) c(Xt) .... ,1, 
t 

Hx a , s ,  

ii) IE(HJ ,1, 

O'x a.s, ) ] .  
iii) I E ( H J  

A necessary condition for any (all) of the above is c ( x )  slowly varying; a sufficient 
condition is c ( x )  slowly varying and 

1 

re(y, 1) 2 dy  

I x c(x)  2 
O+ 

d x <  oo. 

Proof ii) ~ i) Fix p e(0, 1), and let y = y(x) - c- 1 (p c(x)) > x. Since c is necessarily 
slowly varying x /y (x )~O,  and, in particular, x<y(x) /2  eventually. Since 
Hx/c(x) ~ 1 a.s. we have both 

(8) c(x) 

and 

Hx-  - Hx a.s. 
> 0, 

Hx - -  Hy (~) 

c(x) 
P,  (1 -p). 

Then, given e>0 ,  pick Xo so small that, Vx=<x o, x<=y(x)/2 and 

~H~- Hy(~) } 
( c(x) >=(1--e)(1-p) __>l--e. 

Let Ut=inf{Xs: s<=t}, Z t = X t - - g  P Consider the sequence of excusions of Zt 
from 0, starting when X t first reaches xo. If there were infinitely many excursions 
during which X rose to y(U) then on infinitely many excursions H x_ --Hx >(1 
- e ) ( 1 - - p )  c(x), contradicting (8). Thus ultimately Xt<y(G) ,  and 

c(Ut) <= c(y(G)) < c(Xe) < c(G) < c(UO . . . .  ) 1 .  

p a.s. PHv,_ t = t = t = Hut 

Since p is arbitrary the result follows. 

iii) ~ i) This case is similar. In reversed time X is a time change of a BES(3) 
process. Defining, for 2 > 1 ,  y = y ( x ) = c - l ( 2 c ( x ) ) < x  and Vt=sup{Xs: s>=t} it 
is possible to obtain a contradiction similar to that above and to deduce X t 
=>y(Vt) eventually, and the result follows. 

The necessity of c(x) slowly varying is a corollary of 1.1; to prove that 

the stated conditions are sufficient we show that Hx/c(x ) . . . .  ) 1. Since c(.) is 
slowly varying this will follow if there is almost sure convergence down the 
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sequence x , = 2 - " .  Let c , - -c(2-")  and H , = H ~ .  Kronecker's Lemma implies 
that it is sufficient to show that ~ Yk converges almost surely where 

k ~ l  

Y~= Hk-- Hk-  1 (Ck--Ck- a) 
C k C k 

n 

Then M, =~ ,  Yk is a martingale, and, to show that M converges it is sufficient 
1 

to show that M is L 2 bounded; in particular that 

But 

where 

thus 

var (Hk--Hk- 1) 
Z var(Yk)= Z 2 

k > l  k > l  Ck 

~ 0 0 .  

1 

var(H~) = ~ V(u) du 
x 

1 

V(u)=8 5 m(y) 2du;  
tt 

X k -  1 

V(u) du i V(u) var(Hk-- Hk-  O _  ~ xk < du. 
4 k _l ck k>_t _ 0 

Since Ck/Ck_ 1 ~ 1, the sum and integral in the above equation converge (and 
diverge) together. []  

We now return to the general case. Define 

Let 
45 = {~b" (0, 1] ~ IR, increasing, continuous ~b(x) > x}. 

45 = 45c u 45D 

where 45c and 450 are disjoint, and 

{ dx } 
45c= r ~ r  <~176 . 

O+ 

Lemma 3.1 Suppose cb ~ 45. Then 

Hx > ar eventually oz, 4) ~ 45c. 

Proof Since X is a time-change of a Brownian motion B started at 1 and 
stopped at 0, it suffices to prove the result for that process. 
For  each 0 < x < 1 define 

p x = s u p { B u -  x; H x < u <  Hx_}.  
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Then {(x, p~): x~(0, 1), p~ > 0} is a Poisson point process with characteristic mea- 
sure d x x p - Z d p .  Now 'H~>a4(~) eventually' is equivalent to the statement 
that, for all sufficiently small x, p~ < ~b ( x ) -  x. The number of points of the Poisson 
point process for which p~ > c~(x)--x is a Poisson variable with mean 

1 ~ i d x  
Sdx  ~ p-2dpI{p>4~(~)-x}= cfl(x)--x" 
0 0 0 

The result now follows. []  

Theorem 3.2 i) Suppose f(X~)/g(t) .... , Z. Then, 
~ 1 .  

V r e OD, lim sup f ('b (x))/f (X) 

ii) Suppose f(x)/g(Hx) . . . .  ~, Z and ~ ~ q ~ c  such that f(O(x))/f(x)--+ 1. Then 

f(X,)/g(t) . . . .  ) Z .  

Proof i ) W e  have both f(x)/g(Hx) a'S')z and f(x)/g(a~) .... , Z. Let ~ b ~  o. 

H~ < %(~) infinitely often, and for such an x, 

f ( x )  > f (x )  _ f(cb(x)) f ( x )  > f((a(x)) 
g(H~) g(ao(~)) g(a~(~)) f (O(x))  g(a~(~))" 

The limits of  the two outside terms are (a.s.) identical so f ( ( ~ ( x ) ) / f ( x ) ~  1. 

ii) For  the ~b in the hypothesis Hx > o-r eventually, and then 

f ( x )  < f (x )  _f((~(x))  f ( x )  
g(H~) g(%(~)) g(ar f(gp(x))" 

But H~(x)< a4(x) so 

f(qa(x)) f ( x )  < f((a(x)) _ f(c~(x)) 
f (x )  g(Hx) g(ar g(Ho(,o ) 

and the outer two terms both have limit Z. Then f(x)/g(a~) .... > Z. [] 

Remark 3.1 As promised in Remark 1.2 we provide examples to show that: 

i) almost sure convergence does not follow from convergence in distribution, 
and 

ii) f (x)/g(Hx) .... > Z does not imply that f (Xt)/g(t ) a.s > Z. 

i) Take c(x )=exp{( log l /x ) ( log log l /x ) - ' } .  Then c(x) is slowly varying and 

c(XO/t D, > 1 by Theorem 2.2. However if c~(x)=x+x( logl /x)  then q~q~D and 
c(~ (x))/c(x)~ e-X; almost sure convergence of c(Xt)/t is then ruled out by Theo- 
rem 3.2. 

ii) Motivated by the above example set f ( x ) =  exp {(log 1/x)(log log 1/x)- 1}. It 

is then sufficient to find a pair (X~, g) such that f(x)/g(Hx) .... ~ Z. 
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Suppose 

/exp ,J- log(i/x) _'~]. c(x)=exp 
\ [ log  log(1/x)J] '  

set g(t)=log(t) and f ( x ) = l o g c ( x ) .  Define Yx= HJc (x ) .  The construction of the 
Laplace transform of Y~ (see Mandl [-6]) yields the inequalities 

Then for ~ > 1 

and trivially 

s o f o r 6 > 0  

e-~<__lE(e-;.r~)<__(l + 2) -1. 

IP(Y~__<7-1)=<e7 -1 , 

~'(Yx__>7)__<7-~; 

lP([log Yx[ >6) N(e+ 1)e -~ 

Let H k = H  2 ~ and Ck=C(2 k), then 

Now (Ck) -e < k-  2 eventually so 

IP(f(2g(Hk)-k) 1 _>6, infinitely often)=0.  

Since f ( . )  is slowly varying the limit exists as required. 

4. Slow variation 

This section contains derivations of results quoted in preceeding sections, First 
we define and derive properties of slowly varying functions; then we provide 
a proof of the relations for 1E(Hx) and var(Hx) cited in w 1 and used throughout. 

Our slow variation results are largely abstracted from Bingham, Goldie and 
Teugels [-1]. However parts iv) and v) of Lemma 4.1 are not contained therein. 

Recall that a slowly varying function is defined as follows: 

Definition 1. Let l be a positive measurable function. Then l is slowly varying 
if for all 2 > 0  

l(2x) 
(9) x-~olim ~ = 1. 

Lemma 4.1 For 2 > 1 define x ,  = x~ ~ = c -  1 (2n). The following are then equivalent: 

i) e(x)=-]E(Hx) is slowly varying, 

ii) For some 2 > O, 
c (2, x) 

lim ~ = 1, 
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iii) lira x m (x, 1) = 0, 
x~o c(x) 

2 
X n + l  ---+ 0 ,  iv) V 4 > l ,  

X n  

X n -  l - -  X n  - ) 0 .  v) V 4 > l ,  ~ 
X n  - 2 - -  X n  - 1 

Proof. i) r ii) 
Since c(.) is monotonic  it is sufficient to check the slow variation condition 

(9) for a single )~ > 0. 

i) <=> iii) 
The Representation Theorem for slowly varying functions: c(x) is slowly 

varying if and only if it can be represented in the form 

1 dy 
c (x )=a(x )exp ( !  ~l(y) y-) 

where a(x)--, a and q(y)--, 0. 

i) =~ iv)  
Fix 0 < 6 <  1, take 2 >  1. Choose x' such that Vx<x ' ,  c(6x)/c(x)<4. 
Then g n such that x, < x', 6 xn > x, + 1. 

iv) ~ ii) 
Fix 0 < 6 < 1 ,  take 4>1 .  Choose n o such that Vn>n0,  x , ,+l<6x, .  Then for 

any x < X,o, S k such that Xk > X >= 6 X > Xk + 2. Then 

1 _< c(6x) < c(xk+2)_22.  
- c ( x )  : c ( x O  

ii) follows since 2 is arbitrary. 

iv)  ~ v) 
Immediate. 

v) ~ iv) 
Set z, = x , - x , +  1. Then for each 6 >0,  for sufficiently large n, z,+ 1_-< 6 z~. 

Thus z, + k ----< 6k z, and 

x , :  ~ Z~+k<(1--6) -1 z ,=(1 - -6 ) - l ( x , - - x~+j .  [] 
k > 0  

As promised in Sect. 1 we now derive the expressions for c(x) and v(x) quoted 
therein. By considering X as a time change of Brownian motion and using 
the Ray-Knight  characterisation of Brownian local time one obtains an explicit 
expression for the distribution of the first hitting time H~; namely 

x 
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where Z is the solution of the SDE 

u 

Z . = 2  ~ (Z~+) 1/2 d W~+2u 
0 

and = signifies identity in law. 

(For explanation of the time substitution techniques see It6 and McKean 
[-4] Sect. V; Rogers and Williams [8] has details of the representation of the 
local time as an occupation density (IV.45) and of the Ray-Knight Theorem 
(VI.52).) 
Since E ( Z . ) =  2 u we have immediately 

1 

N(Hx) = c(x) = 2 ~ ( y -  x) m(dy). 
x 

Similarly 

and then 

1 ( , x  ) 
Hx-IE(Hx)=Sm(dy) 2 ~ ( Z + ) l / 2 d W v  

x 0 

(i ,) =2  I (Z+) 1/2dW~ m(dy 
0 x v 

1 

Var (Hx) = v (x) = ~ ( y -  x) m (y)2 d y. 
x 
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