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Summary. It is shown that functional iterated logarithm (log log) laws for geometric 
subsequences imply the corresponding laws for full sequences, and that the converse 
is not true. The implication is proved by simple algebraic arguments of regular 
variation type. 

1 Introduction 

In this paper we investigate the relations between functional iterated logarithm 
(log log) laws for collections of geometric subsequences and the corresponding law 
for the full sequence. The main conclusion is that in general the geometric 
subsequence law implies the full sequence law (for simple algebraic reasons), but 
that the converse implication need not hold true. Instances of the latter occur in 
cases of probabilistic interest. 

Results have to be formulated in a rather abstract algebraic setting. Therefore 
we introduce the relevant notions in the context of Strassen's classical functional 
loglog law for Brownian motion (Strassen (1964) and Freedman (1971)). 

Let X =  (X(t))t~to ' ~) be standard Brownian motion. It is a random variable with 
values in the metric space F:  =C[0,  oo) of real-valued continuous functions on 
[0, oo) with the topology of locally uniform convergence. Consider the transfor- 
mations 7(a, b) : = F ~ F  defined by 

7 ( a , b ) f ' = a f ( b . )  for a , b > 0 .  

The 7(a, b) form a group G, with composition of mappings as product. It becomes a 
metric group, isomorphic to ]I{2+, by declaring 7(a, b)~-*(a, b) to be a homeomor- 
phism. Here IR+ denotes the group (0, or) with multiplication. The group G acts 
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jointly continuously on F, i.e., 

(1.1) the mapping G x F~ (7, f)~--~7f ~F is continuous. 

If (f~)~ is a net in F and K c F ,  then 

f ~ K  in F 

means that every subnet of (f~) has a limit point and that K is the set of limit points 
of the full net. Necessarily K is compact. 

Strassen's functional log log law now tells us that 

(1.2) ~ ( a s , s ) X = a s X ( s . ) ~ K  wpl in F a s  s-~oe 

through N or IR, where 

a s := (2s log logs )  ~/2 for s > e  e 
and 

K: = { f ~ F :  f(O) =0,  f absolutely continuous, ~ ( f ' ( t ) )  z dt __< 1}. 
0 

Observe that for u > 0 and s--. oe 

(1.3) 7(as,, su)7(as, s) - t  =7(as,/as, U)----~y(U -1/2, U) in G. 

Now (7(u -~/z, u)),> 0 is a subgroup of G, isomorphic to 1R+ via y(u - m ,  u)~-~u. 
Moreover 

(1.4) y(u-1/2, u ) K = K  for u > 0 .  

Properties (1.3) and (1.4) will be crucial in our main result. 

2 Regular variation 

Let G be a metric group with unit element t, not necessarily commutative. We say 
that a G-valued function (p on a neighborhood of oe in IRis regularly varying if ~o is 
measurable and 

(2.1) lira (p(su)cp(s) -1 = :Z(u) 
s ~ o o  

exists in G for all u>0 .  We had an example of this in (1.3) with ~o(s)=7(as,s ) and 

z (u) = ~ ( u -  1/2, u). 
Theorem 1 (cf. Balkema (1973, w I f  q~ : ( a, oe )-~ G is regularly varying and )~ is as in 
(2.1), then )~ is a continuous homomorphism from IR + into G "Z(uv)=Z(u)z(v), and 
the convergence in (2.1) holds locally uniformly in (0, Go), so 

(2.2) lira (p (sus) (p (s)-i  = Z (u) 
s---~ oo 

whenever u~ is a function of s such that us--,u in (0, o~) as s-~oe. 

We call ~0 z-varying. If Z -  ~, we call (p slowly varying. The special case G = 1R+ (so 
Z(u)=u ~ for some ~ I R )  is classical regular variation (de Haan (1970), Seneta 
(1976), Bingham et al. (1987)). 
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3 The results 

More generally than in Section 1, let F be a metric space and G a metric group that 
acts jointly continuously on F, i.e., (1.1) holds. We start with a nonprobabilistic 
result. 

Lemma 1. Let (p : (a, oo)--,G be )~-varyin9 and f i x  f eF.  
(a) Fix b > 1. I f  

(3.1) ~o(b")f ~ K : ,  b in Fasn--+oo, 

for some compact K:, b c F, then 

(3.2) q~(s)f ~ K f  := U Z(u)K:,b= U )~(u)K:,b in r 
u > l  l < u < b  

as s ~  oo through N or IR. 
(b) I f  c, d > 1, log c/log d is irrational, (3.1) holds for b = c and b = d and K:, c = K:, n, 
then I(:= K: : =  

Remark. If (3.2) holds for different b > 1, then K: in (3.2) does not depend on b. 
Note that K: is invariant for each Z(u). 

Proof (a) Straightforward by considerations around 

q)(bk'rO f = q)(bkvrv)qo(bkv) -1 ~o(bkv) f --, z(r)9 ~ K: 

in case kv--* oo through N, r~--. r in [ 1, b ] and q~ (b ") f ~ 9 ~ K:, b. In particular, (1.1) 
and Theorem 1 are essential. 
(b) If K:, c = K:, a = : K, then X ( c~ d") K = Z (c) m Z (d)" K = K for all integers m and n. If  
log c/log d is irrational, then {c"d" : m, n e 77} is dense in IR+, so Z(u)K= K for all u 
> 0 by continuity of )( and joint continuity of the actions. Hence K: = K. [] 

We will apply Lemma 1 in the following form to functional log log laws. Note that 
K:, b in Lemma 1 does not depend on f here, at least for almost all f in the set of 
possible values of the F-valued random variable X. 

Theorem 2. Let q9 :(a, ~ ) ~ G  be z-varying. Let X be a random variable in F and K a 
compact subset o f F  such that 

(3.3) q~(b")X~K in F w p l  as n ~  

for all large b > 1. Then 

(3.4) q~(s)X~K in F wpl 

as s ~  oo through IN, ~ or the integer powers of  b for all b > 1, and K is invariant for 
each Z(u). 

Proof Let b o > 1 be such that (3.3) holds for b > b o. Selecting c and d>  b o with 
log c/log d irrational we conclude (3.4) as s ~  ~ through IR or IN, by Lemma 1 (b). If 
b>  ~, then b " > b  o for some natural m, and we conclude KDKbDKb, ,=K.  [] 

Remark. If we assume (3.3) for one fixed b > 1, and in addition that K is invariant 
under X, then (3,4) follows as s ~  through IN or IR (Lemma l(a)), but not 
necessarily as s ~ o o  through the integer powers of b for other b >  1 (cf. w In 
practice one always obtains the conditions of Theorem 2 as they stand. 



124 W. Vervaat 

4 Applications 

Example I. Strassen's loglog law. With (1.3) the first condition of Theorem 2 is 
satisfied. Consequently, it suffices to prove (1.2) as s--,oc through the integer 
powers orb > 1, for all large b. Formula (1.4) follows as a corollary, but can easily be 
verified directly. 

The same also applies i fF  = D [0, oo) with Skorohod's J1 topoIogy (Whitt (1980)) 
It] 

and X(t) :=  ~ ~k, where the ~k's are iid real-valued random variables with zero 
k = l  

mean and unit variance. 

Example 2. In the same way as in Example 1, Theorem 2 applies to functional 
log log laws for extremal processes (Wichura (1974a)) and stable processes 
(Wichura (1974b), Pakshirajan and Vasudeva (1981)), and to Strassen-type results 
for stationary finite-variance sequences with dependence in the limit (cf. surveys of  
Taqqu and Czado (1985) and Bingham (1986)). 

Quite different examples (from a transformation point of view) occur in O'Brien 
and Vervaat (1990). Here we quote one. 

Example 3. Let F be the space of Radon measures on the Borel sets of E : = [0, or) 
x (0, oo] with the topology of vague convergence, the coarsest topology that makes 
the evaluations #~--,f gdp continuous for continuous g : E ~ I R  with compact 

E 

support. Then Fis Polish (Kallenberg (1983), Norberg (1986)) get y (a, b, c) for a, b, 
c > 0 be the transformations of F determined by 

g(t, x)(y(a, b, e)p)(dt, dx) = a  ~ g(bt, cx)g(dt, dx) 
E E 

for Radon measures # on E and continuous g : E---,IR with compact support. So 
7(a, b, c) multiplies the values of # by a and transforms the two coordinates of E by 
factors b and c. The collection G of all these ,/(a, b, c) is a metric group, isomorphic 
to IR3+ via y(a,b, c)~-*(a, b, e), and acts jointly continuously on F. 

Let X be a Poisson process in E with intensity IEX = ~z, where 

(4.1) rc(dt, dx)=dtx-2dx on [0, ov) x(O, vo), 

Set 

and let 

~([0, ~)  • {~})=0.  

q0 (s) : = y ((log log s)- 1, s-  ~, s-  t log log s) 

f f(d, d, K : =  # s F :  # ~ z ,  ~ log d~ 

One can prove that 

f o r  s > e  e 

d,)  1 d~ ~-1 ~(dt, d x ) < l  . 

(4.2) ~o(s)X~K wpl  in F 
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as s--, oc through the integer powers of  b for all large b. From 

1 / / l o g l o g s  1 1 loglogsu ' ]  
q~(su)q~(s)- =7~ ~ ,  u' u logl~gs J 

we see that ~o is z-varying. From Theorem 2 it follows that (4.2) also holds as s--* oo 
through N or IR, and that Z (u) K =  K for all u > 0 (which also can be verified directly: 
note that n is invariant for each Z(u)). 

5 Back from the full sequence to geometric subsequences 

We now study the possible patterns in (3.1) given (3.2). I f  

(5.1) ~o(s)f"*K I as s ~  through IR, 

then the sequence (~o(bn)f) is relatively compact for each b > 1, so there is some 
compact  Ks ,bcK r such that ~o(b")f~Ks, b . Let N s : = { b > l  :K~,bW-Kr It is 
possible that Nf is not empty, as shows the following example. 

Example 4. Let "IF :=  [0, 1) with addition modulo 1, and let (c~)ff= 1 be a sequence in 
(0, 1). Let F:  = ~ with the product  topology, and G the autornorphism group of F. 
Let (o(s)eG for s a N +  be defined by 

q)(s)f=(f(k)+cklogs)~= 1 for f=( f (k ) )~= 1 eF .  

Then ~o is (o-varying, being itself already a homomorphism from IR + into G. For all 
f 

f E F  we have (p(s)f.--,F as s ~ o o  through N or IR, w h i l e N y = ~ b > l  ' 1 o g b ~  
( 

I f  Nf  is not empty, then it is unbounded, as it contains with each b also b n for 
n = 2, 3 . . . . .  We see that the converse of Theorem 2 is not true. If  (3_4) holds as 
s ~  oo through N or 1R (take X =  f wp 1 in Example 4), then (3.3) may fail for certain 
b, and the set of  such b is unbounded. We conclude that most functional log log laws 
in the literature have been weakened unnecessarily by stating them for s tending to 
oo through N or IR. A better formulation is : "cp (s)X--* K wp 1 in F as s ~ ov through 
the integer powers o fb  for each fixed b > 1, and consequently also as s--, oo through 
N or IR". 

Example 4 may look rather artificial and nonprobabilistic, but it is typical for 
what can happen in cases of probabilistic interest. In view of the theory of self- 
similar jump processes with stationary increments as developed in O'Brien and 
Vervaat (1985) it is interesting to generalize results like Example 3 to the case where 
X is a Poincar~ process in E : = N x  (0, ~v), i.e., a point process invariant in 
distribution for the transformations (t, x) ~ (at + b, ax) (a, b a IR, a > 0) of E. Note 
that the Poisson process in Example 3 is just a restriction to smaller E o f a  Poincar6 
Poisson process. Consider the g-adic lattice process X in Section 3 of  O'Brien and 
Vervaat (1985). It is obvious that N x contains all rational powers ofg. Moreover, it 
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is not  hard  to think out variations on the g-adic lattice process such that  Nx contains 
all rat ional  powers o f  all naturals. 

So it has some interest to see how large N s can be. We do not  know whether Nf 
must be countable,  as it is in all previous cases, but  we can prove the following. 

Theorem 3. I f  (5.1) holds with regularly varying ~o, then L e b N f = 0 .  

6 Proof of Theorem 3 

An additive nota t ion is more  convenient  here. After the substitutions (p o log~cp, 
z o l o g ~ z ,  l o g b ~ b ,  l o g s ~ s  and l o g u ~ u  we have q~(s+u)q~(s)-l~Z(u), 
Z(ul+u2)=Z(uOz(u2), (p(nb)f--~Kz, b and Ns={b>O:Ks,b+Kz}.  Further-  
more, the image of  Lebesgue measure on (1, m)  under  log and Lebesgue measure on 
IR+ = (0, oc) are mutual ly  absolutely continuous.  

For  open U c F w i t h  UnKz+O, let 

Ns, u := {b>O: Uc~Ks, b=r } . 
Then 

(6.1) Ns= U Nf, v" 
U:UnKf ~4~ 

Since K s is a compac t  metric space in the trace topology,  there is a countable  
collection of  open U's  such that  their intersections with K s form a base of  this 
topology,  and (6.1) remains true if U varies th rough  this collection. Therefore it 
suffices to prove Theorem 3 with Ns, v instead o f  Nf ,  where UnKs=t=r 

F r o m  K r  U Z(u)Ks, b (Lemma l(a) in additive form), Z(0)=z and the 
O<u<b 

joint  continuity o f  Z we see that  U KS,b is dense in K s. So there is a c > 0  such 
b>0 

that  UnKs, c ~ 4). Select a g ~ UnKf,c and an increasing sequence of  integers (nk) 
such that  r Since Z(u)g~g as u ~ 0 ,  there is an e > 0 such that  Z(U)g ~ U 
for lul < ~. Let 6 < e and set 

Bk:= U BLm, 
m=l 

B : = lim sup B k . 
k~oo 

We now show that  B c IR+ \Ns, v. If  b e B, then we have for infinitely m a n y  k that  
mkb = nkC + 6k for some m k ~ N,  where m k ~ oe and [6kl < 6. Restricting ourselves to 
these k, we find that 

qO(mkb ) f =~o(nkC + 6k) f =~o(nkc + 6k)~O(nkC)-l ~,O(nkc) f 

has all its limit points in {Z(U)g:[u[<~} = U. So U~Ks, b+r i.e., b(-Ns, v. 
The rest of  this p r o o f  serves to show that  

(6.2) ( f l - e )  aLeb(Bc~(~,g) ) -~ l  as g S a  in IR+, 

f rom which it follows that  B has full Lebesgue measure in IR +. 
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The analysis for  the p r o o f  of  (6.2) is facilitated by the following restrictions. 
(a) Fix b o > 0 and consider only (e, f l ) ~  [bo, oe). 
(b) Let  6<1b0 ,  so that  all Bk, r, are disjoint in [bo, oe) for  fixed k and varying m. 
(c) Let  c5 < �89 to obtain more  uniformity  for the next estimates. 
(d) Assume that  nk+l/nk---, oe as k ~  oe (select a subsequence if necessary). 
By s tandard estimates we obtain 

26 
(6.3) Leb (BkC~(c~,//)) = ~ - - - / -  Leb {) (Bk,,,c~(c~, fl)) 

m:Bk,mC(al, fl) m m : B k , m r a { o ~ , f l } : l = 4 ,  

= 2 c S ( l ~ 1 7 6  k tiC5 
' n k  

where JRt,k[ can be majorized by a bound  independent  of  ~, fl, 6 and n k. 
L e t j  < k. Applying (6.3) first with B j, m in place of  (c~, fl) and adding up the result 

for  Bj,,, ~ (e, fl) we obtain 

/~ f l ~  2 1 
(6.4) L e b ( B f ~ B k n ( e ,  f l ) )< .46 q-R 2 k ~ j q - R 3 k  n~ 

, , , n k  ' 

where Rz, k and Ra, k can be chosen independent  ofn j  and n k (they still depend on c~, fl 
and 6, but  this does not  mat ter  for the sequel). We now use the following Borel- 
Cantelli lemma, which follows f rom (iii) in the theorem of  Kochen  and Stone (1964). 

Lemma 2. I f  (Ak)  is a sequence o f  events in the probability space (f2, s / ,  IP) and 

• 1P(A,)= oe, then 
n = l  

IP (lim sup A,)  > lim sup 
n ---~ el) n~ao  ~ IP(A/~Ak) 

j=l k=l 

Applying the lemma with f2 = (~, fi), IP = ( f i - a ) - 1  Leb and A k - B k ~ ( e ,  fl) we find 
(recall that  n k + 1/nk--" o0) 

fl _ ~  Leb (Bca(~, fl)) > eft 

Lett ing fl + e we obtain (6.2). 

Acknowledgement. The paper has improved by comments of Andries Lenstra and George 
O'Brien. Some ideas already occur in the report Vervaat (1975), albeit with much less algebraic 
sophistication. 
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