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Summary. The main objective of this paper  is a study of random decomposit ions 
of random point configurations on R d into finite clusters. This is achieved by 
constructing for each configuration Z a random permutat ion of Z with finite 
cycles; these cycles then form the cluster decomposit ion of Z. It  is argued that 
a good candidate for a random permutat ion of Z is a Gibbs measure for a 
certain specification, and conditions are given for the existence and uniqueness 
of such a Gibbs measure. These conditions are then verified for certain random 
configurations Z. 

O. Introduction 

Let Z be a countable set and ~ = ( ~ ) ~ z  be a system of independent random 
variables taking on values in Z with N ( ~ = x ) > 0  for all x a Z .  The law of 

is then determined by the matrix ~ =(%,y)~,y~z, where 

~(r 
c~x,,- ~(~ =x). 

One of the main problems considered in this paper  is to give a meaning to 
the conditional distribution ~ ( ' l E z )  of ~, where Ez is the set of bijective map-  
pings of Z onto Z. If  Z is finite then there is a simple explicit formula (involving 
the matrix c~) for this conditional distribution. Moreover,  it can also be described 
in terms of certain " local"  conditional probabilities of a type similar to those 
used in the definition of Gibbs states. If Z is infinite then, in general, there 
is no obvious way to define ~ ( - I E z )  directly. However, the " local"  conditional 
probabilities still make  sense, and so the corresponding Gibbs states can be 
considered as candidates for ~ ( - IEz) .  We give a sufficient condition (V3) for 
the existence of at least one Gibbs state (cf. Theorems 2.2 and 3.3), and a stronger 
condition (V4) which ensures that there is exactly one such state (cf. Theo- 
rems 4.1 and 4.2). 

This Gibbs measure P is concentrated on E z (cf. Theorem 3.1), i.e. P can 
be interpreted as probabil i ty distribution of a random permutat ion of the count- 
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able set Z. Theorem 3.4 states that this random permutation gives a random 
partition of Z into finite subsets corresponding to the decomposition of the 
random permutation into cycles (cf. Theorem 3.2). Moreover the elements of 
this random partition are independent in a certain sense (cf. Theorem 3.4). In 
fact, it are these random partitions which are our main object of interest. In 
particular, we are interested in random partitions of random point configurations 
on R e. Hence in Sect. 5 we replace Z by a locally finite random subset of the 
d-dimensional space R a with probability distribution Q. We obtain sufficient 
conditions such that Q-almost surely the conditions (V 3) and (V4) are fulfilled. 
This implies existence and uniqueness of a certain random permutation and 
consequently the existence of the corresponding random partition of the given 
random set. 

This work was motivated by certain mathematical problems connected with 
equilibrium states in quantum statistical mechanics. For  instance, let us consider 
the (infinite-volume) one-dimensional ideal Bose gas with inverse temperature 
_b and activity _a. The position distribution of this quantum particle system was 
considered in [5]. According to Theorem 3.4 in [-5] this position distribution 
is the probability law of a random point system ZcR which can be constructed 
as follows: 

Let X = {x~: - oo < r < + oo} be a stationary Poisson system in R with intensi- 
ty 

2 =  ~ a~(2n)-l(~bn) -~. 
n = l  

Furthermore, let W= ((w~(t))t>= o)~= -co be a sequence of independent Wiener pro- 
cesses with parameter 2_b. For  all n=  1, 2, ... and - co < r <  + oo we consider 
the Brownian bridge given by 

t 
B~)(t)=wr(t)--w~(2bn)~ffn; O<_t<2bn. 

Finally, let q = (G)Y=-~ be a sequence of independent random numbers such 
that 

~(G=n)=2-1an(2n)-l(rcbn)-~; n=  1,2, . . . - o o  < r <  +oo 

We assume that X, W, q are independent. Putting 

Zr:={xr+B~n,)(2bk)'k=l, ..., t/~}; - ~ < r <  +oo 

we get a partition of Z = U z r  into independent subsets. This partition (Z~)2~ _ 
r 

corresponds to the cycles of the random permutation G of Z given by 

fx~ + B~ "~) (2 b (k + 1)); 
G (x, + B~ "~) (2 b k)) = }x, + B~ "~) (2 b); 

;-- ~ < r <  -4- oo 

1 N k N ~ - - I  

k = ~  
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In the sense of Theorem 3.4 the probability distribution of G (Z fixed) is related 

to the matrix e =  exp ~ -]}~,y~z" In a forthcoming paper we will prove 

that the conditional intensity and, consequently, the local conditional probabili- 
ties of the random point system Z in the sense of a Gibbs distribution can 
be given in terms of this random permutation G. In case of quantum equilibrium 
states corresponding to an external field we have to consider a more general 
matrix cc 

1. Notations 

Let Q be a probability measure on the measurable space [W w, ~Xw] of mappings 
from the countable set W into W. For  each finite A N W we let Qa denote the 
marginal distribution of Q on W ~. 

In the following let Z be a countable infinite set. For  each pair Z1, Zz~=Z 
we denote by Ez~,z ~ the set of mappings from Z1 onto Z 2 which are one to 
one. 

I f Z 2 ~ Z  1 we put 

Dz, (Z2):= {g E Ezl" z l :I(x, g)= Z 2 for all x E Z2} 

where I(x, g) denotes the smallest g-invariant set containing x. 
Now let (c~x,y)~,y~Z be a matrix Satisfying the conditions 

(V1) ~x,y>0; x ,y~Z  
(V2) c~,~= 1; x~Z 

For  each finite subset Z ' ~  Z we define a probability measure Pz, on (Z') z' by 

(1.1) 
I 2 ~O~x,h(x)'  

. . . . . .  

[0 ;  

g~Ez, z, 

otherwise 

2. A compactness condition 

We assume that the matrix (c~x,y)x,y~z fulfills (V 1), (V2) and the following condi- 
tion 

(V31 (2.1) Z ~ 1~ ~x,g(x) < oo ; y e Z  
AcZ geDA(A) x~A 

A f i n i t e  
yea 

The following theorem illustrates the meaning of (V3). 
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2.1. Theorem. Let (Z~)3= 1 be a sequence of finite subsets of Z with the following 
properties 

(El)  Z,~Zs+ 1" s = l , 2  . . . .  

(E2) Uz,=z. 
s 

Then for each e > O, y ~ Z  there exists s(e, y) such that for all s> s(e, y) 

(2.2) Pz, (I (y,') ~ Z~(~,,)) > 1 - e. 

The proof can be found in w 6. Using Theorem 2.1 we prove in Sect. 7 the 
following theorem. 

2.2. Theorem. Let (Z,)2= 1 be a sequence of finite subsets of Z with properties 
ZO~ (El) and (E2). There exists a subsequence ( ~k)k=l and a probability measure 

P on [Z z, 93lz) such that 

(2.3) P = lim Pz~ k 
k--* cc 

in the sense of convergence of all marginal distributions. 

3. Random permutations 

Let (~x, y)x, y~z be any matrix fulfilling the conditions (V 1), (v 2) and (V 3). Further- 
more, assume that P is a probability measure on [Z z, 9Xz] obtained as the 
limit in the sense of Theorem 2.2 i.e. there exists a sequence (Zk)~= 1 of finite 
subsets of Z having the properties (E 1) and (E2) such that 

(3.1) P =  lira Pzk 
k ~ o o  

in the sense of convergence of all marginal distributions. 
In Sect. 8 we prove the following theorem. 

3.1. Theorem. P is the probability law of a random permutation on Z, i.e. 

(3.2) P(Ez. z) = 1. 

In Sect. 9 we prove: 

3.2. Theorem. P-almost surely I (x,') is finite for all x~Z.  
From Theorems 3.1 and 3.2 we can immediately conclude that a random 

permutation of the countable set Z with probability distribution P can be decom- 
posed into finite cycles, i.e. we have 

(3.3) P(U Dz(A3)= 1 
(AA s 
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where (As) denotes partitions of Z into finite subsets. Finally, we consider the 
conditional behaviour of the random permutation on a finite subset A of Z 
under condition that the behaviour outside of A is given. In Sect. 10 we prove 
the following theorem. 

3.3. Theorem. Let A ~ Z ,  A finite and let gl be a mapping from A into Z. Then 
the following equality holds for P-a.a. g2 

(3.4) P({g: g(x)=gl  (x), xEA/{g" g(x)= g2 (x), x e Z \ A } )  

]~I  ~x ,  ga(x) 
x ~ A  ; g l tEA,  Z \ g 2 ( Z \ A )  

h E E A , Z \ g z ( Z \ A )  x ~ A  

0 otherwise 

From Theorem 3.3 we can immediately conclude that the behaviour of the ran- 
dom permutation under condition 0 Dz(A~) (cf. (3.3)) is independent on different 

s 

sets A s. More precisely, we have for all partitions (As)9= j of Z, n = 1, 2 . . . .  and 
A ~ A ~ ( s =  1 . . . . .  n) 

(3.5) [P ( / ~  Dz (A~))] ~ As 
s 

= X P ( / ( ~  Dz(A~)) ~ 
s s 

Furthermore, from Theorem 3.3 we can conclude 

(3.6) [P(/(~ Dz(As))] ~ = [P Ak (/D Ak (Ak))] A ; 
s 

for all k = l ,  2, . . .  and A ~ A  k 

(cf. (1.1)). From (3.3), (3.5) and (3.6) we obtain the following theorem. 

3.4. Theorem. There exists a random partition of Z into finite subsets with proba- 
bility distribution Q characterized by 

(3.7) n = S Q (d (As)~o) X PAs (/Da~ (As)) 
s 

Remark. Random partitions of Z into finite subsets may be considered as special 
random point fields in the space of all finite subsets of Z. 

3.5. Example 

We consider the d-dimensional lattice 

z = { 0 , _ + 1 , + 2  . . . .  }d (d>=l) 
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and we use the notation 

ei= [-0 . . . . .  0, 1,0, ..., 0]; i=1,  . . . ,d  
I 
i-th comp. 

Now let 0 < p < 1. We consider the following stochastic matrix (ax,y)x, y~z 

p ~  y = x  

ax, y= (l--p); y=x-l-ei ,  i=1,  . . . ,d  

( 0; otherwise 
If we put 

ax, y. x, y e Z  
ex, y := ax, x ' 

then the matrix (ax, y)x,y~z fulfills the conditions (V1) and (V2). In order to 
characterize the condition (V3) we denote by 7, the number of lattice walks 
from 0 to 0 of length n. 

Then some elementary calculations show: 

The matrix (~x, y)x, y~z fulfills condition (V 3)/ff 

1 1 
(3.8) ~ ~ , [ ~ ( p - -  1)]"< + ~ .  

n = l  

If d = l ,  then 7 ,=0  for all n>4.  Therefore (3.8) holds. Now let d>2 .  Since 
y2,> 1 for all n =  1, 2 . . . .  (3.8) implies 

On the other hand, since 

7 2 n + 1  = 0  

(3.8) follows from 

1 
P > 2 d + l  

yz,=<(2d- 1)"; n = l ,  2 . . . .  

p > (2d-- 1)~(2d + (2 d -  1)~) - *. 

4. Uniqueness 

In order to prove uniqueness of random permutations considered as Gibbs 
distributions in the sense of Theorem 3.3 we have to sharpen condition (V 3). 

(V4) There exists a sequence (Zn)2= 1 of finite subsets of Z having the properties 
(E 1) and (E2) such that the following equation holds 

n ~ oo y ~ Z n  z ~ Z \ Z n  A ~ Z gEDA(A) x ~ A  
A finite 
y, z e A  
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Remark. It is easy to check that condition (V3) follows from (V4). On the other 
hand considering the example from the previous section one shows that (V3) 
does not imply (V4) and furthermore, uniqueness fails. For  instance, in the 
case d = 1 put 

f l ( x ) = x + l ;  x ~ Z  

f 2 ( x ) = x - 1 ;  xEZ  

Then the Dirac measures as, and c5y2 are Gibbs distributions in the sense of 
Theorem 3.3. In Sect. 11 we will prove the following theorem. 

4.1. Theorem. I f  the conditions (V 1), (V2) and (V4) are fulfilled then there exists 
exactly one probability measure P on [Z z, fOlz] having the following properties: 

a) P(Ez, z) = 1 
b) P-almost surely l(x,.) is finite for all xeZ .  
c) For all finite subsets A of Z and P-a.a. g2 (3.4) holds. 
Immediately from the Theorems 2.2, 3.1, 3.2, 3.3 we get 

4.2. Theorem. I f  the conditions (V 1), (V2) and (V4) are fulfilled then there exists 
exactly one probability measure P on [Z z, fOlz] such that P is the limit of Pz, 
as Z' runs through the net of all finite subsets of Z. 

5. L o c a l l y  f in i te  r a n d o m  se t s  

Let S be a complete separable metric space. ~ denotes the 7-algebra of Borel 
sets in S, B(S) denotes the ring of bounded Borel sets and c~ the Dirac measure 
corresponding to x~S. Let N(S) be the set of locally finite simple counting 
measures on the measurable space [S, S~], i.e. N(S) is the set of all measures 
cp with properties 
- ~o(B)e{O, 1,2, ...}; BEB(S) 
- p({x})_-<l; xeS. 
Further, let 9I(S) be the smallest y-algebra on N(S) which makes the mapping 
~o ~ ~o(B) measurable for each BEB(S). A probability measure Q on IN(S), 9I(S)] 
is said to be a (simple) point process (cf. [3]) on S. 
The mapping 

(5.1) z - - ,  q,z= F a. 
z ~ Z  

provides a one-to-one correspondence between N(S) and the set 

,3 = {Z ~ S; Z n B is finite for all B e B (S)}. 

For  this reason cpsN(S) may be interpreted as a locally finite point system 
in S. According to this interpretation of the elements from N(S) a point process 
may be understood as the distribution law of a locally finite random subset 
of S. In the following let _a be a measurable mapping from S x S into R with 
property 

(5.2) a(x,x)=O; x~S 
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5.1. I f  Z ~ 3  and 

(5.3) ~ , , y = e x p [ - a ( x ,  y)]; x, y ~ Z  

then the matrix (ex, y)x,y~Z fulfills (V1) and (V2). Furthermore, condition (V3) 
holds iff the counting measure (p = (Pz given by (5.1) fulfills the following condition 

(Ve3) ~ (p(dXl)~(q~-6xl ) (dx2)- - -6  ( P -  2 5xi (dx,)  
n = 2 B  i = 1  

�9 exp - i  a ( x i ' x i+ l ) -a (x" ' x l  < + ~ 1 7 6  BeB(S). 

For  this reason  we have to look  for condi t ions ensuring that  (V~, 3) holds for 
Q-a.a. ~0. Obvious ly  (Vo 3) is trivial if (p is finite. Hence  we will consider  infinite 
point  processes Q, i.e. 

(5.4) Q({cpeN; (p(S) = + oo})= 1. 

Let  m~ ) denote  the m o m e n t  measure  of  n-th order  (n= 1, 2 . . . .  ) character ized 
by 

m(~)(Bi x ... x B,,) 

S  0(dxl) y (dx.); 
B1 B2 Bn i = 1 

B1, ..., B, eB(S). 

A point  process Q on S is said to be of finite intensity if for all BeB(S) the 
value m~)(B) is finite. Then  we get immedia te ly  

5.2. Let Q be an infinite point process such that 

~ m~+l)(d[xi,...,x,+l])exp 
n = l  B x S  n 

[ �9 a(xi, x i + i ) - a ( x , + l , x l  < o o ;  BeB(S) 

Then (V~o 3) is fulfilled for Q-a.a. cp. 

In the following, we consider  the special case 

(5.5) S = R e (d = 1, 2 . . . .  ) 

a (x, y) = U (x - y). 

We  have to assume tha t  U is a measurab le  m a p p i n g  f rom R d into R with 
p rope r ty  

U (0) = O. 
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A point  process Q on R e is said to be a poisson process if for all pairwise 
disjoint bounded  Borel  sets B1 . . . .  , B,(n  = 1, 2 . . . .  ) (cf. [3]) 

(=(~1 {~o; n/:"~(l)gB"~k~ ) 
Q 17 |v'~Q ~ i,: exp(_m(~)(Bi)) ; cp(B~) = k~}) = ?:~ \ ki! 

i 

kl . . . . .  k,~{0, 1, . . .} 

A poisson process is stationary (cf. [3]) if 

(5.6) m~ ) = 2Q-I d 

Hereby  Y denotes  Lebesgues measure on R a and 2Q>0  is called the intensity 
of Q. In tha t  case the momen t  measures m~ ) are given by (cf. [3]) 

"x 

=2~(le)"x; n =  1, 2, ... 

Hence  we get the following theorem 

5.3. Theorem. Let  Q be a stationary poisson process on R e with intensity 2. Assume 

(5.7) infU(x)  > - oo 
x 

(5.8) 2 S e x p ( -  U(x)) Y(dx) < 1 

Then (V~, 3) holds for Q-a.a. (#. 

5.4. Example. We put  

U([x l ,  . . . ,  xa])= ~7 ; Xl ,  . . . ,  x a s e ,  
i = 1  

tl . . . .  , td>O. 

Further ,  let Q be a s ta t ionary poisson process with intensity 2 > 0. If 

d 

(5.9) (2=) a 22 I~ tl < 1 
i = 1  

then (V~, 3) holds for Q-a.a. ~o. 

Proof. We get 

S exp (-- U (x)) I a (d x) = 2 n) tl �9 

Hence (5.9) implies (5.8). On the other  hand  (5.7) holds because U(x) is nonnega-  
tive. Fo r  this reason we can apply Theo rem 5.3. [ ]  
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Now we are going to verify (V4) for random point fields. We will consider 
the onedimensional case d = 1. W e  put 

N,={qo~N(R); q)((- co, 0))= qo((0, + co))= + oo} 

F . - = { . . . , - 1 , 0 ,  1 . . . .  }. 

We define a sequence (X3~r of measurable mappings on b7 by the requirements 

ieF 

xA~o)< x~+ ~(~o); icY, q, e S  

Xo(~O)_< 0 <Xl(~O); ,peN. 

That means the points of ~o are numbered in their natural order and the first 
point in (0, + co) gets the number 1. For each qoeN and n =  1, 2, ... we define 
a measure ~o m} on R ~ by setting 

n--1 ) 

(~o-~,,)(d~)... S ~o- 2 ~,, (d~); 
B 2  B n  i = 1 

@")(B1 x ... x Bn),= ~ qo(dXl) 
B1 

BI . . . .  , BneB(R). 

Furthermore, we put 

. . . . . .  ' 

n = l  m=O 

�9 ~ {[Zo, ...,zn]~R~+t;Zo<Z, Zi>Z}; zeR, q~eS 
i=1 

H+(z, cp).'= ~(p(n+l)(d[xo, . . . ,x~])exp - U ( x , - x o ) -  ~ g(xm--Xm+l 
/1=1 m=0 

- U {[Zo, ...,Zn]ERn+t;Zo~Z, Zi<Z}; zeR, (p~_N 
i=1 

Nv ..= {~o ~PT; l imH + (X, (~o), ~o) = 0 = l imH-  (X_,(q)), q))}. 

The following lemma one can easily check. 

5.5. Let Z e 3 and 
~x,y = e x p ( -  U(x-y));  x, y e Z  

Furthermore, let the counting measure qo z be given by (5.1). Then the matrix 
(~x,y)x, ycz fulfills condition (V4)/f  (pzeNv. 

Now let 2~ denote the set of all q~eN(R x R) with property 

qO({y} x R ) = r 2 1 5  {y})<=l; yeR. 
The relation 

(5.10) Q=~Q(d9)  ~P(e'(dg) 6So(d~)~,,,~,~ 
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gives a one-to-one correspondence between point processe (~ on R x R with 
(~(bT) = 1 and certain pairs (Q,(P(~))e~N(R)) where Q is a point process on R and 
P(~) denotes the probability distribution of a random permutation of the support 
of q). We put 

-c(~):=jcI)(d[xl,x2])3,:~; cI)e_~ 

is a measurable mapping from N into N(R) and Q is given by Q=O.o~ -1. 
Now for each (peN(R) let T~o denote the support of ~0, i.e. 

q)= ~ qg(dx)3~, 
T• 

~o({y})>0; yeT , .  

For each peN(R) there is a one-to-one correspondence between ~eN with 
z (~)=  p and mappings G~sEr~" r~ given by 

e({[x, G (x)3 })= l ; xeT . 
We put 

Lo(q~):= Go; ~ e N ,  z (~)=  (p, opeN(R). 

If {~0 denotes the conditional distribution of O. under condition "z(O)=cp", 
then PQ, ~,, defined by 

Pa, ~o.'=(~o o G 1 

is a probability measure on Tf~ with 

PO, e(ET~,T~) =1. 

Furthermore, relation (5.10) holds with P(~}=Po.r Now we are going to con- 
struct a point process (~ on R x R corresponding to a pair (Q,(PO)o~N(R)) in 
the sense of (5.10) where Q is a given point process on R and P(r corresponds 
to the matrix (e~,x)~,y~To (cf. 5.5) in the sense of Theorem 4.1. We will use the 
following notations. For BeB(R), ~oeN(R) we put 

~oB := q~ (c~B).  

Then T~ is always finite. Pre~ denotes the corresponding probability measure 
o n  

TT:~ 

(cf. (1.1)) with property 

PTo~(ET,~, TO ) = 1. 

We define a mapping LB,~o from Er~o~ ' Tr into N by setting 

(5.11) Le,,(g):= ~ q)(dx) 3t~,g(~)~; geEre~,r,. 
B 
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If Q is a point process on R then we put 

(5.12) Q(m '=S Q (d q)) (P%Bo L-B,~). 

Using 5.5 we get from 4.1 and 4.2 the following theorem. 

5.6. Theorem. Let Q be a point process on R with 

Q (Nv) = 1. 

Then there exists exactly one point process Q on R x R having the following 
properties: 

a) (~(~)= 1 
b) 0 o r  
c) For Q-a.a. q)~N(R) 

PO,~({gEET~,T " ~A ~=Te, A finite, x ~ A , g ( A ) = A } ) = I ;  x~Tq,. 

d) For Q-a.a. ~o~N (R), A ~ T, A finite and Po,~o -a.a. g2 the conditional distribution 

P0,o({g: g(x)=g~ (x), x~A/{g:  g(x)= g2 (x); x~ To\A}) 

is given by (3.5) where 
ex, y = e x p ( -  U ( x - y ) ) ;  x, y~R. 

Furthermore, for all sequences (B~)~= 1 of bounded Borel sets with properties 

B~=B~+I; n=l ,  2, 
U B , = R  

n 

the sequence of point processes (Qn,),~_ l on R x R converges weakly to Q and 
O. is given by (5.10) with P(o)= Po_,~o. 

Because of 5.5 and 5.6 we have to look for conditions ensuring that 

0 (Nv) = 1. 

5.7. Definition. Let ~l denote the smallest y-algebra on N which makes the 
mapping ~0-* Xk(~0)--Xk-~ (q)) measurable for each k4: 1. A point process Q 
with Q(N)= 1 is said to be a (G)-process if Q-a.s. 

Q({rpeR;X~(q~)-Xo(~O)>n/N)>O; n = l ,  2, ... 

5.8. Remark. If (2 is a (2')-process (cf. [2]) with Q(N)= 1 then Q is a (6)-process. 
In w 12 we will prove the following theorem. 

5.9. Theorem. Let (2 be a stationary (G)-process of finite intensity such that 

(5.13) Q({rpEN; H -  (0, q)) < oo, H + (0, ~0) < oo}) = 1. 
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Assume that U fulfills the following conditions 

(5.14) U(x)=  U(--x) ;  x ~ R  

(5.15) U(x) < U(y); 0_< x < v 

(5.16) A (x),= inf U(Y+z)- -U(Y)>o;  x > 0 .  
y > x  Z 
z > O  

T h e n  

Q (Nv) = 1 

5.10. Remark. Immediately from the definitions of H - ,  H +, m~ ) we can conclude 
that (5.13) follows from Q(N)= 1 and 

n - - I  

(5.17) ~ J'm~ + 1)(dExo . . . .  , x,]) e x p [ -  U ( x , - x o ) -  Z U(x , -x ,+l ) ]  < oo 
n = l  i = 0  

n 

U ({ [ :o  . . . . .  z , ] ; Z o = < O , z , > O }  
i=1 

�9 v {[Zo, . . . ,  z ,;  Zo>__o, z, < o})  

5.11. Corollary. Let Q be a stationary poisson process on R with intensity 2 > 0  
such that the following conditions hold 

(5.18) 2 S e x p ( -  U(x)) l (dx)< 1 

(5.19) Sl(dx) Ixl e x p ( -  U(x)) < oo 

Assume that (5.14), (5.15), and (5.16) are fulfilled. Then it holds 

Q (Nv) = 1 
The proof can be found in Sect. 13. 

5.12. Example. We put 

X 2 
(5.20) U(x) = ~ - ;  x e R  

t < 0  

Then (5.14), (5.15), (5.16), and (5.19) are fulfilled. (5.18) holds iff 

2rot2 2 < 1 

5.13. Remark. Let [7 be a measurable mapping from R into R with property 
G (0) = 0. If [7 > U then 

(2 (Nv) = 1 
implies 

Q (No) = 1. 

This gives some generalizations of 5.9 and 5.11. 
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~o 
5.14. Remark. Let ~ o =  ~ 6r be a random point system in R with probability 

i = - - o O  

distribution Q being a stationary poisson process with intensity 2 >  0. Further- 
W more, let =(W~)i=_~ be a sequence of independent Wiener processes such 

that W and ~ = (~i)F= - ~  are independent. We put 

~t = ~ 5r t>0. 
i = oo 

Then ~=(q~t)o_<_t_<_r is a measure valued stationary Markov process describing 
the independent motion of points of the system ~o. Now let 2roT22< 1. Then 
5.6, 5.9 and 5.12 imply that in case of (5.20) the measure Po.,~o is uniquely defined 
for Q-a.a. 9 e N .  Now denote r (#x,y)x,y~R the normalized conditional Wiener mea- 
sures then we put 

X~rp 

H - 

where the mapping H is characterized by 

H((ooi)~~ = ~ b.,(t); 0 < t < T .  

Then Se may be interpreted as the conditional distribution of �9 under condition 
"~o = ~0 = ~T". In a forthcoming paper we will use this construction of condition- 
al distributions S~ of certain measure valued processes in order to describe 
infinite boson systems by generalizing some ideas of the Feynman-Kac formula. 

6. Proof  of Theorem 2.1 

We put 

(6.1) 

(6.2) 

gEDA(A) x a A  

W(A):= Y, I-[ 
g ~ E A ,  A .,'c~A 

for all A~=Z, A finite. Because of (V2) we get 

W(AO < W(A2); A1 ~=A2. (6.3) 

Using (6.3) we obtain 

W(Z,\A) 
Pz,(Dz~(A)) W(Z~) E(A)<E(A); A~=Z~. 
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Therefore we can conclude 

(6.4) Pzs( U Dzs(A))< ~ E(A); s'<s, yeZ~. 
A ~ Z s  A ~ Z s  
y e A  yeA 

A\Zs, �9 0 A\Z~, �9 0 

On the other hand it follows from (V3) that for each y E Z  and e > 0  there 
exists s(e, y) such that for all s > s(e, y) 

(6.5) • E(A)- ~, E(A)<e 
A ~ Z s  A~Zs(~,y)  

y e a  yeA 

Putting s'= s(~, y) in (6.4) then (6.4) and (6.5) imply (2.2). 

7. Proof of Theorem 2.2 

For Z' ~ Z ,  c~gJI z, and probability measures P on E(Z') z', 9Xz, ] with P ( C ) > 0  
we denote by P/c the conditional distribution. 

P/c (B) = P (B/C); B ~ ~J~z, 

The following lemma one can easily check. 

7.1. Let Aa, ..., A n be a sequence of pairwise disjoint subsets of Z ' ~ Z  (Z' finite) 
such that 

(7.1) Pz, ( ~ 

Then for all A N A  = UA~ the following equation holds: 

(7.2) Pz~'/n oz, (A,) = P~no~ (A~) 

Now for each Z'c=Z and A = { X  a . . . . .  Xr}~_Z t we put 

(7.3) Jz~, .-= A 1 . . . . .  As};A~= AiNZ' ,Ai f in i te  , 
= i = 1  

Ai n A ~= O, Aa , ..., A s pairwise disjoint}. 

Under consideration that each permutation of a finite set discomposes in cycles 
we get 

7.2. Let Z' c Z be finite. Then for each A ~ Z' the following equality holds: 

(7.4) 2 Pz, = 1. 
{A1 . . . . .  As}EJ~z, n 

Furthermore, one easily checks 
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7.3. Let Z 2 = Z  be finite. For each Z I = Z  z and A = { x l  . . . .  ,x,}~=Zt it holds 
that 

(7.5) U ~ Dz~(Ai) 
{A . . . . . .  As}~J~2\JAI  i= 1 

n = l  A ~ Z 2  
xn~A 

A \ Z I  ~ 0 

Proof of Theorem 2.2. Using  7.1 and  7.2 we ob ta in  for each s =  1, 2, . . . ,  A 
= {xl ,  . . . ,  x~} c Z ~  and all B ~ Z  r 

(7.6) P~(B) 

= ~ pA (B) Pz~((~ Dz~(Ai)) 
{A1 . . . . .  An}eJ~s  Z~/(~j Dz"(A~) j 

= 2 pA (B) Pz~ ((-] Dz~(Aj))- 
{A1 . . . . .  An}eJ~s  LJAi/~) DuA'(Aj) j 

Since the sequence ( ~ ( ~  Dz,(Aj))s~=t is a lways bounded  there exists a subse- 
J 

quence (Zs~)k% ~ of (Z~)T= ~ such tha t  for all {A 1 . . . . .  A,}EJ~ the following limit 
exists 

(7.7) qa~ ..... a."= lira P z ~ ( ~  Dz~ (Aj)). 
k---~ co J 

Using T h e o r e m  2.1 one gets that  for each e > 0  there exists k(e) such tha t  for 
all k > k (e) and m = 1 . . . .  , r 

8 

Pz,k ( ~ Dz~ (A)) < r" 
A ~ Z~ k 
x m ~ A  

A\Zsk(~ ) t 0 

Using 7.3 we can conclude 

PA~/, D~ (A ) (B) Pzsk ( ~  Dz,~ (Ai)) < ~" 
{A . . . . .  An}~jAz \ j ~  l j I  i J i 

sk sk(e 

Hence we get with (7.6) and (7.7) for all B ~ Z r 

(7.8) lim Pzsk (B) 
k ~ Q o  

= Z  A/ DA(A)(B)qA1 ..... Ao" 
{A . . . . . .  A.}EJAz i li~ , J 
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Applying (7.12) in case B = Z r we obtain 

E {xl . . . . .  x . }qA~ . . . . .  A z =  1. 
{AI . . . . .  A I}EJz  

For  this reason there exists a probability measure P on [Z z, 93lz] such that 
(2.3) holds. 

8. P r o o f  o f  Theorem 3.1 

Let (Z~)~~ be a sequence of finite subsets of Z having properties (El), (E2) 
and 

(8.1) P = lim Pzk. 
k--+ co 

From (8.1) and Pz~(Ez~,J= 1 we can conclude 

Therefore we get 

P({g: ~X1, x2eZ,  g(Xl)= g(x2), x I :# x2}) = 0. 

P(Ez, z)= P({g g(Z)= Z}). 
Now we will prove that 

(8.2) P({g: g (Z)=  Z})= 1. 

F rom Theorem 2.1 we can conclude that for each e > 0  and n = l , 2  . . . .  there 
exists k(e, n)> n such that 

(8.3) ~ Pzk( U Dzk(A))<r k>=k(e, n). 
y e Z n  A ~= Zk 

y e A  
A \ Z k  (~, n) + o 

If k>-l>k@, n) then we get 

U Dzk(A)~ U Dzk(A). 
A~_Zk  A ~ Z k  

y e a  y e A  
A\Zk(~, n) ~ 0 A \ Z l  :t: 0 

For this reason (8.3) implies 

(8.4) Pzk( U Dzk(A))<e; 
y e Z ~  A ~ Zk  

y e a  
A\Zz # 0 

k>=l, l> k(z,n). 
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On the other  hand  we get 

Z Pzk( U Dzk(A)) 
yeZn AC_Zk 

y e a  
A\Zl # 0 

> Pz.({g~Ez~,zk; 3XeZk \Z  , 9yeZ .  g(x)=y}) 
= 1 --Pzk({geEzk,z~; VyeZ.  3xeZ,  g(x) = y}). 

Hence (8.1) and (8.4) imply 

(8.5) P({g;VyeZ.  g x e Z l g ( x ) = y } ) > l - e ;  n = l ,  2 . . . .  l>kGn).  

Fur thermore ,  we get 

{gEzz: g(z)= z} 

= ~ [._) {geZZ;VYeZ. gx~Z,g(x)=Y}. 
n = l  l>~n 

For  this reason from (8.5) we can conclude 

(8.6) e ( { g e Z Z :  g(Z) = Z}) 
= lim lim P({g; VyeZ.  ~xeZ~ g(x)=y}) 

n --+ oD I --+ aO 

> I - G  e>O 

i.e. (8.2)holds. 
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9. Proof of Theorem 3.2 

It is assumed that  

(9.1) P =  lim Pzk. 
k ~ c o  

Fur thermore ,  from Theorem 2.1 we can conclude that  for each e > 0  and x~Z  
there exists k(e, x) such that  for all k >  k(e, x) 

Pzk(l(x, ") ~ Zk(~,:,)) >= 1 -- e. (9.2) 

N o w  we put  

A = {Yl, --., Yr} = Zk(~,x)- 

Then  there exists B ~ Z r such that  for all k > k(~, x) 

(9.3) Pzk (I (x,')C=Zk(~,~)) 
= 

(9.4) P(I(x, ") ~= Zk(~, ~)) 
=PA(B) 
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(9.1), (9.2), (9.3), and (9.4) imply 

P(I (x," )~=Zk(~,x)) >= 1 - e. 

Hence we can conclude that Theorem 3.2 holds. 
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10. Proof of Theorem 3.3 

For all W~ ~ W2 _-__ Z we put 

(~w2, w, (g)) (x),=g(x); x e  W~, ge  W w~ 

9Xw2,w I denotes the smallest o--algebra on VCWz2 2 such that the mappings g 
Zw2. w(g) (W~ W1, W finite) are measurable. In the following, let A be a finite 

subset of Z. We put 

Hw2.w,:={g~W2W2;3B~=Wlg(B)=B,B~A}; Wz~=WI~=A. 

Now let gl be a mapping from A into Z such that 

g~(x)~g~(y); x:~y, x, yeA. 

For each W~=Z, A~= Wwe define a mapping Gw:=WW~ [0, 1] by 

| x~A [ ~ -  Y[ 7 ~ . I , x ) '  g(A)=gl(A) 

Gw(g):=Is otherwise. 

Obviously G z is 9Xz, z\a-measurable. We have to prove that for each C~gXz, z\ a 
the following equality holds 

S Gz(g) P(dg)=  P(~z,~({gd) ~ C). 
C 

If (Z~)~=I is any sequence of finite subsets of Z having properties (El) and 
(E 2) then it is sufficient to prove 

(10.1) ~ Gz(g) e(dg)=P(Zz~A({g~})~Zz.~z,,(r)) 
z2,zzm(Y) 

for each m with A ~= Zm and all YegJlz...z.,\ a. Now from (3.1) we can conclude 

(10.2) Jina Pzo zL ~, z~ (D) = P o Zz, ~ (D); 

DagJlz~,z~, k = l , 2  . . . .  
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For  each k >m, YEYs A c=Z,, (10.2) implies 

(10.3) 

(10.4) 

Gz~(g) P~ 
* 2 ~ , z ~  (Y) c~ H z k ,  z k 

= lim ~ Gz~(g) Pz. ~ Zz~l, zk(dg) 
~z k, z m  (Y) m H Z k ,  z k 

P (rz, i., ( Y) ~ Hz, z~ c~ Zz 1 ({g~})) 
= j i m  m Pz,,('Cz-~I, z m ( Y ) ~ H z , ~ , z k  ~ "CZ,1, A ( { g l } ) ) .  

If geHz~,zk, ~,eHz, z~ with 

then we obtain 

Therefore we get 

(10.5) 

~z,~(~)=g 

6z~ (g) = 6z (~). 

Gzk (g) P~ Zz, lzk (d g) 
~2,~, z m (Y) m H z  k, z k 

= ~ Gz (g) P (d g) 
~.g,Zzk ( ~ .  z m  (Y)) c~ ~y~.~z k ( H z k ,  z k) 

= ~ Gz (g) P (d g). 
~ , l z  m (Y) c~ H z ,  z ~  

Using similar arguments we get 

Gz~(g) Pz, ~ zLl, zk(d g) 
~2~, z m (V) c~ H zk"  z k  

= ~ Gz. (g) Pz. (d g); 
~2.~, z m ( Y) n H z, , ,  z k 

Gz, (g) Pz, (d g) 

(I0.6) 

Finally, simple calculations show 

S 
~2n 1, z ,  n (Y) c~ H z n "  z k  

n>=k. 

= Pz. (zL 1, zm (Y) c~ Hz. ,  zk c~ zL 1 ({gl })). 

Therefore (10.3), (10.4), (10.5), (10.6) imply 

(10.7) S Oz(g) P(dg) 
~ 2 J z ~  (Y) n H z ,  z k 

T-1 =P(zz, lzm(Y)mHz,zk c~ z,z.,({gl})), 

From Theorem 3.2 we can conclude 

P@Hz, z0=l 
k 

k = l ,  2 . . . .  



Random permutations 

On the other hand we have 

Hz, zk ~= Hz, z,, + 1 ; 

For this reason (10.7) implies (10.1). 

k =  1, 2, ... 

55 

11. Proof of Theorem 4.1 

Immediately from the Theorems 2.1, 3.1, 3.2, 3.3 it follows that there exists 
a probability measure P with properties a), b) and c). Now we will prove unique- 
ness. 

We will use the notations Zw2, wl, 9Xw2, wl from Sect. 10. Let PI, P2 be proba- 
bility measures on [Z z, 9Xz] with properties a), b) and c). We have to prove 
that 

(11.1) Pi (H)= P2(H) 

�9 - .  Z cO holds for all k = l ,  2, and H~92ilz, zk. Thereby the sequence ( ,)~=1 is given 
by condition (V4). Now let 1 <_k<_n, HegXz, zk. We put 

H,,={Zz, z,(g); geH} 
K,  = {g~ZZ; g (Z , )=Z, ) .  

(11.2) P~(H/K,) 

=Pz,(H,); s=1 ,2 ,  n = 1 , 2 , . . .  

(11.3) I P1 (H)  - -  P2 (/4)1 

= I P1 (H/K,) P~ (Kn) + P~ (H/K,) P~ (K,) 

- P2 (H/K. )  P2 (K,) -- P2 (H/K,)  P2 (K,)[  

__< P~ (K.) + P2 (K.) 
+ [8 (H/K,) 1)1 (K,) - P2 (H/K,) P2 (K,)I. 

From (11.2) and (11.3) it follows 

(11.4) ]P~ (H) - P2 (H)] 

< P1 (K.) + P2 (K.) 
+ Pz. (H.) [P~ (K,) -- P2 (K,)[ 

< 2 (P~ (K,) + P2 (K,)). 

Using a) and b) we get for s = 1, 2 

(11.5) P~(/(.)=P~( U Q) U Dz(A)) 
y~Zn z~Z\Zn A~_Z 

A f i n i t e  
y, z eA  

< Z Z Z P~(Dz(A))" 
y e Z ~ z e Z \ Z ~  A~_Z 

A f i n i t e  
y , z~A  

K, denotes the complement of K,. 
Using c) we get 
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Using a) and c) we get for s = 1, 2 

(11.6) P~(Dz(A)) = P~(Dz(A) ~ {g ~Ez, z; g (Z \A)  = Z\A} )  

< P~ (Dz (A)/{g ~ Ez, z; g (Z\A)  = Z \A} )  

=PA(DA(A)). 

Furthermore, (6.3) implies 

(11.7) PA(Da(A))< ~ 1-[ ct~,,g(x ). 
g~DA(A) x e A  

From (11.4), (11.5), (11.6), (11.7) we conclude 

I P~ ( H ) -  P2 (H)I 

<=4 Z Z ~, X I]~x,g,x) �9 
yeZn  zeZ\Zn  A~__Z geDA(A) xeA  

A f i n i t e  
y ,z~A 

Because of (V4) that implies (11.1). 
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12. Proof  of  Theorem 5.9 

Let QO denote the Palm distribution of Q (cf. [3]). Then we get 

12.1. (5.13) holds iff 

(12.1) Q o ( { ~ ;  H-  (0, ~)< o0,/-/+ (0, ~)< ~})= 1 

12.2. Q is a (G)-process iff Qo is a (G)-process, i.e. Q~ it holds 

(12.2) Q~ n = l ,  2, ... 

12.3. Q(Nv)= 1 iff 

(12.3) Q~ = 1 

For that reason we will prove (12.3) using the assumptions (12.1) and (12.2). 
Putting 

(12.4) T(~P) :=S ~P (dx) 6x-x,~; ~p~S 

we get 

(12.5) QO = Qo o T -  1 

Using the results of [4] one can prove that (2 0 can be decomposed into Palm 
distributions of stationary point processes being ergodic (with respect to T). 
(12.1) and (12.2) imply that each factor of this decomposition has the properties 
(12.1) and (12.2). Furthermore, (12.3) is fulfilled if all factors of the decomposition 
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of Qo fulfill (12.3). For that reason we can use the additional assumption that 
Q0 is ergodic. 

Now we are going to prove the following lemma. 

12.4. For all e > 0 

Proof. We put 

Then we get 

QO({cp; H -  (0, ~o) <e}) >0. 

N~ ~ ;  ~o({0}) = 1} 
Yk(q)):~-Xk(q))--Xk_l(q)); ~oeN ~ keF. 

Qo (N o) = 1. 

Furthermore, q)~ [Y0(cP),(Yk(CP))k*OJ provides a one to one correspondence be- 
tween N O and the set M of all pairs [Z,(Zk)k.O] whereby z > 0  and (Zk)k.o is 
a sequence of positive real numbers with property 

• Z_k-~ ~ Zk:-~-O0. 
k=l  k = l  

Now we define a mapping H on M by setting 

(12.6) H(Yo(gO),(Yk(q)))k.O):=H- (0, rp). 

Because of (5.14) and (5.15) we get 

(12.7) H(Z,(Zk)k.O) 

<=H(y,(Yk)k.O); Z,(Zk)k.O, y,(yk)em, 
y<z, yk <Zk; k~O. 

From (12.1), (12.2), and (12.5) we can conclude that there exists d, c > 0  such 
that 

(12.8) 

(12.7) and (12.8) imply 

(12.9) 

Now, let t > d such that 

Using (5.16) then we get 

(12.10) 

QO({e; H (Yo (~) , (~(~))k,  o)--< c, Yo(e) >-- d}) > 0 

Q~ H (d,(Yk((P))k.O)<_c})>O. 

c.exp [ -  A (d) ( t -  d)] < e. 

{~o; H(d,(~(~o))k. o)--< c} 
{q); H(t, (Yk ((P))k, 0) =< e}- 

From (i2.9) and (12.10) it follows 

(12.11) Qo ({(p; H(t,(Yk((P))k.O)<e})>O. 
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Finally, using (12.2), (12.5), (12.7) and (12.11) we can show that  

QO({go; H(Yo (go) ' (Yk (go))k* o) <e) > 0 

Because of (12.6) this proves 12.4. [ ]  

N o w  we put  

B~:=~ U {goeN~ 
k = 1 r <  - k  

Using the well-known Poincar6 recurrence theorem one gets 

This implies 

(12.12) 

Q~ 1. 

Q~ e N ~  l i m H - ( X _ ,  (go), go) = 0}) = 1. 

Using the same arguments  one proves 

(12.13) QO ({go e N O; lim H * (X, (go), go) = 0}) = 1. 

N o w  (12.3) follows from (12.12) and (12.13). 

e > 0  

K.-H. Fichtner 

13. Proof of Corollary 5,11 

A stat ionary poisson process on R with intensity 2 > 0 is a (G)-process. Fur ther-  
more,  2 > 0 implies 

Q (N) = 1. 

Hence (5.13) follows from (5.17). Fo r  this reason we are going to prove (5.17). 
Using (5.14) we get 

I n--J. 1 (13.1) ~ l"+l (d[xo  . . . . .  x ,])  exp - U(x~-xo)- ~., U(xm-x,~+l) 
m=O 

(~ ({[zo, .--, z ,];  Zo -_< 0, zf > 0} 
i=l 

�9 u {Ezo, ..., z ,] ;  Zo >__0, : , <  o}) 

=<2 ~/n+l(d[xo,  . . . , x J )  exp -g (x , - xo ) -  ~ U(x,,-x,,,+l)] 
i=1 m=O 

�9 {[zo . . . .  ,zJ, zo<O, zi>O}; n = l , 2  . . . .  
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Simple calculations show 

(13.2) i n l" +~ (d [Xo . . . . .  x .])  exp -- U ( x . -  Xo)-- ~ U (xm-- x,. +~)] 
m=O 

-{Do, . . . ,z,] ;zo<O,z,>O} 
= S l(dxo) S t(d~3f~(xo-x3L-~+l(X,-Xo); 

( -  re,O) (o, +oo) 

n = l , 2  . . . .  , / = 1 ,  . . . ,  n. 

Hereby  the sequence of functions (f,)~= 1 is given by 

f l  (x) = exp [ -- U (x)]; x e R 

f,,+t(x)=~f,,(x-y)ft(y)l(dy); xeR, 
Putt ing 

b = ~ exp [ - -  U (x) ] / (d  x) 

one can prove 

n =  1,2, ... 

(13.3) sup f .  (x) < (sup f~ (x)) b"-~ ; 
x x 

n = l , 2  . . . .  

F r o m  (5.14) and (5.15) it follows 

Hence  we get 

U(x)_->0; x~R. 

(13.4) sup f l  (x) __< 1 
x 

(13.3) and (13.4) imply 

sup f ,  (x) < b ~- 1; 
x 

b =  1,2, ... 

Fo r  this reason (13.2) implies 

(13.5) 
[ n ,l 

~/n+l(dxo,  . . . , x , ) e x p  - U ( x , - x o ) -  ~ U(x,~-x,,,+ 1 
m=0 

�9 {[Zo . . . . .  z . ] ;  Zo < 0, z , > 0 }  

<b"-~  j /(dx) ~ l(dy)f(x-y); 
( -  re,O) (0, +m)  

n = l ,  2, . . . ,  i = 1  . . . . .  n. 

F r o m  (5.14) it follows 

f.(x)=f.(-x); xeR. 
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Fo r  this reason we get 

(13.6) /(dx) S l(dy)f~(x-y) 
( - 0 % 0 )  (0, +oe) 

= ~ /(dx) S l(dy)f~(y) 
(0, + o~) (x, + 0o) 

= j l ( d x ) x f ~ ( x )  
(0, + ao) 

=�89  Ix[ fi(x); i =  1, 2 . . . .  

The  probabi l i ty  measure  
1 

Pi(dx) :=bi l(dx) fi(x) 

i 

is the dis tr ibut ion law of a r a n d o m  variable  y '  t/re. He reby  t/i . . . .  , t/m are i.i.d. 
1 m = i  

and the dis t r ibut ion of ~l is given by bI(dx)exp[-U(x)]. F o r  this reason  

we get 

(13.7) ~l(dx) Ixlf~(x) 
<ib~-~l(dx) lxl exp [ -  U(x)] ;  i = 1 , 2  . . . .  

Finally, the m o m e n t m e a s u r e s  rn~ ) of a s ta t ionary  poisson process on R with 
intensity 2 are given by 

(13.8) rn~)(dx) = 2" I" (dx) 
F r o m  (13.8), (13.1), (13.5), (13.6), and (13.7) we get 

2 Srn~)( d [Xo, . . . ,  x , ])  exp - U(x, -xo)-  ~ U(x~-x~+~ 
n = l  i = 0  

�9 U ({I-Zo, ...,z,];Zo<=O,z~>O} 
i=~ 

�9 U {[z0, . . . ,  z ,];  z0 _=0, z i <  0}) 

<.(tx[ e x p [ -  U ( x ) ] / ( d x )  ~ n ( n + l )  2,,+~b,_ ~ 
2 

n = l  

F o r  this reason  (5.17) follows f rom (5.18), (5.19). 
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