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Summary. Let Xt be a semimartingale which is either continuous or of counting 
process type and which satisfies the stochastic differential equation dXt 
= Yt~(t, Zt) dt+dMt, where Y and Z are predictable covariate processes, M 
is a martingale and e is an unknown, nonrandom function. We study inference 

z t 

for e by introducing an estimator for d(t ,  z)= S ~ e(s, x) ds dx and deriving 
o 0 

a functional central limit theorem for the estimator. The asymptotic  distribution 
turns out to be given by a Gaussian random field that admits a representation 
as a stochastic integral with respect to a mult iparameter  Wiener process. This 
result is used to develop a test for independence of X from the covariate Z, 
a test for t ime-homogeneity of e, and a goodness-of-fit test for the proport ional  
hazards model ~ (t, z )=  ~l(t) a2 (z) used in survival analysis. 

1 Introduction 

Consider a nonlinear semimartingale regression model in which a process X 
is related to a covariate process Z by 

(1.1) Xt=Xo+ j- 2~ds+Mt, 
o 

(1.2) 2t = Yt c~(t, Z0, 

where ~ is an unknown function, M is a martingale and Y is an indicator 
process, taking the value 1 when X and Z are under observation, zero otherwise. 
In the case that X is a counting process, 2 and c~ are called the intensity process 
and conditional hazard function respectively. If the intensity process is of the 
form 2t = ~(t) Zt, we have Aalen's (1978) multiplicative intensity model, for which 
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a well developed theory of hazard rate and cumulative hazard rate estimation 
exists (see the survey articles of Andersen and Borgan (1985) and McKeague 
and Utikal (1990a)). In the classical survival analysis setting, Beran (1981) and 
Dabrowska (1987) studied an estimator ,~(., z) of the conditional cumulative 

hazard function A(t, z)= i e(s, z) ds for a fixed level z of the covariate Z. 
0 

McKeague and Utikal (1990b) extended this estimator to the general setting 
above. The estimator was used to develop methods of inference for the function 
c~(., z) at fixed z. 

In the present paper we study inference for the entire conditional 'hazard '  
function e(-,-). For  that purpose we introduce the estimator 

z 

~(t, z)= ~ 3(t, x) dx 
0 

of the doubly cumulative hazard function 

z t  i ~4( t ,z )=S ~ a ( s , x ) d s d x =  A(t,x)dx. 
0 0 0 

When X is a continuous process or a counting process we establish the weak 
convergence of the appropriately normalized time and state indexed process 

to a Gaussian random field. This is proved by using the results of Bickel 
and Wichura (1971) to establish tightness. Convergence of the finite dimensional 
distributions is shown using Rebolledo's (1980) martingale central limit theorem. 

We also propose a test for independence of X from the covariate process 
Z. Here independence from the covariate means that ~ is only a function of 
time. A natural estimator for • under the hypothesis of independence is given 
by ~ ( t ,  z)= z A(t), where ,4 is the Nelson-Aalen estimator. We derive the asymp- 
totic distribution of ~ - s ~  and show that a maximal deviation statistic based 
on ~ ' -  s~ yields a consistent test for independence. 

Furthermore,  we propose a test for time-homogeneity, i.e. that c~=c~(t,z) 
does not depend on time t. An estimator for ~4 under the hypothesis of time- 
homogeneity is given by d * ( t ,  z)=t s~(1, z). A maximal deviation test statistic 
based on s J - ~ *  is shown to yield a consistent test for time-homogeneity. 

Finally we develop a goodness-of-fit test for the general proportional  hazards 
model c~(t, z)= el (t) ~2 (Z), where a t (t) and ~2 (Z) are arbitrary unknown functions. 
This model has been studied by Thomas (1983), Tibshirani (1984), Hastie and 
Tibshirani (1986) and O'Sullivan (1986a, 1986b) in the survival analysis context 
(where it is a generalization of Cox's (1972) proportional hazards model). These 
authors propose various estimators for the log relative risk function log e2, 
where e2 is assumed to be positive, but, except for O'Sullivan (1986a), who 
finds a rate of convergence for his estimator, they do not provide any asymptotic 
theory. We suggest d (1,-) as an estimator of the cumulative relative risk function 
A2(')=S" ~2(x) dx and find its asymptotic distribution. 

0 

The precise description of our  model and some preliminaries are given in 
Section 2. The doubly cumulative hazard function estimator ~ '  is introduced 
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in Section 3, and in Section 4 we derive the various goodness-of-fit tests based 
on sJ. Technical lemmas used in the proofs of our main results are collected 
in Section 5. 

2 Preliminaries 

Let (s Y ,  P) be a complete probability space and let ( 4 ,  t~[0, 11) be a right- 
continuous filtration, where a~o contains all P-null sets in ~ .  All processes in 
this section are indexed by tel-0, 1]. The process (Mr, ~ )  is assumed to be 
a zero-mean L4-martingale with sample paths in Skorohod space D [0, 11. The 
quadratic characteristic of M will be denoted by ( M )  and its quadratic variation 
by [M]. The processes Yand Z are assumed to be predictable, with Yan indicator 
process. For  simplicity, Z is supposed to be scalar valued. 

The processes X, Y, Z and M are related by (1.1) and (1.2) which can be 
written in the form 

(2.1) d X  t = Y~ c~(t, Zt) d t  + d Mt.  

We assume that e is Lipschitz and 

(2.2) ( M ) t  = i 7(t, Zs) Y~ ds, 
0 

where 7 is a continuous function. Important  examples of our model include 
counting processes, in which case ;~ = c~, see Examples 1 4  of McKeague and 
Utikal (1990b); and diffusion processes, in which case a is the drift, ~ is the 
infinitesimal variance and Y= 1. 

Estimation of d is to be carried out over the unit square [0, 1] 2. For  
that purpose introduce processes Xi,  Y~, Zi,  Mi,  i=  1, ..., n and a filtration 
(~t ~)) having the same structure as X, Y, Z, M and (~-) above. Further suppose 
that Mi,  i = 1 . . . . .  n are orthogonal ~t ~") martingales. This is the case, for instance, 
if ~ " ) = ~ t v  ... v ~ t ,  where ~ t ,  . - - , ~ t  are independent filtrations and each 
M i is an o~ martingale. In the counting process case the M~ are orthogonal 
fit ~) martingales if no two of the counting processes X~ jump simultaneously. 

Let W = ( W ( t , z ) ,  (t,z)~[0, 112) be a two-parameter Wiener process, i.e. a 
Gaussian process with zero mean and E W ( t , z )  W(t ' ,  z ' )=min(t ,  t') rain(z, z'). 

t z 

Let ~ S tp(s, x) dW(s ,  x) denote a continuous version of the Wiener integral 
0 0 

of a function OEL2([-0, 1] 2, ds dx)  defined by Ito (1951), Wong and Zakai (1974) 
and Bass (1988). The estimators and test statistics that we shall introduce have 
asymptotic distributions which can be represented in terms of stochastic integrals 
of this type. Let C2 denote the space of continuous functions on the unit square 
equipped with the supremum norm I[" I[. Let D2 denote the extension of the 
space D [0, 1] to functions on [0, 1] 2, as described in Neuhaus (1971). 

3 The doubly cumulative hazard function estimator 

Our estimator is based on observation of (Xi,  Y~, Zi), i=  1 . . . .  , n. The basic 
idea is to first estimate A (., z) by stratifying over the covariate and then integrate 
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with respect to z. The strata are given by J r =  [xr-1,  Xr), / '= 1 . . . .  , d,, where 
x,. = rid, and d, is an increasing sequence of positive integers. The width of 
each stratum is w, = 1/d,. Define J~= ~ for z ~ .  Note that ~ depends implicitly 
o n  n .  

Let Xi(t, z) denote the contribution to Xi(t ) from stratum ~ :  

xi(t, z)= i ~{z,(s)e~} dXi(s), 
0 

n 

and set X(")(s, z)=  ~ Xi(s, z). The number of covariate processes observed to 
i = l  

be in stratum ~ at time s is given by 

n 

Y(")(s, z)= ~, I{Z~(s)e~} Yi(s). 
i= l  

The following estimator of A(.,  z) is an extension of Beran's (1981) estimator 
of a conditional cumulative hazard function: 

X('O(ds, Z) 
~(t, z)= S 

o Y(")(s,z)' 

where 1/0=0.  The stratum width w. should tend to zero at a suitable rate 
as n ~ ~ .  Our doubly cumulative hazard function estimator ~ is now defined 
by 

~( t ,  z)= i -~(t, x) dx. 
0 

In order to derive the asymptotic distribution of ~ we shall need the follow- 
ing conditions (in which (s, x) is understood to range over the unit square). 

Conditions 

(A1) There exists a nonnegative continuous function q~ (-,-) such that 

nWn X) ~t Y(")(s,x) 4)(s, d sdx  n ,0. 
[0 ,  1] 2 

(A2) Lebz {(s, x): Y(")(s,x)=O}=oe 

[ nc~ )] 3 
< 0 0 .  (A3) sup E [Y(")(s, x 

s,x,n 
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n w, ~ O, d, = 0 (n) and Theorem 3.1. Suppose that Conditions (A1)-(A3) hold, 2 
X is a counting process or has continuous sample paths. Let  h = ?. O. Then 

in D 2 as n -~ o% where 

] / n ( ~ - - d )  ~ , m 

t z 

m( t , z )=  ~ ~ ] / / ~ , x ) d W ( s , x ) .  
0 0 

Remark. The process m is a continuous Gaussian random field with mean zero 
and covariance function 

z I A z 2 t I A t 2 

Cov(m(tl ,zt) ,m(tz,Z2))= ~ ~ h(s,x) d s d x .  
0 0 

Conditions (A1)-(A3) are easily checked when (X~, Y~, Zi), i>  1 are indepen- 
dent copies of (X, Y,, Z). We shall need to assume that the covariate subdistribu- 
tion function F(s, x )=  P(Zs  < x, Y~ = 1) satisfies the following mild condition: 

(IID)(i.i.d. case) For each s t [0 ,  1], F(s, . )  is absolutely continuous on [0, 1] and 
has density f ( s , ' )  such that f ( . , . )  is continuous and bounded away from 
zero. 

Proposition 3.2. Suppose that (IID) holds, c o , ~ 0  and nw~ o0 for some 6>  1. 
Then Conditions (A 1) -  (A 3) hold with (a = lift  

From Proposition 3.2 we see that the conclusion of Theorem 3.1 holds under 
Condition (II D) if n wZ, ~ 0 and n w~, ~ co for some 6 > 1 (equivalently, if dZ,/n ~ oe 
and d , = o ( n  ~ for some 6<1). The implicit assumption for Theorem 3.1 that 

is Lipschitz can be weakened to Lipschitz of order I/, 0 < ~/__< 1, if n wZ, ~ 0 
is strengthened to nw, -* 0. 

There is a useful example of our model for which Conditions (A1)- (A3)  
are too restrictive. For the illness-death process with duration dependence, con- 
sidered in Example 3 of McKeague and Utikal (1990b), the density f vanishes 
over part of the unit square. In that case (A 1 ) - (A  3) can be proved only when 
(s, x) vary over the region 

~r = {(S, Z)e [0, 112: Jz is contained in the support of e(s,.)}. 

It is possible to deal with such cases by extending Theorem 3.1 along the lines 
of Theorem 1 of McKeague and Utikal (1990b). 

It would be preferable to estimate d without the use of stratification or 
any other smoothing technique, as it is preferable to estimate a bivariate c d f  
by the bivariate empirical c d f  rather than estimating one of the conditional 
cd f ' s  and then integrating with respect to an estimated marginal distribution. 
However, for the general nonlinear semimartingale regression model considered 
here, we doubt that an efficient non-smoothing based estimator of d could 
be constructed. In the counting process case, Greenwood and Wefelmeyer (1989) 
have recently shown that s~ is efficient in the sense of satisfying a Hfijek-Le 
Cam convolution theorem. Thus, even if a more direct estimator exists, there 
is no (asymptotic) disadvantage in using s~ in that case. 
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Although ~ uses smoothing, it is relatively insensitive to the choice of w,, 
as suggested by the weak conditions on w, in Theorem 3.1. The estimator A(t, 
x) is sensitive to % ,  but this effect is largely drowned out following integration 
over x. Reducing w~ would give only a slightly rougher s~, increasing w, would 
tend to smooth ~ .  In practice we would allow the strata Jr to have unequal 
widths and choose the intervals adaptively to ensure that the covariate enters 
each stratum sufficiently often. In numerical experiments we have obtained satis- 
factory results when using d, = 10 for n = 100, and d, = 25 for n = 500. 

Proof of Theorem 3.1. Define the processes 

i = 1 0  

c~(")(t, z)= ~ I{Zi(t)EJ~} Yi(t) o~(t, Zi)(t)) , 
i = I  

so that by (2.1), ~ ( ~ - d ) = _ ~ r + R ,  where 

o o [Y(')(s,x) ~(s, 

It suffices to show that Ilell P , 0 and 2~ ~ , m in D 2. Since c~ is assumed 
to be Lipschitz, 

~I (c~! s'x)+O(w~)) a(s,z) HRll_-<]~ Lo, n~ Y(')(s, x) ds dx  

= O ( ~ n )  Leb2{(s, x): Y(')(s, x)=0} + O (  n l / ~  2) F )0, 

P 
by (A2) and 2 nw, ~0 .  Thus [[R[[ ,0. 

Introduce the following approximation to ~r which is piecewise constant 
over z E ~ :  

Ezd~] i dM~')(s) (3.1) 2~(t,z)= n ] ~  2 ~ Yff)(s) ' 
r = l  0 

where M~")(t)=Mt~)(t, xr) and Yff)(t)= Y(')(t, x~). Here and in the sequel, any 
summation over r = 1, ..., [z d J  is defined to be zero when [z d J  = 0. 

Suppose that ~t  ~ ~ m in D2. Define a linear map re,: D E --~D 2 by 

~.(O)(t, x)=~(t, xr- 1)+(~(t, xr)-O(t, xr_ ,))(x-xr ~)/w. 

for x e ~ .  Here 7~,(~)(t,.) is a piecewise linear approximation to I)(t, ') based 
on its values at x~, r = l ,  ..., d,, for each t. Note that ~ r=%(~r ) .  Appealing 
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to a D 2 version of Lemma 4.1 of McKeague (1988), we have ~,(A4) ~ , m 
in D 2 ,  where we have used the fact that m has its sample paths in C2. Thus 

A~ ~ , m in D z. All that remains to be proved is that M ~ ,rn in D 2. This 
will be established by showing that {A4, n > l }  is tight in O 2 and the finite 
dimensional distributions of M converge weakly to those of m. 

Denote the increment of M over the rectangle (s, t] x (x, y] by 

((s, t] x (x, y] ) = ~ (t, y) - ~ (s, y ) -  ~ (t, x) + ~ (s, ~). 

Tightness is established by checking some product  moment conditions of Bickel 
and Wichura (1971) for the increments of M over certain neighboring rectangles: 

3 

E ( ~  ((s, t] x (x, y] ))2 ( ~  ((s, t] x (y, z] ))2 =< C (t - s) ~ (y - x) (z - y) 
and 

2 

E ( M  ((s, t] x (x, y] ))2 (M((t, u] x (x, y-] ))2 __< C (t - s)Z (u - t)(y - x) 2, 

where C is a generic positive constant. This is done in Lemmas 2 and 3. 
To show convergence of all finite dimensional distributions it suffices to 

show that for any 0 < z 0 < . . .  < z~ < 1, p > 1 

( ~  (., z j ) -  ~ ( . ,  zj_2))y=2 ~ , (m (. z j ) -  m (', z;_2))y=l 

in D [0, 1] p, where D [0, 1] v is the product  of p copies of D [0, 1]. This can 
be done using a p-variate version of Rebolledo's (1980) martingale central limit 
theorem, as given by Aalen (1977) and Andersen and Gill (1982, Theorem 1.2) 
in the counting process case. The processes A4(., z j ) - _ ~ l ( . ,  Z j_ l )  , j = l ,  ..., p 
are orthogonal square integrable martingales and by Lemma 4 

( ~ ( . , z j ) _ ] ~ / l ( . , z j _ l ) ) t  P , ( m ( ' , z j ) - m ( ' , z j _ O ) t ,  

for each t, j =  1 . . . . .  p. That  completes the proof for the continuous case. In 
the counting process case we also need to check the Lindeberg condition (cf. 
Andersen and Gill's (I.4) with l=  r, i= j ,  n = d,) 

dn 1 

(3.2) Z ~ H}~r)(s)ZI{IH}~)(s)l >8} d<m~")>s P ' O, 
r = l O  

for all e > 0, where 

if [z j_ 1 d,] < r < [zj d,] 
otherwise. 

This is easily done by noting that IH}")(s)[~-->0, since Y~(")(s)> 1, unless 
it vanishes, so the sum in (3.2) vanishes for sufficiently large n. [] 
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Proof of Proposition 3.2. The result follows from Lemma t. Part (c) of that 
lemma gives (A 1), and by part (b) 

E Ceb2{(s,x): Yt")(s,x)=O} = ~S P(Y(")(s,x)=O)dsdx 
[0,112 

. . . .  t 
using nw~,~ o~ for some ~>1,  giving (A2). Condition (A3) follows from part 
(a) of the lemma with k = 3. [] 

Confidence sets for ~r 

In order to apply Theorem 3.1 to obtain Kolmogorov-Smirnov type confidence 

sets for d of the form { ~ :  1/-s sup [~/(t, z)-s~(t ,  z)[ <c} we would need to deter- 

mine the quantiles of sup[m(,z)]. In the time-homogeneous case, considered 
t ,  z 

below, it is possible to use existing tables. In the general case, the representation 
of m in terms of the Brownian sheet process W gives a way to obtain such 
quantiles by simulation. We shall only consider this in the counting process 
case, but the continuous case is similar. First estimate the function H(t, z) 

t z 

= I  S h(s,x) d x d s b y  
0 0 

z 

mt, )=n .oS i x) dx o ( Y(")(s' X)) 2 

and then estimate h by 

[0,112 g[t--S~g [Z-X~ IS \ bo ] i T] 

where K is a bounded, nonnegative kernel function with compact support, inte- 
gral 1 and b, is a bandwidth parameter, b, ~ 0. The following result, proved 
at the end of Section 5, shows tha t / ;  is an D-consistent estimator of h. 

Proposition 3.3. I f  X is a counting process, the assumptions of Proposition 3.2 
hold, w, = o(b~), and K is Lipschitz, then e SS I]~(t, z)-h(t ,  z)[ dt dz ~ O. 

[ 0 ,  1]  2 

The process m, with a c in place of h, could then be simulated to obtain 
approximate quantiles for sup[m(t, z)l. Using Proposition 3.3 it can be shown 

(see the proof of Proposition 4.2) that this procedure leads to asymptotically 
correct confidence sets for ~r 
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Time-homogeneous counting process 

Let N be a counting process which is time-homogeneous in the sense that its 
conditional hazard function only depends on the covariate process Z, so N 
has intensity 

~ = ~ ~ ( z 3 .  

An estimator of d ( z ) =  j c~(x) dx  from i.i.d, copies (Ni, Y/, Zi), i= 1, . . . ,  n of 

(N, Y, Z) is given by o 

(3.3) ~ ( z ) =  S i N(")(ds'x) dx,  
o o Y(")(s,x) 

where N (") is defined as X ("), but with N in place of X. To apply our result 
to this special case we note that the projection ~: D 2 --+D I-0, 1] defined by 
~@)(z)=O(1, z) is continuous, so by the continuous mapping theorem (e.g. Bill- 
ingsley, 1968, Theorem 5.1) we obtain the following consequence of Theorem 
3.1. A similar result could be obtained in the case that X has continuous sample 
paths. 

Proposition 3.4. Suppose that Condition ( l iD)  holds, nw2 ~ O  and nw~, -+ oo for 
some 5 > 1. Then, for ~ defined by (3.3), 

- -  ) m  

in C[0, 1] as n--, 00, where m=(m(z) ,  ze[0, 1]) is a continuous Gaussian mar- 
tingale with mean zero and covariance function Cov(m(z0, m(z2) )=H(z  1 A z2), 
where 

.(z): i i o o f ~ , x ~  dsdx"  

With the help of Proposition 3.4 we now construct confidence bands for 
sJ. Denote 

/4 (z) = n w, ~ N (")(d s, x) d x. 
o o (Y(')(s,x)) 2 

As a consequence of the proposition, 

V; H( . )+H(1 )  
C&(-)-d(-)) :, wo( "<') 

\ H ( . ) + H ( 1 ) ]  
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in C[0, 1] as n ~ 0% where W ~ is a standard Brownian bridge. Now /~ is a 
uniformly consistent estimator of H by Lemma 7. Thus we obtain the following 
asymptotic 100(1 - fl)% confidence band for ~r 

~ ( z ) + _ c p ] ~ ( 1  ' l~ ( z ) \  *Ng] '  z E0, 1; 

where P( sup IW~ 0 < f l < l .  A table for c~ can be found in Hall 
O--<t_< 1/2 

and Wellner (1980). 

4 Goodness-of-fit tests 

4.1 Testing for independence from the covariate process 

In this subsection we consider the problem of testing whether the covariate 
process Z is absent from the model, i.e. whether cr is only a function of time. 
Such a test could be used to test whether a pure jump process on a finite 
state space is a Markov  process, see McKeague and Utikal (1990b, Example 
2). Let H 0 denote the null hypothesis Ho: ~(t, z l )=~(t ,  z2) for all t, z l ,  z2E[O, 1]. 
Under Ho the natural estimator of ag is 

z)= zX(t), 

where A is the Nelson-Aalen estimator 

and 

t 
A(t) = ! dJ((")(s) 

V")(s) 

X(")(t) = L i I(Zi(s)~[O, 1])dXi(s), 
i = 1  0 

?(")(s) l(Zi(sls[O, 1]) Y,(s). 
i = l  

Define some functions g and p by 

g (s, x) = 7 (s, x) f (s, x)/p 2 (S), 
1 

p(s)=P(Zs6[O , 1], Y~= 1)= 5 f (s ,  x) dx. 
0 

The following result gives the asymptotic distribution of -~ - aT. 

Theorem 4.1. Suppose that Condition (liD) holds, nw 2 --+ 0 and nwa,--+ co for some 
6 > 1. Then, under Ho, 

 ,mo 
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in D 2 a s  n --* 0% where 

0 0 0 0 

The Kolmogorov-Smirnov type statistic T (") = ] /n sup [s~ (t, z ) -  s? (t, z)[ could 
t , z  

be used for testing H o. Note that the continuous mapping theorem and Theorem 

4.1 imply that T (") ~ ~ sup [mo(t, z)[ as n ~ oo. In order to construct an asymptot- 
t ,  z 

ic size fl test of Ho, rejecting Ho if T (") is large, we first need to introduce 
appropriate estimators for the functions g and h under H o. Again we shall 
only do this in the counting process case. Let 

and define 

G(t, z ) = ~  i Oi (~(n)(s))3Y(n)(s'x)dX(")(s) dx, 

z t dX(n)(s) 
o(t,z)=.w, io 

1 1 

~(t, z)=~ 
v n  0 

- 1 1 
h(t, z)=Zg I 

b,, o 

i K [ t - - S ] K  z--x  - 
o \ b , ]  ( b, ) dG(s'x)' 

o \ b . ]  

where K is a bounded, nonnegative kernel function with compact support, inte- 
gral 1 and b, is a bandwidth parameter, bn ~ 0. 

The distribution of T=  sup]too(t, z)[ depends only on 0 =(g, h) and is continu- 
t~ z 

ous, see Ylvisaker (1968). Let c~(O) denote the upper fl-quantile of T, so that 
Po{T>c~(O)}=fl for 0 < f l < l .  Given the estimate 0,=(~, h), we may simulate 
the process mo, with ~ and h-in place of g and h respectively, to obtain an 
approximate critical level c~")= cp(O,). In Proposition 4.2 we show that 

lim P ( T  (") > c~ n)) = ft. 
?t--* oo 

Thus, rejecting H o when T (") > c~ ") yields an asymptotic size fl test for indepen- 
dence. In Proposition 4.3 we show that this test is consistent against all alterna- 
tives. 

Proof of Theorem 4.1. Decomposing ~ in a similar way to ~ in the proof 
of Theorem 3.1, we can write 

] /~ (A ' -  ~)(t,  z) = ~( t ,  z ) -  zN(t) + g(t, z ) -  g(t, z), 
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where 

"i M(")(t)= Z I{Zi(s)e[O, 1]} dMi(s), 
i = 1 0  

R is defined in the proof  of Theorem 3.1, and under H o 

t 

R(t, z)= --z ~ a(s) I(Y'{"I(s)=0) ds. 
0 

Putting w, = 1 in Lemma 1 (b), we obtain I1/~l] e , 0 under Ho. Also, by the 
e 

proof o Theorem 3 1, IIRII ,0  To complete the proof it suffices to show 
" A " - -  

that ~ , too, where ~(t ,z)=M(t,z)-zM(t) .  Set 

t i 

= I I l /g(  :0 dW( , x), 
0 0  

where W is the same Brownian sheet used to define m in Theorem 3.1. Then 
th is a zero mean continuous Gaussian martingale with predictable variation 
process 

t 1 

0 0 

Suppose that (M, 2~) ~ , (m, rfi)jointly in Dz x D[0, 1]. Define a map re',: D 2 

x D [0, 1] by re',(01, 02)= (rc,(O t), Oa), where r~, is defined in the proof of Theorem 

3.1. Then, as in that proof, (~t, ~t) = ~ , ( m ,  M ) '  - - ~ , (m, rfi) jointly in D 2 x D [0, 1] 
and, since m and rfi have continuous paths, by the continuous mapping theorem 
we may conclude that ~ converges weakly to the process re(t, z ) - z  r~ (t)= m o (t, z). 

It remains to show that (M, M) ~ , (m, rfi) jointly in D 2 x D [-0, 1]. The pro- 

cess 33 is a martingale and ( i ~ ) ,  e , (n~)t, by Lemma 5(a). The Lindeberg 
condition 

1 

(4.1) ~ H(")(s)2I{lH(")(s)]>e} d()~("))s e , 0, 
0 

for all e>0 ,  where H(")(s)=]/n(Y(")(s)) -1, is checked in Lemma 6. Therefore, 

by Rebolledo's martingale central limit theorem, 2~ ~ , rfi, in D[0, 1]. Also, 

by the proof of Theorem 3.1, we have M ~ , m  in D2. If we can show that 
the finite dimensional distributions of (M, M) converge to those of (m, rfi), then 

(M, M) , (m, rfi) jointly in D2 x D [0, 1]. 
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To show that the finite dimensional distributions of (M, M) converge to 
those of (m, rfi), it suffices to show that for any 0 < z o < z 1 < . . .  < zp__< 1, p > 1, 

((~(., zj) - ~ ( . ,  zj_ 1))f= ~, M( ' ) )  ~ , ((m(., ~ j ) -  m(.,  zj_ ~))f: ~, ,~(. )) 

in D[0, 1] p+ 1. This is done using Rebolledo's martingale central limit theorem, 
as in the proof of Theorem 3.1. It only remains to consider the covariation 
between ~Q(., z) and M(-). By Lemma 5(b) 

( M ( ' ,  z),-M('))t P , (m( ' ,  z), rfi('))t, 

for each z. There are p + 1 Lindeberg conditions to check. But these conditions 
have already been checked separately for the p components involving 2~ and 
the one component involving 1~. [] 

Proposition 4.2. Suppose that X is a counting process, the assumptions of Theorem 
4.1. hold, d, b 2 --+ ~ and K is Lipschitz. Then if Ho holds, for all O < f i <  1 

lira P ( T  (") > c~ ")) = ft. 
?t ---~ o3 

Proof  Let O denote the space of all functions of the form O=(g, h) with g 
and h nonnegative bounded functions on [0, 1] 2, and endow it with the product 
metric from D ( [ 0 , 1 ]  2, ds d x ) x U ( [ O ,  1] 2, ds dx). Let 0,=(gn, h,), n > l  be 
a sequence in O such that 0 , ~ 0 .  Then V~, ~ / g  and ~/~, ~ ~/h in L2([0, 1] 2, 
ds dx). An argument using Doob's  inequality applied twice (cf. Cairoli (1970) 
and Bass (1988)) shows that if O~L2([0, 1] 2, ds dx), then 

t z 2 1 1 

E s u p  ~ ~tp(s ,x)dW(s,x)  __<16~ ~ 2 ( s , x ) d s d x .  
t , z  O 0  O 0  

Applying this inequality to ~ 9 = ~ , - ] / / g  and q / = ] / - ~ , - ] / h  gives Fo, ~ ,  Fo, 

where F o is the distribution function of T under P0. Let F o- 1 denote the left- 
continuous inverse of F o. By Billingsley (1986, p. 343) we get ca(On)=F o- s 1(1--fl) 
---,Fo-l(1--fl)=ca(O), provided Fo -1 is continuous at 1 - f t .  Now, by a version 

of Proposition 3.3 for ~ and h, we have /7, Po, 0 in the metric of O. Thus, 

using a subsequence argument, ca(O,) po , ca(O ) and 

(4.2) P0(T (") > c a (0~)) ~ P0(T> c a (0)) = fl, 

for all but countably many fl, where we have used Slutsky's theorem and the 
continuity of Fo. Since P0(T (n) > ca(O,) ) is a nondecreasing function of fl it follows 
that (4.2) holds for all 0 < fl < 1. []  

Proposition 4.3. Under the assumptions of Theorem 4.1, if  H o does not hold then 
P 

T (") ~ ~ as n ~ ~ .  



14 I.W. McKeague and K.J. Utikal 

Proof First note that i f H  0 does not hold then l i d - d o l l  >0,  where 

t 1 1 

Using similar arguments to the proof of Lemma 5 

~(")(s) 1 ~(s, x)f(s, = 0 EII~P-'~C~ Y~")(s) p(s) o 

where 
t n 

s?,  (t, z) = z I ar ~ d s  and ~(")(s)= y '  I{Z~(s)e[O, 1]} Y~(s)o~(s,Z~(s)). 
0 i = 1  

Also note that by Doob's  inequality and Lemma 5(a) we have E l l ~ ' - ~ p [ I  2 

--/~ II m II 2/n = O (l/n). Thus, since ]/~ II ~4-- s~ II = Oe (1) by Theorem 3.1, 

y n l l d - d o  II 5l~n I I d - ~ / I  + T ~ " ) + ~  II W - ~ p  [I + ~ n  I I ~ , - d o  II 
= Tt")+ Oe(1). 

P 
This shows that T (") , oo if H o does not hold. []  

Remark. The above test for independence can be modified to provide a goodness- 
of-fit test for Aalen's multiplicative intensity model. Now Ho is the null hypothe- 
sis H0: there exists a function % such that e(t,z)=%(t) z for all t, ze[0,  1]. 
Under this Ho, the natural estimator of d is ~ ( t ,  z)=�89 z2A(t), where A is 
the Nelson-Aalen estimator as before, except that 

~'(")(s) = ~ I(Zi(s)e[o, 1]) ~(s) Z~(s). 
i = i  

1 

The only changes to Theorem 4.1 are that p(s)= ~ xf(s, x) dx and 
0 

t z t I 

0 0 0 0 

An alternative test of H o can be obtained via Theorem 4.1 by partitioning 
the time x covariate space into cells and forming a ehi-squared statistic based 
on the increments of ~ # - s J  over the cells, see McKeague and Utikal (1988). 
This approach is more tractable, but would result in a loss of power. We plan 
to study the practical aspects of carrying out such tests in a future paper. 



Nonlinear sernimartingale regression 15 

4.2 Testing for time-homogeneity 

In this subsection we derive a test for the hypothesis Ho:o~(t~,z)=c~(t2,z) for 
all t~, t2, zE[0, 17, i.e. e is only a function of the covariate. One possible applica- 
tion of this test would be in testing whether a pure jump process on a finite 
state space is a semi-Markov or Markov renewal process, see McKeague and 
Utikal (1990b, Example 2). The natural estimator for d under Ho is d * ( t ,  z) 
=ts~'(1, z). In order to test Ho we could use the test statistic S t") 

=]/n  s u p [ s J ( t , z ) - d * ( t , z ) [ .  As in Section 4.1, once we know the asymptotic 
t, Z 

distribution of ] / ~ ( ~ - d * )  we can derive an asymptotic size e test for H 0 
based on S t"). This test can be shown to be consistent using a proof  similar 

to that of Proposition 4.3. The asymptotic distribution of ~//-n(~r ~r is given 
by the following theorem. 

Theorem 4.4. Under the conditions of Theorem 3.1, if H o holds then 

]//-s d * )  ~ , m 1 

in D 2 as n --* co, where 

t z 1 z 

m i ( t ' z ) :  i I ~ x )  dW(s,x)--t I f h]~x~dW(s,x). 
O0 O0 

Proof. Note that ] / ~ ( s r  , where n: D 2 ~ D  2 defined by 
~(f)( t ,  z )= f ( t ,  z ) - t f ( 1 ,  z) is continuous. The result follows immediately, using 
Theorem 3.1 and the continuous mapping theorem. []  

4.3 Testing for proportionality 

Thomas (1983) introduced the general proportional  hazards model e(t, z )=  el (t) 
a2(z) in the survival analysis context, where ~ and ~2 are unknown functions. 
This model is a generalization of Cox's proportional  hazards model to allow 
for arbitrary covariate dependence while keeping the proportional  hazards form. 
In this subsection we introduce a goodness-of-fit test for the general proportional  
hazards model. Note  that this is not the same as a goodness-of-fit test for 
Cox's proportional  hazards model. However, Cox's model can be treated in 
a similar fashion, see McKeague and Utikal (1988). 

Let H 0 denote the null hypothesis Ho: there exist functions ~1 and ~2 such 
that e(t, z ) - ~ l ( t  ) ~2(z) for all t, ze[0 ,  1]. In order that ~1 and ~2 be identifiable 

t 
we impose the condition AI(1)= 1 under Ho, where Al ( t )=  .[ cq(s) ds. Equiva- 

o i lently, we could impose the condition A2(1)=l ,  where Az(z)= e2(x) dx. A 
reasonable estimator for d under Ho is o 

~* (t, z)=A, (t) ~(z), 
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where 
j ~( t ,  1) . 

l ( t ) = ~ ( w l t h l / 0 = 0 )  and Jz(Z)=Sg(1, z). 

In order to test H o we could use the test statistic U (") = ]/n sup 1~ (t, z ) -  d *  (t, z)[. 
t ,  z 

As before, once we know the asymptotic distribution of ] / n ( ~ - d * ) ,  we can 
derive a test for H o based on U ("). This test is consistent against any alternative. 

Theorem 4.5. Under the conditions of  Theorem 3.1, ~ H o holds and A2(1)+0, 
then 

~ ( ~ -  N*) ~ , m~ 

i t l  D 2 as n --+ co, where 

z t 1 

m2(t,z)= i i ~ , , x ) d W ( s , x ) - 1 1 A 2 ( z )  I ~ ]//h(s,x)dW(s,x) 
0 0 0 0 

1 z 1 1 

-- t 1A i (t) ~ ~ ~ ,  x) d W(s, x) + t 1A 1 (t) a 2 (z) ~ ~ / h  (s, x) d W(s, x) 
O 0  O 0  

and t/= 1/A2(1 ). 

Proof The result follows readily from Theorem 3.1, using the continuous map- 
ping theorem (cf. the proof of Theor. 4.4) and the identities 

1 
( ~ - - d t ) ( t ,  z ) = ( ~ - - d ) ( t ,  z) - -  [~'(t, 1) ~(1,  z ) - - d ( t ,  1) ~4(1, z)] 

~ ( 1 , 1 )  

1 ~(11, 1)] +A(t, 1) ~(1,  z) I-d(1, 1) 

= (s~'- d)(t ,  z) 1 [(~(t ,  1)--d(t ,  1))(~(1, z ) -  ~4(1, z)) 
A(1 ,  1) 

+ ~(1 ,  z)(o~(t, l ) - -d ( t ,  I)) + ~( t ,  1)(~(1, z)--d(1,  z)] 

+ d ( t ,  1)~(1, z)(A/(1, 1)-~ '(1,  1)) 
(~4(1, 1)) ~ 

4 ~ ( 1 , 1 ) - - d ( 1 , 1 ) [ ~ ( t ,  1)~(1,  z) d ( t ,  1)d(1,  z)] 
d(1 ,  1) [ ~(1,  1) d(1 ,  1) J" [] 

Remark. Under Ho, we have from Theorem 3.1 that J l  and J~ are uniformly 
consistent estimators of A1 and A2, respectively, and 

] / n ( J 2 - - A 2 )  ~ , m3 
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in D [0, 1] as n ~ o% where m3 is a continuous Gaussian martingale with covari- 
ance function 

Z I A Z 2 [ 

Cov(m3(zl),ma(zz))= S ~ h(s ,x)dsdx.  
0 0 

This could be used to obtain confidence bands for A z under the general propor-  
tional hazards model, by transforming m 3 to Brownian bridge (cf. the discussion 
following Prop. 3.2). An analogous result can be obtained for/11 . 

5 Technical lemmas 

The following lemma is needed to check Conditions (A1)--(A3) in the ii.d. 
case. 

Lemma 1. I f  Condition (liD) holds, then (a) For each positive integer k, 

sup E Y(")(s, x) < oo. 
s , x , n  

(b) Let C > O  be a lower bound for f on [0, 1] 2. Then 

sup P (Y(") (s, x) = O) < e -  c,  w.. 
s ,  x 

(c) Let 4)= l / f  I f  nw,---, o~, then 

n W n 

sup E y(,)(s, x) 4)(s,x) ~ 0 .  

Proof The proof  is based on the fact that, in the i.i.d, case, Y(")(s, x) has a 
binomial distribution with parameters  n and S f(s, u) du. We refer to Lemma 

J x  

2 of McKeague and Utikal  (1990b) for further details. []  

Proof of tightness 

Tightness of {dQ, n > 1} in D 2 will be shown by establishing a product  moment  
condition on the increments of M over the grid T (") = [0, 1] x {xr: r = 0  . . . .  , d,}, 
where Xr = r %.  

Note  that 

i = 1  0 
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and, since M(~ "), r = 1, ..., d, are orthogonal martingales, 

(5.2) <M(', E 
r = l  0 

For  fixed 0_<s_< 1, O<=x<y<_< 1, define the martingale 

MI(t)=M((s ,  t ] x  (x, y]), t>=s, 

and denote m 1 = M 2 - ( M  1 ) .  

Lemma 2. Suppose that Condition (A3) holds, 7 is bounded, d.=O(n), and X 
is either a continuous process or a counting process. Then there exists a positive 
constant C such that for all n >__ 1, (s, x), (t, y)~ T (") 

(5.3) 
(5.4) 

E ( M 1 )  2 < C ( t -  s )2(y-  x) 2, 

e m~ ( t) < C ( t - s) (y - x) 2. 

Proof In the sequel C is a generic positive constant which is independent of 
n and s. Note that, by (5.1) and boundedness of 7, we have d (M~"))dds < C Yff)(s). 
Thus, by (5.2) and Fubini's theorem, 

(5.5) E ( M 1 )  ~ =n2 w,4 t, dA~ E i d<M(~"))" i d(M}"')~ 
. , , = tx .~  s 2 (V")(v))  2 

t t 1 

< n 2 w~ ( y -  x) 2 C 2 sup I I E yff)(u) Yff)(v) d u d v. 
r ,  l s s 

But by Condition (A 3) 

(5.6) sup E = O . 
r , s  

Hence, applying the Cauchy-Schwarz inequality to the integrand on the r.h.s. 
of (5.5), we obtain (5.3). 

Now we turn to the proof of (5.4). First we need to obtain an explicit expres- 
sion for mr. Integration by parts gives 

M~ (t) = 2 i M ,  (v --) d M  1 (v) + [Ma]t. 
O 

In the case that X has continuous sample paths [M1] = (M1) .  In the counting 
process case 

EMJ,= ~ (AMI(v)) 2, 
~ < v ~ t  
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where AMI(v)=MI(V)--MI(V-  ) is the jump in M1 at time v, so [M~] = ( M 1 )  
+ t/where t/is the martingale 

rh=nw2. 
Thus 

r = [ x d ~ ] +  l s 

ms(t )=2  i Ml(v--)  dMl(V)+th, 
8 

where in the continuous sample path case t h is zero. From this expression we 
get 

(5.7) Em2(t) <=8E i M2(v- - )d(M1) ,+2EQI) t  �9 
8 

In order to obtain an upper bound on the first term on the r.h.s, of (5.7) we 
shall use the Burkholder-Davis-Gundy inequality (see Dellacherie and Meyer, 
1982, p. 287) 

(5.8) E sup M4(v) < C E [M~]t 2. 
w [ s , t ]  

By orthogonality of the martingales M~ "), r = 1 . . . . .  d,, 

(5.9) E ~ M~(v-)d(M~)v=nw2,  ~ E j d(M~"))~ 
s r = t x ~ . ~ + x  ~ ( ~ ( " ) ( v ) )  2 

E/M~(~-)) 

~nw n C(y-x)(t--s)(E[M1]2t)}(sup E \ ~ ]  ] 

(by (5.8) and the Cauchy Schwarz inequality) 
2 ! <= C(y-- x)(t--s)(E [M1] t )~, 

by (5.6). Now [-M1] = ( M 1 ) §  so 

(5.10) E[M1]Z<=2E(M1)2t +2E(~l)t<=C(t--s)2(y--x)Z+2E(rl)t 

by (5.3). Also 

(5.11) 
2 4 [yd.1 ~ d(M~,)>v 

E <rl)t= n w, ~ E 
. = t x d . ] + 1  s J ( ~ ( ' > ( v ) ) "  

1 3 

= r , .  ~ ( v ) l  

d. ( y - x )  
< C ( t -  s) (by Condition (A3)) 

n d n 
__< c ( y  - x )  2 (t  - s)  
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since d,, = O (n) and y -  x > 1/d, if x =~ y. The desired inequality is now obtained 
directly from (5.7), (5.9)-(5.11). [] 

Lemma 3. (Tightness). Suppose that Condition (A3) holds, ~ is bounded, d, = O(n) 
and X is either a continous process or a counting process. Then {/~r, n > l }  is 
tight in D2. 

Proof Consider the following increments of M over neighboring rectangles in 
[0, 1] 2. Define M 1 as before and 

M2(t)  = ; t  ((s, t] x (y, z]) ,  

Ma(u)= ifl ((t, u] x (x, y]), 

where O<_s<t<u<=l, O < x < y < z < l .  Suppose that the corner points of the 
rectangles belong to T ("). Also, denote m i = M  2 - ( M i ) ,  i=  1, 2, 3. From the 
representation of ml in the proof of Lemma 2 it can be seen that ml and 
m2 are orthogonal martingales. Thus, using the Cauchy-Schwarz inequality and 
Lemma 2, we get 

(5.12) E M 2 ( t ) M 2 ( t ) = E ( M 1 ) t ( M 2 ) t + E m t ( t ) ( M 2 ) t + E m 2 ( t ) ( M ~ ) t  

+Em~ (t) m2(t ) 
3 

<__C(t--s)~(y x)(z--y). 

Next, by the martingale property of m3, we have 

EM~ (t) M~ (u) = E (M 2 (t) E (M 2 (u) [ ~,~(~))) = E (M~ (t) ( M  3 )u) 

= E m  1 (t) ( M 3 )  u + E ( M  1 )t (M3) , ,  

so that, again using the Cauchy-Schwarz inequality and Lemma 2, we obtain 

(5.13) EM ~ ( t) M 2 (u) < C (y-- x) 2 ( t - s) -~ (u -- t). 

The inequalities (5.12) and (5.13) imply that "condition (fi, 7)" of Bickel and 
Wiehura (1971, p. 1658) is satisfied with fi=3/2, 7=4,  for rectangles whose 
corner points lie in T ("). Clearly T (n) becomes dense in [0, 1] 2 as n grows large. 
Moreover, M(t, z) is constant as a function ofz over each interval ~ ,  r = 1 . . . .  , dR, 
so the modulus of continuity o; '(M) defined in Bickel and Wichura can be 
computed using T (~) instead of [0, 1] 2. Tightness of {M, n > 1} now follows from 
the remarks following Theorem 3 of Bicket and Wichura (1971, p. 1665). [] 

Convergence of finite dimensional distributions 

Recall the notation H(t ,z)= i S h(s, x ) d x  ds. 
0 0 

Lemma 4. Suppose that Conditions (A 1) holds and 7 is continuous. Then 

sup[( i f l ( ' , z ) ) t -H( t , z ) l  P ,0. 
t , z  
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Proof By (5.1) and continuity of 7, 

<M~")>~ = i Yy)(s)(~(s, xr) + o(1)) ds 
0 

uniformly in r and t. Therefore by (5.2), continuity of h = y- ~b, and (A 1), 

supl<M("z)>~-H(t'z)l<=l,,z ,,r=l ~ oi ~(,(s,nW" xr)+o(1))-h(s,x~) ds+o(1) 

n w n  Z) 
=0(1)  If Y(")(s,z) 4)(s, dsdx+o(1) e,O. [] 

[O, 1] 2 

Lemma 5. Suppose that Condition (II D) holds, w,-+ 0 and nw,-+ Go. Then 
t 1 

(a )<~>,  " , I  ~g(s ,x)  d x d s ;  
0 0 

(b) <M(-, z), _~r(-)>t P, i I f 7(s,x, 1)dx ds. 
oP-~o 

Proof From (2.2) 

(5.14) 

where 

f(")(s) <~>~=n ~ ds, 
o (?(")(s)) ~ 

r ~ t{Z,(s)eEo, 1]} ~(s)~,(s, Z,(s)). 
i = 1  

Note that ~")(s) and Y(")(s) are sums of uniformly bounded i.i.d.r.v.'s that have 
1 

expectations ~ 7(s, x) f(s, x) dx and p(s) respectively. By the Cauchy-Schwarz 
0 

inquality and Lemma 1 (a) (with w, = 1 and k = 4) 

~,(n)(s) 1 dx n ~ 2  ~ g(s, x) 
0 

=< ~{>,(s)] j E r176 I ~,(~,x)I(s,~)dx] ? \ npts) / o 

<= c {O(1/n) + 0(1/n2)}'/2, 
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uniformly in s. This proves (a). The key step in the proof of (b) is to notice 
that M can be decomposed as 

, :  1 o V ( " ) ( s )  " 

Then, by (3.1) and orthogonality of the martingales M~ "~, r = 1, ..., d~, we obtain 

tzd.j  ~,~"~(s) 

where 

n 

y~"' (s) = y, I {Z, (s) E Jr} ~ (S) 7 (S, Z, (S)). 
f = 1  

Next, using the same approach as in (a), 

< C {L(s, z)+ Var(y(n)(s)/n)} 1/2, 

where 

The variance term is of order O(1/n) uniformly in s. To deal with L(s, z), use 
continuity of ~ to give y~)(s)= Yr(")(S)O(s, x,)+o(1)) uniformly in r and s. Then, 
by Lemma 1 (b) and n w, ~ 0% 

sup L(s, z)<= sup P(Y~(")(s)=O)+o(1)<=e-C"W"+o(1) ~0,  
S,Z  S , r  

completing the proof of (b). [] 

Lemma 6. The Lindeberg condition (4.1) holds under Condition (liD). 

Proof. By (5.14) and boundedness of 7 we have d(M('))ffds<=CY-~')(s). Thus, 
it suffices to show that 

E t > ds~O. 
o ~  

By the Cauchy-Schwarz inequality, an upper bound for this expression is 

sup~ E P ~ > s) ? 

which is of order O(n -1/2) by Chebychev's inequality and Lemma 1 (a) (with 
w . = l a n d k = 2 ) .  [] 
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Estimation of H and h 

Lemma 7. Suppose that X is a counting process, Conditions (A 1) and (A 3) hold 

and n w, ~ ~ .  Then I4 is a uniformly consistent estimator of  H, i.e. ]I I4-- H I[ v ~ 0. 

Proof From (2.1), (5.1) and (5.2) we have 

l q ( t , z )= ( -Mr (  �9 z ) ) t +nw , ,  i i M(")(ds'x) 
' o o (Y(")(s'x)) 2 dx. 

In Lemma 4 we showed that the first term above tends uniformly in probability 
to H(t, z). Using Doob's  inequality, the expectation of the II'll-norm of the second 
term is bounded above by 

1 sup i M(")(ds'x) 
nw,  ! E t o (YO0(s,x)) 2 

by Condition (A3) and nw,--* oo. [] 

Proof of  Proposition 3.3. Note t ha t /~  can be considered as a piecewise linear 
approximation (in z for any fixed t) to the estimator 

Ez~~ i dX~"~(s) O(t, z)=nw~, y~ (~.~(s))2, 
r = l  0 

where X~")(s)=X(")(s, x~). We first show that the D-distance between h and 
the estimator ~, defined by replacing / ]  by H in B, is negligible. Denote the 
locations of the jumps of the step func t ion / t  by (zj, x~), and the corresponding 
jump sizes by Aj,. Then 

) Cv-)A,r, 

b2, \ b, / w, S " K\~-) Aj~. 

Hence, using the Lipschitz condition on K, 

If  I~ ( t , z ) -~ ( t , z ) l d td z  
[0,112 

g - 'Nl gz- Ndxl --<~n2 ~[o!!12 K\~-], \ ~ ] - ~ J ~  K\ bn ] ]d tdzA j r  

__<c Aj~= C~/-/(1, 1). 

By the proofs of Lemmas 4 and 7 and Lemma 1 (c), E/4(1, 1)=O(1), so that, 
using w,=o(b2), we obtain E ~ f ( t , z ) - -h ( t , z ) l  dt  dz-~O. It remains to prove 
the result for ~. Write [0, ~]~ 

(5.15) h -- ~ =  (h -- h ~ + (h ~ - h*) + (h* - h*) - R, 



24 I.W. McKeague and K.J. Utikat 

where 

z)-• (t-q K t z-x h~ -b2" [o,11~" K ~ -  ] ~ ] h ( s , x )  dsdx, 

h* (t,Z)= b2 . d. ~=l \ b. ] ! K ~ b, ] h(s' xr) ds' 

h*(t 'Z)=b2~7r~K\ b. ]o (b~-,)nW"(y,,,(s))2ds' 

R(t,Z)=b2 d 2 K \  b, ] K(--~-,')(Y~(")(s))a' 
r=l 0 

and e~")(s)=e~")(s,x,). Now let us treat each term in (5.15) separately. First, 
since h is continuous, ~ Ih(t, z)-h~ z)l dt dz ~ O. Secondly, since h is contin- 

[O, t ]  2 

uous and K is Lipschitz, 

z)-h*(t, z)l_- < 1 sup ~ \ T ]  h(s, x)dx-~7~=,__ K ( ~ ) h ( s ,  xr) suplh~ b . . . .  o 1 K ( z - x ~  el. Z__Xr 

1 C a" f g(Z-X~ K(z--Xr~ldxh(s, x3}+O(1) < =- sup g 
- b  . . . .  / r = , L  1 b. /I 

by %=o(b2). Thirdly, using arguments similar to those in the proof of Lemma 
4, the assumption that K has compact support and Lemma 1 (c), 

supElh*(t,z)--h*(t,z)[<,,~ b~ld~ sure [ i  K{t-S]ds]sup[\ b n ] z Lr=l~n K[Z__Xr]]\~]j 

h(s, e~)(s) �9 supE x~)--nw. (y(,)(s)) z 

1 
= b~ d----~ O(b,) O(b, d,) o(1) ~ O. 

Finally, using the orthogonality of the martingales M~ "), r = 1, ..., d,, and Lemma 
1 (a) 

sup Ele(t,z)l 2= 4 4 sup ~ E [ ( y ~ 4 J d s  =,t b,d, ,,~ ~ \ b, ] o 

< ~ 0 (b. d.) 0 (b.) 0 

=o(<)" b~ --+ u, 

since n w, ~ oo and w, = o (b~). [] 
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