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Summary. Let ~ be a natural exponential family on N and (V, ~) be its variance 
function. Here, (2 is the mean domain of Y and V, defined on (2, is the variance 
of ~.  A problem of increasing interest in the literature is the following: Given 
an open interval f2c lR  and a function V defined on f2, is the pair (V, (2) a 
variance function of some natural exponential family? Here, we consider the 
case where V is a polynomial. We develop a complex-analytic approach to 
this problem and provide necessary conditions for (V, f2) to be such a variance 
function. These conditions are also sufficient for the class of third degree polyno- 
mials and certain subclasses of polynomials of higher degree. 
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1 Introduction 

Let Y be a natural exponential family on P, and (V, ~2) be its variance function. 
Here, f2 is the mean domain of ~ and V is the variance of ~ expressed in 
terms of the mean #s~2. The pair (V, f2) characterizes ~ within the class of 
natural exponential families. The problem of determining when such a pair 
constitutes the variance function of a natural exponential family has been studied 
by, amongst others, Morris [9], Mora  [8], Bar-Lev and Enis [4], Letac and 
Mora  [71 Jorgensen [5, 6], Bar-Lev and Bshouty [-2], and Bar-Lev et al. [3]. 
Some statistical applications of such a determination, in the context of exponen- 
tial dispersion models and generalized linear models, can be found in Jorgensen 
[6]. 

In this paper, we consider the situation where V is a polynomial and provide 
necessary conditions for (V, f2) to be. a variance function. One of the reasons 
for focusing on such variance functions is that, in the study of generalized linear 
models, a variance-mean relation (V, g2) can be used to construct a statistical 
model for a data set, and an empirical variance-mean relation of a data set 
in the form of a polynomial of some degree can always be established. It should 
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be noted that most of the natural exponential families with polynomial variance 
functions correspond to statistical models that apparently have not been consid- 
ered before. Such natural exponential families, although having simple variance- 
mean relations, do not have tractable Laplace transforms (with the exception 
of quadratic variance functions or variance functions of the form V(#)= c~ #", 
#elR). This fact also motivates the study of polynomial variance functions. 

Let p, denote a polynomial of degree n. Morris [9] identified all variance 
functions where V=p,, n <  2. Mora [8] identified all variance functions where 
V=p3. (Details can be found in Letac and Mora [7].) Bar-Lev and Bshouty 
[2] showed that, except for the variance function of the binomial family, where 
V ( # ) = j - I # ( j - # ) ,  O=(0,j),  jEN,  no polynomial variance function with 
bounded mean domain exists. It thus follows that the mean domain of any 
other polynomial variance function is either N or a semi-infinite interval. In 
this paper, we shall consider both cases. In the case where the mean domain 
is a semi-infinite interval, by affinity, one can assume that f2 =IR +. We so assume 
in what follows. Note that if (V,O) is a variance function and if V-p2k+I, 
then g? must be IR +, since O must be the largest open interval on which V 
is positive real-analytic (see Letac and Mora [7]). Bar-Lev [1] showed that 
polynomials on ~ +  having nonnegative coefficients are variance functions of 
infinitely divisible natural exponential families. 

It would appear that at least part of the difficulty in identifying variance 
functions amongst polynomials is that real-analytic techniques may not be suffi- 
ciently powerful for this general problem. Motivated by this consideration, we 
here develop a complex-analytic technique which permits us to obtain necessary 
conditions for polynomial variance functions on IR + and IR. These conditions 
are particularly powerful for polynomials of low degree. 

In Sect. 2, we review some basic analytic properties of variance functions 
which are needed for the subsequent developments. In Sect. 3, we describe the 
idea underlying the technique used to obtain the main results. In Sect. 4, we 
apply this idea to the classes of polynomials of degree 3 and 4, and to subclasses 
of polynomials of degree 5 and 7. It will be shown that, in the case of third 
degree polynomials, the necessary conditions obtained here will imply that all 
coefficients must be nonnegative. This, together with the result of Bar-Lev [1], 
provides a characterization of those third degree polynomials which are variance 
functions. Although Mora [8] (see also Letac and Mora [7]) obtained such 
a characterization by a different approach, we, nevertheless, consider this case 
here to demonstrate the utility of our approach. Subclasses of polynomials of 
degree 5 and 7 are also characterized. 

2 Preliminary notions and basic properties of variance functions 

We first recall some definitions and properties of natural exponential families 
and their variance functions. 

Let v be a positive Radon measure on ]R, which is not concentrated on 
one point. The Laplace transform and effective domain of v are given, respective- 

ly, by T(0)= f exp(Ox) v(dx) and D={OEIR: T(0)<oo}. Let O=intD and 
- - o O  

assume that O is nonempty. For 06 O, define 

Fo (d x) = [ T(0)] - 1 exp (0 x) v (d x). 
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The family of probability distributions i f =  {17o: 0~0}  is called a natural expo- 
nential family generated by v. The mean function of f f  is the mapping defined 
on O by 

#(0)= S xFo(dx). 
- - o o  

The mean domain of f f  is f2 =/~ (O), and/~ is a one-to-one continuously differenti- 
able mapping so that s is an open interval. Denote by 0=0(/0 the inverse 
function of/~, and let V on s be defined by 

v(#)= [ (x-~) 2 Fo(,,)(dx). 
- - o 0  

The pair (V, f2) is called the variance function of ~ Without loss of generality, 
we henceforth assume that 0eO and T(0)= 1, so that v is a probability measure. 
Define/~o = #(0). 

Let (2 = (a, b), - oe < a < b < oo. Then, 0, T(O), and O can be expressed, respec- 
tively, by 

# 

(2.1) O= ~ dt/V(t), 
/~o 

(2.2) 

and 

(2.3) O = (uli+m+ 

t 
dt/V(t), l i ra  dt/V(t) . 

#o # ~ b -  ~0 

The following lemma provides some analytic properties of T and # (see 
Bar-Lev et al. [3]). 

Lemma 1 Let (V, f2) be a variance function of a natural exponential family. Then 
(i) the Laplace transform T, given by (2.2), is the restriction to 6) of a unique 
analytic function (which will also be denoted by T) on 0 x I R - S o  ~-C ; 
(ii) /~ is the restriction to 0 of a meromorphic function (whieh will also be denoted 
by #)  on S o, with at most first order poles, where these poles are the zeroes 
ofT;  
(iii) V is the restriction to Y2 of an analytic function (which will also be denoted 
by V) on some domain Q, (2 c Q ~ C. I f  V is a polynomial, then Q can be taken 
to be ff;. 

It follows from Lemma 1 and the uniqueness of analytic continuation that 

~(z) 

(2.4) T(z)-- y tdt/V(t) ,  z=O+i t l~S  o. 
g o  
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Moreover, the inverse form re(z) of 

m 

(2.5) z-- ~ d t/V(t) 
g o  

has a meromorphic branch which coincides with # on So. In the sequel, for 
notational convenience, we shall write S for So, and, in order to avoid ambiguity, 
we shall refer to T as analytic on S, to # as meromorphic on S, and to V 
as analytic on Q. 

3 Necessary conditions for polynomial variance functions 

We shall first discuss the method and derive results for the case f2=IR +. 
Let (V, IR +) be a variance function of a natural exponential family, and fix 

#o E IR+. Then, by (2.3), with a = 0 and b = o% O = (01, 0o), where - o o  < 01 < 0o 
__<oo. (Note that in the case where (V, IR +) is a variance function and V is 
a polynomial of degree >2,  then 01 = - o o  and 0o is finite.) The monotonic 
function #(0), 0 1 < 0 < 0 o ,  as defined implicitly by (2.1), admits a meromorphic 
continuation to S={z :  z = O + i r  h 0~0} ,  with at most first order poles there. 
Our plan is to determine for which polynomial V's such an extension is not 
possible, thereby excluding these polynomials from being variance functions. 

We start by introducing the multivalued form 

(3.1) z(m)= '~ clt/v(t), mEr 
# o  

where Z(V) denotes the zero set of V. This form is indeed multivalued, since 
Res(1/V,, mi)~0, for some mi~Z(V), and thus its value at any point depends 
on the path of integration. For  the case where V has a simple root at zero, 
this is particularly useful since Lemma 2, below, assures us that in this case 
the inverse function, re(z), is periodic. The period of m is, in fact, imaginary, 
and shall be denoted by i d, d > O. 

Considering this case (i.e., where m has a simple zero at the origin), we 
focus on the mapping m restricted to S l = S n { z :  1,3(z)l<d/2 }. We shall see 
that m is univalent in $1 and that re(St) misses Z(V) and infinity. Since re(S1) 
is simply connected and symmetric with respect to the real axis, it then misses 
symmetric slits joining each m i~ Z (V) with infinity. We then consider an arbitrary 
simply connected domain M in the m-plane, which is C except for ]R- and 
symmetric slits connecting each mieZ(V) with infinity (this is a "maximal"  sim- 
ply connected domain in C, where z(m) is one-valued). We then have: If 
$1 ~-z(M), for all possible M, then V is not a variance function. 

For  the proofs of our theorems, we shall need some lemmas. Lemma 2 is 
due to Letac and Mora  [7]. Here we provide a different formulation along 
with a short proof. 

Lemma 2 Let (V, IR +) be a variance function such that V is analytic at the origin. 
Then V has a first order zero at the origin iff re(z) is periodic with period 27ri% 
- i d ,  where % =Res(1/V, 0)>0.  
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Proof Using partial fractions, it follows that the local behavior of the integral 
in (3.1), near m = 0, is 
(a) z(m)=eo logm+H(m), Co>0, if Vhas a simple zero at the origin, or 

r l 

(b) z(m)= ~ 7k/mk+~ologm+H(m), b - l ~ O ,  if V has a zero of order r > 2  at 
k = l  

the origin. 
Here, H denotes a function that is analytic in a neighborhood of the origin. 
The local behavior of re(z) on the left half plane near infinity is thus 

(a) re(z)=f(eZ/~~ in the first case, or 
(b) re(z) = f ( z -  1/r), in the second case, 
where f is analytic in a neighborhood of infinity. By the uniqueness of the 
meromorphic continuation, m is periodic with period 2re i c~ o iffV has a simple 
zero at the origin. Also, ~o = 1/V'(O)> 0, since V > 0 on N+ and V(0)= 0. [] 

We now address our original problem. Let (p, IR +) be a variance function, 
where p is a polynomial of degree n>2 .  Then p(0)=0 and O = ( - o %  0o) , where 
0 < 0o < oo. Hence, S is a half plane. Let r denote the order of the zero of 
p at the origin and let 

= (S1 ,  if r = l ,  
So (S, if r=2 .  

Lemma 3 Let (p, ~+) be a variance function, where p is a polynomial of degree 
n> 2 .  Then, for each seZ(p)\{O}, there exists a slit connecting s to infinity that 
does not intersect re(S). These slits can be taken to be symmetric with respect 
to the real axis. 

Proof We first show that each seZ(p) is not in re(S). Indeed, if ssZ(p), then 

i dt/p(t) diverges for every path that joins #o and s. On the other hand, if 
#o 

sere(S), then there exists a path F, joining #o and s, and a zeS such that 
d tip(t)= z. Since z is finite, this is a contradiction. Hence, Z(p)c~ re(S)= O. 

r 
We next show that ooCm(S). Assume, to the contrary, that ooem(S). Then 

m has a pole in S and therefore T has a zero there. By (2.4), there exists a 

path joining #o to infinity such that ~ t d t / p ( t ) = -  oo. However, this integral 
#o 

converges for all paths joining #0 to infinity. (Here, we have used the fact that 
]p(t)l ~ [tl", n>2 ,  as t tends to infinity.) Hence, oo q~m(S). 

We now proceed to show that m is univalent in So. Assume to the contrary 
that m is not univalent in So. Then there exist zl, z2eSo, z l#z2,  such that 
m(zO=m(z2). Let A denote the straight line segment that joins z 1 and z 2. Since 
So is convex, A cSo .  Now, m(A) is a closed curve in the m-plane and, therefore, 

Z 1 - - Z 2 =  ~ dz-= ~ dm/p(m)=t=O. 
A re(A) 

We conclude that re(A) is a curve that surrounds at least one of the zeroes 
of p. But, by the residue theorem, the integral on the right is independent of 
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z l - z 2  in a small neighborhood of Zx-Z2. Hence, m is periodic with period 
~ = z l - z 2 .  If ~c is imaginary, then [tel<d, which contradicts Lemma 2. If ~c is 
not imaginary, then, by the Schwartz reflection principle, t~ is also a period 
of m. Since tr and ff are independent periods, m is doubly periodic and is, thus, 
meromorphic in C. This is possible only if p is a second degree polynomial 
(see Theorem 4.2 of Bar-Lev et al. [3]), which contradicts a premise of the lemma. 
Accordingly, m is univalent and, since S o is simply connected, so is re(So). Thus, 
there exist slits joining each s~Z(p) with infinity that do not intersect re(S). 
Since m is real on the real axis and So is symmetric with respect to the real 
axis, so is re(S). This makes it possible to choose these slits to be symmetric 
with respect to the real axis. []  

As a result of Lemma 3, we need focus on only the upper half plane. For  
convenience, we adopt the following notation in the sequel. Let M denote a 
simply connected domain, symmetric with respect to the real axis, consisting 
of IE except for IR and symmetric slits joining each s~Z(p)\{O} to infinity. 
Also, if A is a set and b a number, we write A + b to denote the set of all 
numbers of the form a+b, where aEA, and (for A =FIR) we write A + to denote 
the set A ~ {z: ,~(z)>0}. 

Lemma 4 Let p be a polynomial of degree > 2, with a zero of order r, r = 1, 
2, at the origin. Then, the mapping m, as defined in (2.5) where V - p ,  is meromorphic 
in S, with m(O)=~l(O) for all 0~0 ,  iff there exists a symmetric simply connected 
domain L c M ,  OL~IR- ,  such that, for r = l ,  2, z(OL+)c~Sg=c~ and, for r = l ,  
zOR-)= 0 + i d/2, also. Here, for r= 1, S~ =S~ and, for r=2 ,  So ~ = S  +. 

Proof For  r = 1, 2, by Lemma 3, m is univalent in S o and symmetric with respect 
to the real axis. Hence, "necessity" follows by choosing L =  re(So). 

For  the "sufficiency" part of the proof, by the open mapping theorem, the 
condition that z (6 L § c~ S~- = ~b implies that Sg c z (L +) and, by the inverse map- 
ping theorem, m is meromorphic on Sg. Since O is mapped by m onto IR +, 
by the Schwartz reflection principle, m is meromorphic on IR + and is extendable 
as a meromorphic function to So. If r=2 ,  So=S and we are done. If r =  1, 
then, using Lemma 2 and the condition that z ( I R )  ~ 0 + i d/2, we have 

m (0 + i d/2) = m (0 - i d/2) = m ( 0 -  i d/2) = m(O + i d/2), 

for 0~O, so that m is real on O+id /2  and, by periodicity, on O - i d / 2  also. 
By the Schwartz reflection principle, m is meromorphic on these lines and thus 
on ~) (So + i d k) = S. This concludes the proof of the lemma. [] 

k e n  

Before stating our basic theorem, we shall introduce some additional neces- 
sary notation. Let J{p denote the set of nonreal zeroes of (a polynomial) p, 
whose imaginary parts are positive, and let @ denote the set of real zeroes 
of p, except for zero. Let l denote the number of elements in J/Zp w ~p. An 
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ordering {Sj}x=<j~l of ~ p w d p  is an order on the set such that m-.<c, for all 
meJg~ and Cedp, and c-Kd, i f c < d  and c, d~Cp. We also let 

~.=f-2rciRes(1/p,  sj), if sjeJ/gp 
J (-rciRes(1/p,  sj), if s i e d  ; .  

We are now ready to formulate our first theorem. 

Theorem 1 Let p be a polynomial of degree n> 2 and let the multiplicity, r, 
of the zero of p at the origin not exceed 2. Then, if (p, N +) is a variance function 
of some natural exponential family, it is necessary that there exists an ordering 
of ~/~p w dp such.that all partial sums of ~ satisfy 

k k 

(3.2) (i) 0o+ ~,~(~Sg and (ii) 0o+ ~ r  
j = l  j = l  

and 
k 

(3.3) 0o+ Z ~(~S~, for r = 2 ,  
j=l 

for r = 1, 

f o rk= l ,  2, ...,1. 

Proof We shall see that (3.2) and (3.3) provide necessary and sufficient conditions 
for/~(0) to admit a meromorphic continuation to S. For  brevity and simplicity, 
we shall restrict the proof  to the case where each element of ~ p  is a simple 
zero of p. (Proofs for the other cases can be given similarly.) By Lemma 4, 
this is the case iff there exists an M and L c M  such that z(OL+)caS~ is empty. 
If M § is given a positive orientation (i.e., counterclockwise) and its boundary 
0M  + is considered in terms of prime ends (i.e., a boundary point on a slit 
that is not a root of p is considered as two different points from the two sides 
of the slit that passes through it), then an L with the above-mentioned property 
exists iff the element of z(M +) that contains the positive real axis has no singular- 
ities in Sg. To check this, we shall therefore trace 0 M + and discuss its image 
in the z-plane. A convenient way to do so is to consider MR=MC~ {z: Iz[<R}, 
instead of M, and let R tend to infinity. Note that the circular arcs of 0M~ 
(such as CD and HI) are mapped onto very small arcs (see Fig. 1). Indeed, 

~i 6dt/p(t) = ~ t/p(t) < Iz(F)--z(G)l= drip(t)- ~ d ~Rl-"fi ,  
#o 

where f l~N+. Hence, the right hand side of the above inequality tends to zero, 
as R tends to infinity. Starting with A in tracing the curve, and letting R ~ o% 
the image is seen to look as in Fig. 2, if r = 1, or as in Fig. 3, if r = 2, where 
the lowercase letters are the images of the corresponding capital letters appearing 
in Fig. 1. Furthermore, 

s--a= --~riRes(1/p, 0), g - - e =  --2rci Res(1/p, sl), 

1 - g = - 2 7 r i R e s ( 1 / p ,  s2) and r -q=--~ iRes(1 /p ,  s3). 
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Fig. 2. z(O M +) for r=  1 

Note  that  the singularities of  m(z) (none of  which are first order  poles) are 
exactly 

k 

0 o + 2 ~ ,  k = 1 , 2  . . . . .  l, 
j = l  

which, by L e m m a  4, must  satisfy (3.2), for r = 1, or  (3.3), for r =2 .  This concludes 
the proof. [ ]  

Remark 1 Theorem 1 provides necessary condit ions for (p, N +) to be a variance 
function, where r, the multiplicity of  the zero of p at the origin, does not  exceed 
2. By employing similar techniques, one can also derive necessary condit ions 
for the case where r > 2. Such conditions,  however,  are not  sufficiently restrictive 
to be useful for polynomials  of degree __> 5, so this case is not  considered here. 
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Fig. 3. z(OM[~) for r = 2  

Remark 2 Actually, p has real coefficients, which implies that any ~ ,  correspond- 
ing to an sj~dp,  is imaginary. Hence, if (3.2) or (3.3) is satisfied for J//v it is 
automatically satisfied for @ u J//p. 

We now consider the case where f2 = R.  Here, if (p, N) is a variance function, 
where p is a polynomial of degree > 2, then the corresponding space O = (01, 0o), 
as defined by (2.3), is a finite interval. The mean function #, as defined on 
O by (2.1), admits a meromorphic continuation to S, with at most first order 
poles there. We continue to use the notation introduced in the paragraph preced- 
ing Theorem 1. However, note that, here, @ is empty so that ~ =  
- 2  7r i Res(1/p, sj),j = 1, ..., I. Theorem 2, which follows, provides necessary con- 
ditions for (p, N) to be a variance function. Its proof  is similar to that of Theo- 
rem i and, thus, is omitted for brevity. Instead, we sketch the proof  of Lemma 5, 
which is the analogue of Lemma 3. 

Lemma 5 Let (p, lit) be a variance function, where p is a polynomial of degree 
k 

> 2. Assume that  (I) for an arbitrary ordering of JClv, ~ ~ ,  k = 1, ..., l, is not 
j=l 

imaginary. 
Then, for each s~Z(p), there exists a slit connecting s to infinity that does 

not intersect m(S). These slits can be taken to be symmetric with respect to the 
real axis. 

Proof As in Lemma 3, one shows that ({~} wZ(p))c~m(S)=4). One then pro- 
ceeds to show that m is univalent in S. This can be done by negation, as follows. 
If, for some zl =#Z2, Z1, z2~S, m(zl)=m(z2), then the same argument as in Lem- 
ma 3 shows that tc=z 1 - z  2 is a period of m. (I), above, implies that ~c is not 
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imaginary and, therefore, it is either real or complex. If ~c is real, then I K I < 0o - 01 
and, therefore, m is meromorphic in C. Also, if K is complex (but not imaginary), 
then m is meromorphic in (E. Indeed, ~ is also a period of m and, thus, so 
is K--f i=2i3(K).  Now, K and 2i.3(K) are independent periods of m and, since 
the fundamental parallelogram domain of m, defined by K and 2i3(K), fits in 
the strip of regularity of m, m is meromorphic in 112. Since this can happen 
oniy if p is of degree 2 (see Theorem 4.2 of Bar-Lev et at. [31), we have a contra- 
diction. The remainder of the proof follows as in Lemma 3. []  

Theorem 2 Let p be a polynomial of degree > 2. Then, if (p, ]R) is a variance 
function of some natural exponential family and condition (I) of Lemma 5 is sat- 
isfied, it is necessary that there exists an ordering of /dp such that 

k 

(3.4) 00+ Z ~ r  S+, 
j = t  

for all k = 1 . . . .  , I. 

4 Applications 

We shall now apply the results of Sect. 3 and note that they provide satisfactory 
necessary conditions for polynomial variance functions of small degree. By these 
conditions, along with the sufficient conditions of Bar-Lev [1], we will be able 
to completely characterize some subclasses of polynomials. We state Bar-Lev's 
conditions in the following lemma. 

Lemma 6 Let p be a polynomial of degree >= 1 having nonnegative coefficients. 
Then (p, IR +) is a variance function of an infinitely divisible natural exponential 
family. 

Our applications in the sequel wilt refer to different classes of polynomials 
with one complex parameter; viz., all zeroes of p will be fixed, except for two 
complex conjugate zeroes ml and rfi 1. The region of variability of m 1 such that 
the coefficients of p are nonnegative will be referred to as the ~3-region. 

In Theorem 3, we characterize the class of third degree polynomials which 
are variance functions of natural exponential families. Theorem 4 is devoted 
to the study of fourth degree polynomials. It will reduce substantially the charac- 
terization problem for this class. Theorem 5 and Theorem 6 are devoted to 
the study of one parameter families of fifth and seventh degree polynomials, 
respectively. 

The following theorem is due to Mora [8]. A complete characterization 
of all third degree polynomials which are variance functions of natural exponen- 
tial families is found in Letac and Mora  [-7]. Here, by employing the necessary 
conditions of Sect. 3 and Lemma 6, we present a shorter proof. 

Theorem 3 Let p be a third degree polynomial. Then (p, IR +) is a variance function 
iff the coefficients of p are nonnegative. 

Proof The "sufficiency" part follows immediately from Lemma 6. We now prove 
"necessity". Put p(m)=c~m(m2+fim+7) and assume that (p, P,+) is a variance 
function. Then, it is clear that c~>0 and 7>0,  so that it is only necessary to 
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show that f i>0.  If the roots of p were real, they should be nonpositive (since 
p does not vanish on IR +) and therefore its coefficients are nonnegative. The 
only other nontrivial case is when m ~ = a + i b ,  b>0 ,  and rfi~ are the complex 
conjugate roots of p. In this case, we apply Theorem 1 with ~ p =  {mj}, @ =  ~b, 
r = 1, and I = 1. Here, we have m~ = s 1 and 

- 2 h i  - n r f i  1 
~1 = - - 2 h i  Res(1/p, s l )=  ~ m l ( m l  - - r n l  ) --  ~ [ml  [2 `3(m 0 " 

Thus, .3 ( ~ )  = n/[~ (a 2 + b2)] and 9t (N1) = - n a/[~ b (a 2 + b2)]. Since .3 (~1) = d/2, 
condition (3.2) implies that 91(~1)>0 or, equivalently, that a < 0. Since f i= - 2  a, 
we have/~>0.  [] 

We next address the problem of fourth degree polynomial variance functions. 
Let (p, (2) be a variance function, where p is a fourth degree polynomial and 
E2 is either IR or N +. If f2=IR, then p must have two nonreal zeroes and their 
conjugates; viz., m l, rfi~, m2, and rh2, where, without loss of generality, `3(mi)> 0, 
i=  1, 2. By using affinity, we can assume, without loss of generality, that the 
zeroes of p are i, - i ,  m~, and rh~, where 91(m0>0 and `3(m0>0;  i.e., p has 
the form 

(4.1) p(m)=c~(m2+l)(m--mO(m--rhO, c~>0, 91(ml)__> 0, `3(m0 > 0. 

If ~2=IR +, then p has one zero at the origin and another real zero, say a. 
If a # 0 ,  then, by using affinity, we may assume that a = -  1. The other two 
zeroes of p are either real, in which case they must be nonpositive since p 
does not vanish on IR + (and thus by Lemma 6, (p, IR +) is a variance function 
of an infinitely divisible natural exponential family), or they are two complex 
conjugate roots, m 1 and rhl, with `3(ml)>0. Consequently, for ~2=IR +, two 
forms of p should be analyzed: 

(4.2) p ( m ) = ~ m ( m + l ) ( m - m O ( m - r h O ,  c~>0, `3 (m0>0 
and 
(4.3) p(m)=c~m2(m--mO(m--rhl), ~>0,  `3(m0 >0.  

The following theorem provides necessary conditions for (p, ~2) to be a vari- 
ance function, where p is of the form (4.1), (4.2), or (4.3). 

Theorem 4 (i) Let p be given by (4.1). Then, for (p, IR) to be a variance function, 
it is necessary that either Irnal< 1 or 91(m 2 + 1)<0. 
(ii) Let p be given by (4.2). Then, for (p, IR +) to be a variance function, it is 
necessary that 91(m~ + ml) < 0 or 91(m0 < - 1/2. 
(iii) Let p be given by (4.3). Then, for (p, IR +) to be a variance function, it is 
necessary that [arg(ml) l> n/4. 

Proof (i) We apply Theorem 2 with l = 2  and ~ p = { i ,  ml}. Two orderings of 
J p  are possible: (a) s l = i  and s2=ml ,  or (b) s2=i and s l = m l .  In case (a), 
we have 

and 

- ~  El rnl 12-1 + 2 i 91(ml)] 
~ l = - 2 n i R e s ( 1 / p ,  ml) = c~lm~+ll 2 ~-xl 

- -  n ( n ~  + 1) 
~2 = --2~zi Res (l/p, i)= 

~`3(mO ImP+ II ~--x2" 
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Whereas in case (b), ~1 = X 2  and ~2 =Xl.  Note that condition (I), of Lemma 5, 
is satisfied if I rnt]q = 1 and rfi 2 + 1 is not imaginary. In which case, at least one 
of the two orderings should satisfy condition (3.4); i.e., 

(4.4) 0 o + ~ r  + 
and 

(4.5) O0 q- 0~1 -1- ;~2 q} S + . 

Clearly, for both orderings ~1 + & = - j d Up(t). But, since j d t/p(t)= 0 o -  01, 
- oo  -o o  

it follows that 0o+~1+~2=01~S +, and thus condition (4.5) holds for both 
orderings. Therefore, condition (4.4) holds, for either ordering, if and only if 
9t(~1)>0 or 9 l ( ~ ) >  0. This implies the desired result. 

(ii) We apply Theorem 1 with r =  1 , /=2 ,  Jg/;= {m~}, and s~p= { -1 } .  Here, there 
is only one ordering, namely s 1 = rn 1 and s 2 = - 1. We have 

and 

-- 7C/~1(/~ 1 -}- 1) 
~1 = -- 2 rr i Res(1/p, ml) = c~ .3 (ml) I rn 1 [2 [m I q_ 112 

iTE 
~2 = -- i = Res(1/p, -- 1) = 

~ l m l + l i 2  - 

Since -2rciRes(1/p ,  0)=--;z//(~lml]2),  the period of m (see Lemma 2) is 
id=~i / (e  Ira1 ]2). Now, if-~(~1) > 0, then ,3(~O=d/2- .3(Nz)<d/2 and, therefore, 
by Remark 2, it is necessary that 91(~1)>0 for (3.2) to hold; i.e., (3.2) holds 
iff {,3 (~ )  > 0 and 91 (~ )  > 0} or ,3 (~ )  < 0. The desired result then follows. 

(iii) We apply Theorem 1 with r=2 ,  l = l ,  Jgp={ml} , and @=~b. Therefore 
s I = m  1 and 

- r c r ~  
~l = -- 2 ;z i Res (l/p, rn 0 = ~-~(ml) Iml [4 ' 

For (3.3) to be satisfied, it is necessary that 9t(~1)__>0 or -~(~1)<0. This yields 
the desired result. [] 

It is interesting to graphically illustrate the "necessary" region of m 1 for 
the polynomial in (4.2). This "necessary" region is specified by the necessary 
conditions in part (ii) of Theorem 4. For  this polynomial, in which fa=]R +, 
note that the "necessary" region and the 23-region (i.e., the region of variability 
of ml such that the coefficients of p are nonnegative) touch in three distinct 
points. Since the N-region belongs to the region of infinitely divisible natural 
exponential families, it would be interesting to characterize the remaining region 
(viz., the region between the boundaries of the "necessary" region and the 23- 
region). 

The possible types of fifth degree polynomial variance functions can be 
obtained by an analysis similar to that employed for fourth degree polynomial 
variance functions (see the paragraph preceding Theorem 4). Our next applica- 
tion concerns two such types. 
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Theorem 5 (i) Let p (m)=~m(m-mi )2 (m- - r f i l )  2, where ct>0 and 3(ml)>0 .  Then 
(p, ]R + ) is a variance function iff 9~ (m l) < 0. 
(ii) Let p(m)=c~m2(m+ l ) ( m - m i ) ( m - r f i l ) ,  where ~ > 0  and 3 ( m l ) > 0  , and put 
m l = a + i b .  Then a necessary condition for (p, IR +) to be a variance function 
is that 

(4.6) b2>a2(a+l ) / (3aq- l )  or b 2 < 3 a 2 + 2 a .  

Proof (i) The "sufficiency" part follows immediately, since if N(ml )<0  , then 
p has nonnegative coefficients, so that by Lemma 6, (p, IR +) is a variance function 
of an infinitely divisible natural exponential family. For "necessity", we apply 
Theorem 1 with r =  1, t=  1, Jd'v= {m 1}, and sCv=qk Here, only one ordering 
exists for which s~ = ma. Therefore 

1 2-)' -7z(3 ml - rh l )  tfi2 
~1 = -27z i  Res(1/p, ml)=  -2~ r i  = 

~m(m--rhl) . . . .  4~ Ima 14(3(mi)) 3 " 

Here, 3 ( ~ i ) =  zc/(2 ~lm 114) = d/2 and, thus, for (3.2) to be satisfied, it is necessary 
that 9t(~1)>0. Put ml = a + i b ,  then 

- rca(2a2 + 6 b  2) 
9t(~1) = 4c~(a2 +b2)b 3 

Since 9t(~1)> 0 iff a = 9t(ml)_-< 0, the desired result follows. 

(ii) We apply Theorem 1 with r=2 ,  I=2,  ~ p = { m l } ,  and ~r  There is 
only one ordering with sl = m  1 and s2 = - 1 ,  and 

~l = - 2  ~ i Res(1/p, ml)= 
- -  ~(/~1 -~- 1 ) ~ 2  

c~]mi -t- 112 I ml ]4 ~(mi ) �9 

Now, by Remark 2, (3.3) is satisfied iff 9 t (~ i )>0  or .3(ml)__<0, and this implies 
(4.6). []  

Our last application generalizes the result in Theorem 5 (i). 

Theorem 6 Let p ( rn )=~rn(m-ml )3 (m-r~O 3, where c~>0 and 3(ml)>0 .  Then 
(p, ~ + )  is a variance function iff ~R(mi) < 0. 

Proof The "sufficiency" part is immediate by Lemma 6. We prove "necessity" 
by applying Theorem 1 with r = 1, l=  1, d//p = {ml), and d p =  ~b. Only one order- 
ing is possible with s~ = ml and 

i \"1 
~ = - - 2 r c i R e s ( 1 / p ,  rni)=--~zi c~rn(rn--ml)- - 3-) ] . . . .  

--zc i{Sirhat [.~(ml)] 3 + 12 N~ [3(ml)] 2 [m~ [ 2 -- 12irfi i I ml 14 .3(m0} 
]mi 16 12.~(ml)l 6 
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As in Theorem 5(i), ,3(~1)=d/2 and it is, therefore, necessary that  91(~1)>0. 
This is easily seen to give, for m~ =a+ib, that  

-ba(40b2 a2 +60b4 +12a4)>O 

and, therefore, Ot(ml)= a < 0. This concludes the p roof  of  the theorem. [ ]  

Finally, let p(m)=c~m(m-ml)"(rn-Nl)", where c~>0 and ~,.~(ml)>0. We con- 
jecture that  (p, IR +) is a variance function, for all nEN,  iff 9l(ml) _-< 0. (Note 
that  this conjecture has been proved for n = l ,  2, and 3 in Theorems 3, 5(i), 
and 6, respectively.) 

References 

1. Bar-Lev, S.K.: Contribution to discussion of paper by B. Jorgensen: Exponential dispersion 
models. J. R. Stat. Soc., Ser. B 49, 153 154 (1987) 

2. Bar-Lev, S.K., Bshouty, D.: Rational variance functions. Ann. Stat. 17, 741-748 (1989) 
3. Bar-Lev, S.K., Bshouty, D., Enis, P.: Variance functions with meromorphic means. Ann. 

Probab. 19, 1349-1366 (1991) 
4. Bar-Lev, S.K., Enis, P.: Reproducibility and natural exponential families with power variance 

functions. Ann. Stat. 14, 1507 1522 (1986) 
5. Jorgensen, B.: Some properties of exponential dispersion models. Scan& J. Stat. 13, 187-198 

(1986) 
6. Jorgensen, B.: Exponential dispersion models (with discussion). J. R. Stat. Soc., Ser. B 49, 

122162 (1987) 
7. Letac, G., Mora, M.: Natural real exponential families with cubic variances. Ann. Stat. 

18, 1-37 (1990) 
8. Mora, M.: A classification of cubic variance functions of exponential families on R. C.R. 

Acad. Sci., Paris, Ser. I 302, 587 590 (1986) 
9. Morris, C.N.: Natural exponential families with quadratic variance functions. Ann. Stat. 

10, 65-80 (1982) 


