Corrigendum to

Spaces of Vector-Valued Measurable Functions

Ep de Jonge

Department of Mathematics California Institute of Technology, Pasadena, CA 91125, USA

I am greatly indebted to A.V.Buhvalov, who pointed out a mistake in several theorems of [1]. To be precise, in [1] I stated that if f_1, f_2, \ldots is a sequence in $L_{\rho}(E)$ such that $f_n \downarrow 0$, then $f_n(x) \downarrow 0$ (in E) μ -a.e. has to hold. This is in general false. Accordingly the Theorems 3.1, 4.3, 6.1, 7.4 and the Lemmas 4.2, 7.1. 7.2 and 7.3 have to be adjusted.

Definitions. (i) Let $(L_{\rho}(E))_{d}^{*}$ denote the set of all $\varphi \in (L_{\rho}(E))^{*}$ such that $f_{n} \in L_{\rho}(E)^{+}$, $f_{n}(x) \downarrow 0$ μ -a.e. on Δ implies $\varphi(f_{n}) \downarrow 0$.

(ii) Let $L_{\rho}^{\alpha}(E)$ denote the set of all $f \in L_{\rho}(E)$ with the property that $|f| \ge g_n$, $g_n(x) \downarrow 0$ μ -a.e. on Δ implies $\rho(g_n) \downarrow 0$.

(iii) $L_{\rho}(E)$ is called a *weak semi-M-space* if $f_1, f_2 \in L_{\rho}(E)^+$, $\rho(f_1) = \rho(f_2) = 1$ and $f_1 \vee f_2 \ge g_n, g_n(x) \downarrow 0$ μ -a.e. on \varDelta implies $\lim \rho(g_n) \le 1$.

It is not hard to see that $(L_{\rho}(E))_{d}^{*}$ is a band in $(L_{\rho}(E))^{*}$ containing $(L_{\rho}(E))_{c}^{*}$. Moreover, if $(L_{\rho}(E))_{ds}^{*}$ is the disjoint complement of $(L_{\rho}(E))_{d}^{*}$ in $(L_{\rho}(E))^{*}$, then we have

 ${}^{0}\{(L_{\rho}(E))_{ds}^{*}\} = L_{\rho}^{\alpha}(E).$

Also we have that $L_{\rho}(E)$ is a weak semi-*M*-space if and only if $(L_{\rho}(E))_{ds}^*$ is an *L*-space. The proofs of all above statements are exactly the same as their analogues for the order convergence case. Finally observe that if $L_{\rho}^*(E) = L_{\rho}(E)$ or if $L_{\rho}(E)$ is an *M*-space, then $L_{\rho}(E)$ is a weak semi-*M*-space. Now, a careful rereading of the proofs in [1] shows that we actually have proved the following results:

3,1(i) $L'_{\rho}(E^*_c) \subset (L_{\rho}(E))^*_d.$

4.2 Read $G \in (L_{\rho}(E))_{d}^{*}$ instead of $G \in (L_{\rho}(E))_{c}^{*}$.

4.3 If E_c^* has the R-N property, then $(L_{\rho}(E))_d^* \cong L'_{\rho}(E_c^*)$.

6.1 $L^{\alpha}_{\rho}(E) = L_{\rho}(E)$ if and only if $L^{a}_{\rho} = L$ and $E^{a} = E$.

- 7.1, 7.2, 7.3 Read $L_{\rho}(E)$ is a weak semi-M-space.
- 7.4 For (a) read $L_{\rho}(E)$ is a weak semi-M-space.

Finally we observe that statement (ii) of Theorem 3.1 remains a conjecture, as the measurability of the functions f_n employed in the proof is not shown.

Reference

1. Jonge, E. de: Spaces of vector-valued measurable functions. Math. Z. 149, 97-107 (1976)

Received December 20, 1978