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Summary. Let {X(¢),t =2 0} be a stationary Gaussian process with EX(t) =0,
EX?(1) = 1 and covariance function satisfying (i) r(t) = 1 — C|t|* + o(|t]*) as t -0
for some C >0, 0 < a £2; (i) r(t) = O(t~%") as t » oo for some y > 0 and (iii)
sup,»s|#(f)] < 1foreach s > 0. Put £(¢) = sup{s: 0 < s < 1, X(s) = (2logs)'/?}. The
law of the iterated logarithm implies limsup,. . (¢(f) —t) =0 as. This paper
gives the lower bound of £(¢) and obtains an Frdés—Reveész type LIL, 1e.,

liminf,, ,, (E(¢) — £)/(t(logt)*~ 2@ Jog logt) = — (2 + oc)\/;/(cxHaQC)”“) as. if
0 <o <2 and liminf,_  log(é(r)/t)/loglogt = — 2xn/./2C as. if o = 2. Applica-
tions to infinite series of independent Ornstein-Uhlenbeck processes and to frac-
tional Wiener processes are also given.

Mathematics Subject Classification (1991): 60G 15, 60 F 15

1 Introduction and main result

Let W(t), t 2 0 be a standard Wiener process and define #(t) = sup{s:0 < s <,
W(s) = (2sloglogs)*/?}, t 2 0. From the law of the iterated logarithm it follows
immediately that

lim supy()/t =1 as.

t— o0

Erdds and Révész [3] considered the lower bound of #(¢) and obtained a new law of
the iterated logarithm:

. (logy )2 p(1)
1 f—"r—log— = —C 8. 1.1
Htr_l,:on logst-logt 8 t o as (L.1)
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for some constant C, with ¥ < Cy < 2'4, while Shao [8] gave the exact value 3\/
of Cy, where log,t = loglogt logst = loglog,t. Put

q() =sup{s: 1 <s<t, W(s) = (2sloglogs)t’?}, for t=1,

W()

7 =

> (2logs)'?}, fortz=0.

It is easy to see that

7(t) = log#(e’) as. for every t = 0
and hence, by (1.1)

lim inf 108! )”2 (GO — 1= -3/ as. (1.2)

- Llog

Clearly, W{(e®)/e*?, s z 01is an Ornstein-Uhlenbeck process, a stationary Gaus-
sian process. This promotes us to study the corresponding problem to 7(t) for
general stationary Gaussian process.

Let {X(t),t 20} be a real separable stationary Gaussian process with
EX(t) = 0 and EX?(t) = 1 for each t = 0. Denote the correlation function

r(t)=EX(t+ 5)X(s) fors=z0andt=0. (1.3)
Consider the process
Ey=sup{s:0<s<t, X(s) = (2logs)*?}, t=0. (1.4)

The upper class of law of the iterated logarithm implies
P(X(s) = (2logs)*?,i0) =1

under certain conditions on r(t) (cf. Qualls and Watanable [7]). Hence, we have

lim £(f) = 0, as.
t— o

and

lim sup ((t) — 1) =0 as.

t— o0

The aim of this paper is to give the lower bound of £(t). We will state our main
result in this section, while its proof is given in Sect. 2. Sections 3 and 4 will be
devoted to two special Gaussian processes, infinite series of independent Ornstein-
Uhlenbeck processes and fractional Wiener process, respectively.

Throughout this paper we will use the following notations: [x] denotes the
integer part of x; x* = max(0, x); logx = Inx if x > 0 and logx = 1if x £ 0, where
In is the natural logarithm; log, x = log log x, and log; x = log log, x; Z stands
for )1, and max, ;< , means maxy <<, for y = x.

In what follows we always assume that X () 1s a stationary Gaussian process
with EX () = 0, EX?(f) = 1 and correlation function r(£).
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Theorem 1.1 Assume that the following conditions are satisfied:

ry=1—=CitfF +o(Jt]*) as t = 0 for some C >0, 0<a <2, (1.5)

() = O(t™ ) as t » oo for somey >0, (1.6)
sup |r(@)} < 1 for each s > 0. (1.7)
Then -
£ —t Q2+ an

lim inf

t— 20

tlogt)® P/ logyt  aH,(2C)" as. if0<a<2 (1.8)

t— 00 logz ¢ H2 \/%
where 0 < H, =limy_ T~ {7 € P(supo<,<7 Y(t) > s)ds < o0, and Y (1) is a non-
stationary Gaussian process with mean EY(t) = — |t|* and covariance function
Cov(Y(s), Y(t) = — |t — s|* + |s]* + |t|~
The value of H, is unknown except H; =1 and H, = 1 /ﬁ (cf. [5, p. 2327).
(1.8) shows that for any ¢ big enough there exists an s in

[t — t(logt)* 22D Jog, 1, 1]

lim ing 12860/ 2r ifa=2 (19)

such that X (s) = (2logs)/? and that the length of the interval z(log#)*~ 2?9 Jog, ¢
is smallest possible. Morcover, the bigger the parameter « is, the wider the interval
will be.

2 Proof

We start with some preliminary lemmas.

Lemma 2.1 Suppose &, ..., ¢, are standard normal variables with covariuance
matrix A = (A};) and ny, . . ., n, similarly with covariance matrix A° = (A%), and
let p;; = max(|Af|, |A%]). Further, let uy, . . ., u, be real numbers. Then

P( () ) -p( ) msuy)
j=1 ji=1

30, B 0o i)
This is Theorem 4.2.1 of [5].
Lemma 2.2 If (1.5) and (1.7) hold, then
P(supocs<1 X(8) > x)

lim —ClH, 2.1)
x>0 x4 (x)
. P(maxg<;<yompX (jOx™2%) > x) H,()
1 =J= / — (1l .
i EEe <9 22
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for each 08 > 0 and

tim 2@ _ g, (2.3)

f
-0
where H, is defined as in Theorem 1.1 and J(x) = 2m)~ 12x~te™ "2,

This is Lemma 2.5 of [6].
From the proof of Lemma 12.2.5 of [ 5], one can see that the next lemma holds.

Lemma 2.3 If the conditions of Theorem 1.1 are satisfied, then there exist constant
K, and xq such that
P( max X (jOx?*) < x — 0%*/x, sup X(s)>x>
0Sj<xp osss1
< Kox Y (x)07" texp(— 07*'*/Ko) (2.4)

for each 6 > 0 and x = x,.
In what follows we define

=2+ 02, 6=02—0a)f2x) for 0<a<2. 2.5)

Lemma 24 Under the condition of Theorem 1.1, for each 0 < ¢ < 1, there exist
positive constants N and p depending only on ¢, « and 7y such that

P( sup —X(L = 1>
a<s<b (210g5)1/2
< exp( (1 —¢a20)'H,
(1+9Q2+a)/n
for each b =z a+ 1 = N, where & is defined as in (2.5).
Proof. By Lemma 2.2, there exist § > 0 and x, such that

(log®b — log¥(a + 1))> +Na™* (2.6)

P( max X(jOx~ ") > x) = (1 — g H,CY*x¥ s (x) 2.7

05 X8
for each x = x,. Put
bla,e)=[(b —a—1)/1+¢)],
= (log(a + 1 +i(l + )%, % =[x#*0], i=0,1,....
Then

X (s)
P — <
( WP Qlog ) = 1)

oA i)
- O<1<(b a— 1)/(1+s) a+i(l+e)ss<a+1+i(l+e) (210gS)1/2 =
X(s)
< max sup - < 1)
<0<l<b(a g) ati(l+g=s=a+l+i(l+e) (210g(a + 1 + l(l + 8)))1/2
X 1 Ox; 2"
gP( max  max (@+ill +9) +j0x )§1>. (2.8)
O0<i<b(a,e) O0Sj=<%; X
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Let
Xi=X@+i(l+e+j0x7%), 0<j<%),i=0,1,...,b(a¢),

{Y;,0 <i < b(a, &)} be independent normal random vectors and Y; and X; have
the same distribution for each 0 < i < b(a, ¢). Applying Lemma 2.1 yields

i(1 N —2/a
P( max  max X(a+i(1 + &) + jox; )§1>

0si<h(ae) 0Lj<% Xi

b(a,¢)
<11 P( max X(a +i(l + &) +jOx; ¥*) < x,-)
i=0

0=j=%;

~
xj

& r(i,j, u, v 1(x? + x2
+ Z 2 z l ( J )| exp( . 2( — J)
0i<jzb@e) u=0 v=0+/1 —r2(i, j, u, v) 1+ [r@i, j,u,v)l

=1+ 1, 29
where
r(i,j, w,v) =r((j — (1 + &) + v0x; 2" — ubx; >,
b(a, &)
I =[] P( max X(a+i(l +¢) +jOx; ") < xi> ,
i=0 0Zjsx
S0d G w )l ( 30 + x7) )
I, = —exp| ——— |
? 0§i<éb(a,z) ug() ugo 1 — 72,4, u,v) 1 +1|r(Q, j, u, v}
Put
r¥(s) = sup|r(t)], s > 0. (2.10)
tzs

Noting that
(j— DL+ &)+ vOx; 2 —ubx; 2 (j—i)e=e
foreveryj>i,05u<%;, 0=Zv=X; wehave
[r@J, w,0)| < r*((j — 1)e) S r¥(e) < 1 2.11)
by {1.7). From (1.6) it follows that there is a ¢, such that
r*(t) < t7? £ min(l, y)/4 for every t = t,. (2.12)

In what follows, for the sake of simplicity of statement, we will use K to denote the
constant which is independent of ¢ and b, and may be different from line to line. We
have

4 2 4 42
Lf————e— Y x”“x?’“r*((j—i)s)ex;»( Xt )

0% /1 — r*(g) o<i<i=ba.z ' - 21+ r*((j — i)e)

4

- 97_— /1—7’*(8)<O<j—zi:$to/s * j~i§ro/s)(‘)
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K *ex _
<ogi§Zb(a,s) p( 1+ r*(s))
2, 2
n T XX i) exp<_u>)

j—i>tofe, jSbag) 2(1+y/4)

HA

< K< Y (a+i(1 + &) 20T D og (g + i)

i=0

1 1
+ > (a+ i) T+ (a + j)~ T+7%log!*(a + i)log'*(a +j)>

j—i>tofe, j<b(a, &)

=@ 2 Jog'*(a + i)
SK{a & TS prarws
B ( i igo (a+i) 7

< K(a~0-r@n 4 g-v6)

<Ka?

where p = min((1 — r*(g))/4, 7/6).
Noting that X (-} is a stationary process, we derive from (2.7) that

b{a,&)
I, = ﬂ P< max X (jOx; 2/‘")§xi)

0<j=%;
b(a,c)
<ex < ( max X (jox; 2/“)>xi>>
0<j<3:
b{a,¢)
S ex p< Z (1 — &) CY" Hoxf* i (x; ))
b(a, &) . 2
=exp< (0 oCHH, Z (2log(a + 1 + i(1 + &) )
2nla+ 1+ i(l +¢g)

( (1 — QC) " H, @9 logha + 1 + i(1 + &)
exp| — -
zﬁ S a+1+i(1+e)

provided that a is sufficiently large, where 4 is defined as in (2.5). An elementary
calculation implies
b—a-—-1 .
b@9 Jogha + 1 + i(1 + &) _ [ e logfla+ 14+ y(1 +¢)
Sy a+l14+il+e T o a+1+y(l+e)

20

= mﬂog“b — lOg‘x(a + 1)) .

Hence

(1 —ega2C)*H,
I, <
L= eXp< (1+8Q2+0)/n

Putting the above inequalities together yields that (2.6) holds true. This proves the
lemma.

(log®b — log*(a + 1))> . (2.15)
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Lemma 2.5 Under the condition of Theorem 1.1, for each 0 < e < 1, there exist
positive constants N and t depending only on ¢, o and y such that

P( N { max X(a+l+]0y_2/“)<yi—9?/4/yi}>

Osis[b~a] LOSjZyi"/0:

1 ( (1 + gaC)*H,
= —exp| —
4 2+ 0)/n

for each b= a+ 1 Z N, where y;, = (210g(a + )2, 0, =log ¥*(a + i), & is as in
2.5).

(log’b — logﬁa)> ~Na™® (2.16)

Proof. Put

Je=yi— 08y, Pi=[y%/0:1, i=0,1,....
Applying Lemma 2.1, one can find that

P< ) {max X(a+i+j9iyi‘2/"‘)<yi—9?/4/yi}>

ozizmp-a Lozjizyive

(b—a]
=l P< max X(a+i+j9iyf2/“)<J7i>

0=<j=%i

1y 3 ki )exp<_ 0t )

27 g<ib-a u=0 v=0~/1 —° (G j,u,v L+ 12(, j, u, v)]
T, 2.17)
where t(i, j,u, v) = — r(j— i+ v0;y; " — ub;y; 2/‘")

Clearly, for j2i+2,0<u=<j,and 0 <v < j;, by (1.7)
It ju ) Sr*{(j—i—-D=<r¥ () < 1. (2.18)
On the other hand, by (1.5), there exists a constant 0 < ¢; < 1 such that
r)=1—Clt|*/2>0forevery 0 <t <ty
Hence
(tljw o)™ =0, ifj=i+ 1 1+00;y;72 —uby "<t (2.19)

and
|t(i, jo , 0)| S ¥¥(t) <1 ifj=i4 1,1+ v8y; 2" — ub,y; 2 >t (2.20)

Therefore, by (2.18), (2.19) and (2.20) we obtain

N ]
J2 =

1 3(5¢ +ﬁ?)>
e exp| 2T
O§i§b—zaz,j=i+1 uZO uzoﬂ/l—r*(tl) p< L +7*(ty)

S rri—i- < 57 +57) >
+ exp| — — .
0§i+2§j§b‘a uZO UZO 1= r*( ) P L+r*(j—i—1)
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Completely similar to the estimation of I,, we can arrive that there exist positive
constants K and t such that

J,<Ka® (2.21)

for every a sufficiently large. Using Lemma 2.2, one can also obtain that

[b—a]
Ji=1] P( max X(jeiyi~2/“><y‘i)

DESES S
[b—a] '
z |] (1 —P( sup X(s)gﬁ))
i=0 0sssi
1 20)V i i
> lexp< _ L+ 9aQ2C) "H, <log“b _ log”‘a)) 2.22)
4 2+ w)n

provided that a is sufficiently large, along the same line of the proof of I'; in Lemma
2.4. This proves (2.16), by {2.17), (2.21) and {2.22).

Proof of Theorem 1.1 We formulate the proof in three steps.

Step 1 Assume 0 < a < 2. Then

s —1t

—— > — (1 4+ 2&)°C . 2.23
tlog™%t-log,t = (1+2e7C, as 223)

lim inf

for every 0 < & <2, where C; = (2 + oc)\/%/(ocHl,(ZC)l/“), 4 is as in (2.5).
Proof. Put
ty = exp(k¥®), sy =t — (1 +2e)C, t,log %1, logat,, k=1,2,....

Then ; N _ . ~
log*t, — log”s; ~ log*t, — (logt, — (1 + 2¢)*C, (logt,) ™% log, 1, )*
_(L+2PR+ 90,
lo
20

82tk (2.24)

Noting that

X
{¢()La} = {S}I; —(Zlog(gl/z < 1}

for every 0 < a < t, and using Lemma 2.4 and (2.24), we obtain that

P(———~— Wb gy 28)C1>

tklog [k 10g2 .

_ X(s)

- P(PW < 1)
(1 — gaf2C)** H,

<

=% < (1+£)2+oc)f

2(log¥t, — log¥(s;, + 1))> + Nsg ?
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<o < _(1L— 9RO + 28 Cy
=P (1+26)2./7

< (1 + &2)(2 + a)log, t,
= exp| — %

> + 2Nt *

é 2k~(1 +&/2)

for every k sufficiently large. Hence, by the Borel-Cantelli lemma, we have

) —t
lim inf_@—k >
k=0 tklog tk'logz tk

log, tk) + 2Nt *?

> —(1+2)°C, as.

127

(2.25)

Since £(t) is a non-decreasing random function of ¢, for every t, <t < t; 1, we have

Ot )~
tlog~%t-log,t — t,log %1, log,t,

- ¢(te) — 4 B Iev1 — Ik
[klog—.&tk'logz tk tklog_&tk'logz tk ’

An elementary calculation implies

} b1 — Iy
lim ——————— =
k— oo tklog tk 'logz tk

which together with (2.26) yields

fim inf 2 ¢

L ) -
———————— =lim inf
1o Hog %t -log,t

oo Bdog i logy it
This proves (2.23), by (2.25) and (2.28).
Step 2 Assume 0 < o < 2. Then

fim inf < ¢

— < —(1-¢C; as.
s tlogT%t-log,t (L=e)Cy as

forevery 0 <e< (2 — a)/8 < §.

Proof. Let

by = CXP(k(HSZ)/i)a a, = b, — (1 —2)C,4 bklog*&bk'Ingbka

Vi = Qlog(ay + i)'2, 6, =log ¥ (a; + 1),

- 4 A 2
Yi,i = Vi,i — OZ{i/yk,in Yk,i = Yk,/?/gk,i s

Ekz{f(bk)§ak}:{ sup J(L<1},

ax <s= by (210gS)1/2

Ay = ﬂ { max X (ax + i+ jOe:yit™) < Vi

o<ishe-ae] LOZj<P,,

(2.26)

2.27)

(2.28)

(2.29)
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It suffices to show that
P(E,io0)=1. (2.30)

Clearly, for m = 1

P<k@ Ak>§P<kC) Ek>—|—ki P(AkE;)§P<k©mEk>

m =m =m

0 br—ax
+ > Y P< max X (a + i+ j0kiyve ™) < Vi SUp X(ak+i+S)ZYk,i>
i 0

Sigh 0<s=1

0 br—ax
Ek>+ z Z P( max X(jek,iJ’lc_,iz/a)§}7k,i> sup X(S)éyk,i>

0= P 0=s<t

= < O Ek> +L,. (2.31)

Using Lemma 2.3, we have, for some Ky > 0

w0 br—ax Qo4
Lm§KOZ Z y,%,/?tﬁ(yk’i)ﬂi{%_lexp<— = >

k=m i=0 KO

o k@ log*(ay + i
< Kkz .ZO log®*(a + i) (a + 1) * exp( - i%)

<K Y Y log¥(ay + i) (a + )73
kK=mi=0
[¢9]

SK Y 4!
k=m

< Km™#

provided m is large enough. Therefore
lim L, =0

and

lim P( U Ek> > lim P<k@m Ak>.

m-> oo k=m m—* oo

To finish the proof of (2.30), we only need to show that
P(4,i0)=1. (2.32)
Similarly to (2.24), we have

(1—29)2 + 0)Cy
20

log?b, — log%a; ~ log, by .
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Now from Lemma 2.5 it follows that

1 1 20 H, . .
P(4) = ~exp< _ U+ 8)2Q0) P oz log"ak)> ~ Nai®
4 2+ oc)ﬁ
1/a _

> Eexp( L+ 2920 (1 2a)cllog2b&) _oNB
4 2/n
1

> _k*(l*s“)

=3

for every k sufficiently large. Hence
Y P(4y) = o (2.33)
k=1
and (2.32) will be implied by
L. ZlSk#:lSnP(AkAl)
liminf ===
n— oo (Zk:lP(Ak))z

by the general form of the Borel-Cantelli lemma (cf. [9]). We below verify that (2.34)
is satisfied. It is casy to see that

IIA

1 (2.34)

U+1 — by
—_—~ 1. 2.35
o 239
Applying Lemma 2.1, we get that for k <!
P(ApAy) £ P(A) P(A4)
b;(_ak fkli b 5)\1‘" f(i’j’ u7 U) < %()71% i + .)—/?f.l) )
+ 0P| T
i;o j;o u;) uiz‘o 1 =1, 4, u,v) L+ 7, j,u,v)
1= P(A;) P(A1) + Gy (2.36)

where
T, J, u, v) = [r(a + u + 00,y — @ — i — jO iy )]
F¥(a; — b, — 1)
r*(5(b; — bi-1))
(b — b;—1)" " Zmin(l, y)/4

A 1IA

lIA

by (2.35) and (1.6), for every k, I (k < I) sufficiently large. Therefore

b —ax bi—ay R R _ log(a + l) + log(a + M)
Ci 2K Y Y Jeidiulbi—bioy) Vexp(— (0 :
i=0 u=0 ) L+ ’))/4

é Kb;i/410g9/abk, b;}/410g9/abl,(bl - bl_l)—y
< Kexp(— yI”*/8)
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for some constant K not depending on k and [, and for every k < [ sufficiently large.
Hence we have

Y o Cui< o (2.37)
O0gk<l<w
Now (2.34) follows from (2.36), (2.37) and (2.33). This proves (2.30) and so does
2.29).

Step 3 If o = 2, then

I
fim inf 22CDD S oz, as (2.38)
t— oo logZI
and
1
lim inf28CG0 - apc, as (2.39)
t—= % ]Oth
for every 0 < ¢ < %, where C, = 2\/;/(H2, /2C) = 2xn/./2C.
Proof. Put

tk:ek, Sk=tkeXp(—(1 +28)2C210g2tk), k: 1,2, PPN
Proceeding the same way as that of the proof of (2.25), one can obtain that

log(E/n)

lim in > —(14+2°C, as. (2.40)
k— o0 10g2 tk
On the other hand, it is clear that
1 t 1
Jim inf CEEW/D _ o pp W) o (241)
oo log,t P log, t,

since lim,_, ,, log(t,+ 1/t:)/10g, t = 0. This proves (2.38), by (2.40) and (2.41).
Let

by = exp(k! %), ap = beexp(— (1 — 2&)C,log, by), k=1,2,....

Noting that
g1 — by ~1

Ay +1

along the same line of the proof of (2.30), we also have

lim infw < —(1=-2)C, as.

k=0 10g2 bk

This proves (2.39).
Now the proof of Theorem 1.1 is completed.

3 Infinite series of independent Ornstein-Uhlenbeck processes
In this section we consider a special stationary Gaussian process, infinite series of

independent Ornstein-Uhlenbeck processes. A real valued stationary Gaussian
process {X(t), — o0 <t < oo} is called an Ornstein-Uhlenbeck process with
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coefficients y and 1 (y=20,A>0) if EX(t)=0 and EX(5)X()=
(y/Aexp(— Alt —s]). Let Y(©) =(X.(t), X5(),...), where {X;()y, — o <t
< o} are independent Ornstein-Uhlenbeck processes with coefficients y; and
A;(i=1,2,...). The process Y(-) was first studied by Dawson [2] as the station-
ary solution of the infinite array of stochastic differential equations

dX;(t) = — 4 X;(0)dt + /2y, dWi(1), i=12,...,

where {W;(t), — co <t < oo} are independent standard Wiener processes. The

path properties of Y(-) have been extensively investigated by various authors

during the past two decades. We refer to Csaki et al. [1] and references therein.
We concern here with the infinite sums of Y(-). Assume

Vi

0<F2_izlz<oo. (3.1)
Define
Ly (3.2)
O! 1
o2 (t) = %Zy‘ —eThY), (20, (3.3)
i 1

It is clear that {X(t),¢t > 0} is a stationary Gaussian process with EX(f) =0,
EX?(t) = 1 and covariance function

@) =EX(t +95)X(s)=1—0*1t) fors,t=0. (3.4

Theorem 3.1 Let {X(¢), t = 0} be the infinite sums of independent Ornstein-U hlen-
beck processes, defined as in (3.2). Put £(t) = sup{s:0 < s <1, X(s) 2 (2logs)'?},
t = 0. Let 6*(t) be as in (3.3). Assume that there exist 0<u« £1,C>0and 6 >0
such that

o0

Vi
— , 3.5
2 minG, 1170 < o
2
im 29— . (3.6)
t]0 r

Then (1.8) holds.

Proof. Tt is easy to find that (1.7) is satisfied since ¢2(¢) is a positive non-decreasing
function for ¢ > 0. By Theorem 1.1, it suffices to verify that (1.6) is satisfied. Notice that

1 Vi e
I + 2 i

Fé(u-gﬂz i:zi<zl/2>’11

1 l Vi
< 7 (12 g
:F(z)(iZ;eXP( )+ )>

v, (T3
¢ it —>t1/2 t

<exp(—1'?) +‘*Z }1+5' Lo
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for some constant K and for every ¢ = 2. This proves (1.6), as desired.

Corollary 3.1 Let {X(1),t =20} and {£(t),t = 0} be defined as in Theorem 3.1.
Assume for some 6 > 0

0

Vi
_; < (3.7)
Then
- Er) —t 3/
\ f = — S. 38
lfri;n tlog=Y2tlog, ¢ 2r, s (38)

where I'y =I5y 2 y;.
Proof. Clearly, (3.7) implies (3.5) and

Y oy< oo
i=1
The latter yields
2
. 15
hm(I ()zfl.
1} 0 t

Now (3.8) follows from Theorem 3.1 witha =1, C =1, and H{ = L.

4 Fractional Wiener process

Let {Z(¢), t = 0} be a fractional Wiener process of order o, i.e., a centred Gaussian
process with stationary increments and variance EZ*(t) = %, where 0 < o < 2.
Consider

n(t) =sup{s:0 < s <1, Z(s) = (2s*log,5)?}, t=20. @.1)
By the upper class of increments for Z(¢) (cf. [4]), one has
lim n(t) = o as.
and oo

lim sup(n(t) —t) =0 as.

=00
The following theorem presents the lower bound of #{-).
Theorem 4.1 We have

(log: )~ log(n®)/t) 2+ 0)/n
B «H,

Iim inf

a.s. 4.2
o logt-logst “2)

Proof. Let
X(t)= Z(e)/ e, 120.
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Then, EX (1) = 0, EX2(t) = 1 and
EX(S)X([) — %(ea(tfs)ﬂ + ea(s-t)/Z - [e(t—s)/z _ e(s~z)/2|a) .

Hence, {X(t),t = 0} is a stationary Gaussian process with correlation function

r) =4 +e 2 (&2 —e Y2)*) fort=0. (4.3)
It is not difficult to find that
r6)—1~%% as )0, (4.4)
r(ty ~ ¢TI foe D a5t oo (4.5
and
sup [r(t)] <1 forevery s>0. 4.6)

Therefore, by Theorem lflzs
logh® M) — 1) (2+a)/n

hm inf = — . 4.7
im n Cogyt T as (4.7)

where £(¢) is defined as in (1.4). Let
() =sup{s:1 £ s S 1:Z(s) = (2s"log, s)'*} fors=1.

Then
E(t) = log#i(e') as. foreveryt=0. (4.8)

Consequently, we have, by (4.7)

(2 —a)/(2a) . n
lim inf 12827 log(i@)yy _ _@+ayr o (49)
oo logt-logst aH,

This proves (4.2) by (4.9) and the fact that |7(t) — #(¢)] = 1 for every r = 1.

Acknowledgements. The author thanks an associate editor and the editor for their helpful
comments.
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