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Summary. We prove the existence of the density of states for the Laplacian 
on the infinite Sierpinski gasket. Then the Lifschitz-type singularity of the density 
of states is established. We also investigate the long-time asymptotics of the 
Brownian trajectory on the Sierpinski gasket, getting bounds similar to those 
in the IRa-case. 

1. Introduction 

This paper deals with the Brownian motion on the two-dimensional infinite 
Sierpinski gasket, fr For  the construction of the process and its properties, 
we refer the reader to [-1]. However, to make this paper self-contained, we 
sketch the construction and collect the properties we shall be using in the next 
section. 

Consider a random cloud of points, governed by a Poisson point process 
with intensity v d p  (v>0  is a fixed number, and p is the Hausdorff measure 
on the gasket). We assume that this Poisson point process is independent of 
the underlying Brownian motion. The points of the Poisson process will consti- 
tute the obstacles for our Brownian motion, preventing it from spreading. 

One looks at the Brownian motion on a large ball B M centered at zero 
(its radius will be equal to 2M), which is absorbed at the boundary of B M and 
at the obstacle points. The generator of this process, - A  (with random points 
at which the Dirichlet boundary conditions are imposed), is a positive self-adjoint 
operator. By standard theory we obtain that its spectrum consists only of positive 
eigenvalues, each of finite multiplicity. We build an empirical measure, based 
on this (random) sequence of eigenvalues, and normalize it by dividing by the 
volume of the ball B M. Denote this measure by l (M,  co). 

We are interested in the asymptotic behavior of measures l (M,  co) as M 
goes to infinity and then in the behavior of the limiting measure, l (l is called 
the density of states), near zero. For  the survey of results on the density of 
states in the Euclidean and lattice case, see [2]. 

* On leave from Warsaw University, Warsaw, Poland 
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In present paper, we show the existence of the density of states for the 
Brownian motion with Poisson obstacles. In the proof, we are not able to profit 
from the translation invariance of the process (which does not hold) - as one 
can in the IR<case, see [2, 101. The lack of the translation invariance also jeopar- 
dizes the attempts to find a close formula for the Laplace transform of the 
density of states. Such a formula exists in the Euclidean space-case, as well 
as in some other examples (see, e.g., [11-131). However, using the methods 
alike those in [10], we are able to investigate the asymptotics of / ( [0 ,  )~1) for 
2 small. What we get is that there exist two positive constants C and D such 
that 

. . . . . .  log I([0, log 1([0, 21) 
(1) - c v ~ u m  mr ~ 2]) _<lim sup < --Dr, 

2 log 3 
where ds denotes the so-called 'spectral dimension' of the gasket, ds= log5 

Thus, the behavior near zero, with the obstacles introduced, is exponential (which 
is the Lifschitz-type singularity). The power that in singled out is, unlike in 

log3 but its spec- the IR<case, not the Hausdorff dimension of the gasket, dj - log 2 '  

tral dimension ds. 
Similar problems for the Brownian motion in the Euclidean space and in 

the hyperbolic space were treated in [10, 12, 13]. 
In Sect. 2, we present the results from [1] that will be important  for our 

work. 
The construction of the density of states, as well as all the estimates we 

derive, are performed using the Laplace transforms of underlying measures. 
This approach is very useful, as it allows us use the trace formula. 

Section 3 is devoted to the construction of the density of states. The punchline 
is alike the one employed in the IR e case first we show that the expected values 
of the Laplace transforms of the measures I(M, ~o) converge, and then we derive 
a property which in virtue of the Fubini's theorem shows the almost sure conver- 
gence of l(M, o3). 

Having established this preliminary result we devote the rest of the paper 
to getting the following inequality: 

Denoting by L(t) the Laplace transform of the measure l, we have 
2 

logL(t)  <l im < --Dvd~+2 (2) -- C v ~  < lim inf sup log L( t )  2 
s ~ ds 

with positive C, D. This then can be transformed into (1), using the Minlos- 
Povzner Tauberian theorem from [51. 

The lower bound in (2) (obtained in Sect. 4) is not difficult; one estimates 
the probability that no obstacles fall into a large ball and that the process 
does not leave this ball. 

For  the upper bound part we, as usual in problems of that kind, tend to 
replace the Brownian motion on the whole Sierpinski gasket with a process 
with a compact state-space. What  we use, is the reflected Brownian motion 
on the Sierpinski gasket ('reflected' is used for geometrical reasons, or for analo- 
gy with one of the constructions of the normally reflected Brownian motion 
on the finite interval). We have gotten to resort to such a process, since the 
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'natural  guess', i.e. the projection onto a torus of an appropriate size fails in 
this case by not leading to a Markov process. 

The construction of the reflected Brownian motion is carried out in Sect. 5; 
Sect. 6 is concerned with the upper bound in (2). 

A subtle part of the problem is that one must perform all the optimization 
procedure before passing to the limit with M, and get the bounds independent 
of M. All way through we also face a technical nuisance of the lack of continuous 
scaling in the gasket case. Moreover, no scaling can be used after projection 
onto the compact state-space. This is handled by performing all the optimization 
before the projection. 

Our setting is also suitable for obtaining results for asymptotics of 
E x [exp { - v/~(Ztoa~)}], where Zt0aj denotes the Brownian trajectory from time 
0 to t, and #- the x df Hausdorff  measure on the Sierpinski gasket. The result 
we get is a counterpart  of the Donsker-Varadhan Wiener sausage estimate in 
R d (see [3]) (with the difference that in our case the trajectory itself has nonzero 
Hausdorff measure). 

The result is: 
there exist two positive constants C 2 and D 2 such that: 

2 log E x [exp { -- v #(Zto,~l)}] 
(3) - C2 vdZ~ < lim inf ds 

t ~ o o  t d s +  2 

2 

-< lim inf log Ex [exp { -- v # (Zto ,tJ)}] < _ D2 vd~ 2. 
- -  d s 

t--+ oe t ~ + 2  

For  the lower bound in (3), one performs some observation on the spectral 
decomposition of the underlying semigroup. The upper bound can be obtained 
in the way similar to the upper bound in (2). 

Recently, Fukushima and Shima [4], obtained the existence of the density 
of states in the no-obstacle case. Their paper investigates its asymptotics near 
zero, which in that case is power law-like. The paper also shows the highly 
irregular behavior of the density of states, due to the fractal nature of the domain. 
Independently, Lindstrom in [8], gave the asymptotics of the eigenvalues of 
the generator of the Brownian motion on an arbitrary nested fractal for large 
2. It is consistent with the result from [4]. 

2. A survey of the properties of the Brownian motion on the Sierpinski gasket 

In the sequel, we shall use the notation as in the paper of M.T. Barlow and 
E.A. Perkins [1]. In what follows, we summarize the notation and list the proper- 
tJies of the Brownian motion on the Sierpinski gasket we shall make use of. 

Let ao=(0,0) ,  a l= (0 ,  1), a 2 = ( 2 ,  ~--~) , Vo={ao, al ,a2},  ao, aa,a2 are the 
~ Z 

vertices of an equilateral triangle of unit size (see Fig. 1). Let No be this equilateral 
triangle. We define inductively: 

V~t+l = V M w {2Mal + VM} w {2Ma2 + VM} 
and we put: 

M = 0  M = 0  
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~_I(X) 

Fig. 1. 

where P'M denotes the symmetric image of V u in the symmetry with respect 
to the y-axis. Now we let 

~M=2MN0, M ~  
and 

M_<O 

~o~ is called the (infinite) Sierpinski pre-gasket. Its closure (in the plane topology) 
is the 2-dimensional Sierpinski gasket and it will be denoted by N. 

More notation: a ~fM-triangle is the closed set of points in N that lie inside 
an equilateral triangle, which is the translation of 2MJo and whose vertices 
are the three neighboring points in N~r. The collection of all closed ~M-triangles 
will be denoted by J-M. For xEN\(q~t we define AM(x ) to be the unique triangle 
from Y-~t containing x (see Fig. 1). 

We have the following distance on the gasket: for x, y e n  we put d(x, y) 
to be equal to the infimum of the length of all the paths in N, joining x and 
y. 

By BM we shall denote the closed ball in the gasket metric, Of radius 2 M, 
centered at zero and by J~M - the intersection BM c~ {(x, y)elR2: x >0}. 

We introduce the following numbers: 

log3 1.58496... (fractal dimension of N) 
ds - log 2 

ds 2log3 1.36521... (spectraldimension of N) 
log 5 

d w -  2 d s _ log 5 2.32193... (dimension of the walk). 
ds log 2 

These numbers fulfill: 

d~ d~ d~ 2 
(4) d r + d , ~ = d s + 2  ' d i + d ,  ~ d~+2 

Let #M be the measure which puts mass (2)3-M at each point in ~f-M- 
Now we formulate the following lemma (Lemma 1.1 of [1]). 
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Lemma 1. 1. There exists unique measure # on (N 2, ~(]R2)), supported on ~q 
such that #(AM)= 3-M for all A E J-M, M~2~ 

2. {#M} converges to # in the vague topology, 
3. # is a multiple of the Hausdorff xd~-measure on ~, 

4. # ( ~ o ) =  1. 

We introduce a new metric to the gasket, so-called 'gasket metric' it better 
suits our purposes: 

for x, Y6(r define d(x, y) to be the infimum over the Euclidean length of 
all paths, joining x and y on the gasket. 

It extends in an obvious way (limit procedure) to the whole gasket (r This 
metric is equivalent to the euclidean metric on the plane, in fact 

(5) I x -  yl<d(x, y)<21x-  yl. 

Eli gives a construction of the process Z,, called the Brownian motion on 
the Sierpinski gasket (the construction of the Brownian motion on the Sierpinski 
gasket was earlier carried on by Goldstein (E6I) and Kusuoka in E7], but Eli 
give very precise estimates on the transition density, therefore we choose the 
approach from that paper). It is a strongly Markov Feller process which has 
a continuous symmetric density p(t, x, y), satisfying (Theorem 1.5 of [1I): 

- -  d~ - -  1 d ~  

(6) CI.~ t 2 exp{ -C~. z (d (x ,  y ) t ~ a - ~ Y }  <p(t ,x ,  y)<= 
d~ 1 d~ 

< Ca.3 t 2 exp { -  Cx.4(d(x, y) t ~ a ~ - l } .  

The process admits a discrete scaling, namely, for F ~ ( N ) ,  

~[z ,~r3  = P2xE�89 Zst~r]. 

In particular, for the process starting from the origin, 

S (Zt) = ~e (�89 z5 3. 

All this translates into terms of density as (Theorem 7.8 of Eli) 

(7) p(t, 2 x, 2 y)= �89 p(t/5, x, y). 

The last thing we need are the following sample path and hitting time estimates 
from [13: 

�9 (Theorem 4.3) For all xe(q, all t, 6~(0, oo) 
- 1 d ~  

(8) Px [sup d (Z~, Zo) > 6[ < C,. 5 exp { - Ci.6 (6 t ~ a G ~ -  1 }. 
S~ t  

�9 (Proposition 5.18) Let R). be an exponential random variable with mean 1/2. 
Then: 

(9) P~ ETy > R~] < C1.7 Ed(x, y)I a~-d' 2~ -~as. 
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�9 (Theorem 5.21) 

(10) 
1 

P~ [Ty < R~] < CLs exp {C~.9 )o~ d(x, y)}, 

where Ty is the hitting time of the point y. 

Estimates (9) and (10) are complementary: inequality (9) is convenient for x, y 
lying close, inequality (10) - for lying far. 

In what follows, when no confusion arises, we shall drop the subscripts 
- C will denote a generic positive constant. 

Finally, let us introduce a notation for the supremum of p (1, x, y): 

(11) ~=sup p(1, x, y)< oo. 

3. Existence of  the density of  states 

Let Y be a Poisson cloud of points, defined on the probability space (f2, .:g, IP), 
with intensity v d~t (v is a positive parameter, # is the Hausdorff measure on 
the Sierpinski gasket), falling onto the gasket. We assume that ~Ar is independent 
from the Brownian motion we shall be investigating. By ~E we shall be denoting 
the expected value, corresponding to the probability measure ]P. The points 
of this Poisson process will form the obstacles for our Brownian motion, prevent- 
ing if form spreading. 

Denote by N~P(~') the Sierpinski gasket with the obstacles removed; NY(~) 
=N\~Ar(co). In the sequel, when no confusion arises, the dependence on co will 
be dropped. 

Our goal is to construct the density of states for this process and to investigate 
its asymptotic properties near 0. To this end, we will denote by BM the ball 
of radius 2 M, centered at zero. Let Z f  TM be the Brownian motion on B~t c~ ~ ,  
killed upon coming to the boundary of the ball or to any of the point-obstacles 
(it corresponds to the Dirichlet boundary conditions imposed on OB~w.Ar). 
The process (Z~'M)~_>_o is a Markov process with symmetric transition density 

p~t,~ (t,x, y)={P(t,x, Y)P].y[T~B~> t, Tx(o) > t] for x, yeBM\~/" 
otherwise. 

In the last formula, Pxty denotes the bridge measure for the Brownian motion 
on the Sierpinski gasket; a measure that is concentrated on trajectories which 
start from x at time 0 and at time t are at site y. Formally: 

P~,y is a measure on C([0, t], f#) such that 

for O<s<t and Ae(r(Z,,O<u<=s) 

1 
n t  F , 1 7  

r~'Y k~lJ -- p(t, x, y) - -  E~[1Ap(t--s,Z~, y)]. 

In the sequel, we will need the continuity of the transition density for the non- 
obstacle problem on a ball, absorbed at its boundary. It follows from the weak 
continuity of the bridge measures and the continuity of p ( . , . ,  .). 
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The corresponding semigroup, (PtM'x)t> 0, is a semigroup of trace class opera- 
tors and has a selfadjoint generator A M,X. A M is a Laplacian on the Sierpinski 
gasket (in the Barlow-Perkins sense) with Dirichlet boundary conditions on 
~B M, A M'N its counterpart  with the Dirichlet boundary conditions on OB~ w ~s 
Usual arguments give that the spectrum of - A  M'w conisists only of positive 
eigenvalues, each with finite multiplicity. Let 

(12) 0 <~ 2~ (co, M ) <  ... __< 2, (co, M)__< ... 

be the sequence of eigenvalues of - A  ~t'~. We build random empirical measures, 
based on those spectra: 

(13) l(M, co)= #(B~) .= ~ 

Let L(M, co) be the Laplace transform of I(M, co), i.e.: 

o(3 

(14) L(M, co)= ~ e- a' dl(M, co)(t) 
0 

- ~ e -  a"(M"~ = - -  Tr  Pt M'N 
# (BM). =~ # (BM) 

By the trace formula one has" 

(15) Tr  Pt u ' ~ =  ~ pM'd(t, X, X) d#(x)  
BM 

= ~ P(t,x, xlPt~,~[{T~BM>t}c~{T~(~)>t}]d#(x) 
B M  

where Tx(o~ ) denotes the hitting time of the Poisson-cloud obstacles. 
To prove the existence of the density of states, we first prove a lemma stating 

the convergence of the expected values of the underlying Laplace transforms. 

Lemma 2. For every t>0 ,  E L ( M ,  co)(t) is convergent, as M--* oo, to a finite 
limit L(t). 

Proof For  simplicity, we will write L(M, t) instead of L(M, co)(t). Then, from 
the trace formula: 

(16) IEL(M, t ) = l E - -  
1 

p(t, x, t}] d#(x) 
BJvr 

1 
-- #(BM) ~ M p(t, x, x) P~,x EET~M > t] IP [T~(~) > t]] d #(x). 

Notice that the event {T~(o~)> t}, meaning that ' the Brownian motion does not 
hit any obstacle up to time t '  is the same as 'no obstacles fall onto the Brownian 
trajectory up time t', thus 

]P [ T X(~) > t] = exp { - v # (Z[o ,tl)}. 
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0 2 (3L 

a t b I 0 b a a a 

Fig. 2. 

It follows: 

(17) IEL(M, t)= 
1 

#(BM) ~ p(t,x,x)E~,~[exp{--v#(Z~o,q)} 1 { T ~ > t } ]  d#(x). 
B M  

We shall see that IEL(M, t) is for each t an increasing function of M. 
Look at the Fig. 2, representing the balls BM and BM+ 1. Notice that in 

the expression (17), written for L(M+ 1,-), the quantity under the integral sign 
corresponds to the absorption imposed at points {al, az, a3, a4} (and all the 
obstacle points). Clearly, this quantity decreases when we impose additional 
absorbing points {bl . . . . .  b4}. 

After introducing the new absorbing points, the process lives in one of the 
three disjoint sets A I = A I u A  2, A2=A~voA 2, A3=AIwA~,  depending on its 
starting point, (these sets are in fact balls of radius 2 M, centered at 0, bs, b6). 
Now we can use the fact that the processes, living on A a, A2, A 3 (absorbed 
at their boundary points) are equidistributed. As/~(B~+ 1)=3 #(BM) we obtain 
E L ( M +  1, t)>=IEL(M, t). 

The other point we must check is that for every t{IEL(M, t)}M is a bounded 
sequence. This is clear from the bound (6) for the density p(t, x, y). 

In this way the convergence of expected values is established. []  

In what follows, we will denote by L(t) the limit of IEL(M, t). 

Theorem 1. ]P-almost surely, the random measures l(M, co) converge as M ~ co 
to some deterministic measure. The limiting measure will be denoted by l. 

Proof Our proof is a modification of the proof of the theorem (1.1) from [-ii]. 
For  convenience, we submit the adapted proof here. 

It is enough to show that 

(18) ~ IE([L(M, t)-- IE L(M, t)] 2) < co. 
M 

Indeed, then an elementary Borel-Cantelli lemma argument gives (for every t) 
the almost sure convergence L(M, t)-+L(t). Hence we obtain the almost sure 
convergence for all rational t. As we know, {l(M, co)}M is an almost surely 
vaguely relatively compact sequence of measures on [0, co), thus the theorem 
will follow. 
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This way we are led to showing Eq. (18). 
To this end, let us introduce the following measures on the probability space 

~=Q3 x C([0, t3, ~)2: 

--| [ 1 . O2 
(19) v~t t#(BM) B~ P~,xd#(x))) = ~  |  J p(t,x,x) 

Then, using those measures and the trace formula, we obtain that the terms 
of (18) look like: 

(20) IE([L(M, O - E L ( M ,  t)] 1) 
2 

= [. 1-[ 1 { To~ (wi) > t}. (1 { Tx(~o ) (wO > t} - 1 { T~,(o,)(wi) > t}) 
i=1 

�9 dvM(coo, COl, ( /)2 '  W i '  W2) 

where (COo, COl, CO2, w~, w2) is an element of f2, (COo, cox, coz) pertains to the Pois- 
son cloud, (Wx, w2) - to the Brownian motion on the gasket. 

To bound the integral (20), we partition ~ into two sets: cg and its comple- 
ment. cg is the subset of C([0, t], fr consisting of pairs trajectories with non- 
intersecting supports (we identify ~ with O3x of). The random variables on 
f23: 

1 { Tj:(~,o)(Wl) > t} - 1 { Tx(coO (wt)> t}, 
1 { T~(oo)(w2) > t} - 1 { T~,(~2)(w2) > t} 

are independent if (wl, w2)e(g, as they do depend only on events, involving 
the Poisson measures, restricted to disjoint sets: Zro,tl(Wl), Zto,q(w2). From the 
independence we infer that the integral over 0 3 x cg equals to zero. 

The integral over 0 3 x ~c is estimated by bounding vM(f23 x cgc), as the abso- 
lute value of the integrand does not exceed 1. Let N be the set of w's for which 

d (Z o (w 1), Zo (wz)) > 2 cu, 

but Zto,tj(w 0 and Ztoa~(wz) are not disjoint. CM is some positive constant - 
it will be chosen later on. It follows that on this set, for i = 1 or i = 2 we have 

(21) sup d(Zo(w~), Z~(w~)) > CM 
O<s<t  

Using the sample path and density estimates (6, 8) we obtain: 

(22) vM(N)<2 sup[p(t, x, x)PJ, x[ sup d(Zo, Z,)>c, , ] ]  < 
xef~ O<s<=t 

__<4supE~ 1 sup d(x, Zs)>CM}p g, Zt ,  x <= 
xe~r k ko<s--<�89 

1 
__<4CsupP~[ sup d(x, ZO>cM]. .t. d <_ 

__<4 C(2)-d2~exp[ - t 1 d~ C(c~(~)-~)a~f-1]=C exp [-- C(cM)d%~@ 

where all the constants depend on t only. 
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We have found that 
d~ 

(23) IE[L(M,t)--IEL(M,t)]2<=Cexp(--C(cM)d~zT-1)+vM(~c~). 

N~n cgr is the collection of those pairs of Brownian trajectories which intersect 
each other, but have started at distance less or equal to 2 c M. 

We have: 

(24) v ~ ( ~  c~ (gr c .  fiM| 

where tim is the normalized Hausdorff measure on BM, ~ c ( B M )  2, consists of 
pairs {x~, x2} such that d(x~, X2)~2C M (we came to this set by considering 
only the starting points of our Brownian trajectories). Thus 

sup #(B(x, 2 cu) ) 
xEr 

(25) fiM| u(BM) 
M 

Taking 2 eM = 2 T  we get from the gasket scaling 

M 

(26) fiu| c~ cg~) < C. 3 2 ,  

thus the right member of (23) is a term of a convergent series. This completes 
the proof. [] 

Remark 1. In the proof above the balls that appeared were centered at zero. 
However, it is not difficult to carry out all the details in the case when we 
center our balls at some point xefr Indeed, if we use the fact that 

/~ (B (0, 2 ~) -- B(x, 2u)) 
/~ (B (0, 2M)) 

goes to zero when M--+oo and that p(t, x, x) is bounded independently of x 
(bound depends on t only), we get Lemma 2 immediately. Theorem 1 does not 
rely on the centering. Hence the density of states can be constructed independent- 
ly of the centering point. 

Remark 2. The other remark is the observation that the limit remains unchanged, 
if we replace the 'full '  ball BM by its 'half ' :  the triangle Y~t- Indeed, one notices 
that { T~B M > t} = { Te~,~ > 1} v2 { ToB ~ > t, T{o } < t}, and this sum is disjoint. There- 
fore the only thing we must show is that the following quantity: 

1 
l~(~M) S P(t,x,x)P],x[{ToBM <=t, T~ol <t}n{T~(~)>t}]  d#(x) 

goes to 0 when m ~ oo. 
For  fixed, sufficiently large m denote: 

agM = {xe~M: d(x, O) < 2m/2}, 

~M= {x ~g~,: d(x, 0) > 2m/2}. 



The Lifschitz singularity 11 

The integral over dM goes to 0, which is obvious from the area comparison 
(the integrand is bounded and the bound does not depend on M). The other 
- over ~ t  - can also be estimated easily, if we notice that on the paths that 
start at x 

{T{o } __< t} ___ {sup d (Z o, Zs) > d(x, 0)} 
s < t  

and take into account the estimate (8). Making m of magnitude V ~  we get 
the desired result. 

This way we have constructed the density of states for the problem with 
Poissonian obstacles. It is the deterministic measure l, with Laplace transform 
L(t). This measure is concentrated on [0, oo). In what follows, we are interested 
in the behavior of l([0, t]) for t tending to zero. To this end, we shall find 
some estimates for L(t) as t--+c~ and then use the Tauberian theorem from 
[5]. In the sequel, we shall rather be using the method of obtaining the density 
of states which uses the triangles, not balls. 

4. A s y m p t o t i c  lower  bound 

In this section, we obtain a long time asymptotic lower bound for log L(t) 
ds 

and for tds + 2 

log E~ [exp { - v # (Zto ,tl)} ] 
ds 

t ~ + 2  

We get this via a crude estimate: by assuming that the Brownian motion does 
not leave the ball up to time t, and no obstacles fall onto this ball. Using 
these methods we obtain 

Theorem 2 There exist positive constants C~ and C 2 such that: 

inf l o g ~  2 (27) lim > -- C1. Vd~W 2, 
t --+oa tds+ 2 

and, independently of x E ~, 

(28) log Ex [exp ( z ) ~ l  # 2 
lim inf t ,-to,q,JJ > _ C2 "vds~ 2 

d s 
t '-*m tds+ 2 

Proof. First, we prove (27). 

We know that for every t, L(t) is the increasing limit as M ~ o e  of IEL(M, t). 
Therefore for each M we have 

(29) 
1 

L ( t ) > = ~ )  IE ~ p(t,x,x)P~,x[{T~B,~>t} c~ {T~(~o)>t}] d#(x ) 
BM 

1 
p(t, x, x)(PJ, x|162 d ~(x) 

>= ~(BM) ~,~ 
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where J / / i s  the event 'Z t does not leave the ball B M up to time t, no obstacles 
fall into the ball', 

Jg  = {T~B M > t} c~ {~4/" (o), BM)=0}. 

Therefore the quantity (29) is equal to 

(30) 
1 

# (BM) S p (t, x, x) ]P [~A/" (co, BM) = 0]. p t ~ [ ToBz ~ > t] d/~ (x) 
BM 

1 
=exp[- -v#(BM)]  ~ S p(t, x, x)Pt, x[ToB~>t] dl~(X). 

BM 

Now, recognize in the last integral of (30) the trace of the operator Pt M, (corre- 
sponding to the Brownian motion on B M with no obstacles). It follows that 
this integral is greater than the principal eigenvalue of Pt ~, exp [ - t2 (BM)] ,  (2(B) 
denotes the principal eigenvalue of the Laplacian in B, with Dirichlet boundary 
conditions on ~B). We get that for every M 

1 
(31) L(t) > ~  exp [ -- v#(BM)- t 2(BM) ] 

#t~MJ 

1 

In what follows we shall be using the scaling: 

(32) # (2 BM) = 3 # (BM), 

2 (2 BM) = 15 2 (BM), 

in other words, for all t of the form t = 2" 

~(t BM) = t d' ~ (B~,), 

X(t B~,) = tl--~ ~(S,). 

Although the scaling in our case is only discrete (which makes it different from 
the Brownian motion in N J, for example) we shall make use of it: for an arbitrary 
t~lR, we will replace it with one of the numbers that admit the scaling and 
then introduce the error. The ideal scaling factor we would like to take is 

t ~  
(v)ds+dw, instead, if 

(33) 2 n< < 2  n+l, 
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then we replace dy§ with 2" and fix M = n .  Using the scaling (32), (33) 

and the relation (7) we get that 

(34) 
1 d~ 2 

L(t) >_ ~ exp {t d,+~(-- vd~g5 [/t (Bo) + 5 2 (Bo)])}, 
,IA(DM] 

whence 

(35) log L(t) > --log #(BM) 2 
as = a. vd~5 [# (Bo) + 5 2 (Bo)] 

tds+2 ~ ds+2 

and, 

2 
l im inf  > --  vds+2 [#(Bo)  -~- 5 2(Bo) ]. 

t ~ oo t ~  

/~(Bo)+52(B0) is a positive number (easy check, see also Lemma 10), and we 
set Ca to be equal to that number. The proof of (27) is complete. 

Next we pass to the proof  of (28). First notice that for every M 

(36) Ex [e-vu(z,o,~1)] = Ex [IP [JV" (co, Zto ' 0 = 013 

_> ex [mEY(co, Zto.,~)= 0] 1 { ~ . ~  > t}] 

---- P~| [ {  T~.M > t } a {T~(~,) > t } ] .  

The last quantity, as in the proof of (27), is greater than or equal to: 

e-~u(B~)p~ [ToBM > t]. 

In order to single out the behavior in t and co, we first perform the scaling 
- as in (33)" if t satisfies (33), then we chose M = n in (36). 

First, from (4), (33) and the scaling (32) we obtain that: 

(37) e -vu~B'~)=e ~,(2~Bo) 
d~ 2 

_-->c (38) --td.+2 ~d~+2,(B0) 

Now, writing x = 2~y:  

Px [ToB,~ > t] = P2M r [ To(2MBo)> t] 

and the scaling of the process, (7), together with (4) give that 

] ds 2 
Py TaBo>~ t _ - - > P y [ T o B o > 5 t d ~ 2 v ~  ]. Px [To"M > t] = 5 

For  the sake of notation, we shall denote 
d s 2 

(39) s = 5 tds+2 vd~+2. 
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As the semigroup (Pt ~ is a semigroup of integral operators with continuous 
kernel pO(., .,.), we can use Mercer's theorem (see par. 98 of [-9]) to get that 
the series 

(40) 8[-ToBo >s]  = i e-'~'(n~ qS~(Y)(qSi, 1)L~(8o,u) 
i = 1  

is convergent not only in L 2, but also uniformly with respect to y. Here {2i(B0)} 
is the sequence of eigenvalues of --A ~ {~bi} is the corresponding sequence of 
normalized eigenfunctions (which in this case are continuous). 

We will show that the principal eigenvalue of A ~ is simple and that it admits 
a strictly positive eigenfunction. 

First we show that every eigenfunction corresponding to the principal eigen- 
value 21 (Bo)= 21 has constant sign and, in fact, is never zero inside Bo. 

To see this, assume that ~b is a continuous principal normalized eigenfuncton 
and that ~b changes sign. Then [qSl>~b on a set of positive measure and, as 
the kernel p~ x, y) in strictly positive and continuous inside B0, (P~ qS) 
< (po I ~b [, [ q~ I). This yields a contradiction as 

(P~176 sup (P~ 
II~Oll = 1 

Strict positivity (or negativity) of a function that never changes sign follows 
from the relation q~(x)=e ~' pO ~b(x). 

21 must be simple - if it were not, we would have two orthogonal unit 
eigenfunctions belonging to this eigenvalue, which is impossible, as they have 
constant sign. 

This way we can assume that the eigenfunction q51 appearing in (40) is strictly 
positive inside B o. Therefore there is a positive constant A such that if [Yl < �89 
then ~bl (y) > A. Moreover, for all i > 1 

le -a' 4'i(x)l = IP ~ qSdx)I--I ~ P~ 1, x, y) 4',(y) d#(y)[ 
Bo 

< ~ P~ x,Y)I~g(Y)l d # ( y ) < 2 r  
Bo 

(4 is the constant from (11)) 
and 

1(4',,1>1 = S (~(x)d#(x) <=2" 
Bo 

From the last two estimates it follows 

(41) i e-Z'~B~ q~i(Y)(q~i, 1) 
i = 1  

=e-2ls[,~bl(y)<~l, 1>+ i e-(~'s-J'ls)4)dY)(d&, 1>]> 
i = 2  

> e  x~s[,4t(y)(q51,1)-4~eXl i e-(X'-xl~(~-l~]" 
i = 2  
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A 

Fig. 3. 

Recall now how y was related to x and s to t: if t is large enough, then I y I < �89 

and ~bl(y ) > A, and as ~ e -  z~(~- 1) is finite (trace of a trace-class operator), then 
i = 2  

~ e-(Z~-~l)(~-1) goes to zero as s---, ~ .  It follows that, for large t, the expression 
i = 2  

in parenthesis in (41) is bigger than, say, 

�89 1), 

which is not zero, thus 
2 d~ 

(42) Px[ToB~> t] >>_e-Vd2+2td~+25~W~189 A ( 01,1). 

From (37) and (42), (28) follows as before. The proof  of the theorem is complet- 
ed. []  

5. Construction of  the reflected Brownian motion 

So far, we have obtained an asymptotic lower bound for the Laplace transform 
of the density of states. To get an upper bound, we should know how to reduce 
the problem to one with compact state-space. As already written in the introduc- 
tion, the usual projection onto a torus does not work here; the process that 
we obtain is non-Markov. Indeed, the Markov property will be destroyed at 
the vertices, which after the projection get identified to one. If you look at 
the process before projection (see Fig. 3), then if at some time the process comes 
to the vertex 'A', then right after it exits through angle 'c~' or '/~' - never through 
'7'. But after the projection, this information is lost - to know that the process 
will stay some time 'far from 7', we need to know not only the present position 
of the process, but also where it came from. This is not a Markov-type behavior. 

However, we overcame this difficulty by using a somewhat different method 
of 'projection'.  The process obtained as a result of this procedure will be called, 
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c b 

CIC1 ~ C  ~ C a 
b a a c 

c c b b 

b c 

b I ~,r V ~,[ v N/ .d  V V I I I - - I r  

c a b c a b c a b c a b c a b c 

Fig. 4. 

for geometrical reasons and for analogy with one of the constructions of the 
normally reflected process in the real-line case, the reflected Brownian motion 
on the Sierpinski gasket. We construct its transition density, but do not construct 
nor investigate its Dirichlet form. 

To prepare the ground for our construction, we now introduce two types 
of labels on the gasket. 

5.1. Preparatory labeling of the gasket 

5.1.1. Labeling of the vertices. We will introduce a labeling of the gasket (to 
be precise, we are labeling not the gasket, but the grid of size 1, No). Our labeling 
will distinguish between the vertices of the 0-triangles, although the process 
is locally symmetric with respect to rotation by an angle 120 ~ . This procedure 
will allow us to construct the 'reflected Brownian mot ion '  on the Sierpinski 
gasket. 

First observe that N0 c 2gel + 2ge2 as for every point x ~ No, x = n el + m e 2 , n, 

mEZ(et=(1, O),e2=(1,~f--~-))andthisrepresentationisclearlywell-defined. 

We put the labels as follows (see Fig. 4). Consider the commutative 3-group 
~ 3 ,  which consists of even permutations of 3 elements {a, b, c}. Then A~ 3 
={id, (a, b, c), (a, c, b)}, and we denote Pl =(a, b, c), pa=(a,  c, b). Clearly p~=id, 
p3 = id. The mapping 

~o~x=nel +me2P--~Pnl ~  

is well defined. We associate with each point x=nel+me2 the value of N o m (Pl P2)(a) �9 
This way, every triangle of size 1 from Yo, with vertices from go, has its 

vertices labeled 'a, b, c', in the way corresponding to the location of this triangle 
in the gasket. 



c b:b(x) 

a b c :c(x)  a :a(x)  

b c 

Fig. 5. 

Fig. 6. 

For an arbitrary x ~ \ N o ,  x belongs to exactly one triangle Ao(x)~Y-o (see 
Fig. 5), and x can be written as x = x a ' a ( x ) + X b ' b ( x ) + x c . c ( x ) ,  where a(x), b(x), 
c(x) are the corresponding vertices of A o(x) (with introduced labeling), 
xo, xb, xce(0, 1). 

We define a projection map from the Sierpinski gasket onto its intersection 
with the first triangle, Yo by setting: 

(43) rc o (x) = xa' a (0) + Xb" b (0) + x c . c (0), 

where a(0) = (0, 0), b (0) = (1,  ]@-23), c(0) =(0, 1). 

If XeNo, then x itself has a label and we can map it to a corresponding vertex 
of the "first" (shaded on Fig. 4) triangle. 
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5.1.2. Distance labeling of  the O-triangles. We will also need some estimates 
on the number of points from the fiber (with respect to the mapping rco) of 
a fixed X ~ o ,  lying at particular distance from X. To this end, we shall label 
the 0-triangles in the manner that takes into account this distance. 
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For  a fixed x~N\No ,  we put label '0 '  on Ao(x ) and on the three adjacent 
triangles (see Fig. 6), then, label '1 '  on all the triangles that are neighbors of 
some triangle with label '0', . . . .  If we already have marked the triangles with 
labels '0 . . . . .  n', then we put the label ' n + l '  on those triangles adjacent to 
some triangle with label ' n '  that have not been labeled so far. 

To see this in a more rigorous setting, for Te~-o, Ix(T) will be the label 
on this triangle, whereas s 3-o) will denote the collection of triangles with 
label 'n '  on them. 

For  T ~ J o  we put: 

1. l ~ ( r ) = o  iff TnAo(x)=t=O, 

~o,x = { Te~-o : lx(T) = 0}, 

2. lx(T)=n+ 1 iff r ~  0 5e,,~ and for some T, ~SPn, ~, T1 n r + O ,  
k - 0  

s 1,~= {T~Jo:  lx(T)=n+l}. 

Notice that if yE Te 5~n,~, then 

(44) n __< d (x, y) __< n + 2. 

In the sequel, we will need the following lemma, giving the upper estimate 
of the cardinality of ~,,~: 

Lemma 3. There exists a universal constant C such that 

# ~'n,x~C.n 2. 

Proof. This lemma follows immediately from the crude comparison of the Euclid- 
ean distance on the plane and the gasket distance. Notice that if we pick, for 
example, the south-west vertex of each 0-triangle, we obtain a collection of 
points, one in each TEYo, mutually at distance greater than or equal to 1. 
Using the inequality (5) 

Ix-y l<d(x ,y)<21x-y l ,  

we get that all the triangles from Y.,x are included in the annulus 

Let us now estimate how many points which are mutually at distance greater 
or equal than 1 can be packed into the annulus 

{x~IR2: n< 2}. ~ = [ x l < n +  
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Performing a simple area comparison we get that 

+ 

(2 comes from the points which may lie too close to the boundary of the annulus) 
and 

(45) nma x __< 64 n 2. 

Such points are in one-to-one correspondence with the 0-triangles (take south- 
west vertices, as above). The lemma is proved. []  

5.2. Construction of the reflected Brownian motion 

The goal of constructing this object is to obtain a Markov process on a compact 
state space, whose local properties remain basically the same as those of the 
Brownian motion on the whole Sierpinski gasket. The usual projection onto 
a torus does not work here (imagine how a 0-triangle looks like after a usual 
projection !), the result of projecting the Brownian motion from the whole gasket 
turns out to be not Markov. Although the vertices get identified to one, the 
Markov property would break at this point (as explained above). 

What  we do, is making use of the mapping rCo, defined in the Sect. 5.1. 
This mapping behaves as a usual projection with one (crucial!) exception: it 
distinguishes between the vertices of the projected triangle. By analogy with 
one of constructions of the normally reflected process on an interval, we shall 
call this process ' the reflected Brownian motion on fro'. Its distribution will 
be defined as a family of measures on (C(IR+, fro), ~(C(IR+, fo))), given by 

0 
{ Q x } x E ~ o  z { 7 ~ o ( e x ) } x e , ~ o  ' 

where (P~)x~e is the family of measures, defining the process (Zt)t>=o, and the 
process itself by 

x ~ = ( z o .  

The transition density for this process will be given by: 

(46) qo (t, x, y) = 

~ p(t ,x,y) 
y' ~zf f  X(y) 
2 y p(t,x,y) 

Y' ff ~'0- l (y)  

if x, y e f o ,  YCfr 

if yeff0.  

We start by a following technical lemma: 

Lemma 4. 1. VcS>0 ~ p(t, x, y') is uniformly convergent in x, yef f ,  
y p ~ f f  1 

2. qO defined by (46) is jointly continuous in x, y, t, 

t>6, 
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3. there exist two positive constants cl, 0 such that 

sup q~176 
X~ y E ~  0 

Proof 1. We use the distance labeling on the gasket from Sect. 5.1.2. We have: 

(47) ~ p(t,x, y')= ~ ~ p(t,x, y')= ~ a,. 
y ' ~ z G  l(y) n = 0  Ao(y')e~ocPn, x n = 0  

Each term a, can be estimated as (use (6)) 
- 1 d~ 

d~ _ C [ n t T ) ] d Z  t 
a , = ~ & ~  . sup p(t ,x ,y ' )<C.n2t  2e ~ ~ . 

d ( x , y ' ) > n  

This bound gives a term of a convergent series and 1. and 3. follow. 

2. Continuity of qO. For  Yr it follows from the uniform convergence of 
the series and the continuity of p( ' , - , - ) .  To prove the continuity at the vertices, 
suppose Yeff0, and that y is labeled 'a '  (for simplicity, we continue to write 
a instead of y). We must show 

lira q~176 
( t . ,  x ~ ,  z . )  ~ ( t , x , a )  

If d(z,, a)<�89 then for every a'~nol(a) there exist precisely two elements z~, 
t ! 1 z'RerCol(Z,) such that d(z'z, a')<�89 and d(ZR, a)<~ (L,R stand for 'left' and 

'right'. with obvious meaning). It follows" 

q~ = ~ (P(t,,x,,z'L)+P(t,,x,,z'g))= 
a' erc 6 l (a)  

= Z Z p(t.,x.,z'.). 
a" ~r~ff a(a) a" ~ 6  l(a) 

When z , ~ a ,  then Z'L--*a' and z ~ a ' ,  and the uniform convergence lets us 
pass to the limit under the sum, 

lim q0 (t., x, ,  z , )= 
(t . ,  x . ,  z.)  ~ (t, x,a) 

= ~ lim p(t,, x. ,  z~) + 
a 'erc6  J(a) (t . ,  Xn,  z L )  ~ ( t , x , a ' )  

= 2  ~, p(t,x,a'). 
a 'e r r6  l(a)  

lira p (t,, x, ,  z~)= 
a' e~(r l(a) (t . ,  x,~, zh)  ~ (t,x, a') 

The lemma follows. [] 

Now we are ready to show the basic theorem of this section. 
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Theorem 3. Let x, y~fr be two points in the same O-fiber, i.e. no(X)=no(y ). Then 
the measures no(P~) and no(Py ) on (COR+, Yo), ~(COR+,  ~o)) coincide. Moreover, 
for every z ~  o and x, y as above we have: 

(48) ~, p(t, x, z')= E p(t, y, z'). 
z' e~c l(z) z" e ~  l(z) 

Proof Let x and y be as in the assumptions of the theorem. It is enough to 
prove that the finite-dimensional distributions of underlying measures are identi- 
cal, i.e. that for an arbitrary choice of O=<ta=<... _-<tn and F 1 . . . . .  F,e~(o~0) we 
have: 

(49) Px [ Z t  1 e 2 0 1  (ip1), . . .  , Ztn~7~ 01  (J~n)] = 

= P~ [ z , 1  ~ n o  ~ ( r d ,  . . . ,  z t ~  2 o  ~ (r,)3. 

We proceed by induction. 

1. n = 1 (we drop the subscript '  1'). 

For  t = 0 the equality (49) is self-evident: 

(50) P~ [Zo ~ 2o 1 ( r ) ]  = ~x(2o 1 (r)) = ~, (2o ~ (r)) = P, [Zo ~ 2o  ~ (r)] .  

For  t>O, we first observe that if F is a subset of ~o,  then 2 o a (F)\fr is a 
disjoint sum of sets, each of which lies entirely in one and only one triangle 
from J-o- Those components will be denoted by P .  Notice that 

(Sl) P~ [ z t ~ 2 o '  ( r ) ]  = y.  P~ [ z , e  r ' ] ,  
i 

the summation running over all the components to no 1 (F). Although we got 
rid of the possible vertices in introducing the sets U, this holds as /~(fr 
and for every t the law of Zt under P~ is absolutely continuous with respect 
to #. 

We introduce the following stopping times: 

T t l )= in f{ t>0 :  Zt~ fr 

T("+l)=inf{t>T("):Zt~f~o\{ZT~.,}},  for n > l .  

{T(")}, is an increasing sequence of stopping times and lim T(")= oo almost 
surely. , -. ~o 

In what follows we shall need the following lemma, coming from the strong 
Markov property of (Zt). 

Lemma 5. Let x, y sN ,  2o(X)=no(y ). Then the laws of T (") under P~ and under 
Py are identical. 

Proof of  the lemma. Induction with respect to n. 

For  n =  1 the statement is obvious; if xefr  o (therefore automatically YSfr 
then T(a)=O P~-a.s. and Py-a.s. If they are not vertices, then the law of T(~) 
depends entirely on the laws of (Zt) up to exit times from A 0 (x), A o (Y) respectively, 
which are identical. 
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Assume now tha t  for some n > 1 the asser t ion holds, then 

p x [ T ( " + l ) < t ]  = P x [ T ( n + l ) < t ,  T(")<t] = Ex [Pz~c.~ ET~ < t - T(")]] 

(~-o) denotes  the first hi t t ing t ime of g o \ { Z o }  after T(")). Laws  of T (") are identical  
under  P~ and Py (inductive assumpt ion) ;  thus the probabi l i ty  under  the expecta-  
t ion depends  only of these laws. Hence  E~ can be replaced by Ey and the p roo f  
is concluded.  [ ]  

Continuation of the proof of  the theorem. N o w  we shall p roceed  in the s t andard  
way:  we take into account  the vertices tha t  have  been visited up to t ime t. 
We  par t i t ion  C([0, oo), g)  into the following disjoint sets: 

Vo = { T ('} > t}, 

V,={T(" )<t ,T("+I)>t} ,  for n__>l, 

and for n = 1, 2, ... 

v.= V.~ v.~ ~ vL 

where V, ~ indicates that  Zr(.~ falls on to  a ver tex with label ~c (~c~{a, b, c}), i.e. 
V,~= V,r~ {Zr(.)=~c}, (with mean ing  that  the label on the app rop r i a t e  poin t  
equals to to). This way  we get 

g [ z ,e  7co ~(r)]  = g [ { z ,~  7co 1 (r)}  n v0] + 

+ E Z gE{Z,~Tcoi(r)}~v.~] �9 
n =  I ~ { a , b , c }  

N o w  our  goal is to show that  the te rms of the series remain  unchanged  if 
we replace x by y. 

Px[{Zt~Tcol(F)}c~ Vo] is equal  to Py[{ZtezCo~(F)}c~Vo], as the under lying 
events depend  only on the dis t r ibut ion of the processes up to exit t imes of 
A 0 (x), A o (Y) respectively - those measures  are identical. 

To  get the equal i ty of  the lat ter  terms, first assume tha t  x and  y are not  
vertices f rom go. Using the s t rong M a r k o v  p rope r ty  of  Z t we get 

yxE{Z,~Tc? ~(r)} ~ v2] = 
= E ~ [ 1  {T(")<=t, ZT,., = tO}" P~ IT("+ 1) > 1, z, eTco*(r)l~T,.,]] = 

= Ex [1 {T (") < t, Zr , . ,  = K}. PzT,., [~ (1 )>  t -  T ("), Z t _ T,.) e 7CO 1 ( r ) ] ]  = 

t 

= ~ e~ [ T (1) > t - -  s, Z t - s  e 7c o 1 ( / - ) ]  d #x  (s), 
0 

(7 "(1), as before, is the first hit t ing t ime of g o \ { Z o }  after t ime T(")), where  #2 
is the dis t r ibut ion of T (") under  P~. F r o m  L e m m a  5 we have  tha t  x y #, = #,  and  
therefore 

g [ z , ~ o  ~ ( r ) ~  v.'] = P, [z ,~Tco~(r)  ~ v.~]. 

If  x and  y are f rom go,  we are in an even bet ter  shape:  we can forget abou t  
the par t icular  s tar t ing point  at once, or  we can expand  the under ly ing expression 
as above.  
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Having shown that rc o (P~)= 7c o (Py), we can establish (48). 
For  Fe~(@o)  

J q~ x, z) dff(z)= P~ [Z ten  o 1 (F)] 
F 

= P~ [Zt e 7~o 1 (F)] = ~ qO (t, y, z) d p (z). 
F 

But we already know (Lemma 4 above) that qO is continuous in z, therefore 
q~ x, z ) = q ~  y, z) for all z. 

Hence the case n = 1 is finished. 

2. n > l .  

Assume that the assertion (49) holds for some n, arbitrary choice of t 1 . . . . .  t, 
and F 1 , ..., F,. Again, for FeN(~-o), the superscript ' i '  will stand for a disjoint 
component  of 7~o1(F\~o). We have: for all n, O<=tl<=...<=tn+ 1 and 
r l  . . . . .  r . + ~ ( ~ o )  

(52) P,~ [Zt,  a no 1 (El) . . . .  , Z~. +~ e Tco 1 (F. + 1)3 

= E ~[z , ,~r~ , , .  ,z~.+,er,'~+~q, 
i l , , . . , i n + l  

the summation running over all the components of no l(F~) . . . . .  r~ol(F,+0. By 
the Chapman-Kolmogorov equality for Z~ the last sum equals to 

Z ~ P(h.x, zOP~,EZ,=-,,eF~ =, .... Z , . + , - , , e ~ V ] d # ( z O  = 
il . . . .  , in+ l Fil 1 

= ~ ~ p(tl,X, zigP~,[z,~_,~r~,.. . ,z, .+,_,,er/~_~,la#(zO, 
i l , . . . , i n + l  F1 

where z~' is that component of nol(zO, which lie in F~ ~ (notice that d # ( z O  
=d#(z~9). Next, it equals to 

il F1 i 2 , . , . , i n +  l 

From the inductive assumption we can drop the superscript 'i1' in the sum 
under the integral sign. Changing the order of summation we get 

j ( ~, P~,[Zt=-t, mr~=,...,Zt,+,-t, eF]$+l'])'(~,p(tl,x,z~l))d#(za). 
F1 i2 . . . .  , fn+ l il 

Now, from the already shown (48), we get that 

~ p ( t l ,  x, zil ~) = ~ p ( t l ,  y, zil~), 
il ii 

and we can turn the formula back to the form as in (52), but with x replaced 
by y. The theorem follows. []  

At this point, we can without difficulty show the Chapman-Kolmogorov 
identity for the reflected process: 
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Lemma 6. For t, s>O, x, z s Y  o 

(53) q ~  ~ q~ q~ �9 
~ o  

Proof For  zq~o we have 

q~ ~ p(t+s,x,z')= ~ ~ p(t,x,y)p(s,y,z)d#(y)= 

=~p(t,x,y) 2 p(s,y,z')d#(y)=~p(t,x,y) 2 p(s, Tzo(y),z')dp(y)= 
(9 z ' e~ f f  l(z) f9 z'e~zff ~(z) 

= ~ ~ p(t,x,y') ~. p(s,y,z')d#(y)= ~ q~176 
~ o  y ' e ~ 6  l(y) z'  erc6 l(z) ~ o  

If z e N  o, then we must introduce obvious changes. [] 

After having established (48) we can also show that q0 is symmetric in x, y. 

L e m m a  7. 

(54) V t > 0  Vx, y ~ Y  o q~176 

Proof For  x, y e f f o \ N o  we have: 

1 
(55) q~ x, y )=  lim ~ p(t, x', y'), 

u ~  #(BM) A ( M , x , y )  

where A(M, x, y)=  {(x', y'): x'erCol(X), y'eTCo 1 (y), x', y'eBM}. As (55) is symmet- 
ric in x and y, it proves (54) in the case when x and y are not vertices. 

To see (55) we make use of (48). The value of the sum 

p(t,x,y') 
y 'en f f  l(y) 

does not depend on the particular choice of x within the same fiber. It follows 

1 
Y, p(t,x',/) q~ x, y) = #(BM) mM,~,y) 

1 1 
- ~ p ( t , x ' , y ' ) + - -  ~ p(t,x',y')=eu+flM, 

#(BM) a(u,x,y) #(BM) c(u.x,,) 

where 

A (M, x, y) is defined above, 

B (M,  x,  y) = { x ' e  rc o 1 (x), y '~  rCo 1 (y), x' e BM}, 

C(M, x, y )=  {x 'e~o  I(X), y' @ 7CO l(y), X' 6BM, y' q~BM}. 
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We will be done if we show that tim goes to zero with M ~ oe. We have: 

1 
(56) tim = ~" ( ~ p(t, x', y')) 

# ( B M )  {x 'eBM' \B(O,2M-M)}  y 'r  

1 
E ( Z p(t,x',y'))=fl~t+fi~t 

#(BM) x'~mO,2M-M~ y'r 

Now: fib can be estimated using the area comparison 

(57) 
1 

fib = #(BM ) ~ {x' a 7Zo*(X ), x' ~BM\B(O, 2 M -  M)}. 

#(BM\B(O, 2 M -  M) 
�9 sup qO (t, x, y) _< C 

x, yeo~o # ( B M )  

which gives that fib goes to zero as M goes to infinity. 
To estimate fi~ we notice, that in this case x' and y' are far away: 

(5s) f12 < C" ( 2 g -  M)as = (2M)af sup ~ p(t, X', y') 
{x'a~ff l(x),x" aB(O, 2 M --M}} {y'dgBM} 

< C. sup ~ p(t, x', y') 
{x' ETt~y l(x), x '  eB(0, 2 ra- - M)} {y,: d(x',y') >= M} 

= ~ sup ~ p(t, x', y') 
n= M {x" Erc6 l(x), x" aB(O, 2 M -M)}  {y': d(x', y')a[n,n + 1)} 

1 d~ 
<=C-- Z n 2 exp{--C.(nt-d~)E~-l},  

n = M  

(in the last inequality we used an estimate alike that in Lemma 3) which is 
the tail of a convergent series hence goes to zero as M goes to infinity. Combin- 
ing (57) and (58) we obtain (56). 

For  arbitrary x and y (54) follows by continuity�9 The proof of the proposition 
is finished. [] 

Now we finally can legitimately define the reflected Brownian motion on 
~o by 

x~ 

The corresponding probabilities will be denoted by QO. 
We can collect the properties of X ~ in the following theorem: 

Theorem 4. (X~ is a continuous Markov process with continuous transition 
density qO given by (46). The transition density qO (t, x, y) is symmetric with respect 
to x and y. 
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This way we have constructed the desired Markov process with a compact 
state-space, Yo. The semigroup associated with this process, denoted by (Tt~ 
is a semigroup of selfadjoint operators on L2(Wo, dp). 

The properties of the reflected Brownian motion (Markov property and the 
identity (48)) allow us to construct the bridge measures for this process (definition 
identical as for the Brownian motion on the whole gasket). They will be denoted 
by t,o Qx,y, and they fulfill the relation (which can be seen by writting down the 
appropriate measures): 

Lemma 8. For x, ye(~\~o,  the 'image under ~z o ' on C([0, t], ~o) of the measure 

Y~ p(t, x, y ' )~ ' , , [ . ]  
y'~r.G t (ZOo(y)) 

is equal to q~ no(X ), t,o . no (y)) Q~o~x), ~o(y) [ ]. 

Proof We must check that V A e ~ ( C  [-0, t], ~o) 

tat, o VA l _ , t - 1 (59) qO(t, no(X),%(y))U~o(X),~o(y)e , - -  ~ p(t ,x,y)P;,y,[~ o (A)] 
y'(~ ~(no(y)) 

where tOo(co ), for co being a trajectory from C[-0, t], has the obvious meaning 
of [~o(co)] (t) = ~o(co(0)- 

Clearly, it is enough to check (59)for cylindrical sets {X~ eF1 . . . .  Xt~ eft}; 
for those sets this is a straightforward calculation, which uses only (48). [] 

Remark 3. The results of this section can be also carried out not for the triangle 
of unit size, ~-0, but also for any triangle ~-M. This way we would obtain the 
reflected Brownian motion on a triangle with sizelength 2 M. 

5.3. Recurrence properties for the Brownian motion and for the reflected Brownian 
motion on Yo 

Out further work requires the following recurrence estimates: 

Theorem 5. Let a binary number b > 0  be fixed. Then there exist to>0,  c~>0 
and two functions: 

r  (0, oo)~(0 ,1] ,  

4,: (0, 1 )~  (b, oo), 

cb being a decreasing function; such that for any binary e > 0  and x, ye(~ we 
have: 

1. 

(60) For re(O, oo), ifd(x, y)<=er, then: P~ [T&y,~b)= < to e d~] _--> r 

2. I f  d(x, y)<be then: 

(a) 

(61) P~[Ty< to~a~] > ct, 
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(b) 

(62) P~ [ Ty < rmr, ~,(,))c)] > 1 - q, for 0 < t / <  1. 

Proof. First  notice that,  as e was assumed to be binary,  we can use the gasket 
scaling in order  to get a reformula t ion  of (60)-(62) - easier to handle. After 
this, we are led to showing: for x, yeN ,  

1. 

(63) for re(0,  oo), if d(x,y)<_r then Px[T~cy.b)<to]>~b(r). 

2. I f  d (x, y) < b, then: 
(a) 

(64) Px [Tr _-< to] _-> ~, 

(b) 

(65) PxET~ < Ts(,,e(,))c] > 1 --~. 

We begin by showing (63), choosing t o = 1. 

P~ [ TB(r, b) ----< �89 > Px [Z~ ~ B(y, b)] = 

= ~ p(�89 x , z )d#(z )> inf p(�89 
/~(y,b) d,~ {x,z:  d ( x , z )  <~ b + r} 

>= Ce -C(b+r)d~-I, 

d~ 

for some positive constant  C. Thus  we can take ~b(r)= C e -C(b+r)d~-l. 

To  prove (65) we must  show that  that  for  any ~/>0 we can find ~ =  ~(t/) 
such that  for x, y~fr with d(x, y)<b one will have 

e~ [Ty < T~(,,~(.)r] > i --r/. 

We begin by showing that,  given ~/> 0, one can find z o = ro (q) with 

(66) P~[Ty < Zo] > 1 ~ 
2 '  

p rovided  d(x, y) < b. 
To  do this, we in t roduce Rx, an independent  exponent ia l  t ime with parameter  

2 (2 > 0-arbitrary). 
Using the estimate (9) we get that  for every z > 0 

P~ [Ty > z] = Px [Ty > z, R ~ > z ]  + P~ [Ty > z, Rz__<z] =< 

__< P. [Rz > r ]  + P~ [T,__> R~] __< e-~ '  + C.d(x, y)e~-e, ~ - ~e-_<__ 

< e - ~  + Cba~-a~ 21-~a~. 

Find now a small 20 such that  the second term in the last expression is smaller 

~/ t/ (66) is established. than ~-, and then an appropr ia te  % with e-Zo~o < ~ .  
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In particular, (66) proves (64). 
To prove 2, it is enough to find a 7~(tl) such that (Zo - as in (66)) 

(67) <~_ 

provided d(x, y) < b. 
Indeed, this way we obtain, using (67) 

= ~ [%  < ~o] - & [ { r ,  < ~o} r { r,(,.~,(,))o_-< ~o}] _-_ i - ~ .  

To complete the proof, we must show (67). For given p>b  we have, using 
(8) 

P~[TB(y,p)~ < %] <P~ [sup d(Z~, Zo) > p -  b ] 
S=<zO 1 d,~ 

~ C . e  C[(p-b)z~ d~,,]d--~-t 

We choose 7J(q) equal to the p such that the last expression is less than 7.  
(67) holds. 2 

The proof of the theorem is finished. [] 

Remark 4. We established the recurrence properties for the process Z~. In the 
sequel we shall need similar relations for X ~ They are also true, as the underlying 
probabilities for X ~ are bigger than those for Z,. 

6. Asymptotic upper bound for the Laplace transform 

Now we shall present the more delicate part of the question - we shall get 
an asymptotic upper bound for the Laplace transform of the density of states. 
The problem basically relies on the long-time asymptotics for the averaged 
trace of the transformations T~. The other delicate part is that we want to 

2 
single out the factor Vd~ +2. This is done by appropriate scaling. As after projec- 
tion the good scaling properties of 2(U) are destroyed, we shall perform all 
the necessary scaling first, then project the problem onto the triangle of size 1, 
and finally use an estimate for the compact problem. 

Our goal is the following: 

Theorem 6. There exist positive constants D1, D2 such that: 

log L(t) < 2 
(68) lira sup e~ = --D1 vd~ +2, 

t-- ,  oo t ~ + 2  

and, independently on x~f~, 

2 
(69) lim sup log Ex [exp { -- v # (Zto ,t~)}] < _ D 2  vdsT2. 

d 
t ~ c c  td  + 2  
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Proof We start with proof  of (68). 

Recall that 

Vt L(t) = lim LN(t) (increasing limit), 
N ~ c o  

where 

(70) Lu(t)= ~@~ ~ll~, S P(t,x,x)Pt, x [ T ~  >t, Tw(~)>t]d#(x) 
~N 

1 
- # (~)  ~ p(t, x, x)E~,x[exp{--v#(Z[o,tl)} 1 { T 0 ~ > t } ]  d#(x). 

As stated above, we will first perform the necessary scaling. 
Let t >  0 be fixed�9 Had we have the continuous scaling, we would like to 

substitute in (70), again, 1 
x=(t)df+dwy 

1 
However, once more we have the problem that is not always a binary 

number - we proceed as previously: if 
1 

(71) 2"__< d'+d~<2"+~ 

1 
/ , \  

for some n, then we replace (~)dz+d~ (the ideal scaling factor)by 2". 

Substituting x = 2"y in (70) we obtain 

(72) LN(t)= #(~_,~ ~ 3" 
f i n  n 

This is the point where we are going to perform the projection: we shall project 
the process onto the triangle of size 1, fro- 

What  enable us to do so are Lemma 8, Theorem 3 and the fact that (X ~ 
=so(Zt)  ) #(ZEo,o)>#(X~o,tl) (the Hausdorff  measure of the trajectory decreases 
after the projection So, due to possible self-intersections after the projection). 

Using those properties we get: 

1 qO(~ ,  so(y), so(y)) 

(73) LN(t)<=#(~_,~ ~ 3" 
o~lv_n 

t 0 
�9 E~o(y), ~o(y) [exp { -- v 3" #(X ~ t 1)}] d#(y) = [~ o(t ,) 

_ 1 q ~ ' Y '  t 
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(E~;, ~ denotes the bridge in time t expectation for the reflected process on @o). 
Use now the property (71) and the relations (4), getting that, for all t, 

and 

t d~ 2 
~ =  td~+2 ~d.+2 f(t)  

d~ 2 1 
3 n ~ td~+2 vd~+2  - -  g ( t ) ,  

V 

where f(t), g(t) are some numbers fulfilling 1 < f( t)  < 5, ~ < g(t) < 1. 

Denoting t = td,+2 Vd,+2 f(t) = we get, recalling that #(~-0)= 1, 

1 qO(~y,y) 
L N ( t ) N ~ 1 5 v  ~ .[ 

- # ( ~ o )  ~o  

15v 
- -  E~~  # ( X t o s l ) } ] d # ( x ) < T A ( ~  

(A (t~ is defined below). 
This upper bound is the averaged trace of the operator associated with 

the reflected Brownian motion on ~-o, absorbed at the obstacle points, but 

with intensity ]~ ,  hence depending on time. In the proof of (69) we will use 

not the averaged trace of this operator, but the averaged survival time. 
The quantities mentioned above are: 

t ,0 ( 7 4 )  A(t)=IE j q~ (averaged trace), 
~ o  

B(t)=lE S Qx[TH(~)>t] d#(x) (averaged survival time). 
,~o 

As in [10], 1.35, we have that 

(75) B (t) _< A (t). 

Now we are going to find an upper bound for leA(tI_o~,__,_, which, in virtue of 
t 

(75) will give at once the upper bound for log B(t) 
t 

Lemma 9. 

(76) lim sup 
t --+ o~ 

logA(t) < inf [20(U)+ 1�89 log B(t) <_ lim sup - - =  -- 
t - -  t~oo t UeUo 

where Uo denotes the collection of all open subsets of ~o. 

Proof Let the binary numbers b and 8 be given and such that b e < 1. We denote, 
following [10], by Cb~ the finite cover of the triangle ~o by smaller closed 
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triangles, obtained by chopping the sides of ~o into equal parts of length be. 
The cardinality of this cover is equal to 

:~ Cb~ = Nb~ = (b 0 -  dl. 

Let Ub~ be the collection of those open subsets of ~o,  whose complement in 
the triangle J~o is a union of some of the small triangles from the cover Cb~, 

Ub~ = 2 Nb~. 

Suppose now that R > 0, 6 >0,  b > 0 are three fixed binary numbers. In virtue 
of the Theorem 1.7 of [10], which we can use thanks to the recurrence properties 
from Theorem 5, there exists 8o=eo(R, 3, b) such that for e<e0 and t > l  (cl 
is the constant from the estimate in Lemma 4) 

A (t) < c ~ 2 Nb~ exp {R - inf It (20 (U)/x R - 6) + t ~s # (U)] }. 
U e U b e  

Now we replace Ub, by U o (collection of all open subsets of ~o) and use the 
elementary inequality 

getting that 

(77) 

and 

(78) 

Va, b, cMR a A b + c > ( a + c ) A b ,  

A( t )<cl  2 Nb~ e x p { R -  inf t[(2o(U)+~#(U))/x  R--g]},  
U ~ U o  

lim sup logA(t) < _ inf [ (2o(U)+~#(U)) /x  R - 6 ] .  
t ~ oo t U ~ U o  

As (78) is true for arbitrary R, 6, we are allowed to let 6 ~ 0, R ~ oe, getting 
the right-hand side inequality from (76). The other inequality is obvious. The 
proof of the lemma is completed. []  

What  remains to be checked, is that the infimum in the upper bound in 
(76) is is greater than zero. 

Lemma 10. 
inf [2o(U) + ~ # ( U ) ]  > 0. 

U e U o  

Proof. The lemma follows easily from the spectral decomposition of the semi- 
group (Tt~ for any given t > 0  and UeUo 

(79) e -tx~ < Tr Tt ~ v = S q~ t, x, x) d#(x) 
U 

< #(U). sup q~ x, x)<#(U)c 1 t -~ 
x e ,~o 

log(#(U)cl t -~ 
i.e. Vt>O 2o(U)> 

t 

(T~ ~ is the semigroup related to qO, killed upon coming to the boundary 0 U). 
- ,  , ( [15e1\  1~ } 

a simple calculation gives that if we choose t >  m a x J t ~ - ) l + 0 ,  15 then 

the infimum will be bigger than zero. The estimate is complete. [] 
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Conclusion of the proof of the theorem. After we have estimate (76), the rest 
is easy. One has: 

2 
.5vG+2 log LN(0< 

t ~ + 2  t" 

and, as this upper bound is independent of N, 

A(t) 
og< ) 2 

log L(t) <_ 2 vd~+2. (8o) _ ?- 

Taking into account Lemma 9, 

(81) lim sup log L(t) 2 at ~ - - 2 v d ~ + 2 .  inf [ 2 o ( U ) + I # ( u ) ] ,  
t--, oo t ~ + 2  U~Uo 

and we pick D 1 = 2  inf [ 2 o ( U ) + ~ # ( U ) ] ,  which we know to be positive by 
U~Uo 

Lemma 10. (68) is proved. 
To see (69), one has to introduce some averaging - we have proved the 

asymptotic estimate for B (t), not the pointwise estimate of Ex [exp { - v  # (ZEo ,tl)}]. 
We have, from the Markov property of Zt, that 

(82) Ex [exp { - v # (ZEo,,])}] < Eo Ex1 [exp { - v # (ZEo,,_ lj)}] = 

= S p(1, 0, x) Ex[exp { -v#(ZEo,t_ 11)}] d#(x). 

Now we proceed as before - as in the proof of (68). We rescale the whole 
[ t -  1 \ ~  _ . +  

problem with x=2"y, if 2"____[~--}dz+d~<2 1 getting the last integral in (82) 

equal to: 

(83) p(1 ,  O, y) E,[exp{-v 3" #(Z[0,~l])}] d#(y). 

At this point, as before, we project the problem onto the triangle of size 1, 
getting 

( ' )  E P ~ , 0 ,  y' E~  
o~o y'eg6- ~(y) 

o/1 , ) 
=,  oSUp q 0 ,y  B(r), 



B(t') is the ave raged  

L e m m a  4, we get tha t  
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d~ 2 
with ~=(t--1)ds+2vd~+zf(t--1)(f( t--1)  -- as before,  is a n u m b e r  f rom (1, 5]). 

? 
survival  t ime as in (74), bu t  wi th  in tens i ty  ~ #. Us ing  

sup q O ( ~ ,  0, y ) ~ c  I 5 n~ 
y~o~o 

i.e. the b e h a v i o r  in t is a t  mos t  po lynomia l - l i ke  when t goes to infini ty - can 
be neglected.  N o w  (69) fol lows as before. [ ]  

N o w  our  es t imates  (Theorems  2 and  6) lead  us to es tabl ishing,  via use of  
the M i n l o s - P o v z n e r  T a u b e r i a n  t heo rem of  exponen t i a l  type  (Theorem 2.1 in 
[-5]), the a sympto t i c  behav io r  of  I(E0, 2)), as 2 ~ 0 .  This  type  of  behav io r  is 
k n o w n  as the 'L i f sch i t z - type  s ingu la r i ty '  for the  dens i ty  of  states. 

Theorem 7. 

�9 r log l([0, 2]) < l i m  sup log l([0, 2]) < --Dr,  
(84) - C v < l i m l n I  -ds = -ds = 

-~ 0 2 T  ~ -~ o 2 T  

where C, D are two positive constants, depending only on the constants in Theo- 
rems 2, 6. 

Proof. The  p r o o f  is no th ing  bu t  use of the M i n l o s - P o v z n e r  type  T a u b e r i a n  
theo rem m e n t i o n e d  above.  [ ]  
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