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Summary. Schr6dinger processes due to Schr6dinger (1931) (the definition of 
which is given in Sect. 4) are uniquely characterized by a large deviation princi- 
ple, in terms of the relative entropy with respect to a reference process, which 
is a renormalized diffusion process with creation and killing in applications. 
An approximate Sanov property of a subset A~, b is shown, where A,,b denotes 
the set of all probability measures on a path space with prescribed marginal 
distributions {q~, qb} at finite initial and terminal times a and b, respectively. 
It is shown that there exists the unique Markovian modification of n-independent 
copies of renormalized processes conditioned by the empirical distribution, a n d  
that the propagation of chaos holds for the system of interacting particles with 
the Schr6dinger process as the limiting distribution. 

1 Introduction 

The aim of this article is to give a characterization of Schr6dinger processes 
in terms of large deviations in the case of unbounded or singular creation and 
killing, and to prove a propagation of chaos result for Schr6dinger processes. 
Since the initial and terminal distributions q~ and qb, at --oo < a <  b <  o% are 
fixed, when we discuss large deviations for Schr6dinger processes, we take a 
set A,,b of probability measures on a path space C([a, b], Re), with the pair 
{q~, qb} as marginal distributions at a and b, respectively. To discuss the Sanov 
property of the subset A,,b, there are two obstacles; namely, the empirical distri- 
bution does not belong to the set Aa, b and moreover its interior A~,b is empty. 
To overcome these points we will introduce a sequence of enlarged subsets 
of probability measures, which approximates the subset A~, b (cf. Theorem 2.1). 
The third assertion of Theorem 4.1 states an approximate Sanov property of 
the set A,, b in the case of Schr6dinger processes with of unbounded or singular 
creation and killing. Large deviations for Schr6dinger processes have been dis- 
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cussed by F611mer (1988) for Brownian motions, and by Dawson et al. (1990) 
for a case of bounded creation and killing. However, in both papers the Sanov 
property of the set Aa, b is not treated. The fifth assertion of Theorem 4.1 is 
on the propagation of chaos for systems of interacting diffusion processes con- 
verging to Schr6dinger processes, for which the existence of a Markovian modifi- 
cation will be shown. 

2 Approximate Sanov property 

Let f2= C([a, b], Re), - o o  < a < b <  0% be the space of continuous paths taking 
values in R d, d > 1, with the Borel a-field a(~2). We denote Xt(co ) = X(t,  co)= co (t), 
for coef2. Let MI(O) be the space of probability measures on f2 endowed with 
Csiszar's %-topology: For  e > 0  and finite measurable partitions ~ = ~ ( ~ 2 )  
={O1,...,~2k}, k = l ,  2 . . . . .  of /2 the basic neighbourhoods of an element 
PeM1 ((2) are defined by 

(2.1) U(P, e, ga~)= { R e M ,  ((2): ]R((2,)--P(Qi) ] <e, for i= 1, 2, . . . ,  k, 

and R ~ P on a (~), i.e., R (Oi) = 0, if P (Oi) = 0}, 

where a ( ~ )  is the a-field generated by the partition ~ (cf. Csiszar 1984). 
For  a pair of probability measures {q~, qb} on R e, which will be fixed from 

now on, we consider a subset A~.b of Ma (Q) defined by 

(2.2) A~,b = {PeM1 (f2): PoX71 = G, for r =a ,  b}, 

which is the class of continuous stochastic processes on R d with the prescribed 
marginal distributions q, and qb at the fixed initial and terminal times a and 
b, respectively. 

In the following we fix a probability measure / seM1 (f2), which will be speci- 
fied in a practical application to Schr6dinger processes in Sect. 4, and we always 
assume that 

(2.3) the set Aa,b contains at least one element P with finite relative entropy 
H ( P [ P ) <  c~, 

where the relative entropy H(P[/5) of P with respect to /5  is defined by 

H(PIP)= y (log ~ )  dP, if P ~ / 5 ( =  0% otherwise). 

The measure/5 itself is not an element of the set Aa, b. 
In order to define subsets which approximate the subset Aa, b we consider 

a sequence of finite measurable partitions ~ ( R  e) = {B1, ..., Bk} of R e, k = 1, 2, ..., 
where ~ + 1 (Re) is a refinement of ~ ( R  d) such that 

(2.4) a ( ~ ( R a ) ) c a ( ~ + l ( R a ) )  and a(~%(Ra))Ta(R~), as kToo. 
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In terms of the partitions ~ ( R  a) we define a family of subsets A (e, k) of M a ((2), 
for e > 0 and k = 1, 2, ..., by 

(2.5) A (~, k ) =  {Pf fM 1 (Q): I P [ X , ~ B i ]  --qr(Bi)] ~ ,  for VBi~(Rd), 

and P o X 7 1 ~ P o X ~  1 on a(~(Rd)),r=a,b}. 

The dependence of the set A(e, k) on e > 0  being not substantial but technical, 
which will be needed in Sect. 3, especially in Lemma 3.2 and Lemma 3.5, we 
will write A (k) instead of A (e, k) for an arbitrary but fixed e > 0, when the explicit 
dependence on e > 0 will not be needed. 

Let {(2", P} be n-independent copies of (O, P), where P = P" is the n-product 
of the probability measure P. By L, we denote the empirical distribution 

n 

(2.6) L,(co)= n i~=1 5o~,, 

where (D=((D 1 . . . . .  O.)n)~'2 n. We define the conditional probability p(,,k) of P on 
the set {~oe~2": L,(a))eA (k)} in terms of the empirical distribution L, by 

(2.7) p(,,k) [ . ]  = P~)k)['] =PV'I  L, eA(k)J. 

Although the conditional probability depends on e>0,  we will not indicate 
this dependence explicitly following the convention stated after (2.5). Each mar- 
ginal distribution on f2 of the conditional probability p(,,k) belongs to the set 
A (k) by lemma 4.2 of Csiszar 0984). 

Instead of giving the definition of Csiszar projection, we quote Theorems 
2.1 and 2.2 of Csiszar (1975) as a lemma for later reference. 

Lemma 2.1 (Csiszar 1975) Let f2 be a measurable space and PeM1 (~) be fixed. 
I f  a subset A of Ml((2) is convex and variation closed, and the subset A contains 
at least one element P with H(P]P )<  0% then there exists the unique I-projection 
Q~A of P on the set A such that 

(2.8) inf H(PIP)=H(QIP), 
PsA 

and it satisfies the inequality 

( 2 . 9 )  H(P[P)>H(PIQ)+H(QlP), for VP~A. 

From now on we will call the I-projection Csiszar's projection. 
With the notations introduced above our basic theorem states 

Theorem 2.1 (i) Let d~,b and A(k) be the subsets of M1((2) defined at (2.2) and 
(2.5), respectively. Then 

(2.10) Aa,b= (-] A(k), 
keN 
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and an approximate Sanov property holds for the set  Aa, b in the following form 

(2.11) lim lira 1-1ogP[L,~A(k)]=-  inf H(P[P), 
k ~  n ~ c r  n PEAa,b 

where the infimum is attained by Csiszar's projection Q of _P on the set A~, b, 
namely, 

(2.12) inf H(P[P)=H(Q[P). 
P~Aa,b 

(ii) The process (X~ . . . . .  X,) with respect to the conditional probability p(,,k) 
defined at (2.7) is asymptotically quasi-independent with the limiting distribution 
Q, namely, 

(2.13) lira lira I~H(P("'k)IQ")=0, 
k--* oo n ~ c o  n 

where Q" denotes the n-product of Csiszar's projection Q. 

3 Lemmas and proof of Theorem 2.1 

We will apply a Csiszar's theorem (1984) on large deviations to the approximat- 
ing subsets A(8, k), and then let k tend to infinity. For this we need simple 
Lemmas, and a proof of Theorem 2.1 will be given at the end of the section. 

Lemma 3.1 Let A (e, k) be the subset of M 1 (f2) defined at (2.5). Then 

(i) A (8, k) decreases as k'f ~ ,  
(ii) A (e, k) decreases as 8 ~ O, 
(iii) A~,b = ~ A (~, k), for V e > O, 

k e N  

where A~,b is the subset of M1 (O) defined at (2.2). 

Proof. (i) Since ~ + I(R a) is a refinement of ~(Rd), if P is an element of A (8, k + 1), 
then clearly PoX~-I~PoX71 on a(~(Rd)) for r=a,b. By the definition any 
B e ~ ( R  d) is of the form B = B l w B 2  with B1, B2e~+l(Rd),  BlC~B2=0, and 
hence we have 

[P [ X ~ B ,  ~ B2] - qr(B1 u B2)I <= IP EX,~BI] -- q~(B01 + IP [Xr ~ B2] -- q~ (B2)] 

8 8 8 

= < ~ - ~  2k+1 -- 2k, 

for r=a and b. Therefore, PEA(8, k) and hence A(a, k)~A(e, k+ 1). 
(ii) is clear by the definition of A (8, k). 

To show (iii) the inclusion " c "  is obvious, since 

Aa,bCA(8, k), for Vs>O, VkeN. 

In fact, by the definition (2.2) and assumption (2.3) on A,,b, we have q~ 
=POX21 ~PoX71  on a(~(Re)), for any PeAa,b, and for r=a, b. 
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To show the converse inclusion " = "  let us take P e (~ A (5, k), for 5 >0. 
keN 

Suppose Pq~A,,b, i.e., there are 5o > 0  and a subset Beo-(R ~) satisfying 

{P[X, eB]--q,(B)[>5o, for r=a or b. 

Because a(~(Rd))I" ~ we can find k e n  and B i e ~ ( R  a) such that 

[P[X~eBJ--q~(Bi)[>~, for r=a or b, 

which is a contradiction. Thus " ~  " holds. 

Lemma 3.2 Let A~ denote the interior of the set A(e,k) with respect to 
the %-topology. Then, for any eo > 0 

(3.1) A~ ~j A(e,k). 
0<8<~0 

Proof Let Poe ~ A(5, k), i.e., PoeA(51,k) for 0<51<5o.  For  each B i e ~ ( R  e) 
define f2[ by o < ~ < co 

f2[={co:X~(co)eBi}, for r=a,b, 

and a finite measurable partition N of f2 by 

~ = ~ ( ~ ) =  {f2~' c~ ~2~: i,j= 1, 2,...,  k}. 

Let PeU(Po, e2, ~). Then, P~Po on a(~), and moreover PooX21~PoX2 t 
and hence PoX;~14~PoXr -1 on a(~(Re)), for r=a,b. Furthermore, for 
VBie~(R d) 

I P [Xr e Bi] - q~(B,)l = I P [~2~] - Po [Y2~] I + I Po EX~ e B~] - q~(Bgl 

el 
<k52 + ~ - ,  for r=a,b. 

�9 ~i ~0 Therefore, if we choose a constant ~2 > 0 so that k~2 +~u then P~A (eo, k), 
i.e., U (Po, ~2, ~) ~ A (eo, k), which implies (3. I). 

Lemma 3.3 The set A(~, k) is completely convex in the sense of Csiszar (1984) 
(hence convex) and variation closed. 

Proof Let (A, sr #) be an arbitrary probability space and ~ (2, B) be a probability 
kernel on A x o-(f2) such that ~(2,-)eA (5, k), for \/2eA. Then, for any Bie~k(Rd), 

{#rl [XreBi3 --qr(Bi)[ == ~lr/(2, {XreBi} )--qr(Bi){ #(d)O 

< ~  for r=a,b. = 2  k, 

Moreover, it is clear that #~oX; -1 ~PoX~ -1 on O-(~k(Rd)), for r=a and b. There- 
fore, # ~ e A (e, k), i.e. the set A (5, k) is completely convex. 
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To show that the set A (e, k) is variation closed, let {P,} ~ A (e, k) be a sequence 
which converges to P e M  1 (f2) in variation with respect to P, namely, 

]p__Plvar = f dP, dP - d f i  d ~  dP--*O' as n--.c~. 

Then, for any B i e ~ ( R  d) and r=a,  b, 

IP [X, eBJ  -- qr (B,)] ~ IP [XreBi] - -  Pn [X~eBJI + IP~ [X~eB,] -- qr (B,)I, 

where the second term on the right-hand side 

IP, [X, .eBJ - q~(Bi) l <-_2 k 

and the first term 

IPEXreB i ] -P , [XreB[ I I~ IP~-PIvar .~O,  as n-->o�9 

Therefore, 

IP FXreB,3 - q,.(Bi) t < ~ ,  

and hence PEA (~, k), i.e., the set A (e, k) is variation closed. 
In the following let us denote for simplicity 

(3.2) H(A IP) = inf H(PIP),  
P e A  

for a subset A c M 1 (s 

Lemma 3.4 Let e > 0  and keN .  Then 

(3.3) -- H (A~ (e, k) l/5) < lim inf 1 log P [L, eA (e, k)] 
n --+ oo n 

__< lim sup 1 log P [L, eA (e, k)] =< - H(A (e, k) I/~), 
n - + o o  

where H(A(e,k)IP) is attained by Csiszar's projection P~,k of  P on the subset 
A (e, k), i.e., 

H(A(~, k)IP)= H(P~,kIP). 

Proof. Since the set A (e, k) is completely convex by Lemma 3.3, we have 

1 
- l o g P [ L . e A ( e , k ) ] N - H ( A ( e , k ) I _ P ) ,  for VneN, 
n 

by theorem 1 of Csiszar (1984), and the lower bound holds by lemma 4.1 in 
the same paper. Moreover, since the set A (e, k) is variation-closed by Lemma 3.3, 
and there is at least one PeA(e ,k)  with H(P] /5)<oo by the assumption (2.3) 
imposed on the set Aa,b, there exists Csiszar's projection P~,k on the set A(e, k) 
by Lemma 2.1. 
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Lemma 3.5 (i) There exists Csiszar's projection Q of P on the subset Aa,b of 
M 1 ((2) defined at (2.2), namely, 

(3.4) H(Aa,b I P) = H (Q I P). 

(ii) Moreover 

(3.5) lim H(A~ lim H(A(~,k)lP)=H(QIP), for V~>0. 
k ~ o o  k ~ o o  

(iii) Csiszar's projection P~,k of P on A(e, k) converges to Csiszar's projection 
Q of P on A,, b in entropy, and hence weakly as k ~ oo. 

Proof Since the subset A,, b is also convex and variation closed because of 
(iii) of Lemma 3.1 and Lemma 3.3, there exists Csiszar's projection Q of P 
on A,,b by Lemma 2.1 under the entropy condition (2.3) imposed on the set 
Aa, b. Let 0 < e l  <e2. Then by combining Lemma 3.1 with Lemma 3.2 we have 

(3.6) A ~ (el, k) c A (~,  k) = A o (e2, k) c A (e2, k), 

and hence 

(3.7) H(A~176 k)lP)>H(A(e2,k)lP). 

On the other hand, 

(3.8) H(Q I P )=H(A, ,b IP )>H(A(e ,  k)IP)=H(P~,kIP). 

Therefore, the lower semi-continuity of the relative entropy combined with Lem- 
ma 3.1 yields 

(3.9) lira H(A(e,k)]P)=H(A,,b]P), for Ve>0,  
k ~ o o  

from which we can also conclude, because of (3.7), 

(3.10) lim H(A~ for Ve>0.  
k--~ oo 

Thus, (3.5) is shown. The third statement follows from Csiszar's inequality (2.9) 

(3.11) H(QIU)- H(P~,klP)> H(QIP~,k), 

because Q~Aa,bcA(e,k). The left-hand side of (3.11) vanishes as k tends to 
infinity, because of (3.8) and (3.9). Therefore, 

lim H(QIP~,k)=0, for Ve>0,  

that is, P~,k converges to Q in entropy, and hence weakly (cf., e.g. lemma 3.1 
in Csiszar 1975), which completes the proof. 
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Proof of Theorem 2.1 To show the equality (2.11) we let n-~ oo and then k--+ oo 
in 

1 
(3.12) n log P [L, sA (~, k)] + H(QIP) 

< t log PI-L,~A(e, k)] + H(A(e, k)[P) 

+ l - H ( A ( e ,  k)lP)+ H(QIP)[. 

Then, the first term on the right-hand side converges to zero by Lemma 3.4 
together with Lemma 3.5, and the second term vanishes by Lemma 3.5. The 
second assertion follows from Csiszar's inequality 

(3.13) 0<-1 H(P("'k)I Q")< n -H(A(e'k) lp)- l l~ 

(cf. (2.17) in Csiszar 1984) which connects the speed of convergence of the condi- 
tional probability p(,,k) to the speed of convergence in the approximate Sanov 
property. The right-hand side of (3.13) vanishes as n-+ oo and k---, o% because 
of the first assertion of Theorem 2.1 combined with Lemma 3.5, and hence 
we have (2.13), completing the proof. 

Remark. We have stated Theorem 2.1 for probability measures on the space 
of continuous paths, since we intend to apply it to diffusion processes on R a. 
However, as we have seen, it is clear that the continuity of paths plays no 
role and can be avoided. Let (S, a(S)) be a measurable space with a countably 
generated a-field o-(S), and ~2 be the space of measurable functions on [a, b] 
taking values in S. Consider the space MI(f2 ) of probability measures on this 
space f2. Then, Theorem 2.1 and all Lemmas in Sect. 3 remain valid on this 
setting. 

4 Large deviations for Schr6dinger processes and the propagation of chaos 

Let {(t, Xt), P(s.x); (s, x)e[a, b] x R a} be a space-time diffusion process determined 
by a diffusion equation 

(4.1) 
ap 1 
0t t-~ A p + a V p = 0 ,  

where A denotes the Laplace-Beltrami operator 

A = ] / ~  ~x ~ 

with a bounded positive defnite symmetric diffusion matrix A~k(t, x)= (aJk(t, x)) 2, 
A =A(t, x)= lAbs(t, x)l. We assume that a vector potential a(t, x) satisfies a gauge 
condition V a=0 .  We require necessary conditions which guarantee, by any 
means (cf., e.g. Stroock and Varadhan 1970), the existence of diffusion processes 
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{Xt, P(~,~)} corresponding to the diffusion equation (4.1) (assuming e.g. the Novik- 
ov condition on a(t, x)). 

Let c(s, x) be a measurable function on [a, b] x R d which may be unbounded 
or singular with the positive and negative parts denoted by c + (s, x) and c-  (s, x), 
respectively. We consider diffusion processes with creation and killing c(s,x) 
= c + (s, x) - c-  (s, x). In terms of the killing part c-  (s, x) setting 

Ts=inf t>s: y c-(r, Xr)dr=oe , 
x 

where T~=o% if there is no such t, we adopt as the state space a subset 
D c [a, b] x R e defined by 

D = {(s, x): P(s,~) [b < T~] > 0}. 

Let us define, first of all, the measure P(~,x) with killing c- (s, x) by 

(4.2) 
b 

for any non-negative measurable function F, where P [-F] denotes the integral 
of F with respect to a measure P. Notice that the exponential function on 
the right-hand side in (4.2) is positive on the set {b< T~} and hence P(2,x)[1] >0  
for V(s,x)~D. This means that with a positive probability a particle starting 
at a point in D survives until the terminal time b. 

Then we require an integrability condition of the creation part c + (s, x) 

(4.3) (! )] P(2,~) exp c+(r, Xr)dr <o%forVsanda.e. xin(s,x)eD, 

where P(2,x) is the measure defined at (4.2). 
Now we define the measure P(],x) with creation and killing c (s, x) by 

(4.4) Pi~,~)[F]=P(~,x) exp c+(r, Xr)dr F(') 
L \ s  

b 

In terms of the measure P(],x) we define the function ~(s, x) by 

#(s, x)-- P~,x)U], 

which is positive and finite in D because of the definition of D and (4.3). 
The renormalized measure P of P(~,x) is defined by 

(4.5) P [ F ]  = ~  k(dx) ~(~,x ~ P~a,x)[F], 
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where k(dx)= k(x)dx with a probability density k(x)>0 and D~= {x: (a, x)~D}. 
We substitute this renormalized measure in place of the reference probability 
measure/5 which was fixed in Sect. 2. 

In order to formulate the entropy requirement (2.3) on the set Aa, b defined 
at (2.2) in terms of marginal distributions at the initial and terminal times, 
we define a probability measure/5 on R d x R e by 

(4.6) /~(A x B)= y k(dx);~-T~ la(x)Pi~,~)[1B(Xb)], 
D~ 

where we choose k (x) > 0 so that log (k (x)/~ (a, x)) ~ 12 (qo), and consider the set 
g(a, b) of all probability measures on Rdx R d with the given pair {qa, qb} of 
probability measures on R d as their marginal distributions at a and b. Then 
we assume: 

(4.7) There exists p~oe(a, b) with H(p [/~) < oo. 

This condition requires that the distribution qa must be absolutely continuous 
with respect to the distribution k(dx), and the process with creation and killing 
must reach the support of the distribution qb at the terminal time b with positive 
probability. Then we have 

Lemma 4.1 (F611mer 1988, Nagasawa 1990b) Assume the conditions (4.3) and 
(4.7). Then there exists the unique 1 non-negative solution { ~a, Oh} for the Schr6- 
dinger system: 

q,(A)= ~ (~a(X) 1A(N ) dx P~a,x)E(~b(Xb)], 
Da 

qb(B) = ~ ~)a(x)dx P(~,x)[~bb(Xb) 1B(Xb)], 
Da 

with log ~)ae12 (q.) and log Obe12 (qb), where P(~.,x) is defined at (4.4). 

In terms of the solution {~., ~bb} of the Schr6dinger system and the measure 
P(~.,x) with creation and killing given at (4.4) we define a probability measure 
(2 on (s o-(f2)) by 

(4.8) Q[F] = ~ ~o(x) dx P(,,~,)[-F(.) Ob(Xb)]. 
Do 

Then we have (cf. Nagasawa 1990b) 

Proposition 4.1 The Csiszar projection Q of the renormalized measure P on the 
set A,, b coincides with the one defined at (4.8). 

We call {X,, (2} the Schr6dinger process for a given triplet {c, %, qb}. This 
is a diffusion process with the initial distribution q, and with the drift V log q~t, 
which is singular if Or(X) vanishes on a subset, where 

Ct(x)= P(t,x) [exp ( f  c(r, Xr) dr) d?b(Xb) l{b< T,}] 

(cf. Nagasawa (1989, 1990b), Aebi (1989, Preprint)). 

1 Up to multiplicative constants depending on regions separated by the zero set of the solution 
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Then, the second assertion of Theorem 2.1 claims the asymptotic quasi- 
independence 

(4.9) lira lim ~ H(p(n'k)] Qn) = 0, 
k - + o e  n ~ c o  n 

i.e., the conditional process {(X1, ..., Xn), p(,,k)} converges in entropy and hence 
weakly to the infinite product of the Schr6dinger process Q as n -~ oo and k ~ ~ .  
However, the conditional process {(X1 . . . .  , X,), p(n,k)} is not Markovian. Hence, 
we will need a Markovian modification Q("'~) of p(~,k) which satisfies the entropy 
condition (4.10) below. 

Let P and Q be probability measures on the space of right-continuous paths 
with the time parameter t running in [a, b]. If Q is Markovian and the marginal 
distributions at time t of P and Q coincide for Vt~[a,b] ,  then Q is called 
a Markovian modification of P. 

Lemma 4.2 Let P and Po be probability measures on the space of right-continuous 
(resp. continuous) paths satisfying H ( P I P 0 ) < ~ ,  where Po is a Markov (resp. 
diffusion) process. Then there exists the unique Markovian (resp. diffusion) modifi- 
cation Q of P such that 

(4.10) H (Q I Po) =< H (P I P0). 

Proof. Define a set A of probability measures R on the path space by 

(4.11) A = {R: R oX~- 1 = p o X ,  1, for Vte [a,b]}, 

where Xt denotes the path function. Then the set A is convex and variation 
closed. Therefore, there exists a unique Csiszar's projection Q of Po on the 
set A by Lemma 2.1, such that 

H(QIPo)=H(AIPo) .  

Let us prove that Q is Markovian. Setting 

t ,m)=(a+J)Ab,  for meN,  

we define a sequence of subsets A (") of probability measures R by 

(4.12) A(m)={R:RoX~-l=PoX~-l,fort=t}"),gj=O, 1, 2,...}. 

Then the sets A ~") are convex and variation closed, and satisfy 

(4.13) A(")~A("+I)DA, and ('] A(m)=A, 
?n 

because of the right-continuity of paths. Consequently, 

(4.14) H(A [ P o) > H(A ("+ 1)1P o) > H (A(=) I P o), 

and, furthermore, there exist Csiszar's projections Q(-O such that 

(4.15) H (Q(") [ P o) = H (A(") ] P o), 
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respectively, by Lemma 2.1. It is clear that Q and Q~") are absolutely continuous 
with respect to P0, because of the assumption of the lemma combined with 

(4.16) H(Q~m) I Po) = H(Q ] Po) = H(A I Po) =< H(P I Po) < oo. 

Then, the lower semi-continuity of the relative entropy, together with (4.13), 
(4.14) and (4.15), yields 

(4.17) lira H(Q<m) leo)= H(QIPo). 
m --~ ~o 

Because of Csiszar's inequality (2.9), we have 

H (Q I Po) - H (Q~m) I Po) > H (QI Q<m)), 

since Q e A  {'). Therefore, 

(4.18) lira H (QiQ <")) = O, 
r n ~ o o  

x.e., Q(") converges to Q in entropy, and hence weakly as m tends to infinity 
(cf., e.g. lemma 3.1 of Csiszar 1975). The process Q(") is Markovian, since it 
is a Schr6dinger process on each subinterval [t} "), t}'~)l], j = 0 ,  1, 2 . . . .  , with the 
marginal distributions PoX, -1, for t=t} m) and t}"))t. Consequently, the process 
Q is Markovian as the limit of the sequence of the Markovian processes Q("). 
In fact, adding t and t+r, if necessary, to the set ~t(")l of the end points of I. j ) 

subdivisions of the time interval in (4.12) and setting 

P~m) f(Xt)=Q~")[f(Xt+~)lXt], and P~) f(X~)=Q[f(Xt+~)lXt], 

we have for bounded measurable f 

lim P~")f(X~) = P~)f(X~), P-a.e., 
m ~ o  

and, with n < m, tj = t~ ") < t, t k = t, and bounded measurable g j, 

Q [ j l )  1 g~(X~j)f(X,+r) 1 

= lim Q<'~) gi(X~j)f(Xt+. = lim Q(m) gj(X,)py.)f(x~ 
m ~ o  m- ->  co Lj=I 

= lim P gj(X~)P}")f(X, = P  g;( )P}~176 
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If Po is a diffusion process, and b(t, x) (resp. b(")(t, x)) denotes the drift coefficient 
of Q (resp. Q(-0), then the Maruyama-Girsanov theorem (cf. e.g., Liptser and 
Shiryayev 1977, Ikeda and Watanabe 1981, 1989) yields 

(4.19) H (Q l Q("))= �89 Q [ f  lb(t, Xt)-b(")(t, Xt)lZ dt], 

which vanishes as m--. oo, because of (4.18). Therefore, b(m)(t,x) converges to 
b(t, x) in L 2 in the sense of the right-hand side of (4.19). 

Remark. Notice that the (weak) limit of a sequence of Markov proeeses is, in 
general, not a Markov process. 

Let us now discuss the propagation of chaos for the Markovian modification 
Q(n,k) with the Schr6dinger process Q as limiting distribution. 

In this paper we will formulate the propagation of chaos in a slightly different 
form to be fit for Schr6dinger processes. Let Q be a Markov process on a 
path space O and Q(,,k) be a Markov process on f2", where we allow a family 
of doubly indexed probability measures with (n, k), as is typical in the case 
of Schr6dinger processes. 

Remark. The propagation of chaos for a system of interacting diffusion processes 
was introduced by McKean (1966, 1967), and is discussed in Nagasawa and 
Tanaka (1986, 1987a, b) in connection with Schr6dinger processes. Cf. Tanaka 
(1984), Kusuoka and Tamura (1984), 01schl~iger (1989), Sznitman (1989) and 
Dawson and G/irtner (1989) for the propagation of chaos. 

We say the propagation of chaos holds for the Markov process Q(,,k) with 
the limiting distribution Q as n--, oo and k ~ co, if it has the following two 
properties 

(4.20) Q(,,k) is asymptotically quasi-independent with the limiting distribution Q, 

(4.21) Q(,,k)[L,] converges to the Q in entropy 

as n--, oo and k--, 0% where L, is the empirical distribution of (X 1 . . . .  , X n ) .  

Then, we have, applying Theorem 2.1 and Lemma 4.2, 

Theorem 4.1 Assume the conditions (4.3) and (4.7). Then: 
(i) There exists the unique Markovian modification Q(,,k) of p(,,k) such that 

(4.22) H (Q("'k) I Q" ) =< H (P("'k) I Q" ). 

(ii) The Markovian modification {(X1, ..., X,), Q(,,k)} is a system of interacting 
diffusion processes with the Markovian drift coefficient b"k(t, x) ( =  interaction), 
x = (xl, ..., X,)E(Rd) ", such that 

(4.23) b"'k(t, x )=  {bT'g(t, x, L,(x)): i= 1, 2 . . . . .  n}, 

where b~ 'k is the drift vector of Xi. 
(iii) The approximate Sanov property 

lim lim l logP[L,  eA(k)]=--  inf H(PqP)=-H(QIP), 
k ~ o a  n ~ o o  n P ~ A a .  b 
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holds, where A(k),~Aa, b as k ~ oo (cf Lemma 3.1). In other words, the probability 
that the rare event {L,~A (k)} occurs is given by 

PEL,~A(k)]~e -"n(elp), as n~oo  and k~oo .  

(iv) The Markovian modification Q(,,k) is asymptotically quasi-independent 
with the Schr6dinger process Q as limiting distribution; 

(4.24) lim lim _i H(Q(,,k) IQ,)=0. 

(v) Moreover, the propagation of chaos holds for the Markovian modification 
{(X1, ..., X,), Q(n,k)} with the Schrddinger process Q as limiting distribution, when 
n ~ oo and k ~ oo. In fact, Q(,,k) converges in entropy to the infinite product 
of the Schrddinger process Q, and Q(,,k) [L,] to Q also in entropy. 

Proof We apply Lemma 4.2 to p=p(,,k) and Po=Q' ,  where the assumption 
of the lemma is satisfied, because of (4.9). Therefore, there exists the unique 
Markovian modification Q("'~) of p(,,k) with the Markovian drift coefficient 
b"k(t, x). Moreover, P("~) and hence Q(,,k) both depend on the empirical distribu- 
tion L, of (X1, ..., X,,) through the conditioning (cf. the definition at (2.7)). There- 
fore, the drift coefficient of Q(,,k) has the form of (4.23). The asymptotic quasi- 
independence of Q(,,k), i.e. (4.24), holds, because of (4.9) and (4.22). For the 
fifth statement of the propagation of chaos we formulate 

Lemma 4.3 The asymptotic quasi-independence of Q(,,k) i.e. (4.24) implies (4.21). 

Proof Since Q(,,k) is the Markovian modification of p(n,k), it is sufficient to 
show that P("k)[LJ converges in entropy to Q. Let us denote by p(,,k) the 
marginal distribution of p(,,k) on f2. Then we have 

(4.25) 
n 

p(.,k) [L.] = n  i ~L1 pf.,k)[5o),] = p(n,k). 

This combined with (4.24) and 

(4.26) H(P("'k) IQ ) <~  I-I (P("'k) I Q" ), 

(cf. (2.10) in Csiszar 1984) yields 

(4.27) lim lim H(P("k)IQ)=O, 
k ~ o o  t l ~ o o  

i.e., p(.,k)[L,] converges to (~ in entropy by (4.25). 
Thus the proof of Theorem 4.1 is completed. 

In connection with Theorem 4.1, see Nagasawa (1990b; Preprint) concerning 
the question what the Schr6dinger equation is. As is known, it is difficult to 
treat the propagation of chaos for singular diffusion processes (cf. Nagasawa 
and Tanaka 1986, 1987a, b). Theorem 4.1 provides a way to discuss this difficult 
problem, although it treats an inverse problem of the propagation of chaos. 
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Remark. W e  have fo rmu la t ed  asser t ions  in this sect ion for diffusion processes  
on R d, bu t  the con t inu i ty  of  pa ths  is no t  essential  and  can be avoided .  Let  
S be a Pol i sh  space and  {(t, Xt), P(s,x); (s, x)e[a, b] x S}, be a (strong) M a r k o v  
process  of  r i gh t - con t inuous  pa ths  with left l imits.  Then,  all s ta tements  in this 
sect ion r ema in  val id  for this process,  except  the s ta tements  on drift  coefficients. 
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