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Summary. The main objective of this paper is a study of random decompositions
of random point configurations on R into finite clusters. This is achieved by
constructing for each configuration Z a random permutation of Z with finite
cycles; these cycles then form the cluster decomposition of Z. It is argued that
a good candidate for a random permutation of Z is a Gibbs measure for a
certain specification, and conditions are given for the existence and uniqueness
of such a Gibbs measure. These conditions are then verified for certain random
configurations Z.

0. Introduction

Let Z be a countable set and £=(¢,),., be a system of independent random
variables taking on values in Z with #(¢,=x)>0 for all xeZ. The law of
¢ is then determined by the matrix a=(a, ,), ,.z, Where

0 226=y)
T PUe=x)
One of the main problems considered in this paper is to give a meaning to
the conditional distribution Z(+|E) of £, where E; is the set of bijective map-
pings of Z onto Z. If Z is finite then there is a simple explicit formula (involving
the matrix o) for this conditional distribution. Moreover, it can also be described
in terms of certain “local” conditional probabilities of a type similar to those
used in the definition of Gibbs states. If Z is infinite then, in general, there
is no obvious way to define Z(-|E,) directly. However, the “local” conditional
probabilities still make sense, and so the corresponding Gibbs states can be
considered as candidates for Z(+|E,). We give a sufficient condition (V3) for
the existence of at least one Gibbs state (cf. Theorems 2.2 and 3.3), and a stronger
condition (V4) which ensures that there is exactly one such state (cf. Theo-
rems 4.1 and 4.2).

This Gibbs measure P is concentrated on E, (cf. Theorem 3.1), ie. P can
be interpreted as probability distribution of a random permutation of the count-
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able set Z. Theorem 3.4 states that this random permutation gives a random
partition of Z into finite subsets corresponding to the decomposition of the
random permutation into cycles (cf. Theorem 3.2). Moreover the elements of
this random partition are independent in a certain sense (cf. Theorem 3.4). In
fact, it are these random partitions which are our main object of interest. In
particular, we are interested in random partitions of random point configurations
on R% Hence in Sect. 5 we replace Z by a locally finite random subset of the
d-dimensional space RY with probability distribution Q. We obtain sufficient
conditions such that Q-almost surely the conditions (V 3) and (V 4) are fulfilled.
This implies existence and uniqueness of a certain random permutation and
consequently the existence of the corresponding random partition of the given
random set.

This work was motivated by certain mathematical problems connected with
equilibrium states in quantum statistical mechanics. For instance, let us consider
the (infinite-volume) one-dimensional ideal Bose gas with inverse temperature
b and activity a. The position distribution of this quantum particle system was
considered in [5]. According to Theorem 3.4 in [5] this position distribution
is the probability law of a random point system Z ¢R which can be constructed
as follows:

Let X ={x,: — 00 <r< + o0} be a stationary Poisson system in R with intensi-
ty

o0
A=Y a"(2n)"Ymnbn) "t

n=1

Furthermore, let W=((w,(t));» 0)s- - », be a sequence of independent Wiener pro-
cesses with parameter 2b. For all n=1,2, ... and —oo<r< + oo we consider
the Brownian bridge given by

Bﬁ”)(t)==w,(r)~w,<2bn>5;7; 0<r<2bn.

Finally, let y=(,)% _, be a sequence of independent random numbers such
that

P, =n)=2"'a"2n) " (mbn)"% n=12,...—0<r<+o
We assume that X, W, n are independent. Putting

Z,={x,+BM™Q2bk): k=1, ...,n}; —oo<r<-+ow

we get a partition of Z = | Z, into independent subsets. This partition (Z,)

r

corresponds to the cycles of the random permutation G of Z given by

2]
r= —20

) _fx+BM@bk+1); 1sksn-1
G(x,+ B™(2bk)) {x,+B§"r’(2b); ken

;0 <r< 40
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In the sense of Theorem 3.4 the probability distribution of G (Z fixed) is related

(x—y)? . .
—_ . In a forthcoming paper we will prove
4b x,yeZ

that the conditional intensity and, consequently, the local conditional probabili-
ties of the random point system Z in the sense of a Gibbs distribution can
be given in terms of this random permutation G. In case of quantum equilibrium
states corresponding to an external field we have to consider a more general
matrix .

to the matrix a= <exp (—

1. Notations

Let Q be a probability measure on the measurable space [W", ;] of mappings
from the countable set W into W. For each finite 4 € W we let 04 denote the
marginal distribution of Q on W4,

In the following let Z be a countable infinite set. For each pair Z,, Z,=Z
we denote by E, ,, the set of mappings from Z, onto Z, which are one to
one.
IfZ,cZ, we put

Dy, (Z,)={geE;, z,:1(x,8)=Z,forall xeZ,}

where I(x, g) denotes the smallest g-invariant set containing x.
Now let (), ,z be a matrix satisfying the conditions

(V1) %,,20;  x,yeZ
(V2) Oy x=1; xeZ

For each finite subset Z' < Z we define a probability measure B, on (Z')?" by

1_[ %, g(x)

xeZ’

Y I« (>; gebizz
x, h(x
(L.1) B ({g)) = "o =

0; otherwise

2. A compactness condition

We assume that the matrix (o, ,), ;.7 fulfills (V 1), (V2) and the following condi-
tion

(V3) 2.1) > > IToegm<oo; yeZ

AcZ geD4(A) xecA
A finite
yeAd

The following theorem illustrates the meaning of (V 3).
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2.1. Theorem. Let (Z ), be a sequence of finite subsets of Z with the following
properties

(E1) 2.7y s=1,2,...

(E2) z,=Z.

Then for each e>0, yeZ there exists s(e, y) such that for all s> s(e, y)

(22) PZS(I(y")ng(s,y))él_g-

The proof can be found in § 6. Using Theorem 2.1 we prove in Sect. 7 the
following theorem.

2.2. Theorem. Let (Z )X, be a sequence of finite subsets of Z with properties
(E1) and (E2). There exists a subsequence (Zg),—, and a probability measure
P on [Z%,9R,) such that

(2.3) P=lim B,

k- o 5k

in the sense of convergence of all marginal distributions.

3. Random permutations

Let («, )y, ez be any matrix fulfilling the conditions (V 1), (V 2) and (V 3). Further-
more, assume that P is a probability measure on [Z% MM,] obtained as the
limit in the sense of Theorem 2.2 ie. there exists a sequence (Z,)7-, of finite
subsets of Z having the properties (E 1) and (E2) such that

(3.1) P=lim B,

k— o
in the sense of convergence of all marginal distributions.
In Sect. 8 we prove the following theorem.

3.1. Theorem. P is the probability law of a random permutation on Z, i..
(3.2) P(E; »=1.

In Sect. 9 we prove:

3.2. Theorem. P-almost surely I(x,*) is finite for all xeZ.

From Theorems 3.1 and 3.2 we can immediately conclude that a random
permutation of the countable set Z with probability distribution P can be decom-
posed into finite cycles, i.e. we have

(3.3) P(J NDz(4)=1

(4s) s
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where (4,) denotes partitions of Z into finite subsets. Finally, we consider the
conditional behaviour of the random permutation on a finite subset A of Z
under condition that the behaviour outside of A is given. In Sect. 10 we prove
the following theorem.

3.3. Theorem. Let ASZ, A finite and let g, be a mapping from A into Z. Then
the following equality holds for P-a.a. g,
(3.4) P({g:g(x)=g1(x), xeA/{g: g(x) =g, (x), xe Z\A4})
[T g1
zed ; eE 4, Z\g,(Z\1
Z 1—[ %n g1€E,, Z\g,(Z\A)

heE 4,Z\g2(Z\A) xeAd

0 otherwise
From Theorem 3.3 we can immediately conclude that the behaviour of the ran-

dom permutation under condition ﬂ D, (Ay) (cf. (3.3)) is independent on different

sets A,. More precisely, we have for all partitions (4)%%, of Z, n=1,2, ... and
A S A (s=1,...,n) :

(3.5) [P(/(\D(A)]Y*
=X P\ D2(A)*

Furthermore, from Theorem 3.3 we can conclude
(3.6) [P/ D2(AN)]* =[P 4, (/D 4 (4)]";
forall k=1,2,... and A&A4,

(cf. (1.1)). From (3.3), (3.5) and (3.6) we obtain the following theorem.

3.4. Theorem. There exists a random partition of Z into finite subsets with proba-
bility distribution Q characterized by

(3.7) P=[Q(d(4)7) X Py, (/D 4,(4))

Remark. Random partitions of Z into finite subsets may be considered as special
random point fields in the space of all finite subsets of Z.
3.5. Example

We consider the d-dimensional lattice

Z={0,+1,+2,..}% (@d=1)
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and we use the notation

e,=[0,...,0,1,0,...,0]; i=1,...d
|

i~th comp.

Now let 0 <p < 1. We consider the following stochastic matrix (a, ,). ,.z

D; y=x
1 . .
Ay, y= ﬁ(l_p% y=x+te, i=1,...,d
0; otherwise
If we put
Ay
ch,)’::a y> xayGZ

then the matrix (, ), ez fulfills the conditions (V1) and (V2). In order to
characterize the condition (V3) we denote by 7y, the number of lattice walks
from 0 to 0 of length n.

Then some elementary calculations show:

The matrix (0, ,)x, yez Julfills condition (V 3) iff
@ 1 . n
(3.8) ngl Vn [ﬁ p~'— 1)] < 4 0.

If d=1, then y,=0 for all n>4. Therefore (3.8) holds. Now let d=2. Since
vop=1forall n=1,2, ... (3.8) implies

1
P=3d+1
On the other hand, since

Van+1=0
Y2, =2d—1); n=1L12,..
(3.8) follows from
p>Q2d—1)Q2d+(2d—1)%) "L

4. Uniqueness

In order to prove uniqueness of random permutations considered as Gibbs
distributions in the sense of Theorem 3.3 we have to sharpen condition (V 3).

(V4) There exists a sequence (Z,);5- of finite subsets of Z having the properties
(E1) and (E2) such that the following equation holds

O=1lm ) > ¥ DI | -

R=® e, 2eZ\Z, A<Z geD,s(4) xed
A finite
v,zeA4
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Remark. 1t is easy to check that condition (V 3) follows from (V4). On the other
hand considering the example from the previous section one shows that (V3)
does not imply (V4) and furthermore, uniqueness fails. For instance, in the
case d=1 put

fix)=x+1;, xeZ

fLx)=x—1; xeZ

Then the Dirac measures 6, and ., are Gibbs distributions in the sense of
Theorem 3.3. In Sect. 11 we will prove the following theorem.

4.1. Theorem. If the conditions (V 1), (V2) and (V4) are fulfilled then there exists
exactly one probability measure P on [Z%,IMM,] having the following properties:

a) P(Ezz)=1

b) P-almost surely I(x,.) is finite for all xeZ.

¢) For all finite subsets A of Z and P-a.a. g, (3.4) holds.
Immediately from the Theorems 2.2, 3.1, 3.2, 3.3 we get

4.2. Theorem. If the conditions (V 1), (V2) and (V4) are fulfilled then there exists
exactly one probability measure P on [Z% M| such that P is the limit of P,
as Z' runs through the net of all finite subsets of Z.

5. Locally finite random sets

Let S be a complete separable metric space. & denotes the y-algebra of Borel
sets in S, B(S) denotes the ring of bounded Borel sets and &, the Dirac measure
corresponding to xeS. Let N(S) be the set of locally finite simple counting
measures on the measurable space [S, ¥], ie. N(S) is the set of all measures
¢ with properties

- ¢(B)e{0,1,2,...}; BEB(S)

- o({x})=1; xeS.

Further, let 9(S) be the smallest y-algebra on N{S) which makes the mapping
¢ — ¢(B) measurable for each Be B(S). A probability measure Q on [N(S), 1 ()]
is said to be a (simple) point process (cf. [3]) on S.

The mapping

zeZ
provides a one-to-one correspondence between N (S) and the set
3={Z<S;Zn Bis finite for all Be B(S)}.

For this reason @eN(S) may be interpreted as a locally finite point system
in 8. According to this interpretation of the elements from N(S) a point process
may be understood as the distribution law of a locally finite random subset
of S. In the following let g be a measurable mapping from S x S into R with
property

(5.2) a(x,x)=0; xeS§
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51. If Ze 3 and
(53) ax,y:exp[_a(x’ y)]; X, yEZ

then the matrix (%, ). yez fulfills (V1) and (V2). Furthermore, condition (V3)
holds iff the counting measure @ = @5 given by (5.1) fulfills the following condition

W3 Y [oldx) [(0—6.)(dxs) .| <¢— 5 é,ﬁ)(dx,o

n=2B i=1

n—1
-exp[— Z a(xi,xi+1)—a(xn,x1)]< +o0; BeB(S)

i=1

For this reason we have to look for conditions ensuring that (¥, 3) holds for
Q-a.a. ¢. Obviously (V, 3) is trivial if ¢ is finite. Hence we will consider infinite
point processes Q, i.e.

(5.4) Q({eeN; o(S)=+x})=1.
Let my denote the moment measure of n-th order (n=1,2, ...) characterized
by

mg(By x ... X B,)

~[0Wdg) | pWdxy) | (p—8:)(dxs)... | (q)— Y 5xi)(dx,,);

By i=1
B, ..., B,eB(S).
A point process Q on S is said to be of finite intensity if for all Be B(S) the
value my’(B) is finite. Then we get immediately

5.2. Let Q be an infinite point process such that

«©Q

Y [ mgTIADx, XD exp

n=1BxSn

'[_ i a(xi,xi+1)—a(xn+1=x1)]<00; BeB(S)

i=1
Then (V,, 3) is fulfilled for Q-a.a. ¢.
In the following, we consider the special case
(5.5) S=R* @d=1,2,..)
a(x, y)=Ulx—y).

We have to assume that U is a measurable mapping from R? into R with
property
U(0)=0.
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A point process Q on R? is said to be a poisson process if for all pairwise
disjoint bounded Borel sets By, ..., B,(n=1,2, ...) (cf. [3])

n B ki

o( ) tos o=k~ 1 {"EF0 exp(mip )
ky,.., k,e{0,1,..}

A poisson process is stationary (cf. [3]) if

(5.6) m =g

Hereby I* denotes Lebesgues measure on R* and 7,>0 is called the intensity
of Q. In that case the moment measures m{y’ are given by (cf. [3])

m@ =(mg)y"™

=15 n=1,2, ..

Hence we get the following theorem

5.3. Theorem. Let Q be a stationary poisson process on R® with intensity A. Assume
(5.7 nfU (x)> — oo
(5.8 Afexp(—U(x) F(dx)<1

Then (V,, 3) holds for Q-a.a. ¢.
5.4. Example. We put

d

U(lxg, ..o xD= Xy, --»Xg€R,

o ty>0.
Further, let Q be a stationary poisson process with intensity A> 0. If
d
(5.9) erirr[]t<1
i=1
then (V,, 3) holds for Q-a.a. .

Proof. We get

fexp(—U(x)) F(dx)= ((2 ) 1] ti)é.

i=1

Hence (5.9) implies (5.8). On the other hand (5.7) holds because U (x) is nonnega-
tive. For this reason we can apply Theorem 5.3. []
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Now we are going to verify (V4) for random point fields. We will consider
the onedimensional case d =1. We put

N:={peN(R); ¢((— 0, 0)=0((0, + ©))= + o}
I={..,—1,01,..}

We define a sequence (X)), of measurable mappings on N by the requirements

P=7 Oxpp ®EN
iel

Xi@)<Xis1lp); iel, @eN
Xo(p)=0<X,(p); @eN.

That means the points of ¢ are numbered in their natural order and the first
point in (0, + oo) gets the number 1. For each @eN and n=1,2, ... we define
a measure ¢ on R" by setting

OB, x ... xB)= | gldxy) | (9—b)(dx)-.. | (qo z 5 )(dx

B,,...,B,eB(R).

Furthermore, we put

H o= X Jo" o, %D exp| - Ul x0)~ 3 Ul )

\

n
AJ{lzo, .o, 2,)eR" Y 20 =2, 2,> 2} zeR,  @eN

H™( 0): ij =+ D(dx, ,...,xn]>exp[—U(x,,—xo>~"i U(xm—xm+1]

m=0
'__,;¥

U {lz0, ---» 2R Y529 S2,2;<2}; zeR,  @eN

Ny={peN;imH" (X,(¢), p)=0=lmH" (X _,(¢), ¢)}-
The following lemma one can easily check.
5.5. Let Ze 3 and
oy =exp(—=U(x—y); x,yeZ

Furthermore, let the counting measure @, be given by (5.1). Then the matrix
(0, y)x, yez Sulfills condition (V4) if ¢ eNy.

Now let N denote the set of all @e N(R x R) with property

o({y} xA)=P(Rx {y})s1; yeR.
The relation

(5.10) Q:jQ(dQD)jP@)(dg) 5I¢(dx)5(x.g(x)1
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gives a one-to-one correspondence between point processe § on R x R with
Q(N)=1 and certain pairs (Q,(P“)),.x ) Where Q is a point process on R and
P@ denotes the probability distribution of a random permutation of the support
of ¢. We put

(@)= P(d[x,,x;,])6,; PeN

7 is a measurable mapping from N into N(R) and Q is given by Q=007 ™.

Now for each pe N(R) let T, denote the support of ¢, i.e.
o= | ¢(dx)o,
To

e({y}))>0; yeT,.

For each peN(R) there is a one-to-one correspondence between $eN with
©(®P)=¢ and mappings Ge€Er 1, given by

P({[x,Go(x)1})=1; xeT,.
We put
L,(®)=G,; ®eN, 1(®)=¢, @eN(R).

If 0, denotes the conditional distribution of @ under condition “t(®)=¢”,
then F; ,, defined by

23 -1
B, p=04°L,
is a probability measure on T, » with

B.o(Er, r,)=1

Furthermore, relation (5.10) holds with P®’=F, ,. Now we are going to con-
struct a point process Q on R xR corresponding to a pair (Q,(P%),cxx) in
the sense of (5.10) where Q is a given point process on R and P® corresponds
to the matrix (o, ), yer, (cf. 5.5) in the sense of Theorem 4.1. We will use the
following notations. For Be B(R), € N (R) we put

pg=¢( NB)

Then T, is always finite. PT<pB denotes the corresponding probability measure
on

Tq};‘PB
(cf. (1.1)) with property
PT(PB (ETlpB’ TfPB) =1

We define a mapping Ly , from ETq»B’T«pB into N by setting

(5.11) Lg ,(8)= g PAx) O s 8€E7,,. 1,
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If Q is a point process on R then we put
(5.12) Q(B)‘ZJQ(d ?) (PTq,BOL_‘;B,l(p)'

Using 5.5 we get from 4.1 and 4.2 the following theorem.
5.6. Theorem. Let Q be a point process on R with

Q(Ny)=L.

Then there exists exactly one point process Q on Rx R having the following
properties:

a) Q(N)=1
b) Qo1 '=Q
c) For Q-a.a. pe N(R)
B ,({g€Er, 1,:IAST,, A finite,xe A, g(A)=A})=1; xeT,.
d) For Q-a.a. peN(R), A< T, A finite and F; , -a.a. g, the conditional distribution
B o({g:g(x)=g1(x), xeA/{g: g(x) =g, (x); xe T,\4})

is given by (3.5) where
%, y=exp(—=U(x—y)); xyeR.

Furthermore, for all sequences (B,)S, of bounded Borel sets with properties

Bnan+1; n:152:
\JB,=R

the sequence of point processes (Qg)ney on Rx R converges weakly to Q and
Q is given by (5.10) with P¥'=F, .

Because of 5.5 and 5.6 we have to look for conditions ensuring that
O(Ny)=1.
5.7. Definition. Let 9t denote the smallest y-algebra on N which makes the
mapping ¢ — X (¢)— X, _(¢) measurable for each k+1. A point process Q
with Q(N)=1 is said to be a (G)-process if Q-a.s.
Q({peN; X1 (@) —Xo(@)>n/M)>0; n=12, ..

5.8. Remark. If Q is a (Z')-process (cf. [2]) with @(N)=1 then Q is a (G)-process.
In § 12 we will prove the following theorem.

5.9. Theorem. Let Q be a stationary (G)-process of finite intensity such that

(5.13) Q(peN; H™(0,9)<o0, H" (0, p)<o0})=1.
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Assume that U fulfills the following conditions

(5.14) U(x)=U(—x); xeR

(5.15) Ux)=U ) 0=x=y

(5.16) A(x) = ing—(ingi(y)w; x>0,
A

Then
Q (NU) =1

5.10. Remark. Immediately from the definitions of H™, H*, m§y we can conclude
that (5.13) follows from Q(N)=1 and

n—1

(5.17) i [mg* D (dxq, ..., x, D) exp[—U(x,—x0)— Y, U(x;—X;44)] <00

i=0

n=1
a
) U ({[:ZO: ~-->Zn];ZO§Oazi>0}
i=1
'U{I:ZOJ -~-azn;20§0,zi<0})

5.11. Corollary. Let Q be a stationary poisson process on R with intensity A>0
such that the following conditions hold

(5.18) Afexp(—U(x) I(dx)<1
(5.19) fi(dx)|x| exp(—U(x))< o0
Assume that (5.14), (5.15), and (5.16) are fulfilled. Then it holds
Q(Ny)=1
The proof can be found in Sect. 13.
5.12. Example. We put
2

X
(5.20) U(x)=Z, xeR

t<0
Then (5.14), (5.15), (5.16), and (5.19) are fulfilled. (5.18) holds iff
2rtit<1

5.13. Remark. Let U be a measurable mapping from R into R with property
U0)=0.If U= U then

Q(Ny)=1
implies

Q(Np)=1.

This gives some generalizations of 5.9 and 5.11.
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5.14. Remark. Let o= ) ¢, be arandom point system in R with probability
i=—o0

distribution Q being a stationary poisson process with intensity A> 0. Further-

more, let W=(W){Z_, be a sequence of independent Wiener processes such

that Wand &=(&)% -, are independent. We put

oo
Y Ogewiy  £20.
0

i=—

Then @ =(®)q<,<r is a measure valued stationary Markov process describing
the independent motion of points of the system ®,. Now let 2nTA%><1. Then
5.6, 5.9 and 5.12 imply that in case of (5.20) the measure F; , is uniquely defined
for Q-a.a. peN. Now denote (1l ), ;. the normalized conditional Wiener mea-
sures then we put

qu ’:J-PQ—,w(dg) (X #)Z:g(x))

xe@

S((,==Q‘¢,0H_1

where the mapping H is characterized by
H((@)Z-o)®)= ) Ou; OSt=T

Then S, may be interpreted as the conditional distribution of ¢ under condition
“@,=@==P;". In a forthcoming paper we will use this construction of condition-
al distributions S, of certain measure valued processes in order to describe
infinite boson systems by generalizing some ideas of the Feynman-Kac formula.

6. Proof of Theorem 2.1

We put

(6.1) E(A)= 3 [ltew
geD 4(A) xeA

(6.2) WAdy= Y T]%ge

geE 4, 4 x€A
fér all ASZ, A finite. Because of (V2) we get
(6.3) W(A)=W(A,); A &A4,.
Using (6.3) we obtain

W(Z\A4)

B (D, (A) =555

E(A)=E(4); AgZ,.
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Therefore we can conclude

(6:4) B ) Du)E Y E(@); s<s yeZ,
AcZg AcZs
yeAd yed
A\Zs 0 A\Zs, 0

On the other hand it follows from (V3) that for each yeZ and ¢>0 there
exists s(g, y) such that for all s>s(e, y)

(6.5) Y EA)— Y E(d)<e
AcZ, A= Zs(s,y)
yed yed

Putting s'=s(z, y) in (6.4) then (6.4) and (6.5) imply (2.2).

7. Proof of Theorem 2.2

For Z'cZ, CeM, and probability measures P on [(Z')*, M,] with P(C)>0
we denote by P the conditional distribution.

P,(B)=P(B/C); BeM,
The following lemma one can easily check.

7.1. Let A, ..., A, be a sequence of pairwise disjoint subsets of Z'=Z (Z' finite)
such that

(7.1) P, (iél D, (Ai)) >0.

Then for all A= A=UA, the following equation holds:

(7.2) PzA!/sz,(A,-) =PAA/nDA(Ai)
Now for each Z'cZ and 4= {x,, ..., x,} £ Z' we put

(1.3) He=) {{Al, A AS | 4,7, A, finite,
i=1

s=1

A;inA%£0,4,, ..., A pairwise disjoint}.

Under consideration that each permutation of a finite set discomposes in cycles
we get

7.2. Let Z'<Z be finite. Then for each A< Z’ the following equality holds:

(7.4) Y B, ( N DZ,(A,,)> =1

(A1, ..., Ag}ed2, =1

Furthermore, one easily checks
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7.3. Let Z,c=Z be finite. For each Z,<Z, and A={xy, ...,x,} SZ it holds
that

(7.5) U () Dy,(4)

{41, .. Asyed g \T g i=1

=U U Dz

xn€d
A\Z1F0

Proof of Theorem 2.2. Using 7.1 and 7.2 we obtain for each s=1,2,..., 4
={X{,...,x,}JcZ,and all B€ Z"

(7.6) B(B)
= P4 B)E D, (A4;
{Al,..é"mg zs/moz,(A,a( ) zs(o z.(4})
= P4 B)E D; (A)).
(Al,_,,,ZA,,}ng UAi/ODUA.(Aj)( ) ZS(O Zs( 1))

Since the sequence (B, ([ Dz (A;)Z, is always bounded there exists a subse-

J
quence (Z, )2, of (Z)3, such that for all {4, ..., 4,}€J7 the following limit
exists

(7.7) qa,, ...,An‘=IJLTI§C stk(ﬂ DZsk(Aj))-
j

Using Theorem 2.1 one gets that for each ¢>0 there exists k(e) such that for
all k>k(e)and m=1, ...,r

Bl U Da )<=,

AcsZs,
XmEA
A\Zsk(s)¢0
Using 7.3 we can conclude
> }ZA Ao A)(B) stk(ﬂ Dy, (A))<e.
(A1,...,An}ejésk\J‘Z'skH JJ. a4, i

Hence we get with (7.6) and (7.7) for all B& Z"

(7.8) klim PZsk(B)
= P B .
{Al,...,ZAn}ng UA,-/QDA,(A,)( )da,, ..., 4
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Applying (7.12) in case B=Z" we obtain

Z {xl,»--,xr}qz‘iln--,At:l'

{1, ..., Aijedz

For this reason there exists a probability measure P on [ZZ% 9t,] such that
{2.3) holds.

8. Proof of Theorem 3.1

Let (Z,)3-, be a sequence of finite subsets of Z having properties (E1), (E2)
and

(8.1) P=lim B, .

k—
From (8.1) and B, (E;, ,)=1 we can conclude

P({g:3x,,x,€Z, g(x,)=g(x,), X, £x,})=0.
Therefore we get

P(Ez)=P({g:g(Z2)=2}).
Now we will prove that

(8.2) P({g:8(2)=2Z})=1.

From Theorem 2.1 we can conclude that for each ¢>0 and n=1,2, ... there
exists k(g, n)=>n such that

(8.3) Y B U Dpfd)<e;  kzken).
veZy Ac Zg
yeA
A\Zy(e.ny+0

If k=12 k(e, n) then we get

U Dz(=2 | DA

AcZy A= Zy
yeAd yeA
A\Zy (e, n)F 0 A\Z;#*0

For this reason (8.3) implies

(8.4) Y B U Dp(A)<e; kzl,  Izkn)
yeZn ASZy
yed
A\Z;*0
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On the other hand we get
Y B U Dg(4)

yeZ, A= Zy
yeAd
A\Z;#*0

2P, ({g€Ez, z,;3x€Z\2Z,3yeZ, g(x)=y})
=1-F, ({geEy, z,;VyeZ,IxeZ, g(x)=y}).

Hence (8.1) and (8.4) imply
(8.5) P({g;VyeZ,IxeZ,g(x)=y})21—¢; n=1,2,...I>k(en).
Furthermore, we get

{geZ”:43(2)=2}

= ﬂ U {gGZZ;VyeZ,,erZ,g(x):y},

n=112n
For this reason from (8.5) we can conclude

(8.6) P({geZ*:g(2)=2})
=lim lim P({g;VyeZ,IxeZ,g(x)=y})

n—o l—+w

>1—¢g; &>0
i.e. (8.2) holds.

9, Proof of Theorem 3.2

It is assumed that

(9.1) P=lim B, .

k— o

Furthermore, from Theorem 2.1 we can conclude that for each £¢>0 and xeZ
there exists k{e, x) such that for all k> k(g, x)

(92) })Zk(I(x:.)ng(s,x))g I—e

Now we put
A :{yI: ---:yr}:Zk(e,x)-

Then there exists BS Z” such that for all k> k(e, x)

(9.3) B (I(x,") S Zy(e, x)
=P;(B)
(9.4) P(I(x,") S Zi, x)

=P4(B)
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9.1), (9.2), (9.3), and (9.4) imply
P(I(xa')gzk(s,x))g I—e

Hence we can conclude that Theorem 3.2 holds.

10. Proof of Theorem 3.3
For all W, =W, < Z we put
(Tw,, w, (@) (x):=g(x);  xeW,geW;>
My, w, denotes the smallest g-algebra on WY such that the mappings g
- Ty, w(@) (WS W,, W finite) are measurable. In the following, let 4 be a finite
subset of Z. We put
Hy, w,={geW;>;3Bc W, g(B)=B,B24}; W,2W,241.
Now let g, be a mapping from A into Z such that
g1()*+g,(0); x*y, x,yed
For each W< Z, A < Wwe define a mapping Gy :=W" — [0, 1] by
llo‘x,gl(x)
S 8=

GW(g):: fsEA‘sl(A)xeA

0 otherwise.

Obviously Gz is M, z ,-measurable. We have to prove that for each Ce; , ,
the following equality holds

[ G2(g) P(dg)=P (17, 4({g:})n O).
C

If (Z)& | is any sequence of finite subsets of Z having properties (E1) and
(E2) then it is sufficient to prove

(10.1) § Ga(@) P(dg)=P(i7 4({g:}) N7z, 5,(Y)

w202, (Y)
for each m with A= Z,, and all YeMi, , .,. Now from (3.1) we can conclude

(10.2) lim B, ot7 !, (D)=Poty; % (D);

n—> o0

DEiUEZk,Zk, k:1,2,
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Foreach kzm, YeWi, , ,A<Z,(10.2)implies

(10.3) | Gz (g) Potz %, (dg)
tztz, Y)nHz, z,
= lim f sz(g) B, - TZ_,.I, zk(dg)
O izlz, (V) Hz 2,
(10.4) P(tz3,(Y)nHyg 7,077 " ({81})

= nﬁ_’ngo Pzn(fz_,.l, zm(Y) NHy 7.0 TEn{A({gl}))-

IfgeHd, , ,gcH, , with
12.2.8)=¢
then we obtain
Gz, (8)=Gz(8)-
Therefore we get

(10.5) § Gy, (8) Ptz 3, (dg)

2zt z,, (N Hz, z,

= J Gz(2) P(dg)

2%, (2} 2, (N nigle, Hz,, z)

= J G,(g) P(dg).

2.2, Y)nHz, z,
Using similar arguments we get

(10.6) f Gz, g B, Tz_,,l, Zx (dg)

2zt z,(NnHz . z,

= ) G, (g) B, (dg); n=k.

zlz, (NnHg 2z,
Finally, simple calculations show

) Gy, (2) B, (dg)

tzlz, V)nHz, z,

= Pzn(Tz_,,l,Zm(Y) NHgz, 2.0 Tz_nl ({g1})-
Therefore (10.3), (10.4), (10.5), (10.6) imply

(10.7) J Gz(g) P(dg)

2.2, (Y)nHz, z,

=P(Tz_,lzm(Y)mHz,zkﬁfz_,lzm({gl})); k=1,2, ...

From Theorem 3.2 we can conclude

P(\JHz,7)=1

K.-H. Fichtner
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On the other hand we have
Hy 72, SHz 2. k=12, ..
For this reason (10.7) implies (10.1).

11. Proof of Theorem 4.1

Immediately from the Theorems 2.1, 3.1, 3.2, 3.3 it follows that there exists
a probability measure P with properties a), b) and c¢). Now we will prove unique-
ness.

We will use the notations 7y, w,, My, w, from Sect. 10. Let P, B, be proba-
bility measures on [Z% M| with properties a), b) and c). We have to prove
that

(11.1) P, (H)=P(H)

holds for all k=1,2, ... and HeM; , . Thereby the sequence (Z,);~, is given
by condition (V4). Now let 1 <k<n, HeM, , . We put

Hrﬁ:{'fz,z,.(g)é geH}
K,={geZz%;g(Z2,)=2,}.

K, denotes the complement of K.
Using c) we get

(11.2) R(H/K,)
=B (H);, s=1,2, n=12,..
(11.3) [P (H)— P, (H)|

=|P(H/K,) B (K,)+ P (H/K,) P,(K,)
—PB(H/K,) B,(K,)-B(H/K,) B(K,)
<P (K)+Ph(K,)
+|R (H/K,) P (K,)— B (H/K,) B(K,).

From (11.2) and (11.3) it follows

(11.4) | P (H)— B (H)|
SP(K)+B(K,)
+ 5, (H,) | (K,)—B(K,)
S2(P(K,)+B(K,).
Using a) and b) we get for s=1,2
(11.5) RK)=B( U U D)

yeZ, zeZ\Z, AcZ
A finite
y.zed

=) X X R(D4).
veZ, zeZ\Z, Ac<Z
A finite
y,zed
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Using a) and ¢) we get for s=1,2

(11.6) R(Dz(A)=R(Dz(A) " {g€Ez 7;§(Z\A)=Z\A4})
éPs(Dz(A)/{gEEz,b g(ZN\A)=Z\A})
=P, (D 4(4)).

Furthermore, (6.3) implies

(11.7) PDA)= Y TT %o

geD 4 (A) xed
From (11.4), (11.5), (11.6), (11.7) we conclude

| (H)— F,(H)|

=4y Y X DI | [ Npwn

veZ,zeZ\Z, A=Z gecD{(A) xcA
A finite
y,zeA

Because of (V4) that implies (11.1).

12. Proof of Theorem 5.9

Let Q° denote the Palm distribution of Q (cf. [3]). Then we get
12.1. (5.13) holds iff

(12.1) Q°({peN; H™ (0, )< o0, H" (0, p)<o0})=1

12.2. Qis a (G)-process iff Q° is a (G)-process, i.e. Q°-a.s. it holds

(12.2) 0°({9; X1(9)—Xo(@)>n}/M)>0; n=12, ..

123. Q(Ny)=1iff
(12.3) Q°(Ny)=1

For that reason we will prove (12.3) using the assumptions (12.1) and (12.2).
Putting

(12.4) T(@)=[0(dX)ds—r,p3 @EN
we get
(12.5) 0°=Q%T™!

Using the results of [4] one can prove that Q° can be decomposed into Palm
distributions of stationary point processes being ergodic (with respect to T).
(12.1) and (12.2) imply that each factor of this decomposition has the properties
(12.1) and (12.2). Furthermore, (12.3) is fulfilled if all factors of the decomposition
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of Q° fulfill (12.3). For that reason we can use the additional assumption that
Q° is ergodic.

Now we are going to prove the following lemma.
124. Forall e>0

0°({p; H= (0, p)<e})>0.
Proof. We put
N°:={peN;p({0})=1}
Y(@)=Xu(9)—Xi_1(9); @eN°,  kel.
Then we get
Q°(N%)=1.

Furthermore, ¢ — [ Y, (9),(Y,(¢))k+o] provides a one to one correspondence be-
tween N° and the set M of all pairs [z,(zi)y~o] Whereby z>0 and (z,);+, is
a sequence of positive real numbers with property

o) [eo)
Y zo=) z=400.
k=1 k=1

Now we define a mapping H on M by setting

(12.6) H{Yo(9),(Y(@)ixo)=H (0, p).
Because of (5.14) and (5.15) we get
(12.7) H{(z,(z1)+0)

_S._H(y’(yk)k4=0); Za(zk)k#Oa ya(yk)eMa
yéz? ykézk; k:’:o

From (12.1), (12.2), and (12.5) we can conclude that there exists d, ¢>0 such
that

(12.8) 0°({e; H(Yo (0} (Ni(@h+0) ¢, Yo(@)2d})>0
(12.7) and (12.8) imply
(12.9) 0°({@; H@,(Ye(@Dexo) =¢})>0.

Now, let ¢t >d such that
cexp[—A{d)(t—d)] <e.
Using (5.16) then we get

(12.10) {o; H(d,(Y(@)+0) =}
S{o; H(t,(Y(@h+o) S}

From (12.9) and (12.10) it follows

(12.11) 0°({@; H(t. (Y (@) +0)<&})>0.
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Finally, using (12.2), (12.5), (12.7) and (12.11) we can show that

0°({; H(¥o(), (Yi(@)i+ o) <) >0

Because of (12.6) this proves 12.4. [

Now we put

B£==ﬁ U {0eN° H (X, (0), p)<e}; >0

k=1r=—k
Using the well-known Poincaré recurrence theorem one gets
Q°(B’)=1.

This implies
(12.12) Q°({peN° imH ™ (X _,(¢), 9)=0})=1.

Using the same arguments one proves
(12.13) Q°({peN®; imH™ (X, (¢), 9)=0})=1.

Now (12.3) follows from (12.12) and (12.13).

13. Proof of Corollary 5.11

A stationary poisson process on R with intensity 41> 0 is a (G)-process. Further-
more, 4> 0 implies

O(N)=1.

Hence (5.13) follows from (5.17). For this reason we are going to prove (5.17).
Using (5.14) we get

(13.0) [P %, s %) exp[—U(xn—xo)—"f Ut

m=0
) U({[ZO) ""Zn];20§0:2i>0}
i=1
U{[zgs ---»2n); 2020, z;<0})
<2 Y I AT, ) 50| ~Ulty—%0)— 3 Ul =)

i=1 m=0

A[Zos +--s Zn)s 20<0,2;>0};  n=1,2, ...
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Simple calculations show

(132) sr+%d[xm.u,x;nexp[—tuxn—xa—-ﬁ:tnxm—xm+n]

AL20s -5 2n); 20 <0, 2;>0}
= f 1(d x,) f Hd x;) fi(xo — X)) fu—is 10— Xo);

(—wx,0) (0, + )

n=1,2,..., i=1,..,n»
Hereby the sequence of functions (f,);%  is given by

fix)=exp[-U(x)]; xeR
St =[file=y) i 1dy);  xeR, n=12, ...
Putting
b={exp[—U(x)]I(dx)
one can prove

(13.3) sup f,(x)E(sup f,(x) b""t; n=1,2, ...

From (5.14) and (5.15) it follows

U(x)=z0; xeR.
Hence we get

(13.4) sup fi(x) =1

(13.3) and (13.4) imply
sup f,(x)<b*";  b=1,2, ...

For this reason (13.2) implies

(13.5) [Pt dx,, ...\ x,) exp[—U(x,,—xo)— i U(xm—xm+1)]

m=0
'{[205 “‘=Zn];ZO<0, Zi>0}
<O Idx) [ 1Ay filx—);

(—,0) (0, + )

n=12, .., i=1,..,n

From (5.14) it follows
fl¥)=fu(—x); xeR.
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For this reason we get

(13.6) [ ldxy | I(dy) filx—y)
(—o00,0) (0, + )
= | ldx) | dy)fiy
0, +w) {x, + ©)
= | Ildx)xfi(x)
(0, + )

=3[l(dx)|x| fi(x); i=1,2, ...
The probability measure

Bdx)=p, 1) £

is the distribution law of a random variable ) #,. Hereby #,, ..., 7, are iid.
m=1

C . 1
and the distribution of #, is given by El(dx) exp! — U(x)]. For this reason

we get

(13.7) §1(dx) |x] £i(x)
SibTHIdx) x| exp[-U(x)]; =12, ...

Finally, the momentmeasures m{ of a stationary poisson process on R with
intensity A are given by

(13.8) m(dx)=A"I"(dx)
From (13.8), (13.1), (13.5), (13.6), and (13.7) we get

@0

S (ms X0 ... %) exp[—U(x,,—xo)ff U(xi—xm)]
n=1 i=0
20, --rs 221320 20, 2,50}
-5{[20, s 2152020, 2;<0})
<{Ixl exp[— U] 1dx) 3 ﬂ;ﬁﬂﬂbﬁ

For this reason (5.17) follows from (5.18), (5.19).
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