
Probab. Theory Relat. Fields 94, 83-90 (1992) 

Probability 
Theory " " '  Related Fields 

�9 Springer-Verlag 1992 

Limit distributions of U-statistics resampled by 
symmetric stable laws* 

Jerzy Szulga 
Division of Mathematics, ACA, 120 Mathematics Annex, Auburn University, Auburn, 
AL 36849-5307, USA 

Received June 15, 1990; in revised form January 1, 1992 

Summary. If (Y i) and (V i) are independent random sequences such that Y~ are i.i.d. 
random variables belonging to the normal domain of attraction of a symmetric 
e-stable law, 0 < ~ < 2, and V~ are i.i.d, random variables, then the limit dis- 
tributions of U-statistics n -1/~ ~, Y i ~ . . .  Y i~ f (V i  . . . . . .  Via), coincide 

1 <=il  . . . .  , i a < = n  

with the probability laws of multiple stochastic integrals X a f =  f . . . f f  
(tl . . . .  , ta) d X ( t l )  . . .  dX(ta), with respect to a symmetric c~-stable process X(t) .  

M a t h e m a t i c s  Subject  Classif ication (1980) :  60 H 05, 10 C t0, 62 G 99 

1 Introduction 

There is a vast literature devoted to study the limit behavior of distributions of 
U-statistics, which are suitably normalized multiple sums 

f ( X i l , .  . , ,  X id ) ,  (1) 
i l  <= . . . i a < = n  

subject to additional restrictions concerning independence and existence of mo- 
ments of the underlying random variables (usually assumed to be independent), 
integrability and symmetry of the function f, etc., which allows one to use ortho- 
gonality techniques, conditional expectations, etc. A resampled U-statistic, by 
means of another random sequence (Y~), independent of (X~), is a particular case of 
the statistic (1). That is, up to a suitable normalization, it is a random quantity of 
the type 

Yii,. . . Yi, f ( X i , ,  . . . .  X , , )  . (2) 
i t  <= . . . . .  i d < = n  

When the resampling variables Y~ have finite variances, the limit distributions of 
such statistics can be described by means of multiple Wiener-type stochastic 

* The research was originated during author's visit at ORIE, Cornell University 
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integrals (more specifically, by multiple Kiefer integrals (cf., e.g., [-1]), or in the 
terms of, so called, yon Mises' statistics (see, e.g. [3]). A study of U-statistics 
"resampled" by stable laws was initiated by Dehling et al. [2]. It was shown that, 
under quite strong moment conditions allowing the use of martingale methods, 
multiple stable integrals are exactly the processes whose distributions appear in the 
limit of these statistics. 

In [9] we weakened some of these conditions, replacing the requirement of the 
finitness of Lr-th norm of f (where r > ~, the index of stability) [2] by that of the 
finitness of a certain Orlicz norm. The new condition was sufficient but not 
necessary for the existence of a multiple stable integral. We also have conjectured 
that exactly the existence of the underlying multiple stable integral is a necessary 
and sufficient condition for the aforementioned weak convergence of resampled 
U-statistics. 

This paper contains a proof of this conjecture, by reducing the problem to the 
investigation of properties of a standard Poisson process, in the spirit of [5]. This is 
also our general reference concerning details, a historical background, and the 
definition of a multiple stochastic integral. 

It is quite elementary to obtain the desired limit theorem for a class of "simple" 
functions f The nontrivial part of the limit theorem involves a uniform approxima- 
tion, by means of a suitable metric, of functions from a larger class by "simple" 
functions. When second moments are available, one can apply the well established 
L2-techniques. The use of L ~- or Orlicz norms had served exactly the same purpose. 
In this paper, in the absence of moments, we utilize an L~ which 
metrizes the convergence in probability: 

IlXllo = E 0 ( I X I ) ,  

where 0(x) = 1 - exp{ - x}. This quasinorm is especially useful, when one deals 
with Poisson processes. It is worth to emphasize that the sought-for uniform 
approximation is based on a, so called, decoupling principle in L ~ for Poisson 
processes. 

Let us point out that there is no known explicit and efficient quantitative 
description of a multiple stable integral, even in the symmetric case (except of the 
one-dimensional situation). The known descriptions are either of a qualitative 
nature (e.g., a recursive integrability criterion [5]), or are hardly applicable in the 
approximation (cf. [8], where a double stable integral is characterized by the 
finitness of a certain functional). 

We shall use the symbol Xaf  for the multiple integral of f with respect to 
a process X, and write X f  = X i f  We note that the mentioned definition is the most 
general in the class of pure (symmetric or positive) jump L6vy processes, and 
contains all possible (reasonable) constructions [5]. We will identify Xd(1A) and 
Xe(A). Symbols ~ and ~ denote the equality and convergence in distribution, 
respectively. 

The multiparameter functions f ( t l  . . . . .  t~) appearing in this paper are as- 
sumed to be real, symmetric, and vanishing on diagonals, i.e., whenever two or 
more of their arguments are equal. 

We begin with the formulation of the main result. The next section provides the 
needed tools. However, Theorem 2.1 in this section may be of an intrinsic interest, 
and other limit theorems with distributions of L~vy multiple integrals in the limit 
may be derived from it. The last section contains the proof of the main result. 
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Let X( . )  be an e-stable, 0 < c~ < 2, symmetric L6vy random measure on 
a separable finite measure space (T, Y,  #) with a L6vy measure v(dx)=  
c21dx/x -~-~, where # is a finite control measure and co = f~(1 - cosx)dx/x  ltd. 
The nature of the problem, as we will see, is such that, without loss of generality, we 
may assume that T = I-0, 1] and / ,  is the Lebesgue measure. That is, 

Eexp {uX(A)} = exp { -/~(A)lul ~} 

= exp{  -- c~- l f  f(1 - cosux)dx~+~#(ds)}, u 6 l R .  
A N.\{O} 

There follows the formulation of the main result of this paper. 

Theorem 1 Let ( Yi) and ( Vi) be two independent sequences ofi.i.d, random variables, 
I11 belong to the normal domain of attraction of a symmetric e-stable law, and V~ be 
uniformly distributed on [0, 1]. The statistics 

ID, = (c~)-a/=n a/~ ~ Y q . . .  Y i d f ( V q , . . . ,  V,.d) (3) 
1 <-i l  . . . .  , i a < n  

converge weakly to Xdf  if and only if the latter multiple integral exists. The analogous 
statement holds in the decoupled case, i.e., when X a is replaced by the iterated integral 
X 1 . . . X e ,  and the quantities Y q . . .  Y i ~ f ( V q , . . . ,  Vid) in (3) are replaced by 
y ~  . . .  yq V 1 d ,~ f (  i~, �9 �9 . , V i~), with all components being independent copies of each 
other. 

2 Poissonization 

Let (S, sO, 2) be a a-finite separable atomless measure space. Let ( be an abstract 
Poisson process with the intensity measure 2 and atoms Fi = F (~ Put 

( e ( f ) =  ~, f ( F i l , . . . , F ~ ) ,  f : S d ~ I R + .  
1 < i l  . . . . .  id < ~O 

If ~ = (~) is a Rademacher sequence independent of ~, then a symmetrized version 
(( o e)dfis defined by "resampling" ~ f  

((~ ~f Y, e l l . . ,  ei~f(Fi . . . . . .  rid), f:Sd-+IR+. 
i l ,  . . . , id 

Consider a set St E d such that ;.(St) = t, 0 <= t < oo, and an S-valued random 
variable Vt, uniformly distributed on S,. Let (Vt,~) be a sequence of independent 
copies of V,. Define a stochastic process, and its symmetrized version, as follows, for 
f : s d -~ lR + , l <_ n < oo, 

Q/( t ,  n; f )  = 

(Q o e)d(t, n; f )  = 

f(Vt,il, . . . .  V~,id) 
i l ,  . . . , ia <=n 

Z g ' i l " " "  F ' i d f ( V t , i  . . . . . .  V t ,  i d ) .  

i l  . . . . .  ia <=n 

It is convenient to refer to the above expressions as to multiple stochastic integrals 
of f(formally, they are pathwise multiple integrals with respect to suitable point 
processes). 
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The corresponding iterated integrals ~1 �9 �9 �9 ~ ,  (~  o ~ )  . . . (~_d o ~),  Q l,t �9 �9 . Qa,,, 
and Ql~ . . . . .  Qe~ (called decoupled multiple integrals in the literature), 
where the components are independent copies of ~, Q,, and e, respect- 
ively, are introduced analogously. 

The proof of virtually any statement formulated in such an abstract language, 
which allows more flexibility in applications, can be reduced to a much simpler 
situation. In fact, one may consider a measure isomorphism q5: IR+ ~ S, transform- 
ing the Lebesgue measure to 2. Then ~ can be viewed as the image of the standard 
(unit rate) Poisson process ~ on the real line, which, in terms of random measures, 
means that ~ ~ ~ o 4~- 1, F(~) = q~ o F(r where the latter gammas denote the arrival 
times of ~, and ~af ~ ~(fo ~0). Similarly, V~ ~= q~ o ~ o tU, where U is a random 
variable, uniformly distributed on [0, 1], and ~:IR+ ~ IR~ is a suitable measure 
isomorphism. Hence, on the real line 

Qd(t ,n , f )  ~ ~, 
i l ~  . . . , i d ~ t l  

In the sequel we will write 
(Qoe)~( f )  a_f_ (Ooe)~(n,n,f) .  

f ( t U ~ ,  . . . .  tU,fl  . (4) 

simply Qe (f) af Qe (n, n, f),  and 

Theorem 2 (i) The distributions o f  Q~(f)  converge weakly if and only if ~df < oo. In 
this case 

(Q~(f))  ~ ( ~ f ) ,  

as processes parametrized by the set {f: ~ef< oo}. 
(ii) The distributions o f  (Q o e)~(f) converge weakly if and only if (~ o e)df exists. In 

this case 

((Q o e)~(f)) ~ ((~o e)df) 

as processes whose parameter space is the set { f :~d f2  < oo}. 
The similar statements hold for  the decoupled integrals Q , I . . .  Q , d f  and 

~ . . . ~af  and their symmetrized analogs (Q1,o~1) . . . (Qd~o~) f  and (~1 oel) . . . 

(~.~ ~.)f. 
We will need two auxiliary result concerning the tightness and symmetrization 

of the sequence (Q~(f)). 

Lemma 1 Let  Q,  denote one of  two processes, Q~ or Q,a . . .  Q,,e. Then there is 
a constant C > O, depending only on d, such that 

IIQ.fllo < C II ~dfll0 - (5) 

Proof  If Gt and G; are nondecreasing cadlag (right continuous with left limits) 
processes adapted to a filtration (@,), and 

P E G t e ' j Y t _ ] = P [ G ; e ' l ~ - t _ ]  a.s., t > 0 ,  (6) 

then, for any non-negative (~'t)-predictable process Ht on ]R+ there holds the 
inequality 

E(1 A f H d G )  < 4EO A f H d ~ ' ) .  (7) 

This property follows by a verbatim argument used in the proof of [5, Lemma 3.5] 
(the statement of the cited lemma is confined only to Poisson processes but this is 
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not an essential restriction). Recall the reduced formula (4). Empirical processes 
based on identically distributed sequences of i.i.d, r andom variables have the 
proper ty  (6). That  is, denote G,(s) = ~ =  1 l{v,~<= ~}, where U (i) are order  statistics 
of the sequence U~, and let Gj.,, j = 1 , . . . ,  d be independent  copies of G,,. Then 

QJ(t, n , f )  = f . . . f  f ( t s l  . . . . .  tsd)dG,(dsl)  . . . dG,(ds~),  
[0, 1] d 

and a similar integral formula holds for Q1 . . .  Q~. Notice that we may write 
Qd = Qd- 1Q, where the inner opera tor  acts on functions of d - 1 variables. Then 
we apply (7) for H = Qd 1 G as is, and G ' =  Gd, and use the inequalities 
~p(x) < 1 /x x < e/(e - 1)O(x), and proceed by induction. Whence we infer that, for 
some constant  c (of order  4~d!, cf. the proof  of Lemma 3.6 in [5] whose line we are 
repeating almost literally), there holds a, so called, decoupling principle 

-11~ d c ~(Q,~f) < E~(Q,~ . . .  Q,,df) <= c E O ( Q d f ) .  (8) 

Hence, it is enough to prove (5) in the decoupled case, i.e., for Qnl �9 �9 �9 Q,,d. To this 
end, observe that 1 - (1 - x/n) n < e/(e - 1)~(x), for 0 _< x _< n. Then we check the 
inequality in the one-dimensional  ease: 

E ~ ( O , ( f ) ) = l -  1 -  ( 1 - e x p - f ( t ) } )  

--< 10  (t -- e x p  - f ( t ) } )  
e - -  o 

e 
__< - -  E O ( ~ f ) ,  

e - - i  

and iterate it, using the decoupling principles for empirical distributions (8) and 
Poisson processes, since they satisfy (6), too (cf. Lemma 3.6 in [5]. [] 

Lemma 2 Let  W:  N e ~ Lo be a symmetric discrete time random field (i.e. invariant 
under permutations of  its arguments, vanishing on diagonal hyperplanes. Let  ( W o e) 
denote its symmetrized version, i.e. (Wo ~ ) ( i l , . . . ,  id) = e i ~ . . ,  ei~" W(i l  . . . . .  ie). 
Denote S ( W )  = ~ 2 ~  W( i ) .  Then there is a constant C = C(d) such that 

II S(Wo ~) IIo = II s 1/2(w 2) IIo _-< c I[ S(Wo ~) IIo �9 (9) 

In particular, 

(i) S ( W o e )  converges a.s (or in probability) iff S ( W  2) < oo, 

(ii) S (Woe)  ~ 0 i f f S ( W  2) P 0, 

(ii)' (S(W,, o e)) is tight iff (S (W2) )  is tight. 

Proof. The left inequality in (9) follows by the concavity of ~b and Fubini 's theorem. 
Also from Fubini 's theorem, using properties of Rademacher  multilinear forms 
(see, e.g., [6])  and conditioning, we infer that 

3za 
P(SI /Z(W 2) > t) < ( l - r )  ~ P ( I S ( ( W ~  > rt)' O < r < 1, t > O 

(see Lemma 4.3 in [5]). 
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Since E O ( X ) = 5 o e x p { - t } P ( X > t ) d t  for a X > 0 ,  and since 1 - e x p  
{ -  x/r} < 1~re(x) for r < 1, hence the right inequality (9) holds with a constant 
C(r, d) < 32d(r(1 - r)2) - 1. The minimum of the latter expression is attained for 

r = 2 - ~/3 for which (r(1 - r)2) - 1 < 7, hence we may choose C = 7-9 a. 
The statements (i), (ii)' and (ii) result immediately from (9). [] 

Proof of Theorem 2 As noted before, we can assume that S = R+, )~ is the Lebesgue 
measure, and write ~ instead of ~. For t > 0, write ft =flto,t~d, and let {t be the 
Poisson process whose intensity measure has been restricted to [0, t]. It is enough 
to prove the theorem for the identical components. The decoupled case is similar. 

(i) Assume that {ef< m.  By the monotone convergence theorem, for any 
> 0, we can find a number t > 0 such that [I ~d(f_f~)IIo < 5. Hence, in view of the 

inequality (5), it suffices to prove the weak convergence for the function f .  
Observe that 

{~f ~ {dft ~ ~ f(tUi~, . . . .  tUid), (10) 
1 < i l  . . . . .  ia<=~[O,t] 

where ~ and (Ui) are mutually independent. Whence there follows immediately the 
formula for the Laplace transform 

Eexp { - ~ f }  

~.l f to" fexp { ~ _ ~ ,  E . , i a < k  f(sia,... ,sie)}dsa...dsk. (l l)  
d - t  

k = 0  . . 

Indeed, since f vanishes outside [0, t], then, putting N = { [0, t ] ,  the arrival times 
of { have the same distribution as the order statistics of a sequence (tU~: i < N), 
where U~ are i.i.d, random variables uniformly distributed on [0, 1]'. Then we may 
write {ft ~ ~l~i<Nf(tUi). By the same token there follows formula (10). Let O, be 
the empirical measure process based on U , , . . . ,  U~. Since 

Qaf= f . . . f f d Q , . . ,  dQ, 2 f(nU~,.. . ,  nU~), f: Nd+ __, R+, (12) 
1 ~ i l ,  . . . , i d  < n  

then 

O~.f~ ~= Y~ f~(tui,, . . . .  tu~),  n >= t ,  (13) 
i ~ i l  . . . .  , id<--St,n 

where S,., is a binomial b(n, t/n) random variable, independent of (Ui). Indeed, 
denoting A1 = [0, t] and A0 = (t, n] we have 

1[0 ,  n]" = 2 1Aa( io  X "'" X A3(i,  ) �9 
O(iO . . . . .  ~(i~) e{0,  1} 

Hence (13) follows: 

Eexp{-Q~f}=n-" 2 ( ~(n-t)"-g~'"~exp - 2 f(t~,, . . . .  t~) . 

By (10) and (13), the distributions of Q~ fconverge weakly to the distribution of ~ef. 
Conversely, suppose that ~df= oo. Then supk~J~ = oo, where fk =fl[o,kj~. By 

the first part of the proof, for a fixed k, lim, [tP(Q~fk) = [O(~fk). Therefore 

i > sup E~(Q~f) = sup sup E~(X~fk) > 1 . 
tl n k 
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In particular, 

hence, for every c > O, 

inf Eexp{ - Q~ f } = O,  
n 

e-Cinf P(Qaf=< c) = O, 
n 

i.e., the sequence (Qaf) is not tight. [] 

(ii) By conditioning on e, and using the same argument as for (10) and (13), we 
have 

o d @ ( ( e ) ,  f = (G ~ e)af ~ 

and, for n > t, 

(Qo ~).(f~) 

y ,  ~ , ~ ,  . . . , ~ , ~  f , ( v , ~ ,  . . . , v , , ) ,  

1 <_i~ . . . . .  ia<_~t  

2 8 i l  . . . . .  ~ i a  f t ( V t i l  , �9 " " , V t i d )  �9 

1 < i l  . . . . .  id<--Sn,  t 

Whence, and from Lemma 2 combined with Lemma 1, which guarantee the 
tightness of the sequence (Qo e ) a ( f _ f ) ) ,  there follows the "if" part of (ii). Con- 
versely, since the symmetrized integral (( o e)af exists if and only if (af2 < ~ ,  then 
Lemma 2 yields the "only if" part of statement (ii) by a argument similar to that 
used in (i). [] 

3 Proof of the main result 

The "only if" part of the theorem has been proved in [9] (it will follow immediately 
from Theorem 2). Thus, we will focus only on the proof of the "if" part, and for the 
identical components only. The decoupled case is similar. 

Assume that a multiple stable integral Xafexists. First, by interpreting assertion 
(ii) of Theorem 2, we wili show that the distributions of statistics 

U ,  = (c~cO-d/~n -a/~ ~ ~i, . . .  ~i~" U ~  1/~ . . .  U ~ l / ~ f ( W i , ,  . . .  , Wid) 
l < i t ,  . . . ,  i a < n  

(14) 

converge weakly to Xaf, where (Ui) and (W~) are two independent sequences of i.i.d. 
[0, 1]-uniform random variables. Note that eU- 1/~ has a, so called, Pareto distribu- 
tion, which belongs to the normal domain of attraction of the symmetric a-stable 
law. Next, we will show that the desired weak convergence holds for any multiplier 
from the normal domain of attraction of the symmetric a-stable law. 

It is well known that there is a Poisson process ( on (]R\{0} x [0, l] and 
a Rademacher sequence e, constructed from jumps of the process Xt, such that the 
following representation of a multiple integral holds 

X a f =  (~oe )a (La f )  a.s., f : [0 ,  1 ] a - + N,  (15) 

where L a f ( x ,  t) = x l  . . .  Xd" f ( t l  . . . . .  td), X = (Xl . . . . .  xa) c IRa\{0} (cf. [5]). 
Let S, /~ ]R\{0} be such that v(S , )  = n, and let Z ,  be random variables such 

that P(Z, ~ .) = v(S ,  ~ .)/v(S,).  Let Wbe a random variable, uniformly distributed 
on [0, 1], and independent of (Z,). Now, the pair (Z,, W) plays the role of 
a uniformly distributed random variable V, from Theorem 2. 
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In particular, we may choose Z ,  = (c~c~nU)-1/~, where U is a r andom variable 
uniformly distributed on [0, 1], and S, = [(c~c~n)- 1/=, co) (so v(S,) = n). Note  that, 
for t > (c~c~n)-1/~, 

P ( Z n > t )  = - - 1  ( dx _ 1 . (16) 
Cer l X T+~ rlo~c~t ~ 

Thus, statistics (14) weakly converge to Xaf. 
If  Y is an arbitrary r andom variable whose distribution belongs to the domain  

of normal  at tract ion of a symmetric a-stable law, then, obviously, the statistics D ,  
in (14) converge weakly to X e f i f  f is a simple function. Further,  

P ( l Z n  -1/~1 > t) < cP(leZ,,[ > t), t > 0 ,  

(Feller ]-4]) for some positive constant  c. By combining (8) and Lemma 2, we infer 
that  there are constants c' and c" such that, for any Xe-integrable function f, 
one has 

I[lD,/[Io < c'lFU, fl[o < c " l l x d f l l o  �9 

Since the subspace of multiple integrals X e of simple functions is dense, by means of 
convergence in probability, in the space of all integrals (Theorem 6.2 in [5]), the 
p roof  is complete. [] 
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