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Summary.  We investigate the problem of singular perturbation for a reaction- 
diffusion equation with additive noise (or a stochastic partial differential equation 
of Ginzburg-Landau type) under the situation that the reaction term is determined 
by a potential with double-wells of equal depth. As the parameter ~ (the temper- 
ature of the system) tends to 0, the solution converges to one of the two stable 
phases and consequently the phase separation is formed in the limit. We derive 
a stochastic differential equation which describes the random movement of the 
phase separation point. The proof consists of two main steps. We show that the 
solution stays near a manifold M e of minimal energy configurations based on a 
Lyapunov type argument. Then, the limit equation is identified by introducing a 
nice coordinate system in a neighborhood of M ~ 

Mathematics Subject Classification: 60H15, 60K35, 35R60, 82C24 

1 Introduction 

Phenomena like dynamic phase transition, pattern formation, generation of an 
interface between two coexisting phases and propagation of wave fronts or pulses 
in excitable media can be described by reaction-diffusion equations; see [3, 22, 
23, 26]. In various physical situations, however, it becomes necessary to take an 
external random force into account as an additional effect in the equation; see [5, 
27, 31, 39, 43, 49]. The scaling limit for such reaction-diffusion equations has 
been investigated under several different circumstances. The aim of the present 
paper is to extend these attempts for such equations with a random additional 
term. We discuss in 1-dimension the case where the reaction term is bistable and 
creates a standing wave front. 
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1.1 Problem and main result 

We consider a stochastic partial differential equation (SPDE) 

Ou 
(1.1) - -  = z3u + c - i f ( u ) +  tc~a(x)wt(x), t > O, x C R, 

Ot 

where 3 = d2/dx  2, c > 0 is a small parameter, t;~ is a positive constant which 
depends only on ~ and represents the strength of the noise, a(x)  C C02(R) de- 
scribes how the strength of  the noise varies with x and ~bt(x) is a 2-parameter 
Gaussian white noise. The reaction term f is smooth: f c C~176 and satisfies 
the following conditions: 

(a) f has exactly three zeros • 1,0 ( : f ( + l ) = f ( 0 ) =  0) 
a n d f ' ( •  < 0 , f ' (0 )  > 0, 

(1.2) (b) f is odd : f ( u )  = - f ( - u ) ,  
(c) there exist gj, g2,/5 > 0 such that 

[f(u)l _< gl(1 + lul p) and f ' ( u )  < c2 for every u E R. 

A typical example is f ( u )  = u - u 3. The condition (a) means that the underlying 
reaction dynamics d u / d t  = f ( u )  are bistable with stable states u = 4-1. It is well- 
known under this condition that the equation Ov/Ot = z3v + f ( v )  on R requiring 
v(• = i l  admits a travelling wave solution v ( t , y )  = 7n(y - c t ) , y  E R. 

The condition f l l f ( u ) d u  = 0 which follows from (b) implies that the speed 
of  the travelling wave vanishes: c - cOO -- 0. These kinds of  properties were 
investigated first by Kanel' and then by [4, 21, 38]. Throughout the paper we 
denote by m = m(y ) , y  ~ R, the shape of the standing wave front, that is, the 
solution of  the steady state problem (with c = 0): 

(1.3) A m  + f ( m )  = 0, y C R and m(S=oo) = =El. 

The solution m is increasing in y and unique up to translation, so we can 
normalize it as m(0) = 0. The potential F is defined from f by F(u)  = 
- f j " f ( u ' ) d u ' ,  u ~ R, and hence f = - F '  and F is of  double-well type 

with equal global minima at u = •  For instance, m(y) = tanh(y /v~)  and 
F(u)  = (u 2 - 1)2/4 when f ( u )  = u - u 3. The condition (b), which is much 

stronger than f ~ j f ( u ) d u  = 0, will be necessary, in particular, to derive a kind 
of centering condition (in Corollary 7.1 below). The condition (c) guarantees the 
existence and uniqueness of the global solutions u to (1.1), see Sect. 2. 

The goal of this paper is to study the asymptotic behavior as the parameter 
e .L 0 of  the solution u = u~(t ,x)  of (1.1) subject to the boundary conditions 
u~(t, icx~) = 21 at infinity with a properly scaled constant ~ .  Indeed, we discuss 
the problem under the situation that the noise becomes small as the reaction term 
gets large and therefore we take 

(1.4) he = e "~, 

where 3' is a positive constant; we shall assume a technical condition 3" > 19/4. 



Scaling limit for a stochastic PDE and separation of phases 223 

Since u = •  are the two stable states (or stable phases in physical termi- 
nology) o f f ,  one would expect that u ~ converges to one of  these two phases as 
e .~ 0. In fact, we obtain l imd0f (u  ~) = 0 at least formally by multiplying both 
sides of  (1.1) by e and this suggests that u ~ converges to 1 or - 1 .  From the 
boundary conditions which u ~ satisfies, a phase separation point ~ c R may be 
formed and u~(t,x) might converge to XS, where Xr is a function defined by 
Xr = 1 for x > ~ and - 1  for x < ~. Our main result claims that this type of 
statement is actually true if the time parameter is properly scaled (see subsection 
1.2 below) and can roughly be formulated as follows: The position ~t of phase 
separation moves according to a stochastic differential equation (SDE) on R 

(1.5) d~t = oq a(~t)dBr + c~za(~t)a '(~t)dt 

where ctl, c~2 are certain constants defined only through the function f and Bt is 
a standard Brownian motion; see Theorem 8.1 for a precise formulation of the 
main result. We shall assume for simplicity that the initial data u~(O,x) of (1.1) 
is of the form m~(x) := m(e-l/2(x - ~)) for some ~ E R; in other words, it is a 
minimizer (minimal configuration) of  the Ginzburg-Landau-Wilson free energy 
functional , Y ~  defined by 

(1.6) , , ~ ( u )  = I • u l 2 ( x ) + 6 - 1 F ( u ( x ) )  dx, V = dx'  

in the class of  configurations u satisfying boundary conditions u ( •  = 3:I. 
This means that we avoid discussing the problem of initial generation of a layer 
(cf. [24]) and investigate the single transition layer case only. 

1.2 ReIeamnt time scale for (1.I), cut-off for a(x) and the constant c~, 

The small factor 1% = e "~ appearing in (1.1) makes the drift term dominate 
the noise term and, as a result, the solution u is attracted toward the set Me of 
minimizers of the energy functional ,-~7r ' after a long time. Therefore u = u ~(t, x) 
behaves like m~?(x) for some ~ E R. The relevant time change for the equation 

(1.1) is t , , e-1/2-2~t;  the effect of the noise survives in this time scale. In 
fact, under this time change, the drift term is multiplied by e -~/a-2~ while the 
noise term is multiplied by (c-1/2-2"Y) 1/2 and consequently we obtain an SPDE 

Off e -I/2-23' {A~ + r  + e-l/4a(x)wt(x), (1.7) 0~- = 

for ~ = u~(t,x) := u~(e-U2-2"~t,x). However, the principal effect of  the noise 
comes from the region near the interface (see the proof of  Lemma 8.2), and 
therefore the main contribution from the white noise becomes O(e j/4) in size 
since the width of the interface in a typical configuration m~ (x) is O(eW2). This 

balances with the diverging factor e -1/4 and e-l/4a(x)wt(x) becomes a quantity 
of order one. 
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As we shall point out later (subsection 1.3 (a)), Carr and Pego [10] found out 
that the relevant time scale for the equation (1.1) without noise is exp(Ce -1/2) 
where C is order one. This means that there is no apparent effect from the drift 
term in the time scale e-l/2-2"~t; it only pushes the solution toward M" and the 
motion along M ' can not be observed in this time span (if there is no external 
force). Only the effect of the noise term survives in this scaling limit and pushes 
the wave front randomly. The condition 7 > 19/4 is rather technical, but is 
introduced to obtain an adequate speed of convergence of u ' to M ' (although 
a Similar result is expected for all 7 -> 0). The speed of convergence can be 
computed if one can employ .-~)g" as a Lyapunov function. However, to do this, 
some modification (see Sects. 4, 5) is required in practice because of the very 
singular nature of the white noise. This is the main reason for our assumption 
that the noise term be comparatively weak. 

We assume in addition the technical condition that the support of the noise 
term of the SPDE (1.1) is compact. This assumption is necessary to impose the 
boundary conditions u ( i o c )  = 4-1 at infinity to the SPDE (1.1). There is always 
a single random wave front determined by these boundary conditions. This cut- 
off assumption merely localizes the problem and, as far as we are concerned 
with the interface motion, it never changes the essential physical behavior of the 
system, since the limit dynamics of the interface are determined in a quite local 
way (namely, it depends only on the noise near the interface) as we explained 
above. 

The diffusion constant c~ 2 (at x such that a(x) = 1) given by the formula 
(8.5) below coincides with that conjectured in the physical literature (see (3.47), 
(3.48) in [43]). The constant ct 2 has both kinetic and thermodynamic meanings; 
namely, c~ 2 is the so-called mobility (see the formula (4.7) in [50]) and 1/c~ 2 is 
proportional to the surface tension (see (4.8) in [50] or [16, 43]). This kind of 
relation among these quantities is called an Einstein relation and a variant of the 
Green-Kubo formula. 

1.3 Motivation and bibliographical notes 

(a) Scaling limit for reaction-diffusion equations. The scaling limit for a reaction- 
diffusion equation without random term: 

(1.8) O_flu =Au+e- l f (u ) ,  t >0, x ER~ 
Ot 

has been investigated by several authors. The reaction t e rmf  may depend on the 
space-variable x, in such case f = f (x ,  u), and the d-dimensional Laplacian A 
may be replaced with a second order elliptic operator. 

Freidlin [26, 28] discussed the case where the reaction termf(x ,  u) is of KPP 
(Kolmogorov-Petrovskii-Piskunov) type for every x, i.e., as a function of u, 
f ( •  = O,f(u) > 0 in ( -1 ,  1),f(u) < 0 in R \ [ -1 ,  1]; in other words, the 
reaction dynamics have only two equilibrium states, the stable state 1 and unstable 
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state - 1 .  The bistable case (i.e., f satisfies the condition (1.2)-(a)) was studied 
by G~irtner [36] in higher dimensions and by Fife and Hsiao [24] in 1-dimension. 
The relevant time scale is O(e I/2) in both the KPP and the bistable cases. This 
can be easily understood, assuming d = 1 and f = f (u)  for simplicity, from 
the fact that (1.8) has a solution of the form u~(t,x) = ff*(e-l/Z(x - ce-1/2t)) 
which propagates with speed ce71/2, where c = c(f)  and fit = r~(y) are the 
speed and the shape, respectively, of the travelling front: A ~  + cXgr~ + f ( ~ )  = 0 
on R satisfying r~(• = 4-1. Note that c(f)  is not uniquely determined in 
the KPP case although it is unique in the bistable case. The rescaled function 
~t =_ ~t~(t,x) := u~(el/2t,x) of the solution u = u~(t,x) of (1.8) satisfies 

Oqa el /ZA~ + e - l / Z f ( ~ )  
Ot 

and it was proved that ft~(t,x) converges to )~c,(x) as e + 0, where ;ga,(x) = 1 
for x E Gt and - 1  for x ~ Gt. The evolution law for the region Gt C R a was 
derived in both the KPP case [28] and bistable case [36]. In particular, in the 
KPP case, Gt expands as the time t grows, since u = 1 is the only stable state. In 
the 1-dimensional bistable and single layer case, Gt is an interval ({t, oo) and the 
motion of the phase separation point {t E R is governed by an ODE ~t = c({t), 
where c({) = c(fl({,-)), see [24]. 

If the bistable reaction term f = f (u)  fulfills an additional condition 

f1_lf(u)d u = 0, then e(f)  = 0 so that the interface doesn't  move and accord- 
ingly we need to introduce a much longer time scale to observe a considerable 
propagation effect. In fact, under this vanishing condition, the relevant time scale 
becomes O(1). Recently several authors including [44], [ 18] proved that the solu- 
tion u = u~(t,x) of (1.8) converges to X6,(x) as e ~. 0 and derived the motion by 
mean curvature as an evolution law for the boundary OGt of Gt. In 1-dimension, 
however, the relevant time scale turns out to be exp(C e-1/2). This fact was found 
by [10]. Indeed, it is apparent that we have to observe a longer time span than 
O(1) since the curvature of the plane wave vanishes, but the actual propagation 
speed is extremely slow, see also [35]. 

(b) Drumhead model. Part of the motivation of the present paper comes from 
the investigation of  the so-called drumhead model, which is a model for the 
interface between two coexisting thermodynamic phases. Diehl et al. [16] devel- 
oped a static theory. They started from the Ginzburg-Landau-Wilson free energy 
functional , ~ ( u )  for scalar order parameter u = {u(x),x c R '1} defined by 
a d-dimensional analog of  (1.6) (especially, Vu = (Ou/Oxj, . . . ,  Ou/Oxa) in d 
dimensions) and then derived a free energy for the interfaces by investigating the 
low temperature limit e + 0 of . ~ ( u ) .  The parameter e indicates the tempera- 
ture of the system in this model. The corresponding kinetic theory was discussed 
by Kawasaki and Ohta [43]. The dynamics corresponding to the energy func- 
tional (1.6) can be described by the so-called time-dependent Ginzburg-Landau 
stochastic equation 

Ou 
(1.9) - -D.~gJ~(x,u)+ w,(x), t >0,  x E R J, 

Ot 
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where D , ~ e ( x ,  u) = - A u ( x ) +  c-1F~(u(x)) denotes the functional derivative of 
,Y'U'. In general, the time evolution u(t, .) is naturally regarded as the dynamics 
corresponding to , ~ '  if it has the (formal) Gibbs state Z e - l e - ~ ' ( u ) ~ ( u )  associ- 
ated with o~6 '~ as an equilibrium measure, where ~ ( u )  = 1-IxeRa du(x) denotes a 
"flat measure" (Feynman measure) on the space of all order parameter.s and Z, is 
a "normalizing constant". It can be seen, at least heuristically, that the stochastic 
evolution determined by (1.9) has such property. Kawasaki and Ohta investigated 
the asymptotic behavior of the solution u = u~(t,x) of (1.9) as the temperature 
e I 0 and derived a stochastic equation describing the random movement of the 
interface between two phases, namely, they derived randomly perturbed motion 
by mean curvature but based on rather heuristic arguments, see also [46]. The 
mathematical theory for SPDE's of the type (1.9), including their relation to the 
Gibbs states associated with the energy functional ~ ,  has been developed in 
some detail in [32]. 

Unfortunately, it is a well-known mathematical fact that the SPDE (1.9) has 
a meaningful solution only when the space dimension d = t or if the noise term 
wt(x) is sufficiently smooth in the variable x (cf. [33]). Therefore, in this paper, 
we restrict ourselves to the 1-dimensional case. 

(c) Other related stochastic models. There are some attempts to derive wave 
front propagation from the underlying microscopic particle systems. The reaction- 
diffusion equation itself can be derived from the so-called Glauber-Kawasaki 
dynamics, a stochastic system of interacting particles on a cubic lattice, by taking 
the hydrodynamic limit, see De Masi et al. ~12]. Therefore,' it would be quite 
desirable to show the formation of interfaces and derive the motion by mean 
curvature directly from the particle system. In 1-dimension, De Masi et al. [15] 
proved the formation of multiple interfaces and investigated their spatial patterns 
for the Glauber-Kawasaki dynamics starting off from an unstable distribution. 

The fluctuation theory [49] at rather heuristic level suggests that the second 
correction to the reaction-diffusion equation in the hydrodynamic limit for the 
Glauber-Kawasaki dynamics is given by ~l/2@t(x) and this leads us to the SPDE 
(I.1) (with 1 rather than e - I  in front o f f ( u )  and ~ = el/2). Therefore, it is 
natural to think of the SPDE (1.1) as describing the dynamics at an intermediate 
level between microscopic and macroscopic levels. 

The motion by mean curvature has been derived from the Glauber dynamics 
with Kac potentials, long range interactions of mean field type, by a series of 
papers by an Italian group after taking two stages of scaling limits: First, a certain 
integro-differential equation is obtained from the microscopic dynamics by taking 
the so-called mesoscopic scaling limit (i.e., the time is kept finite while the space 
scale is chosen so that the ranges of Kac potentials become O(1)), see [13]. Then, 
the motion by mean curvature is derived from this integro-differentiai equation in 
the phase transition regime by taking the macroscopic scaling limit (i.e., diffusion 
type space-time scaling limit), see [14]. See also [50] for the derivation of the 
motion by mean curvature from Ginzburg-Landau stochastic lattice model or 
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from Glauber dynamics. The SPDE (1.1) (with e = 1) has been derived from the 
Glauber dynamics with Kac potentials at the critical temperature, see [6]. 

Mueller and Sowers [45] investigated the random travelling waves arising 
from the SPDE of  the form (1.l) (with e = 1) with reaction t e r m f  of KPP type 
and noise term A v / - ~  - u)w~(x), where A > 0 is small but fixed. 

(d) Inertial manifold. The concept of the inertial manifold (or center manifold) 
was introduced to describe the long time behavior of  infinite-dimensional dis- 
sipative dynamical systems in terms of finite-dimensional systems, cf. Temam 
[52]. See Flandori [25] for an extension to stochastic dynamics. In our case, 
the 1-dimensional space M '  consisting of  all minimizers of , ~ '  plays the role 
of the inertial manifold for the infinite-dimensional stochastic dynamical system 
determined by the SPDE (1.1). Indeed, the solution is attracted toward M ' after 
long time (since the drift is the gradient of ,~7~ ' '  so that the flow converges to 
M ' )  and only the motion of the stochastic dynamics along M '  can be observed 
in the limit. The corresponding finite-dimensional problem was  studied by [34, 
42] systematically. 

The asymptotic behavior as e ,~ 0 of the equilibrium measure of the SPDE 
(1.9) for x ~ [0, 1 ] with Dirichlet boundary conditions at both edges x = 0, 1 was 
discussed in [30] where continuum of minima appears like in the present paper. 
The case of finitely many minima was discussed by Freidlin [27] and by Faris 
and Jona-Lasinio [20] where the problem of large deviation was investigated. 
The large deviation problem (for sums of independent random vectors) under the 
situation that the set of  minima forms a manifold was discussed by Bolthausen 
[7] and then by Chiyonobu [11]. 

1.4 Organization of the paper 

In Sect. 2, by applying the maximum principle for PDE, we shall prove that the 
solution u = u~(t,x) of the SPDE (1.1) takes values only in a neighborhood 
of [ - l ,  l], the region containing two stable states {:l:l} of the reaction term.f,  
with high probability tbr small e > 0. This is an effect of the strong drift term 
c-If(u) in (1.1), which forces u toward the stable states o f f .  In Sect. 3, we 
investigate the property of the functional . ~ ( v )  which is obtained from .~U~ 
by introducing the spatial scaling x , , y = e-J/Zx. We study in particular 
the asymptotical structure of  . ~  near M, which denotes the space consisting 
of all minimizers {my;71 C R} of ,~7~(v) restricted to such v ' s  that satisfy the 
boundary conditions v (+oo)  = :1:1 at infinity; namely m,l(y ) = m(y - ~1) with 
m determined by (1,3). In Sect. 4, we introduce a proper space-time scaling for 
the SPDE (1.1) and derive a new SPDE for the scaled process vl = v~(t,y). 
We shall prove that vt stays near M. The idea for completing this is to employ 
the functional .~gJ as a Lyapunov function. However, since vr is not C j 
in the variable y, this idea does not work directly and consequently it becomes 
necessary to introduce a smooth approximation vr 6 of  vt- The process v~ is defined 
by applying Friedrichs' mollifier to vl. In Sect. 5, we calculate the time derivative 
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of ,~.7-~(~;~) and prove that vt stays near M. Section 6 supplies the calculations 
in the previous section and provides some error estimates. The limiting SDE 
(1.5) for the position (r of  the phase separation is derived in Sect. 8 based on the 
method used by Katzenberger [42] for a finite dimensional problem. Namely, we 
shall introduce a nice coordinate ( = ((v) E R defined in a neighborhood of  M 
from the limit map of the classical flow (i.e., a solution of PDE) associated with 
the SPDE (1.1). This coordinate is useful since it eliminates the diverging drift 
term which appears in the scaled SPDE for v'( t ,y) .  Some necessary properties 
of the classical flow are summarized in Sect. 7 and proved in Sect. 9. 

After completing the work, the author has received the paper [8] which dis- 
cusses a similar problem. They considered an SPDE Ou/Ot = e -1 {Au +f (u )}  + 
'wt(Y) for y E [ - e - l , e  - l ]  with f ( u )  = u - u 3 by imposing Neumann bound- 
ary conditions at both edges (instead of introducing cut-off function a in our 
case) and proved that u = u' ( t ,y)  converges to m~,(y) as e + 0 in a distribu- 
tional sense. Here, m~0') is the function introduced above, 7/t = r/0 + cqBt with 
a standard Brownian motion Bt and the constant cq is exactly the same as that 
obtained in the present paper. The limit keeps the shape m of the wave front 
and the sharp transition does not arise. The reason is that the basic scale for u ' 
here stays at the microscopic (or mesoscopic) level; however, their result seems 
to be closely related to ours since the macroscopic scaling limit (i.e., diffusion 
type scaling limit) for m~,(y) results in X~,(x) with Brownian motion ~t having 
diffusion constant c~12. 

2 Uniform bound 

Throughout the paper, we suppose that a(x) = 0 if lxl _> 1 and la(x)l < 1 without 
loss of generalityl Here we derive a uniform bound on the solution u = u' ( t ,x)  
of the SPDE (1.1). The main tool is the maximum principle [29, 47] for the PDE 
of the form (1.1) without random term. The argument in this section depends 
heavily on the assumption that the support of a be compact. 

Before giving the uniform bound, we quickly refer to the existence and 
uniqueness result known for the SPDE (1.l). This SPDE with t~, = e "r is some- 

times written in the form 

(1.1 / ) du = {Au + e-l f (u)}dt  + e'Ya(x)dwt(x), x C R, 

where wt(x) is the so-called cylindrical Brownian motion on L2(R), in other 
words, dwt(x)/dt  = ~bt(x) is the 2-parameter Gaussian white noise. The mathe- 
matical meaning to the SPDE (1.1) is given by rewriting-it in an integral form 
(solution in this sense is called mild solution) or in a weak form (generalized 
solution), i.e., (1.1/) is interpreted by multiplying test functions ~(x) to its both 
sides. Then, the SPDE (1.1) has a unique solution satisfying u~ = u~(t,.) C 
C([0, cx~), ~ )  a.s. if u~ E ?~'. Here, ~ ' =  {u E C(R); Itlu[l]_~ < c~ for every A > 
o} is a Fr6chet space equipped with a family of norms {111" IIl-,x}x>0 defined by 
Illulll_,x = SUpx~R lu(x)je -~qx[. This result follows from the assumption (1.2)-(c) 
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by applying Theorems 5.1 and 5.2 in Iwata [40] (with slight modification because 
of a(x)  introduced in our equation). 

Now, we start the task to derive a uniform bound. Let u2 = u~(t,x) be a 
solution of the SPDE 

{ ~ z  - A  ' e'ra(x)wt(x), t > 0 ,  x E R, (2.1) ot - -  Z " ~ U 2  -r" 

u2(O,x) = O, 

namely u:~ (t, x) = e "r Y (t, x), where 

/o's (2.2) Y ( t , x )  = q ,_ , (x , x ' )a (x ' )dw, (x ' )dx ' ,  

and qt(x, x ')  = (47rt)-1/2 e x p { - ( x  - x ' )a /4 t}  is the heat kernel. 

L e m m a  2.1. There exists Y (c~) E Np>ILP(X?) such that 

lu~(t,x)l <_e'rY(w), t E [ O ,  1],x E R ,  0 < e <  l. 

Proof From Lemma 2.3 of [33, p.499], the following moment estimate on Y (t, x) 
holds: For arbitrary 6 > 0, there exists C > 0 such that 

(2.3) E [ l Y ( t , x )  - Y( t ' , x ' ) l  2] < C{It  - t'l I/2 + Ix - x ' l l - a} ,  

for every t , t '  c [0, 1],x ,x '  "E R Noting that { Y ( t , x ) }  is a Gaussian system 
and applying Kolmogorov-Totoki 's theorem (cf. [33, p.501], [53, p.273]), this 
estimate shows that, for every p > 1 and t~ > 0, there exists Z(w) E LP(Y2) such 
that 

(2.4) IY( t , x )  - Y( t ' , x ' ) l  <_ Z(w){It  - t'l V4-2/p-~ + Ix - x' l l /4-2/P-'~}, 

for every t , t  ~ E [0, 1], x , x '  E [ -2 ,2 ] .  Since Y(O,x) =_ O, this implies that 

Y := suptel0,Xl,xEl_2,211Y(t,x)l E Op>_~U'(S2). For Ix I >_ 2, Y ( t , x )  satisfies the 
heat equation with initial data 0 and boundary data I Y( t ,  •  I _< Y , t E  [0, 1]. 
Therefore, the maximum principle for the heat equation implies that [Y(t, x)l _< Y 
also for Ix I _> 2 and t E [0, 1]. [] 

Let t~(t)  = ~e(t; K, 6), K, 6 > 0, be the solution of an ODE 

(2.5) d ~ '  = e_j fa(a, ) ,  t > 0; a ' (0)  = K ,  
dt 

where f6 (u )  E C([0, oo)) is chosen a s f a ( u )  _> suPl,21<_J(u + u2), u > 0. 

L e m m a  2.2. Assume that lue(0,x)l _< K, K > 0 and lu~(t,x)] << 6, 6 > O, holds 
for  every t ~ [0, 1 ], x E R. Then, we have 

] u ~ ( t , x ) l < t ~ ( t ; K , 6 ) + ~ ,  t E [ 0 , 1 ] , x E R .  
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Proof The function u~(t,x) := u~(t,x) - u~(t,x) satisfies a PDE 

{ ~-t = AU~ + e- l f (u~ + u~), 
(2.6) u~(0, x) = u~(0, x). 

Therefore, noting an inequality d ~ / d t  >>_ e- i f ( f ie+ u~) for t~c(t) = Ft'(t;K, ~), 
we see that v( t ,x )  := fi '(t) - u~(t,x) satisfies 

Ov 
Lv =_ A v + e ( t , x ) v ( t , x )  - --~ < 0 

where 

c( t ,x)  = e - l f ( ~  + u~) - f (u~ + u~) 

However, the condition f t (u)  < c2 in (1.2)-(c) implies that c( t ,x)  _< g2e-l;  in 
particular, c( t ,x )  is bounded from above. Furthermore, the initial data v(O,x) = 
K - u ~ ( O , x )  > 0 and one can easily show that v( t ,x)  >_-Ce -clxl2, t E [0, l ] ,x  E 
R, with some C, c > 0. Therefore, the maximum principle (see Theorem 9 of  
[29, p.43]) proves v( t ,x )  >_ 0 and this gives the upper bound on u e �9 u~(t,x) <_ 
t~'(t) + 6, t E [0, 1]. The lower bound is shown analogously, recall the condition 
(1.2)-(b). [] 

Theorem 2.1. If]u~(O,x)] <_ K , K  > O, then 

l i m P ( [ u ~ ( t , x ) ] _ < m a x { K , 1 } + ~ , t E [ 0 ,  e-1/2-Z'~T],x E R ' ~ = I ,  T , 6 > 0 .  
el0 t. ) 

Proof We may assume K _> 1 without loss of generality. Set cl := infj < ,<4{f ( l )  
- f ( u ) } / ( u  - 1); note that cl > 0, s incef ' (1)  < 0 and f (u )  < f ( 1 )  = 0 for u > 1 
from the condition (l.2)-(a). Then, we h a v e f ( u )  < - c l (u  - l) for 1 < u < 4 
and consequently, for 0 < ~ < 1, we can choose 

f ~ ( u )  = - c ~ { u  - (1 +~)}, u ~ [1 +~,3],  

in (2.5) with 6 =  S. Therefore, if 1 + S _< K _< 3, we obtain by solving the ODE 
(2.5) 

(2.7) ~ ( t ; K , S ) = { K - ( I + S ) } e  - ~ ' e - ~ t + ( l + ~ ) ,  t >_0. 

Let us temporarily assume lu'(0,x)] _< 1 + e "~/2 and 0 < e < 1. Then, applying 
Lemma 2.2 with 6 = e'~Y(~) and / r  = 1 + e "v/2 and noting Lemma 2.1 and (2.7), 
we see that 

lue(t ,x)l<e'Y/Ze-C'e- ' t+l+e'YY(cJ),  t C [0 ,1 ] ,x  C R, 

if S < 1 and 1 + 6 <_ K (i.e., if e'~Y(w) <_ e~/2). Therefore, using Chebyshev's 
inequality, we have 

{ l u ~ ( t , x ) l _ < l + 2 c  ~ / ~ f o r t  C [ 0 , 1 / 2 ] }  
P lu~(t,x)l _< 1 + e "~/2 for t E [1/2, 1] 

>_ P{e'~Y <_ (1 - e-C~/2)r "y/2} > 1 - (1 - e-cl/2)-Pe"/p/2E[YP], p > 1. 
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Hence, by the Markov property of  u~(t, x), 

P {[u~(t,x)[ <_ 1 +2e'r/2 for t C [0, e-1/2-2"rT]} 

which converges to 1 as e ~ 0 i f p  is taken sufficiently large: p > 4 + l / 7 .  
To treat the general case, divide the time interval [0, e-I/2-2"YT] into [0, 1] 

and [1,e-1/2-2"YT]. If  K > 3, we determine fi~(t) by solving the ODE (2.5) 

with fS(u) =-- -c2 := suP2<u<K+lf(U) < 0 (i.e., Ft'(t) = K - c 2 e - l t )  until the 
time when it reaches 3 and afterwards we continue it as in (2.7). (If K < 3, we 
determine ~e(t) simply by (2.7).) Then, on the time interval [0, 1], we apply the 
results of  Lemmas 2.1 and 2.2 with fi '(t) constructed as above and S = dYY(w). 
In particular, this shows lim<oP {lu'(1,x)l <_ 1 + e 7/2, x E R} = 1. Therefore, 
we can use the result established above on the extra interval [1,e-l/2-27T]. 
The conclusion follows by combining these results by the Markov property of  
u~(t,x). [] 

Remark 2.1. We can remove the condition (1.2)-(c) to derive our main re- 
sult (Theorem 8.1) under the convention that we consider the stopped process 
u~(t A "r~:,,x) instead of  the solution u~(t,x) of (1.1) itself, where 7-~, = inf{t > 

0;SUPx [u~(t,x)l > K '}  for K '  > max{1,SUPx ]u~(0,X)[}. 

3 Energy functional 

We shall denote by H n = Hn(R) ,n  C Z+ = {0, 1 ,2 , . . -} ,  the Sobolev spaces 
equipped with the usual norms  [1" I IH" defined by 

(3.1) Ilsll~~ = ~ IIV~sll~2, Vks = dks/dy ~, 
k--0 

for s = s(y),y E R, where II. IlL2 stands for the norm of the space L 2 - L2(R). 
Let H"  +m be the classes of all functions v = v(y),y E R, such that v - m  E H ~, 
where m = re(y) is the function uniquely determined by the ODE (1.3) satisfying 
m(0) = 0. We associate an energy functional with v E D o m ( , ~ )  := H 1 + m by 

(3.2) . ~ ( v )  = ~ {1,Vvl2(y)  + F(v(y)) } dy - C., 

where the constant C. > 0 is chosen as min~cDom(,~).-FZ'dJ(v) = 0; for instance, 
C. = 2x/2/3 when f ( u )  = u - u 3. This functional is translation-invariant. Since 
every critical point of , ~  automatically satisfies (1.3), the minimum of ,-~WJ is 
attained on the set M ={mv;  r /E R}, where m, 7 is a functiondefined by shifting 
m: 

(3.3) m,(y)= m(y - rl) , y E R. 



232 T. Funaki 

The (formal) functional derivative of , ~  is given by 

(3.4) D,~Z'iC'(y, v) = - -Av (y )  - f ( v (y ) ) ,  

so that we adopt (3.4) as a definition of  D , ~ ( . , v )  E L 2 for v C H 2 +  m; 
recall that F ~ = - f .  The aim of this section is to investigate the structure of the 
functional ,~7-6;(v) and its derivative I ID ,~ ( . ,  v)ll~= near M. To this end, we need 
the non-degeneracy of the second derivative (Hessian) of ,-~eY at v = m C M to 
the normal direction to M:  

L e m m a  3.1, Let ,  ,4 be the Sturm-Liouville (or 1-dimensional SchrOdinger) op- 

erator: 

(3.5) , .,~ = - A  - f ' ( m ( y ) ) ,  

in L 2 with Dom(,'.-4) = H 2. Then , ,,4 is selfadjoint with discrete spectrum in 

( - o o , f . ) ,  where f .  -- - f ( 1 )  > 0. The principal eigenvalue is # = 0 and simple. 
The corresponding eigenspace is spaned by V m  (called the Goldstone mode in 
physical literature). In particular, let # .  > 0 denote the second eigenvalue o f  ./d~ 
less than f .  i f  one exists, or # .  = f .  otherwise. Then # = 0 is the only eigenvalue 
in ( - o o ,  #.) .  

Proof See [10, p. 536] or [44, 2]. [] 

Now we introduce the so-called Fermi coordinates of  v in a neighborhood of M : 
Let ~7(v) C R be such r 1 that dist(v, M)  := min,Tel~ Ilv-mn[IL~ is attained; see [37, 
34] for the definition of  Fermi coordinates in finite dimensional spaces. Notice 
that r / exists uniquely for v sufficiently close to M,  i.e., for v C L 2 + m satisfying 

dist(v,M) _< /3o with some /3o > 0. We call the pair (rl(v),s(v) := v -mv(~))  E 
R x L 2 the Fermi coordinates of  v. It follows that 

(3.6) (v, Vm~(v)) 

where (-,-} denotes the usual inner 

L e m m a  3.2. There exist cl, c2 > 0 

(3.7) cj I Is II 2, < 

for  all s C C~176 A H j satisfying 

(3.8) c~llsll2= _< 

for  all s E C a ( R )  N H 2 satisfying 

= ( s ( v ) ,  Vm,7(~))= 0, 

product of the space L 2. 

such that 

(,.,~s,s) <_ c211s112,, 

(s, V m )  = 0 and 

II,,-~sll~= <_ c21fsII22, 

(s, V m ) =  0. 

Proof The upper bounds in (3.7) and (3.8) are derived quite easily. For the lower 
bounds, we first notice that Lemma 3.1 immediately implies 

(3.9) (,..4s,s} >_ #.11s1122, 

(3.10) II,.,~sll2~2 _> ~211s112~=. 
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for s E L 2 satisfying (s, Vm) = 0. On the other hand, writing c3 = maxl,t_<if~(u), 

= IlVsll~2 - s (3.11) (,!~s,s) 

> Ilsll~, - (e3 + 1)llsll~=, 

and, by a G~rding type inequality (which is shown by simple computation in our 
case), 

(3.12) II.-~.sll~= >_ c411sll~,= - csl ls l l~,  

with some c4, c5 > 0. Then, the lower bound in (3.7) with cl = # . / ( # .  +c3 + 1) is 
verified from (3.9) and (3.11). Indeed, we may use (3.11) if Ilsll2~ _< I l s l l~ , / (~ .  + 
c3+ 1) and (3.9) if Ilsll~= _> Ilslf~,/(~.+c3+ 1). The lower bound in (3.8) follows 
from (3.10) and (3.12) similarly. [] 

Theorem 3.1. There exist cl, c2 > 0 and/31,0 </31 <_/30, such that 

(3.13) cl Ilsll~, <_ , ~ ( v )  _< c~llsll~.., 

holds for  all v E H 1 + m :  IIslIH' _</3~ and 

(3.14) c, l l s l l~  _< IID.~(. ,v) l l~= <_ c211sll~,=, 

holds f o r  all v C H 2 + rn : IlslI, ,  _</31. where s = s(v) and/30 is the constant 
appearing jus t  after Lemma 3.1. 

Using the ODE (1.3) for m n and recalling ,~J(m~) -- 0 a n d f  -- - F  ~, we 

1 .'~ws,s) + J~ U(y;~7, s )dy  ,~(~) = ~(, 

IIO.~(.,v)ll~= = II..~,,s + v I1~=, 

Proof  
have 

(3.15) 

(3.16) 

where 

(3. ! 7) 

and 

U = 

""Nv = - A  - f ' (mn(y) ) ,  71 E R, 

U(y;71, s) 

l It 2 := F(mrl(y) + s(y))  -- F(mT?(y)) -- F ' (m~(y))s(y)  -- ~ F  (m.(y) )s (y)  

V = V ( y ; ~ , s )  

:= F'(m,l(y)  + s(y)) - F'(m~(y))  - F"(mv(y))s(y) .  

Since Sobolev's  imbedding theorem shows IlsllL~ ~ C l l l s l l . , .  IlsltH' ~ /3J 
implies IIslIL~ _< c1/3,. Therefore, by using Taylor's formula, 
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1 sup IF'/(v)l  x Ilsl133 
U dN <_ ~ Ivl<C,~,+l 

<_ Gl[sllg~[[sll~= <_ c311sll~, 

Hence, (3.13) follows from (3.15) and (3.7) shifted by r/ = r/(v); notice (3.6). 
Similarly, since 

IIVIIL=--< c41ls2llg= --= Cetlsll~ _< C511SlIH'[ISlIH=, 

we have from (3.16) 

[ l lO~( ' ,v ) l l~=  - I [~ '~s[ l~=]  -< 21[.~,TstlL=IIVIIL= + IIV[l~= 

_< C6{ltslln, + Ilsll~l}llsll~=. 

Therefore (3.14) follows from (3.8). [] 

4 Scaled SPDE and smooth approximation 

Let us introduce a scaling in space and time for the solution u ' ( t , x )  of (1.1): 

(4.1) v =- v~(t ,y)  := u~(e-1/2-z'Yt,el/2y), t > O, y E R. 

Then, since w,-, /2-2,t(el/2y) = e-1/2-'Ywt(y ) (generally (vat(bx) = (a /b  )l /2fvt 
(x) for a ,b  > 0) in the sense of distribution, the SPDE (1.1) with t~, = c "~ can 
be rewritten as 

(4.2) 0v  = s  v +f (v )}  + e-l/2a@l/2y)lJJt(y), t > O, y C R, 
Ot 

which amounts to the same as 

(4.2 I) dv  = c-3/2-2"~{Av +f (v ) }d t  + e- I /2a(e lDy)dwt(y) ,  t > O, y E R. 

In order to show that the solution vt = v'( t ,  .) of (4.2) stays near the minimizer 
M of the energy functional ~ at least if it starts near M,  we shall employ ~o76~ 
as a Lyapunov function; however, this idea does not work directly, since vt(y) 
is not differentiable in y (P-a.s.) so that ,~U(vt) has no meaning. To avoid this 
inconvenience we consider its smooth approximation. 

Let p E Co~(R) be a non-negative symmetric function on R satisfying p(y) = 
0 if lYl >- 1 and f R p ( y ) d y  = 1 and let ~ C C ~ ( R )  be a function such that 
~b(y) = 1 for y <_ 0,~b(y) = 0 f o r y  >_ 1 and 0 < ~b(y) _< 1 for 0 <_ y < 1. 
These two functions p and ~b will be fixed to Sect. 6. For 0 < 6 < 1 and 
v C Lto~c(R) A C ~ ( R  \ [ - e  -1/2, e-l/21), we define ~(v) = ~6(v) C C~ by 

(4.3) r = {v �9 p6(Z~}(z) 

= [ p(y')v(z - 6(z)y ' )dy ' ,  
dl, . ' 1 < 1  
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where p~(.) = p(./(5)/6 and 6(z) = &b(Izl - e i/2 _ 1); notice that 6(z) = 
for lzl -< e - I / 2  + 1 and ~5(z)= 0 for Izl _> e-J/2 +2 .  We use the convention: 
v * p~ = v(z). Now a smooth approximation of vr = v~ is introduced by 

(4.4) ve( t , z )  - v<a(t ,z)  := ~a(v'( t ,  .))(z) 6 C ~ ( R ) .  

In other words, v6( t , z )  is the smoothed version o f v ( t , z )  for Izl -< e - I / 2 +  1, not 
smoothed for Izl -> e - j / 2 +  2 and weakly smoothed on an intermediate region 
e - l /2  + 1 < IZ[ 5 e - I /2  +2 .  

In the rest of  this section, we prepare some bounds on the solution v( t , y )  = 
ve( t ,y)  of the SPDE (4.2). We always assume 

0 < e <  I, 

in the following. Let v2(t ,y)  = v~(t ,y)  be a solution of the SPDE 

(4.5) 0'v2 _--_3/2_2.YA,02 + e_J/2a(eX/2y),i#(y), t > O, y E R, 
Ot 

satisfying v2(0,y) = 0 and set v l ( t , y )  = v( t ,y )  - v2(t,y); namely, v l ( t , y )  = 
u~(e-J/2-2"rt, eJ/2y) and v2(t ,y)  = u~(e-I/2-2"rt, eJ/2y), where u~, u~ are defined 

in Sect. 2. Notice that v j ( t , y )  solves a nonlinear PDE 

(4.6) Ov~ = _3/2_2../{AV 1 +f(vl  + v2)} 
Ot e 

having initial data v l (O,y)= v(O,y). 

L e m m a  4.1. (Estimates on v2) For every T > O,p > 1 and t~ > O, 
(i) there exists a positive random variable Z~(co) C U'((2) such that 

Iv2(t,y) - v2(tt,y')] <_ Ze(w){e-J/8+'y/21t - t't I/4-2/I'-~ 

+ eJ/16+3"r/4-{2/P+'~)(3/4+7')tY - Y'II /4-2/P-X},  

for every 0 < t < T, lyl, ly'l -< e-J /2 + 3 and SUpo<,<j E[Z['] < 00, 
(ii) there exists a family of  positive random variables {Zt,,(co) C LP(S'2)} which 
are jointly measurable in (t, w) such that 

I v 2 ( t ,  y) - / )2 ( t ,  y')l  -</t,e(CO) el/4+7'--(I/2p+m)(3/4+"y) lY - y , ] l / 2 - 1 2 > - ~  

for  every 0 < t < T, lYI, lY'I <- e- I /2  + 3  and sup0_<tSr,o<~< Z E[Z['~] < oo. 

Remark 4.1. The estimate (ii) is better than (i) for both H61der exponent in y 
and decay rate in e, but holds only for fixed t and will be used only for the proof 
of  Proposition 5.3 below. 

Proof of  Lemma 4.1 Consider a rescaled process ~2(t,x) := vz(t, e-3/4-'rx) of 
v z ( t , x ) .  Then, since z i 3 t ( f - - 3 / 4 - " g x )  = e3/8+-r/21J3t(X) in the sense of distribution, 
~2 satisfies the SPDE 
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Ok = AQ 2 + ~-l/8+7/2a(6-1/4-Tx)~t(x), 
Ot 

and this implies 52(t,x) = r where ~'( t ,x) = t'~(t,x) is de- 
fined by the formula (2.2) with a(x t) replaced by a(r Since a is 
bounded, the estimate (2.3) still holds for Y(t ,x)  and for t , t  I c [0, T],x ,x  r E R. 
Therefore, the estimate (2.4) holds for ~'( t ,x) in place of Y(t ,x )  and for 
t , t  I E [O,T],x,x r c [ - 4 , 4 ] ;  notice that Z(w) = Z,(w) may depend on r but 
satisfies sup0<~<l E[Z~] < oo. This estimate on Y(t ,x)  shows the assertion 
(i) by noting that v2(t,y) = c - l l S + 7 / 2 ) z ( t ,  e3/4+Ty) and fYl -< e-I /2 + 3 implies 
le3/4+~yl _< 4. To prove (ii), taking t = t '  in the estimate (2.3) for Y(t,x) ,  we 
have 

(2.3/) E [ l ? ( t , x ) -  ?(t,x')12] <_ f l x  - x'l 1-~, O < t < T , x , x t  c R, 

for every 6 > 0. Then, the similar argument as above implies the assertion (ii). 
[] 

L e m m a  4.2. (Estimate on vl) Assume 3' -> 1/4 and v(0,-) E C~(R); in partic- 
ular, both v(0,-) and its derivative vt(0, .) in y are bounded. Then, we have 

sup E[Yc p]<oo,  T > 0 , p  > 1, 
O<e<l  

where Ye(w) = SUPo<t<~_xAT,yER [(V~)'(t,y)[, v~(t,y) = vl( t ,y)  and TK = in f{t > 
0;SUpyca [v(t,y)l > K},  K > O. 

Proof First we notice 

(4.7) sup E[  sup sup Ivz(t,y)l p] < oo, T > O,p > 1. 
0 < e < l  O<t<TyER 

In fact, since v2(0,y) = 0 and 3' -> 1/4, Lemma 4.1-(i) with ( t ' , y ' )  = (0,y) proves 
(4.7) with sUPlyl_<e_~/2+3 in place of SUpyo~. However, this shows (4.7) with the 
help of the maximum principle for the heat equation; similar argument was used 
in the proof of Lemma 2.1. Now, set ~t(t,y) = vi(~3/2+2"Ct,y) . and O(t,y) = 
v(e3/2+2"~t,y). Then, the equation (4.6) is rewritten in O~l/Ot -- ASl + f (0 ) ,  
which can be rewritten further in an integral form 

(4.8) ~l(t ,y) = ~ e-Ct qt(Y,y')vo(y')dy' 

+ for ds fa e-C(t-")qt-s(Y'Y'){cvl(s 'Y')+f@(s'yt))}dY" 

where c E R and qt is the heat kernel. The proof of lemma is easily completed 
by taking the derivative of the both sides of (4.8) in y; we take c > 0 (the decay 
factor e - c t  plays an important role since we consider on the time scale e-0/2+2-/) 
for ~t) and note that (4.7) implies 

sup E[  sup suplcf)z(t,y)+f(~(t,y))l e] < oo. 
0 < e < l  O<t<e-O/2+2"c){-rKAT} yGR 
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5 Energy estimate for scaled SPDE 

Let v~ = v~(t,-) be the smooth approximation, defined by (4.4), of the solution 
vt = v~ of the SPDE (4.2). Then, its stochastic differential (in t) is given by 

(5.1) d@(z) = e-3/2-:Tbte(z)dt +d#~t(z), z G R, 

e6 where b~(z) =- b r ' (z) and #t6(z) ~ #~'6(z) are defined by 

(v,(-), & . p ~ ( Z ) ( z  - .)) + O~(v,(.)), p~(Z)(z - . )) ,  Izl < ~-~/2 + 2, 
b~(z)= Azv~(z)+f(@(z)) ,  ]z]_>e-1/2+2,  

#~(Z) = { 0,c-'/2f~ >- e-i~2-+')a(e'/2")'dw")'l. Izl < s 1, 

In fact, when ]zl _> e- l /e  +2, we see v~(z) = v,(z) and a(el/2z) = 0 so that (5.1) 
is the same as (4.2I), while (5.1) is the SPDE (4.2') multiplied by a test function 
c;O') = p6(Zl(z - y )  when lzl < e - I / e +  2. Note that p6(Z)(z - y )a (e l /2y )  =/0 
implies "IYl <- e - l /2  and ]z -Yl < 1" and especially [zl _< e-I/2 + 1, for which 
we have (5(z) = 6. For every p > 1, let us calculate d~9;~P(vst) based on It6's 
formula; remind that ~7~P(v~t) denotes the p-th power of ,.~g(v~t). 

Lemma 5.1. 

(5.2) 

where 

d,.~Y~fl ' (@) = p,-~7~ p-I (@)(dvf , D , ~ ( . ,  v~t )) 1s 
+~e -I  VP'6(y,vf)a2(el/2y)dy �9 dt, 

Up,60,, ~)) = p(p _ 1)c~jp-2(v){glf(y, 73)}2 + p .~r~p-1 (v)g26(y, ~)) 

and 

v~e(y, v) = { D , ~ ( . ,  v) �9 pe}(y), 

V f ( y ,  v )  = ( { - A  - f ' ( v ( . ) ) } p 6 ( .  - y ) ,  p6( .  - y ) ) .  

Proof First, we notice a general fact that the quadratic variational process 
[#1, #2]t of two martingales #i = fo (h~, dw,.), i = 1,2, is given by 

[#1 #2]t = (h I h2~ds, 

where hi are LLvalued c~{w,.;s < t }-adapted measurable processes. Then, com- 
puting d { A @ ( z ) ,  vt~(z)} by (usual) It6's formula for each z E R and integrating 
it in z, we have 

d (Av~, @) = 2(Avt 6, dyer) + .~  dz .  d[A#.a(z), #.~(z)]t 

= 3(Av6t, dv6t) + e-1 f ( A p 6 ( .  _ y), p6(. _ y))a2(el/2y)dy, dt. 
JR 
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On the other hand, 

dF(v6t (z)) = F'(vt6 (z))dr 6 (z) + ~ F"(vt6(z ))d [#.6(z ),/z6(z )]t 

= F ' ( v T ( z ) ) d v 6 , ( z )  

Therefore, recalling f = - F  ~ and the definitions (3.2) and (3.4) of ,~'fJ(v) and 
D,-~TU(y, v), respectively, we obtain 

Now, the conclusion follows since we have 

1 
d ~7~'(~, 6) = ~ , ~ ' - 1  (~,6)d,~(~,6) + ~P(P - ~),~"-2(~,~)d[,~(v.~), .~(~.~)]t. 

Note that (5.3) implies, in particular, that the martingale part of d,-~Z'?S(v 6) is 

(d#t 6, D,~ZrYJ ( -, v6)} = r v6)a(e'/2.), dwt) 

which shows 

d[,-~v6. ),,~(v.6)]t = r  fR{V16(y, v6t )}2a2(el/2y)dy . dt. [] 

To estimate the second term of (5.2) we prepare 

L e m m a  5.2. For every K > O, there exists CK > 0 such that 

R VP'~(y, v)a2(el/2y) dy 

_< p(p - I),~p-2(v)IID,.~W/(., v)ll~2 + Cx6-3~-W2p,~ZCfl'-l(v) 

holds ifsupb.l<c_,/2+6 Iv(y)l < K. 

Proof Using the Hausdorff-Young inequality and recalling that la(x)l < 1, we 
have 

~ {Vle(y, v)}2a2(e'/2y)dy <_ I I D . ~ ( ' ,  v)l12~. 

On the other hand, 

! - - 3  V6(y,v) <_ ( - A p 6 , p  6) + sup [,f'(v)[ [tp6[[~2 < Cgc5 -. 
I~l<~c 

Therefore, we have the conclusion noting that a(el/2y) = 0 for ]Yl >- e-1/z. E] 
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Nex t  we  compu te  the first te rm in the right hand side of  (5.2). To this end, we 
rewri te  the te rm bf(z)  appear ing in (5.1). 

Lemma 5.3. 

where 

(v,(.),  za p~(Z)(z - .)) = Av~, (z)  + e f '~ (z ) ,  Y 

fly p(y')v[(z - 5(z)y')y' dy' 1r = 5"(z )  '1<_~ 

o~[v p(y')vff(Z - 5(Z)y') [{1 - 5 ' (Z )y ' } ;  - 1] dy'. 
+ . '1<_1 

Especially R~'I(z) = 0 if tzl r [e - U a  + 1, c -1/2 + 2]. 

Proof The  final assert ion is true because  5~(z) = 5"(z)  = 0 for Izl r [~-~/2 + 
1, e -1 /2  + 2]. When  Izl -< e -1/2 + 1, 5(z) = (5 and this implies  vat(z) = vt * pe(z). 
Therefore ,  the conclus ion holds with Rf ' l ( z )  = 0. When  Izl _> ~-~/2 + 1, noting 
that vt(z - ~5(z)y~), lY'[ -< 1, is differentiable in z,  we have 

Aver(z) = ,.f"X<_l p(y')Az {vt(z - 6(z)y ' )}  dy' 

= f p(y') [vff(z - 6(z)y ' ){1  - 5 ' ( z )y ' }  2 - v~(z - 6(z)y')5"(z)y'] dy'. 
JIv .q_<l 

On the other  hand, we have  

5(z ) JR (vt( ' ) ,  Ayp (Z -- ")) = vff(y)p~(Z)(z -- y) dy 

~V ! I? = p(y )v, (z - 5(z)y')dy'.  
. '1<_1 

Therefore ,  the conclus ion fol lows also when Izl _> ~- ' /2 + 1. [] 

Now,  we get 

where  

bf(z)  = { A @ ( z )  + Rt6'l(z)} + { f (@(z))+ Rat'Z(z)} 

= - D , ~ ( z ,  @) + Rf(z) ,  

( f (v t ( ' ) ) ,  pS(Z)(z - ")) - f ( @ ( z ) ) ,  if  Iz I ~ ~ - v 2  + 2, 
R~'2(z) := 0, if Izl --- e-1/2  + 2, 

and R~ (z) -- Re'l (z) + R~'2(z). Insert ing this into (5.1), we have 

= p , ~ P - '  (@)e  -3/2-2"y (D,7U(., vSt), -D,-2~(., vat) + Rt6(.)) d t+ d#~ 

where  
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0 t ~p-  1 6 m e p , ~  (v,. )(D,~,r (., ~ = v,.), du.,.(.)) 

is a martingale. We have proved the following proposition by virtue of Lemmas 
5.1, 5.2 and by using a simple estimate: ( D , ~ ( . ,  vet), Rt~(.)) < {[[D,~(. ,  vt~)][22 + 
IlRffll~2}/2. 

Proposition 5.1. Whenever supo<,<t [[v~.[la~ <_ K, we have 

. / '  ~ (v,.)l ID,-~'S~(., %)1 , ~ P  (Vf)  + p'~r.--3/2-23' p--1 6 6 ds 

~' ..~d (v, )I IR, I I~ <_ .y/; ,O0 ~) + u~ + p2~-3/2-2~ ~-~ 6 ds 

I .t P ( P 2  1)e-1 _ -  p - 2  6 ~ 6 2 
- . ~  (v,.)[lJ,-~(-v,)llL2ds 

+CKp~-  3/2 (5 -3 fOt , ~ P - I ( v . 6 )  ds. 

Let us introduce a stopping time: 

(5.4) ~-K := inf{t > O;sup[v(t,y)l > K}, K > 0. 
yCR 

We shall prove the following two estimates on the error terms Rt ~'~ and Rf 'e, 
respectively, in the next section. 

Proposition 5.2. Assume that the initial data v(O,y ) of the SPDE (4.2) satisfies 

sup {[v'(0, y)[ § Iv'(0,y)l} < ~ .  
lyl>e-l/2+�89 

Then, there exists C > 0 such that 

IR,~'J(z) l _< C& Izl E [c-l/2§ 1,e-1/2+21, 0 < ~ < 1/2, t < r~. 

Proposition 5.3. Assume ~/ >> 1/4 and v(O, .) E CII (R). Then, .for eveo' T > 
O,~c > 0 and p > 1, there exists a family of positive random variables 
{Y~(w),Zt,~(w) C LP(f2)}, the latter of  which are jointly measurable in ( t ,w)  
such that 

]Rt~"2( z) l  -< Ye(w)6 + Zt,~(co)e ' /4+3'-ec~l/2-~' : ,  iz ] ~_ 6-1/2 + 2, t ~ T K A T. 

and 

sup E[Y/'I < oo, sup EIZ]I,I < oa. 
0<.~ < I O'..t'--'l',O<c ~. I 
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Combining these two estimates, under the assumptions of these two propositions, 
we immediately obtain 

Z 2 el/2+2"7-2r~61-2r~}e-I/2, t ~. 7- K A T, (5.5) IIR,~ll~= < C, {(Y? + 1)6 2 + ,,~ 

f o r T  > 0 , 0 < e <  1 a n d 0 < 5 <  1/2, Set 

cr6(fl) = cr~,6(fl) := inf{t > 0; Ils(vff)][H, > /3}, /3 > 0, 

~r = c~6(/3) A "rK A T, 

where /3 = /3~ will be determined later in such a manner that /3 + 0 as e + 0. 
Then, Proposition 5.1 shows 

FtAa 
(5.6) E[,~'P(vfA,,)] + p ~-3/2-2~E[J0 ~Tey,-.(v~)llD~7~,(. v 6) 2 dsl .'; L 

otAa 
--< '~ 'P(v05)  + 2 e - 3 / 2 - e T E [ J 0  '~ 'P-1[1)6) I I R 6 ' 1 2 2 d s ] `  s II ,v IlL 

~0 tact .,p--2 6 ~. "J 6 ~P(P2 l)e- 'E[ , ~  (v,.)llD,~(.,v.,.)ll~:dsl 

rtAo- 
+ C K p e - 3 / 2 6 - 3 E [ J  0 ,c_~'/'- I (V.~) ds  ]. 

For simplicity, from now on in this paper, we shall assume vo E M (i.e., 
Vo = m v with some 7/C R) for the initial data v0 of the SPDE (4.2); in particular, 
vo fulfills the assumptions of Propositions 5.2 and 5.3. Then, a bound on the 
term ,~7r ~) appearing in the right hand side of  (5.6) can be easily derived: 

L e m m a  5.4. ,~eT(m~) < C26, where C~ is a constant independent of  ~] C R. 

Proof Since ,~ (m,1  ) = 0, we see 

.~7~'(m~) -- ~ {IVm~(z)l 2 -  IVm,,(z)12}dz 

+ ,~{F(m~(z  )) - F(mv(z))}  dz. 

The conclusion follows by showing 

IVm~(z) - Vm,,(z)l < C6{IVm,,(z) l  + IV2m,,(z)[}, 

fm~(z) - m,,(z)] _< C61Vm,,(z)[. [] 

Especially, noting . ~ ( v )  > 0, we have from (5.6) with p = I and Lemma 5.4 
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f 
tAcr 

<_ 2CzeU2+z'Y6+E[ IIR~l122ds]+2Cxc2"Y~-3T 
dO 

Jo - 1](~2 + Z 2 el/2+2~-2t~(~l-2t~ ds] <- 2C263/2+2"~(5 + C1 e 1/2E[ { (Y?+ , s,e 

+2CK 62"~(5-3 T 

< 2C2,3/2+2~r(5+C3 [6-1/2{62 + 61/2+23'-2t~ 1-2t~} .k. 62"/(~-3] 

for arbitrary ec > 0. Taking ~ = e I/1~ (so that 6 - I / 2 ( ~  2 = r  = 

6 -3/10+4"y/5 >> 62"v(5 from which the second term in braces in the last line becomes 
negligible), we obtain 

(5.7) E [ I O , - ~ ( . , v  6) 22ds < C46-3/10+4"y/5. s L 

We return to the estimate (5.6) and set 

p-I  6 (5 
A z, : = E  , ~  (v, . ) l lD,~d(.  v,)ll~ds . 

Because of (5.5) and recalling ~ = el/lo+2-~/5, we have 

R 6 2 CI{Y~+ s,~+ /I , IJL~ < 22 1) 6-3/10+4'7/5, 

by taking sufficiently small t~ > 0 in (5.5). Therefore, (5.6) implies 

(5.8) Ap ~ C563/2+27+p(1/10+27/5) + (i 9 - 1)61/2+2"~/Ap_ l 

c; ~p- 1 6 +6-3/10+47/5 E [fo tact , ~  (v.,.)X,.,,dsJ, 

where C5 = Cs,p = 2C~'/p and X.,.,e = CI {Y~+Z,~ + l }+2Cx .  However, applying 
H61der's inequality and then using (5.7), 

( 5 . 9 )  A p - i  = E ,J,~ iv , , ) l lD,~d( .  ,v,,,)llL2d 2 

[fotA,, ] ,/(t,-,) --< {Ap} (p-2)/e-I)E 11D.~74'( ", v6).,, z.2 ds 

C66(-3/IO+4"//5)/(P-I){Ap} (p-2)/(p-I), p > 2. 

To give a bound on the third term in the right hand side of (5.8), we use Theorem 
3.1. In fact, since [3 =/3~ will be taken such that/3 .L 0 as 6 ~. 0, 

(5.10) .'-~(v fl) < C7[ID,~d(., ~ 2 v , ) l l ~ ,  o < t < o-, 

holds with some C 7 > 0 for all sufficiently small e > 0 (such that/36 _</3j =the 
constant appearing in Theorem 3.1). Therefore, using H61der's inequality, 
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r/? ] (5.11) E .5~p-  1 (v~)X~,e ds 
k 0 

[/? : E ,.-~P-l-l/q'(v.6)-~-~)l/q'(v.6)Xs,e ds 

''q' 

< C 8 e (-3/10+4~//5)/q' {Ap }l/p' 

[/?" , �9 E X,, ,~ 

1/r' 

for 1 < p ' ,  q ' ,  r '  < oo satisfying 1 /p '  + 1/q'  + 1 /r '  = 1 and p ' (p  - 1 - 1 /q ' )  = p, 
namely, 

1 p - 2 + ~  1 1 - ~  
(5.12) 

pr p - 1 ' ql p - 1 

We take r '  to be sufficiently large. The last inequality in (5.11) is shown by using 
(5.10) and (5.7). Summarizing (5.8), (5.9) and (5.11), we obtain 

(5.13) Ap ~ C5 e3/2+27+p(l/lO+2"//5) 

§  6 (]9 - 1 )e 1/2+2-r 3/t0+4~/5)/(p - I) {At, }(t,- 2)/(t,- I) 

§ C8 ~(--3/lO+42//S)(l+l/q') {At> }J/p', 

which proves 

(5.14) Ap ~ C563/2+2"Y+2p(I-'y)/5 + C6Q3 - 1){Ap} (p-2)/(p-I) + Cs{f~p} lip', 

for lip = e-P(-3/1~ note that 1/2 + 2 7 > - 3 / 1 0  + 4"~/5 and also that 
(5.12) implies (1 + 1/q ' )  =p(1  - 1/p') .  However, a bound x <_ cl +c2x '~ +c3x ~ 
f o r x  _> 0 with 0 < c~,/3 < 1 implies x <_ C max{Q,  1} with some constant C 
independent of  Cl. Therefore, we obtain from (5.14) 

(5.15) AI, ~ C9 d'(-3/10+4"u • max{e 3/2+2"v+2p(l-'v)/5, 1}, p > 2 .  

Let us return to (5.6). We have 

~3/2+27 U ] E[,-~7~P(v,~A~)] < ~3/a+a",~P(v06) + P-E ,-~jP-l(v~)llR~ll2= ds 
- 2 k o  ' 

[/0 -t p (p  - 1-------~)eJ/2+2"YAp_, + CKpe2"~6-3E , ~ P - l ( v 6 ) d s  
2 

which is bounded by the same quantity ( x p / 2 )  in the right hand side of (5.13). In 
fact, we may  follow the same lines through (5.8) to (5.13). Therefore, assuming 
that vo E M and using (5.15), we have 

63/2+23' E [ ~ p  (Vt6A~r)] ~ Clo~P(-3/lo+4"y15) • max{e3/2+2-y+2p0 --y)/s, 1 }, 

which verifies 
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(cl/32y'P{cr < t}  <_ E[,~YeS't'(v~A~,)] 

Clo •p(-3/10+43'/5) X max{e2PO-'Y)/5~ e-3/2-2"~}. 

We have used Theorem 3.1 to get the first inequality.  Now,  first assuming 3 / 8  < 
") _< 1, we choose  /3 : /32 = e -3/j~ for arbitrary but  sufficiently small  

> 0; not ice  tha t /3  I 0 as e .L 0 so that the condi t ion [3 _</31 is fulfilled. Then 

P{cr <_ t} <_ c?PClo s 

which converges  to 0 as e J. 0; t a k e p  = (3/2+2"/) / t~+1.  Secondly  when 3` > 1, we 
c h o o s e / 3 : / 3 2  = e 1/1~ and then s imilar  argument  works.  Not ing Theorem 

2.1 we have proved  

P r o p o s i t i o n  5.4. Assume 3` > 3 / 8  and Vo E M for  the SPDE (4.2). Take/3 = 
e -3/2~ when 3 / 8  < 3' <- 1 and/3 = e j /2~ when 3" > 1 for  arbitrary 
small tc > O. Then, 

limP{cry,6(/3) _< t} = 0, t > 0, 
elo 

where r = e l/l~ 

Final ly ,  we rewri te  this es t imate  on the smooth approximat ion  @ of  vt = v t in 
an es t imate  on vr itself. We prepare  

Lemma 5.5. 

(i) IIm,,-  m,7211L2 _< IlVmllL2" Iw~-W21, '~,,?z ~ R, 
(ii) Ir/(Vl) - r/(v2)l _< CIl~J - ~211L~, f o r v i  :d i s t (v i ,M)  </31. 

Proof The first asser t ion (i) is s t ra ightforward.  To show (ii), 

/o' Ir/(v,) - r/(v2)l = (D~l(.,v~),vj - v2)da < cI l~,  - ~211L=, 

where  v,  = (1 - a ) v j  + a v 2 , a  C [0, 1], and C = sup~lO, Jl IID~(',v~)IIL2 < oo 
f rom L e m m a  9.5 below.  [] 

T h e o r e m  5.1. Assume 3' > 3 / 8  and vo E M for  the SPDE (4.2). Take /3 = 
c -3/2~ when 3 / 8  < q' <- 1 and/3 = e 1/2~ when 3  ̀>_ 1 for  arbitrary 
small ~ > O. Then, 

l imP{d i s t ( v r ,M  ) < / 3 f o r e v e r y O < t  < T}  = 1, T >O. 
e+o 

Proof Since  s(v) = s(v 6) + (v - v ~) - (mv(v~ - m~(~@, we have f rom L e m m a  
5.5 

IIs(v,)llg= <_ IIs(v,~)llg~ + C, t l v , -  v,~l[g~. 

However ,  us ing L e m m a s  4.1-(i) and 4.2, 
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/ .  

Ivt(z) - v (z)l ,~'1<~ P(Y')lv*(z) - v , ( z  - 6(z)y')l d y '  

Ye~ + Zes -~, 

t < _ r x A T ,  

for ]zl <_ e- l /2  + 2 and vt (z )  = @(z )  for Iz[ > e -1/2 + 2. Therefore, taking 
6 = e 1/10+2"r/5 

t l v ,  - -< c s  
lzl<_e-I/=+2 

< C2{yee-3/2~ + Zee-13/8~176 

where t~' > 0 can be taken arbitrarily small. Since - 1 3 / 8 0  + 177/20 is larger 
than - 3 / 2 0  + 27 /5  when 3' > 3/8 and also it is larger than 1/20 + 3'/5 when 
7 > 1, we obtain the conclusion from Proposition 5.4 [] 

Before closing this section, we prepare a lemma which will become necessary in 
Sect. 8. Let H a = Ha(R) ,  a >_ 0, be the Sobolev spaces defined by interpolating 

H n { }nE~§ as usual; see Sect. 9. 

L e m m a  5.6. Under the same conditions as in Theorem 5.1, we have 

l i m P { v t = v ~  E H  a + m f o r e v e r y O < t  < T } =  l, T > 0 ,  a <  1/4. 
e J,0 

Proo f  First we note vt = (vt - v 6) + s(v6t) + m~(v, %. Since mn - m E m I C H a 

for every z/ C R and s(v6t) E H l C H a for t < ae,6(/3), the conclusion follows 
from Proposition 5.4 if one can prove 

(5.16) l imP{vt  - v~ C H a for every 0 < t < T} = 1 T > 0, c~ < t /4.  
el0 

To this end, we prove that the norm lvt - V6]H,v is finite for t _< r2; see the 
formula (9.97) for the definition of  the norm ] �9 ]/4- and Lemma 4.2 or (5.4) 
for r2 (we take K -- 2). However, this is easy based on the estimate on the 
HSlder continuity of vt (z )  (Lemmas 4.1-(i) and 4.2) by noting vt(z) - v6(z) = 0 
for [z[ >_ e -1/2 + 2 and v~ E C~176 Therefore, since Theorem 2.1 implies 
l imeioP{r2 > T} = 1, T > 0, (5.16) is concluded. [] 

Remark  5.1. A stronger result P{v~ ~ C ( [ O , T ] , H  a +m)}  = 1,c~ < l /4 ,  e > 0, 
can be shown by rewriting (4.2) in an equivalent integral form. The proof is 
omitted since Lemma 5.6 is shown easily and sufficient for our purpose. 
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6 Error estimates 

In this section the proofs of Propositions 5.2 and 5.3 will be given. To show the 
estimate on R~'1(z), let us consider an auxiliary PDE for'O = ~( t ,y)  on the half 
line [0, oe) 

(6.1) - - = A , ~ + . f ( ~ ? ) ,  t > 0 ,  y > 0 ,  
Ot 

where initial data ~(0, y) and Dirichlet boundary data ~(t, 0) at y = 0 are given. 

L e m m a  6.1. For ever), T > 0, 

sup I'~?(t,y)l _< max{sup]~(0,y)l ,  sup I'~(t,0)l, 1}. 
0<t<T,y_>0 y>0 0<t<T 

Proof Use the maximum principle [29, 47] noting t ha t f (v )  < 0 for v > 1 and 
f ( v )  > 0 for v <_ - I .  [] 

We give an estimate of  Schauder's type on ~3. What we need is a mixture of  
the so-called boundary estimate in t and the interior estimate in x, so that the 
estimates stated in [29, Chapters 3 and 7] are not directly applicable. However, 
the extension is easy. 

L e m m a  6.2. Assume 

2 

(6.2) s u p ~  IVk~(0,y)l + sup I~(t,0)l < K < oo, Vk~ = dk�9 k. 
y>O k=o o<t<_w 

Then, for every (5 > O, there exists C = CK,~ (which does not depend on T) such 
that 

(6.3) sup [ V k O ( t , y ) [ < C ,  k =  1,2. 
O<t<T,y>_6 

Proof First we prove the following assertion: Let ~(t, y) and f ( t , y )  be functions 
satisfying 

Of) Af)+f( t ,y ) ,  t > 0 ,  y > 5 ,  
Ot 

(6.4) 

for 5 >_ 0 and 

(6.5) sup Ivo(O,y)l + sup {If)(t,y)] + be(t,y)[} < K. 
y~8 O<_t<_T,y~_8 

Then, for every (5 > O, there exists C = CK,6 (independent of T) such that 

(6.6) sup IV~3(t,y)l < C. 
O<t<T,y>8+6 

Indeed, assuming ~ = 0 without loss of  generality, we rewrite (6.4) in an equiv- 
alent integral form: f)(t, y) = �9 (t, y)  + �9 y), where 
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fo fo' �9 = e-CtP,(Y,Y')fo(O,y')dY ' -  e-C(t-")OP'-" (Y,O)f)(s,O)ds, 
Oy' 

/o /o �9 = ds e -c(t-S)p,_,. (y, y ,){c~(s,  y ' )  + f ( s ,  y ' )}  dy', 

for every c > 0 (this c is introduced to obtain a global estimate in t). Here, 
Pt(Y,Y I) = qt(Y,Y')  - q t (Y , -Y ' ) ,  Y ,Y '  >_ 0, is the fundamental solution of the 
heat equation on [0, oc) having Dirichlet 0-boundary condition at y = 0; qt is 
the heat kernel on R. The desired estimate (6.6) is shown for 'U1 (in place of ~) 
by a straightforward calculation and for ~2 by noting that c f ) ( s , y ' ) + f ( s , y ' )  is 
bounded from the condition (6.5). 

Now we return to the proof of  (6.3). First, we apply the result mentioned 
above by taking 6 = O,#(t ,y)  = ~( t ,y)  and f ( t , y )  = f@( t , y ) ) .  The condition 
(6.5) is fulfilled from (6.2) and Lemma 6.1. Hence, we obtain (6.3) for k = 1. 
Next, we take 5 > 0, ~(t ,y)  = V~( t , y )  and f ( t , y )  = f ' @ ( t , y ) ) V ~ ( t , y ) .  Then, 
the result mentioned above is again applicable and we get (6.3) for k = 2. [] 

Proof of  Proposition 5.2. For Izl > e-I /2 ,  v ( t , z )  = v~(t ,z)  satisfies the PDE 

0 v  = e_3/2_>r{A v +f (v )} .  
Ot 

Therefore, under the assumption of Proposition 5.2, Lemma 6.2 (choose T = 
e-3/2-2"rT"K) shows 

sup sup {Iv'(t,y) I + Iv"( t , y ) l }  < co. 
0<e<10<t<rx,lyl>_e-I/2+l/2 

Hence, v[(z - 5(z)y ')  and v['(z - 6(z)y')  appearing in the expression for R~ 'j (z) 
given in Lemma 5.3 are both bounded for t < v-K, Izl c [e-J/2 + 1,e -1/2 +2] ,  
]Y'I -< 1,0 < ~5 < 1/2 and 0 < e < 1. Furthermore, we have 15"(z)l _< 
C5 and I{1 - ~5'(z)y'} 2 - 11 _< C5. This completes the proof. [] 

The next task is to prove the estimate on R~'2(Z). 

Proof of  Proposition 5.3. Decompose Rt~'2(Z) into a sum of r] (z) and r2(z), which 
are defined by 

r, I (z ) = f (vt (z )) - f (v~t (z )) 

rta(Z) = ~(vt( ' )) ,  p~(Z)(Z - .)) - f (v t (z ) ) .  

Using Lemmas  4.1-(ii) and 4.2, r,'(z) is bounded by 

<_ sup [f'(v)l x f p(y '){v,(z  Irtl (z )l ~ ~ ~Z ~y ~ ~ ~ ~t ~Z ~ ~ @ ~ 
tvl<- g Jl~"l- <1 

<_ Cl{Yeg + Zt,eel/4+'r-O/2P+~)(3/4+7)(51/2-1/2P-'~}, t < rK A T. 

The second term rff(z) is similarly bounded by 
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P 

[r (z)l = ,.]lvq<-I p(Y'){f(vt(z - 6(z)y')) - f ( v t ( z ) ) }dy '  

<_ C~{Y~g + Zt,~et/4+'Y-O/2P+'O(3/4+'Y)dl/2-1/2P-"}, t < 9 - K A T .  

We may rewrite max{( t / 2p  + ec)(3/4 + 7), l / 2p  + ~} as ~ again, since p and 
can be taken sufficiently large and small, respectively. [] 

7 Analys is  on the classical  f low 

The result of  Sect. 2 (Theorem 2.1) shows that the solution v~(y) of the SPDE 
(4.2) stays in the region [ - 1  - 6 ,  1 +8], ,5 > 0, with high probability as e .L 0 if its 
initial data satisfies Ivy(y)] <_ 1. From this observation, for the investigation of 
the asymptotic behavior of  v~, it does not harm our argument if one introduce a 
cut-off to the potential F(v)  (or, to the reaction term f )  for large Iv I. We therefore 
consider a modified mild potential function P c C~176 satisfying the condition 

(7.1) 

(a) F(v)  = F(v)  for ]vl < 2 and P is symmetric 
(i.e., F ( - v )  = P ( v ) , v E  R), 

(b) the k-th derivatives P ~  of i~ 
are bounded on R for k = 2, 3, 4; 
in particular, [r"(v) _> -~2 for all v E R, 

recall that the condition (1.2) implies F ( - v )  = F(v)  and F" (v )  _> -c2 .  
Let {vt = v,(-)} be the dynamical system determined by ~olving the PDE 

{ ..~z = Avr +f(v , ) ,  t > O, y E R, 
(7.2) ot 

V 0 = V~ 

where f ( v )  = - F ' ( v ) .  We denote vt by "Ut(';V ) to elucidate its initial data. We 
shall state four theorems (Theorems 7.1-7.4) concerning this dynamical system 
without proof; the proof will be given in Sect. 9. These theorems will be applied 
in the next section to establish the main result of  the present paper. The first 
theorem establishes the limit map ~ = s for v close to M.  A constant /32 
appearing in Theorems 7.1-7.4 are common and can be taken properly such 
that 0 < /32 _< /351, where/31 is the constant given in Theorem 3.1. We employ 
the notations introduced in previous sections consecutively; in particular, recall 
d i s t (v ,M)  = minn~R t[v -- toni[L2 and L 2 + m = {v;v  - m E L a = L2(R)}. 

T h e o r e m  7.1. There exists a limit in the space H 1 = H i ( R )  

lim vr(.;v) =: me C M 
t --*(X) 

if  the initial data v E L 2 + m satisfies dist(v, M)  <_/32. We denote this ~ by ~(v). 
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We use the following notations: 

Y~" = {v E L 2 + m ;  dis t (v ,M) < fl}, 

~i;,o = {v c ~ ;  r = o}, 9 > o. 

Let H be a Hilbert space and let . ~ ( L  2, H)  be the class of  all bounded linear 
operators from L ~- to H .  As usual, we call a map v E ~ , , ~b(v) E H Frrchet 
differentiable if there exists D~/i(.; v) E • ( L  2, H )  such that 

I I~(v + h) - ~(v)  - O~( . ;  v)h Ilu --- o(I Ih [IL~), 
(7.3) 

a s  IlhllL2 .L 0. 

Especially when H = R, we regard D~/i( ., v) E S ( L  2, R) ~ L 2 and, furthermore, 
if Dg '0 ' ,  v) E L ~ is Frrchet differentiable in v and its derivative is an operator 
of Hilbert-Schmidt type from-L 2 to L 2 having an integral representation 

(7.4) D{D~(y , . ; v ) }h  = fRD2~5(y,y2,v)h(y2)dy2, h E L 2, 

with a kernel function D2~(yl,y2, v) E L2(R2), then 4) is called twice Frrchet 
differentiable with derivatives D~b(y, v) and oZ(/5(yl, Y2, v). 

T h e o r e m  7.2. The map ((v) E R is Frgchet differentiable in v E -~02 and its 
derivative has an estimate: 

(7.5) I l D ( ( ' , v ) -  D(( ' ,m)IIL2 _< Cx /d i s t (v ,M) ,  C > 0, 

for every v E ~-77~2,o. Moreover, for every rl E R 

VmcT(Y) 
(7.6) D((y ,m~)  = D ~ ( y , m o ) -  IlVmll~2' 
recall that rl = ~7(v) is defined through the Fermi coordinates. 

Theo rem 7.3. The map ((v) E R is twice Frgchet differentiable in v E ~ 2  and 
its second derivative has the following properties: 

(7.7) f R y P { O 2 ( ( y , y , v ) -  D2( (y , y ,m)}dy  <_ C~/dist(v,M),  C > O, 

for every v E ~/~2,o and p = 0, 1, and 

(7.8) sup [ y2lD2((y,y ,v) ldy < oo. 
vE ~f}2,o JR 

Moreover, for every ~ E R 

(7.9) DZ( (y ,  y ,  mn) 

1 fo~ fR "m 2 "  m = - I l V m l l ~ =  dt po,,(Y,Z, n) f (mo(z))V n(z)dz,  

where Po,t(Y, z; mn)'denotes the fundamental solution of O / Ot - A - i f (ran);  see 
Paragraph 9.1 in Sect. 9 recalling that F(v) = [; (v) for Ivl <_ l from the condition 
(7.1)-(a). 
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It will be useful to notice the shift and reflection-invariance of  the functional ff = 
~(v). Consider mappings {,gfz~}z el~ and ~_/'~ defined by .Szz'iJ(y) = v ( y - z  ), , ~ v ( y )  = 
- v ( - y ) ,  y E R, respectively. Then, we have 

Lemma 7.1. For every v r 5Y~2 andy ,y l , y2 , z  E R, 

(i) 
(ii) 

(iii) 

r  = r + z, r = - r  

D~(y, ,~z'v) = D~(y - z, v), 
D2s , Y2,,~zV) = D2~(yl -- Z, Y2 - Z, v), 
De(y, ~ v )  = D r  v) 
D2~Qyl, Y2, , ~ v )  = - D 2 ~ ( - y l ,  -Y2, v). 

Proof If  vt = vt(.; v) is a solution of the PDE (7.2), then . ~ t  and ,~/gvt are also; 
we use the symmetricity of  F ,  see (7. l)-(a), for ,~/~vt. This implies .~z'~vt(.;v)} = 
vt(-; J zv )  and ,~/g{vt(-; v)} = vr(-; ~o,~v). Letting t ~ ~ ,  we obtain the assertion 
(i). The assertions (ii) and (iii) follow from (i) without difficulty. [] 

Corollary 7.1. For all rl E R, 

~ D2r mn)dy = O. 

Proof We may assume r /=  0 without loss of  generality by the shift-invariance; 
see Lemma 7.1-(ii). Then, this can be proven from the concrete expression 
(7.9); note that fRPo,,(Y, z;m)edy = P0,et(Z, z;m) is an even function in z, while 
f " (m(z ) )Vm(z )  is odd from the assumption (l.2)-(b). Or, the proof can be com- 
pleted by noting DZ~(y,y, m) = - D 2 ~ ( - y , - y ,  m), which follows from Lemma 
7.1-(iii). [] 

The next theorem gives a basic identity related to the classical flow yr. It will be 
derived from 0 = d~(vt)/dt = (Dr Art +f(vt)), t > 0, by letting t ~. 0. 

Theorem 7.4. For every v E ~2 ,  we have De(-, v) E N6>oH 2-~. In addition, 
for every v E ~[h ~ ( H'5 + m) with some 6 > 0 and satisfying IlvllL~ < 2, 

{Ds v), Av  +f(v)) = O, 

where H a, c~ >_ 0, denotes the Sobolev space; see Paragraph 9.8 below. 

Remark 7.1. We use a cut-off potential F,  however this is not actually 
necessary. In fact, when we consider the PDE (7.2) with original potential 
F instead of  F,  the maximum principle proves that the solution vt satisfies 
l lvt I ILoo _< max{llvolIL~, 1 } if the initial data vo is bounded, cf. Lemma 6. I. One 
can prove that Theorems 7.1-7.4 hold by replacing L 2 + m with (L 2 + m) n L ~~ 
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8 Identification of the limit 

We rely on the argument which was used by Katzenberger [42] in a finite- 
dimensional situation. Let ur x) be the solution of the SPDE (1.1) with ~ = e "r 
having initial data: ur = m~(x) with some 4 c R. Here, m~ is a function 

defined by m~(x) = m ( e - 1 / 2 ( x  - 4 ) ) .  We introduce its time-change: 

(8.1) ~e(t,x) : =  ue(e-1/Z-27t,X), t > O, x C R, 

and investigate the asymptotic behavior of ~r as e ~ 0. Our main result is 
formulated as follows. 

Theorem 8.1. Assume 7 > 19/4for  the SPDE (1.1) with r;~ = e "r and consider 
the time change Ft~(t, x), defined by (8.1), of its solution u'(t,  x) with initial data 
m~. Then, 
(i) there exists an R-valued process 4[(aJ) such that 

l i m P /  sup [ l~ ' ( t , . ) -xr  > 6 ~ = 0  
~1o [ o<_t_<T J 

for every 6 > 0 and T > O. Recall that the function X~(X ) = l for x > 4 and - 1  

for x <4.  
(ii) The distribution on the space C([0, T], R) of 4[ converges weakly to that of 
a solution 4t of the SDE (1.5) starting at 4 as e I O. Two constants c~l and c~2 
appearing in (1.5) are defined by the formula (8.5) below. 

The proof will be completed after several steps. Notice that vt(y ) =_ v~(t,y) := 
F*~(t, el/2y) satisfies the SPDE (4.2) and consider a stopping time 

6~ = inf{t > 0;dist(v~,M) > /7  or [[V~IIL~ > 2 or v[ ~ H ~ + m } ,  

where /3 = e 1/2~ with sufficiently small n > 0 and 0 < 6 < 1/4. Then, 
from Theorem 2.1, Theorem 5.1 and Lemma 5.6 (note that the initial data v 0 = 
m~-~12~ E M satisfies all required conditions), we see 

(8.2) limP{6"~ < T} = 0, T > 0. 
e+0 

Using the map ( = ((v) constructed in the previous section, we set 

(8.3) 4t :---- C1/2~('OtA~<), t > 0. 

Then, applying It6's formula, we have 

1 I tA~ " " b~ ds, (8.4) 4[ = 4o + #,Ae< + ~ ao 

where 
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/0 I Iz~ = ( a ( r  ., v.~),dw,.), t <_ gr~, 

bt e = r ~a2(el/2y)D2~(y,y,v~)dy, t < 6e. 

In fact, an extra bad term e -l-2"r fo(D@,v~), Av~ +f(v~))ds appears in the 
right hand side of  (8.4) but it vanishes fortunately because of  Theorem 7.4; note 
that v~ E 5~fi~ n ( H  ~ + m )  and ]]v~llL~ < 2 for s _< 6r This is the trick of 
Katzenberger. We define two constants at  and a2 by 

ctl - IIV,~IIL2' 
(8.5) 

1 f~dtfR2ypo,,(y,z;m)2f,,(m(z))Vm(z)dydz, c~2 - IlVmll~2 

where Po,t (Y, z ; m ) denotes the fundamental solution of O/ Ot - A - i f (m) .  

L e m m a  8.1. For every sufficiently small e > O, 

sup Ib[/,< - 2a2a({[)a'({~)[ <_ C max{e 3'/10-i9/4Q'n/2, r 
t>0 

Proof We always assume 0 < t < 6-~. By Taylor expansion, we see 

a2(el/2y) 2 e e = a ({t) + (a2)'({~)" r _ ((v~)) + r, (y), 

where 

Therefore, 

(8.6) 

where 

1 sup I(aZ)'(x)l - {d/2(y - C(vD)} 2. Ir;(y)l ~ ~ x~R 

hi=e-1/2a2(~) s D2r y, ~;) ay 

+(a2)'(~D (y - r ))D-~(y, y, v;) dy + R;, 

f IR~I= r .IR D2r y' v~)r[(y) dy 

<_C1 r ~ {y _ C(vD}ZlOZ~(y, y, v~)l dy. 

However, using Lemma 7.1-(ii), we have 

s  -~}2lDZ~(y,y,v)ldy = s163 ~ C R, 

and, in addition, v E ~ 2  implies ,~_~r E ~ Hence, noting that v~ c ~ 
for smatt enough e > 0 since fl < f12 for such e, we obtain from (7.8): 
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IR~I _< C~ ~/2 sup [Y21O2~(y,y,v)ldy C2 s < 
v E ']ri2, o JR 

For the first term in the right hand side of (8.6), we observe 

e-I/z s D2ff0"Y' ~t ) dY 

e-l~ 2 ~{D2~(y,y,,5;/"}(~,)v~) - Da~(y,y,m)}dy 

<_ Ge-1/2~1/2 = C3e-Y/lo-19/40--~;/2. 

We have applied Lemma 7.1-(ii) and Corollary 7.1 for the first equality, and then 
(7.7) with p = 0 for the second inequality. For the second term of (8.6), since 
the definition (8.5) of a2. and the formula (7.9) imply a2 = faYD2~(y, y, m)dy, 

~ (y - vt ) dy - a2 r162 

= fRY{DZ~(y,y,.~"_~(v,)v~) -- DZ~(y,y,m)}dy <_ C4fl 1/2. 

Here, we have used Lemma 7.1-(ii) and then (7.7) with p = 1. Now, the proof 
of the lemma is completed, v1 

The next task is to investigate the martingale term #~ of ~ .  Note that its quadratic 
variational process is given by 

/o' [#~]t-[#~,Iz']t= b ~ ds, t < ~, ,  s 

where 

br = JRa2(el/Zy)O~(Y,Vt)2 dy, t < 6,. 

Lemma 8.2. For all sufficiently small e > O, 

Ib,',,o,- 2 2(,  sup oqa ~t)l -< C max{e "//10+1/4~ el/2}. 
t>0 

Proof We always assume 0 < t < 6e again. Recalling the definition (8.5) of c~j 
and the formula (7.6), we see 

/)r e -- a}a2(~)  = b~ , a2(~)  f D~(y, me(v:.)) 2 dy = It t'e + lt2,e, 
dR 

where 

I}'.~ : fR a2(el/2y){D~(Y' v~)2 -- D~(y, me(v[-)) 2} dy, 

I~ 'e = fR{a2(el/2y) -- a2({t)}D((y, mr 2 dy. 
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However, if c > 0 is sufficiently small such that fl </32, we have from Theorem 
7.2 

and 

]lt ~'*l ~ I la21 la~ ]ID~(', vt) - D~(., mr Iz,~ I IDC(', v;:) + D~(., mr IL2 

< Clfl 1/2 

IZ'Z"l ~ d/21l(a2)'llL~ Z ]y - ~(vt)lD~(y'mr dy 

= C~el/2/RIY[Dr = C3~/2" [] 

L e m m a  8.3. The distribution of ~ converges weakly on C([0, T], R) to that of 
~t, the solution of the SDE (1.5) starting at 4, as e ~ O for every T > O. 

Proof The proof is quite standard. Let S be the generator of the process ~t; 
more precisely, 

Ol 2 02 
~ f =  ~a2(~)ff~-~ + c~2a(~)a'({)~-~. 

Applying It6's formula by noting (8.4), we see 

f t{ ~0 (~)b~ } dr + fiz~ (8.7) ~P(~t) = qg(~.~)~ +21 ~.,- ~P'(~r)brr c+ ,, E -~ 

I f ' {  ~ ~ ~ r +  = d -e ' 0 <  < t <  - ( ~ 5r + Rr } ~,,  s 
~ ~ '~)+2Js  ~ 

for every ~ E C~(R), where/2~ is a martingale and R[ is a process with bound 

(8.8) sup [R[t _< C1 max{r "Y/10-'9/4~ el/z}. 
0<:t<6-, 

Indeed, this bound immediately follows from Lemmas 8.1 and 8.2. On the other 
hand, these two lemmas also prove 

E[t~;  - ~,~l 4] ~ C 2 ( t  - s )  2, 0 <~ s <~ t < 00, 

which implies the tightness of (P '}0<,<J,  where P '  denotes the distribution of 
~ ,  t ~ [0, T], on the space C([0, T], R). From (8.7), (8.8) and noting (8.2), we 
see that every limit/5 of pc as e J. 0 is a solution of the 5~f~S-martingale problem 
and this completes the proof. [] 

Proof of Theorem 8.1. First notice that 

(8.9) sup I I v -  mr < ~ .  

In fact, since Ibv-mr -< IIs(v)lE=+ltm~(v~-mr where v = s(v)+mn(~ ) 
denotes the Fermi coordinates of v, (8.9) is deduced from I Is(v)llc~ < t32 and the 
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boundedness of  I lmn(~) -mr (use Lemma 5.5-(i) and (9.46) given below in 
Sect. 9). Therefore, we get 

Ila,  ~ - )ce; IIL2_<llaP - m~,~ IIL~ + I lm{: - ~ e :  IIL~ 

=ell4llv~ - m<(~;)llL~ + ell4llm - X01tL~ -< cel /4 ,  

for 0 < t < 5,.  Noting (8.2), the proof of the theorem is concluded. [] 

Remark 8.1. Slight modification in the proof leads us to the assertion (i) of  
Theorem 8.1 with llt~(t, . ) -  m~llL~ in place of I I~( t ,  . ) -  xe;IIL2. 

9 Proofs of Theorems 7.1-7.4 

In this section we shall prove four theorems formulated in Sect. 7. The contents 
are divided into 8 paragraphs (P. 9.1-9.8). P. 9.1 and P. 9.3 have technical char- 
acters. We establish energy inequalities for the PDE (7.2) and its linearized PDE. 
Several estimates on the corresponding semigroup are also given. In P. 9.2, the 
Fr6chet derivatives of  the Fermi coordinates r/ = r/(v) are calculated. Theorem 
7.1 is proved in P. 9.3 by using the formula for rh(v ) := rl(vt(.;v)) given in 
P. 9.2; recall that vt(.; v) denotes the solution of the PDE (7.2) with initial data 
v. Then, after deriving concrete formulas for the Fr6chet derivatives of vt(.; v) in 
P. 9.4, the Fr6chet derivatives of ~(v) := limt--,oo rh(V) are computed in P. 9.5. 
Based on these formulas, Theorems 7.2 and 7.3 are shown in P. 9.6 and P. 9.7, 
respectively. Finally, the proof of Theorem 7.4 is given in P. 9.8. In this section 
we always use the potential P rather than f to avoid confusion; recall j7 = _~,,. 

9.1 Energy inequalities for  the PDE (7.2) and its linear&ed equation 

Here, we give energy estimates on the solution vt = vt(.; v) of the PDE (7.2) 
with initial data v E L 2 + m. Similar energy estimates will be given also for the 
linearized equation of (7.2). We denote by . ~  the energy functional . ~  defined 
by (3.2) with F replaced by P (but with the same constant C,).  We assume 
g2 = 1 in the condition (7.1)-(b) for P (i.e. F ' ( v )  > - 1 )  only for notational 
simplicity. 

L e m m a  9.1. Assume v, fl E L 2 + m and denote vt -= vt(.; v) and ~3t = vt(.; ~3). 
(i) Then, we have 

(9.1) ]Iv, - ~tllL2 < I [ v -  �9 

/o' ' 
(9 .2 )  [ I V ( v ,  - ~,)ll~=ds < ~ l l v  - ~1 2 e2t - -  L 2 

and, in particular, these estimates hold for  vt = �9 =mn for  every ~ C R. 
(ii) For every T > O, there exists C = Cr > 0 such that 
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C 
o@(vt) _< - J  dis t (v ,M),  t C (0, T], /f d is t (v ,M) < 1. 

t 

(iii) There exist c, ~ > 0 such that 

o~rf/(vt) <_ e-C(t-s)o@(vs), t > s > O, if .a@(vs) < ft. 

Remark 9.I. Since IlsllH' ~ /~1 implies IlsllL~ ~ c , 9 ,  with the help of  
Sobolev 's  imbedding theorem (see the proof of Theorem 3.1), if fll <_ 1/C1, 
we have o@(v) = o~fC'(v) for v = mn(.) + s(v) such that IIs(v)llH* --< P,; recall 
the assumption (7.1)-(a) for ~'. Therefore, Theorem 3.1 holds also for o@ by 
replacing fl~ with min{fll,  1/Cl } if necessary. 

Proof of Lemma 9.1. We divide the proof into four steps. 

Step 1: Here, we prove the assertion (i). To this end, noting/~"(v)  _> 1, we see 

~ l l v ,  - v, 1122 = 2(A(vt - ~?t), vt - 9t) - 2 (F ' (vD - v, - �9 ) k'(v,), 

<-21lV(vr  - ~r + 2[Iv, - ~,1[2=. 

Integrate the both sides to obtain 

(9.3) f0 t I I v , -  vt]122 +2 []V(v.,. - ~.,-)112= ds 

/0' "_<l lv-~l l2=+2 IIv,,. -~.,,ll~2ds. 

The estimate (9.1) is shown from this inequality by neglecting the second term 
in the left hand side and by applying the Gronwall inequality. Afterwards, (9.2) 
follows by inserting (9.1) into the second term of the right hand side of (9.3). 
In particular, from (1.3) and recalling that F(v) = F(v)  for Iv I _< 1, mn is a 
stationary solution of the PDE (7.2) for every r] E R and therefore (9.1) and 
(9.2) hold for 9t = ~ = ran. 

Step 2: In this step, we show an elementary bound on the potential P 

(9.4) Cl V m) 2 + (1 + 6)F(m), C1 > O, k(v)_< T (  - 

for all v E R, lm[ _< 1 and 0 < {5 _< 1. Indeed, this is true for all Iv[ _> 2 
and lint <_ 1, since the boundedness of  F"(v) (see the assumption (7.1)) implies 
fF(v)l _< C2(v 2 + 1) and since we have (v 2 + 1) < 5(v - m) 2 and F (m)  > 0 on this 
region. Therefore, it is sufficient to show (9.4) for all Ivl <_ 2, [ml _< 1,0 < 6 _< 1 
with some Cl > 0. To this end, we first see F (m)  _> C3(m- l) 2 for all 0 _< m _< 1 
with some C3 > 0. In fact, this is shown for m in a neighborhood of 1 from 
F(1)  = F ' ( I )  = 0 and F"(1)  > 0, and then for other m from F(v)  > 0 in [0, 1). 
On the other hand, noting F ' (1)  = 0 again, we have 
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[~(v) - F(m)=[r'(m)(v - m) + ~F  (v,)(v - m) 2 

=F"(v**)(m - I)( v - m) + -~F (v.)(v - m) 2 

<_C4 {f(m - l)(v - m) I + (v - m) 2 } 

r c: } <(5C3(m-1)2+[4C3~+C4 ( v - m )  2, tvl_<2, [ml_< 1, 

for some [v.[ _< 2, Iv**[ < 1 and C4 > 0; a simple estimate lab[ ~ (a 2 + b2)/2 
has been used to derive the final line. Therefore, since C3(m - 1) 2 <_ F(m)  if 
0 _< m _< 1, (9.4) is shown for Ivl <_ 2 and 0 _< m _< 1. Replacing (v ,m)  by 
( - v , - m ) ,  we obtain (9.4) also for - 1  _< m < 0. 

Step 3." Let us prove 

fO t -- ttl (9.5) . ~ ( v , . ) d s  < o I t v o  , 2~e2tL- + C,6t,  

for all 0 < (5 <_ 1, t > 0 and 71 E R, where C, is the constant appearing in (3.2). 
Using (9.4) and (9. l) with ~, = m, ,  we have 

/o'/: /: (9.6) ds (v,.(y))dy <_ Ilvo 2 2, --r%llL2(e -- l ) + t ( l  +5)  (m,(y))dy .  

On the other hand, first using (a + b) 2 < (1 + 1/8)a2 + (1 + ~)b 2 and then from 
(9.2), 

/0' } (9.7) IlVv, ll~2ds<_ l+ IlV(v,-m,)ll22+(l+,~)llVm, ll~= as 

1 (1 + ~ - ) I l v o -  ,,m 2Lie 2' + t ( l  +6)[IVmwll~=. -<~ 

Now, recall the definition of .'~W)(v) and the fact .T/)(m,) = .~U(m,) = 0 and sum 
up the both sides of (9.6) and (9.7) multiplied by 1/2. Then, we obtain (9.5). 

Step 4: The estimate (9.5) is not an estimate on . ~ ( v t )  for each t but that 
on its integration in t. To get an estimation on . ~ ( v t )  itself, we observe 
IlOv,/Ot[122 + o.v72J(v,)/ot = 0 from the PDE (7.2), which proves tllOvt/Ot[]22 + 

O{ t . ~  (vt ) } / Ot = . ~  (vt ) and consequently 

~0 l t . ~ ( v , )  < .,~(v.,.)ds. 

Combine this estimate with (9.5), in which we take 6 = ]Iv0 - mrtllL2. Then, we 
obtain 

�9 ~ ( v t )  <<_ ? [ I v 0 - - m , ] [ t 2 ,  t �9 (0, T], if ] lVo- mnl[L2 < 1, 
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with some CT > 0. Taking infimum in 7/, we obtain the assertion (ii). Finally, 
the assertion (iii) is shown since Theorem 3.1 (see Remark 9.1 as well) implies 
that ~ , ~ ( ~ )  = <_ c = c l / c 2  > o, 

holds if ]ls(v,) ] ]H~ -</31 and therefore if ,~)~(vt) <_ ~ := c lfl2. [] 

As an immediate consequence of Lemma 9.1, we obtain 

Corol lary  9.1. There exist C, c > 0 and/32, 0 < /32 <_ ill, such that v E ~7/~ 
(i.e., dist(v,M) </32) implies vt(.;v) C ~ for all t >_ 0 and 

(i) list]]L2 _< er dist(v,M), t >0 ,  
(ii) IlstllH, -< Cv/dist(v,M)e -a ,  t > 1, 

where/31 is the constant appearing in Theorem 3.1 and st = s(vt(.; v)) is defined 
in terms of the Fermi coordinates of vt(.; v). Especially, we have 

(iii) tls, llL= -< C v/dist(v,M)e -ct, t >_ O. 

Proof The assertion (i) (as long as vt(.;v) E ~ ,  i.e., ][stilL2 <_ /31 and hence 
the Fermi coordinates are defined for vt) follows from (9.1) with ~t = re,l; take 
infimum in T/. On the other hand, Lemma 9.1-(ii) shows that , ~ ( v l )  <_ ~ if 
dist(v, M)  <_/32 := min{/3/Ci, 1,/31 }, and therefore we have 

ClllSt[12l < ,~('Ut) < e-C<'-~ dist(v,M), t > l, 

if ][s0]lc2 _</32 from Lemma 9.1-(iii) with s = 1, Theorem 3.1 and Remark 9.1; 
recall that C1 = "Cr  with T = 1". This proves (ii). The assertion (iii) follows 
from (i) and (ii). Finally we remark that, by taking/32 smaller if necessary, we 
have ]Istl]/3 _< /31 for all t _> 0 from (iii). [] 

Now we give bounds concerning the linearized equation of the PDE (7.2): 

(9.8) Out = (A - /~" (v t ( . ; v ) ) )  ut +rt, t > O, 
Ot 

having an inhomogeneous term rt(z) E L2([0, T],L2), T > 0. 

Lemma 9.2. We have 

{ /o ) (9.9) Iluttl2~ -<e 3~ Iluoll~=+ Itr.,.ll~=ds , 

/0 { i ) t le3t  Iluoll~+ [Ir,,ll~=ds 0 < t  < Y. (9.10) I tVu ' l l2=ds  <- 2 

Proof Since we have 

0 t  II.,IIL= = 2(Aut, ut) - 2 ~"(vt(z))u2(z)dz + 2(r,, ut), 

by using 2(r t ,ut)  < ]]rt][2~ + ]]Ut][ZL ~, the proof can be completed in a similar 
fashion to Step 1 of the proof of Lemma 9.1. [] 
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Let ps,t(Y,Z) = Ps, t (y ,z;v) ,O < s < t < oc, be the fundamental solution for 

O / a t -  { A z - F " ( v t ( z ; v ) ) } .  Namely,  the solution u(t, z), t >_ s, of the PDE (9.8) 

without inhomogeneous term (i.e., rt = 0) having initial data u(s, z) = h(z) has 

an integral representation u( t , z )  = f R P s , t ( y , z ) h ( y ) d y  , t >_ S. Then, we have a 
Gaussian bound on the fundamental solution Ps,t(Y~ Z): 

Lemma 9.3. There exists C = CT > 0 such that 

C - l  qs,t(Y,Z) <_ Ps,t(Y,Z; V) <_ Cqs,t(y,z) 

for  every 0 <_ s < t : t - s < T, where q s , t ( Y , Z )  = q t - s ( Y , Z )  is the heat kernel; 
see the formula below (2.2). 

Proof The conclusion follows from Feynman-Kac formula: 

= Es,t;y,z[e - Ftc(r,'c~Br)drl.,~ ," . P s , t ( Y , Z ;  V) lqs , t tY  , Z ), 

where c ( r , z )  = [r"(Vr(Z; v)) is bounded and Es,t;y,z['] denotes the expectation 
with respect to the pinned Brownian motion Br starting from y / v ~  at time s 
and reaching z / v / 2  at t ime t. [] 

9.2 Fermi coordinates rit = rit(v) of  vt('; v) and FMchet derivatives of  rio 

In the following, we always assume v E ~ 2 ,  where f12', 0 < f12 _< ill ,  will be 
chosen later in an appropriate manner; see Proposition 9.1 and also Corollary 

9.1 above. For  instance, f12 is taken so small that the solution vt = vt(.;v) of 
the PDE (7.2) has a representation in terms of Fermi coordinates: vt = m,, + st, 

where rit - rh(v) := ri(vt(.;v)),& = st(v) := s(vt(.;v)) for all t _> 0 and v E ~fi2" 
The next lemma computes the derivative of rit in t. 

Lemma 9.4. 

dri, (Av, - P'(vt), Vm,,)  
= t > 0 .  

dt (vt ,  V2mrh  ) ' 

Proof Since the property (3.6) of  the Fermi coordinates shows (vt, Vmv,) = 0, 
the conclusion follows from 

d (dr, (vt, V2mn,~ drIt 0 =  -57. (vt, Vmn,) = Vmn, ) - 
---dT-' " dt " [] 

Our first goal will be to give concrete formulas for the Fr6chet derivatives of  
rh = rh(v) in v (Lemmas 9.8 and 9.11), which will be useful to derive bounds 
on the Fr6chet derivatives of  the limit map ((v)  = limt~oo rit(v). To this end, we 

naturally start with the computation of those for ri0 = ri0(v); recall that ri0(v) -- 
ri(v) is the Fermi coordinate of v itself. 
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L e m m a  9 . 5 .  

its derivat ives  are given by 

Vm.,~(~) 0') 
(9.11) D Tl(y , v) - 

(v, V2m,(~)) ' 

(9.12) D2T/(Yl, Y2, v) = Vm~7(v)(Yl)Vmv(v)(Y2)(v'  V3m~(v)) 
(V, V2m~(v)) 3 

(% V2m~/(v)) 2 

Proof. Since 

Vmv(v+h)(') -- Vmv(v)(.) 

I' : - { r ~ ( v  + h)  ~ ( v ) }  2 -- V m(l_a)n(v)+an(v+h)(-) da,  

noting that (v, Vm~(~)) = 0 from (3.6), we have 

(h, Vm,(v+h)) h ~ L 2. 
r](v + h) - rl(v) = 1 v 

f0 ( ' V2mo-a)'l(v)+a~7(v+h))da 

The map 7l(v) E R is twice Frdchet  differentiable in v E ~fi2 and 

From this formula, one can easily prove that Tl(v) is Fr6chet differentiable and its 
first derivative is given by (9.11). The formula (9.12) for the second derivative 
is similarly shown by slightly more works; we omit the detail. [] 

The following four functions will play a role of basic ingredients for giving 
concrete expressions of D~t (y ,  v)  and D2rh(yl ,  Y2, v); see Lemmas 9.8 and 9.11 
below. 

( g~k(t) =-- pk( t ,  V):= ( A v t  - -F ' (v t . ) ,  V k m v , )  
I Ck(t,y) - C k ( t , y ,  v)  := (p0,t(y, .), {A - [ ; ' ( v t ) } V ~ m n , )  

(9.13) ~ ~k( t )  = @k(t, v) := (vt, Vk+lrnn,) 

] ~ k ( t , y )  = ~k( t ,y ,  v ) :=  (P0,t(Y, "), Vk+lmn,), 
1. k = 1 , 2 , . . . .  

In addition, we introduce two more functions. 

( A(t~ -- A f t  ~,~-- ~pl(t)@2(t)-r 
[ ~ v J  = " ~ , ~ -  {~l(t)}~ , _ 

( 9 . 1 4 )  ~ "~(t ,,~ -- wi t  ,, va - @ l ( t ) Z b l ( t , y ) - ~ o , ( t ) ~ b l ( t , y )  

l, t > O, y E R,  v C ~fi2. 

9.3 Est imates  on the basic ingredients and proo f  o f  Theorem 7.1 

In order to give decfiy estimates on d~Tt/dt (necessary for showing the existence 
of ( = l i m t ~  rh) and also to give bounds on D r  h and O2~]t, therefore on D (  and 
D2~, we need bounds on the ingredients ~k, ~bk, @k, ~k. Especially to establish 
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the estimates like (7.7) and (7.8), we need decay estimates of ~bk (t, y)  and ~k (t, y) 
in y as lYl ~ ~ -  This forces us to introduce weighted LP-spaces 

LPx = LP(R, eP'X~ A E R, p >_ 1, 

where a function 0 E C ~ ( R )  satisfying O(y) = lYl for lYl -> 1 will be fixed 
throughout the paper. We also introduce 

~z'~2,K := {V E ~/'~2; [rl(V)] _< K} = {v; dist(v,M) </32, ]~7(v)] _< K}, 

for K > 0. Then, the basic estimates are summarized as follows: 

Proposi t ion 9.1. There exists/32, 0 </32 _</31, such that the following estimates 
hold for  all v C ~7~2,x, K > O, with some C, c, ~, A > 0 dependent on K. 

(i) [~pk(t) I <_ Cv/d is t (v ,M)e  -ct, 

(ii) I@k(t)[ < C, 
I@k(t)l > c, for  k = 1,3, 5 , . . .  (odd), 

(iii) IIr -< C v/dis t (v ,M) e - a ,  for every A : 0 <_ A < A, 

IIr <- Cee;~', k = 2 , 3 , . . - ,  for  every A " O <_ A < A, 

(iv) II~k(t,.)llL~, <- Cee;V, for  every A : 0 <_ A < A. 

Remark 9.2. The condition l~7(v)l < K is necessary only for the estimates (iii) 
and (iv) to be uniform in v. The constants C , c , ~ , A  are common for 1 < k < k0 
for each k0. 

Proof of  Proposition 9.1-(i) and (ii). Let/32 be the constant determined by Corol- 
lary 9.1. Noting that (1.3) implies Amn, =/V~(mn,), we have 

I~k(t)l<_l(v, - mn, , Vk+2mn,)l + IIP'(vt) - P'(m,7,)IIL= IlVkm,7, IILz 
_<IlstIIL2(IIVk+2mlIL~ § II~e"llL~ IIVkmlIL2). 

This proves (i) with the help of Corollary 9.1-(iii). On the other hand, to prove 
(ii), we decompose ~Sk (t) = (vt-m,7,, V k+l mn, )+(mn,, Vk+lmn, ) and use Corollary 
9.1-(iii); note that I{mn,, V k+l rnn, )l = ck > 0 if k is odd. If necessary, we choose 
smaller/32. [] 

Now, let us complete the proof of Theorem 7.1, since we shall need the fact that 
the limit ~(v) = l i m t ~  ~t(v) exists for v E ~ to state Lemma 9.6 below. This 
lemma will be necessary for the proof of Proposition 9.1-(iii), (iv). 

Proof of  Theorem 7.1. Let/32 be the same constant as above. From Lemma 9.4 
and Proposition 9.1-(i), (ii), we see 

~ t  t g)l(t) (9.15) = ~ - - ~  _< C x/d is t (v ,M)e  -ct, t > O, v E ~/-~. 

This proves that the limit ( -- ~(v) := limt-.oo ~Tt(v) exists. Now, the conclusion of 
Theorem 7.1 readily follows from Corollary 9.1-(ii) by recalling that vt = ran, +st. 

[] 
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The next lemma gives estimates on the semigroup {Ts,t;v} defined by 

T,.,t;v~(y) := (Ps,t(Y, . ;v),(/@: (~ E L 2, 0 < s < t < oo. 

In particular, To,t;m< is sometimes denoted by e -t '~r ( C R. Recall that ~ r  = 
- A  + F ' ( m r  is the operator defined by (3.17); we have replaced - f '  with 
F "  noting that - f '  = F "  and F(v)  = F(v)  for [v[ _< 1. 

L e m m a  9.6. There exist C, c, ~, A = AK > 0 for  every K > 0 such that 

(i) lle--"~<IIL~-~L~ <_e ~l~l', IAI < i ,  ~ c R ,  

(ii) ]IT,v;~IIL~L~ <-- Ceel~'l(t-"), IAt < i ,  v E ~fi2, 

(iii) ]l e - t '~ r  --  P{Vmr ~-- e-Ct, [A[ < i ,  [r _< K, 

(iv) II{To,.. - e-"~'""}P{vm<~,,,,}lllL2-+L2 

< C ,,/dist(v, M ) e - c t  v E ~77~, 

where/32 is the constant determined in the proof  ofTheorem 7.1, ~-(v) = limt-+oo rh 

(v), P{v,.<}. = ( ' ,r162162162 r162 = 27mr andP{vm~}• = I - P{Vmr 

Proof We assume IA[ < 1 in the proof. First, simply denoting by ,  ,~/~ = ,  ~gr Tt = 
e - t ' 4  and r = r162 we prove (i) and (iii). Introduce an isometry r = ~-~ : L 2 - ~  L 2 

defined by ~-9 = 9" eX~ and consider an operator,  ~/~ = r, ~ -  I : L 2 ___+ L 2. Then, 
a simple computation shows that ,  .~g = ,  .~$ +. ~Jz'2 with 

.';/~9 = 2AV0- 270 + {AV20 - AZ(v0)2}0 .  

From an inequality of G&rding type, which can be easily shown by noting that 
270 and 2720 are bounded and tA{ <_ 1: 

~ 2 /(.~0,.0)L21 _< C1 I . '~[{( , /~g , .0)L 2 + [IgIIL2}, 

with C1 > 0 independent of ~ E R, we obtain 

(9.16) (, "gg, g)L~=(,-"/@,9)L 2 + ( .~9 ,  O)L~ 

> { 1  - c,I;~1}<., ,~0,0>~2 c11AII10/I,~2, 
where ~ = rg .  Now assume tA[ _< 1 / C  l in addition. Then, 

IlgllL~ = -C~ I,Xl Ilgllg~,. ( 9 . 1 7 )  ( , /gg ,  g)L 2 > _ C I I A I  - 2 2 

Therefore, we have 

~/llu,d [22Lx=--2(.//~ut,u,)r [ _< 2C,iAI llu,ll,2~,, ut = Luo,  
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which impl ies  Ilu, ll~, ~ e2C'l~'ltlluo[[2~ and this proves  (i). Not ing that we  have 

(, ~0, 0)L= --> I** 110 -- <0, ~)~11~- from L e m m a  3.1 (# ,  denotes the spectral  gap 
o f , - ~ )  and also noting e lementary  facts 110112= = 110- (0,r + (0,r z and 
110 - (0, r _> {II011L= - I(.~, r 2, we obtain f rom (9.16): 

(9.18) (' ~g,g>Li, >-- (~* -- C, (~ .  + 1)l;q}{ll011~= - 2110tlL'-1(0,~>1} 

if C1 (~** + 2)l)q <_ # . .  However ,  recall ing 0 = r~,9, we have 

(9.19) 1(0,@i = 1(0,(1 - e-X~ -< Cr if (9, qS) = 0 

with Cr = [l(l - e-:~~162 which satisfies lim~,__.o Cr = 0 uniformly in 
l ff] <- K ;  use L e b e s g u e ' s  dominated  convergence  theorem. Therefore ,  f rom (9.18) 
and (9.19), we obtain 

(9.20) (,'~9,9}L2 > u,  l l0] t~/2--  u ,  IIgII~.K/2, if {g,4,} = 0 

if  I~1 is sufficiently small  that {# ,  - C ,  {# .+  I)IAI} { 1 - 2 C ( ( A ) }  > U . / 2 .  However ,  
{'i?t } is a semigroup  on the space It~ := {9 ~ L~; (9, qS) = 0}, i.e., u, = Ttuo C 
if  up E NI. In fact, noting L e m m a  9.3, "/'~ " L~ -~ L~ hotds for  every  t _> 0, 
since heat  semigroup  has this proper ty  (cf. L e m m a  2.1 of  [33]), and moreover ,  
d{Ttuo,~)L~/dt = 0 implies  (;r, uo, qS)L~ = (Uo, qS)L~. Hence,  for  up C IN, f rom 
(9.20), 

a--Ilu,[12~, =-2(~- ' /~u , ,  u,)L~, < -F**llu, l l~ ,  
dt 

which proves  I lu, I1~ <- e-~"/~lluollL~- This concludes the assert ion (iii). 
To show (ii), we see 

f (9.21) T,. a = e - ( r - '%/e  + T~.,r6re - ( t - r ~  dr~ 

where  T,., T,. r~,  ~.~ = ,  ./dr and ~ ( z )  ~(r,  z) - "  -"  " ., = .... = = F  ( m ( ( ~ l ( z ) ) - f  (Vr(Z,V)). 
In fact, since T,.*,t~(z) = f~p, .a(y ,z)~(y)dy is a solution of  the PDE (9.8) for  

t > s with r~ 0, decompos ing  {A - "  . . . . .  _ = - F (vt(-, v ) )}T , , ,~  = -../d,T,.,t~b + ct(')T]~,,~ 
and regarding ? tT~tg '  as a perturbat ion term, we have 

f,' (9.22) Z,I~, = e - ( ' - ' , % e  + e-(~-~}'"ee~T,*.~ dr. 

Taking the adjoint  of  the both sides of  (9.22), we obtain (9.21). F rom (9 .2I)  and 
(i), we have  

(9.23) 

Here,  we  see 

IIT,~.,,IIL~ ~L~ ~ eeP'l(t-s) 

S' + I I T,,,,r I [L~,--,c~, I l e ,  IIL~--,L~e et~l(~-r)dr. 
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(9.24) I1~,' IIL~L~, ~ II~/[IL~ ~ C2 e-ct, t >_ O. 

In fact, by Sobolev 's  imbedding theorem and then from Corollary 9.1-(ii) and 
(9.15), we have 

(9.25) II~r IImr - v, llL~ 
<_C3{lls, llH~ + IImr - mw,[In,} 
<_C4~/dist(v,M)c -ct, t >_ 1, 

and evidently Ile, l l~(<_ 211~'"ll~oo) is bounded for 0 < t < 1. From (9.23) and 
(9.24), the assertion (ii) is shown without difficulty. 

Finally, we prove (iv). We simply denote ff for if(v). From (9.21) and (ii) 
with A = 0, 

(9.26) II{To,~;~, - e-~'~r 

: fotTo,r;v~re-(t-r)JgcP{vmr177 <_ C f t  a(r , t )dr ,  

where 

(9.27) a(r , t):=l ISre-(t-r)'J~ P { vm~ }• [ [L2---~L 2 

= Ile-(t-r) '~p{vm~}• . ~ 'r[IL2___+L 2 

<lle-(t-r)'~r e{vmr . IbL2--.L,. 

We notice that I le-"~r ~" I I~=-~L= -< e-~*~ and sup0<t < r t l/4lte -t . .~ [iL~-~L2 
< cx~; use Lemma  9.3 by noting IIq~ * gilL= < liq, l[L=ligllL, <- cst-~/411gllL,, 
where qt is the heat kernel. Therefore 

(9.28) l l e - t ' ~  P { vmr ) • I IL'-~L~ 

<_ 
I, I l e - ( ' -~ .~P(vm~) .  llL~__.L~lle-~e~r <_ C6e -~'*', t >_ 1, 

On the other hand, from Corollary 9.1-(iii) (similarly to the proof of (9.25)), we 
see 

(9.29) [Ic~ " IIL=--,L' = ]l~rllL= <- CTx/dist(v,M) c-~r, r > O. 

From (9.27)-(9.29), we obtain an estimate on a(r, t) and then, inserting it into 
the right hand side of (9.26), we see that the left hand side of (9.26) is bounded 
by 

' } CC6CTv/dist(v,M) t(t - r ) - �88 -~r dr + aol e-~*(t-r)e -c~ dr 

and therefore by Csx/dist(v,M)c -~t. This completes the proof of (iv). [] 
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Remark 9.3. (i) The estimate (9.17) shows that -, . ,~N- C 1 [,~[ is dissipative on 
the space L~; see [51, 54]. Similarly, (9.20) shows that - ,  ! ~ + # , / 2  is dissipative 
on the space NI. 
(ii) Since the operator , ~  is ~,4~-compact, applying Weyl's theorem concerning 
the perturbation theory, we see that the essential spectrum of ,-,g is the same as 
that of ~,~, c.f. [41, 48]. 
(iii) The assertion (iv) of Lemma 9.6 will be used only in the proof of Lemma 
9.12. 

Now we are at the position to complete the proof of Proposition 9.1. 

Proof of Proposition 9.1. The assertions (i) and (ii) are already shown. Using 
Lemma 9.6-(ii) and {A - Pn(m~,)}Vm~, = 0 (Lemma 3.[ implies ,,-gVm = 0 
and recall the assumption (7.1)-(a)), we have 

[[~bl t lg~, = I lT0,,;v{ A - Fn(vt)}Vm,,  I Ig~, 
<CeeS"l l{ fr" (m,, ) - P " ( v , ) } V m ~ ,  I lg~, 
<_Ce~ X' l ls, i lc2 l lP'"[ IL~ sup { I Vm,7, (y )le~~ } , 

yCR 

for sufficiently small A > 0. Therefore, the estimate (iii) for k = 1 follows 
from Corollary 9.1-(iii). Notice that the condition I~(v)l _< K is necessary for the 
bound to be uniform in v; in fact, this condition implies supt_>0,vc,~t;2 I~,(~)1 < oo 
from (9.15). Similarly as above, we have 

lick Ik~, -< Ceea'll{A - Fn(vr)}Vkm,, [IL~ 

and the norm in the right hand side is uniformly finite in v E ~2,K if A > 0 
is sufficiently small and this shows (iii) for k _> 2. Finally, again using Lemma 
9.6-(ii), we have 

II~}~IIL~, --IlTo,,;~Vk+lmw,[lL~ -< Ceemt[IVk+lm,j, IlL~, 

which completes (iv). [] 

The next corollary immediately follows from Proposition 9.1; recall (9.14) for A 
and ~ .  

Corol lary  9.2. For all v c ~: ,K and for sufficiently small A > 0 

IA(t)[ + [l~( t, )lk~, -< Cx/dist(v,M) e -a  . 

9.4 Frdchet derivatives of vt(.; v) in v 

Here, we study the Frdchet differentiability of the solution vt(-; v) of the PDE 
(7.2) in its initial data v. 
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L e m m a  9.7. (i) The map v C L 2 + m ~ vt (';v) E L 2 + m is Fr~chet dif- 
ferentiable, namely, there exists D{vt(.;  v)} E S ( L  2, L 2) such that (7.3) holds 
with ~(v),  D~( . ;  v) and H replaced by vt('; v), D{vt(.;  v)} and L 2, respectively. 
Moreover, the derivative D{vt(.;  v)} has an integral representation 

O{v t ( . ; v ) }h ( z )  = fRO{Vt(Z;V)} (y )h(y)dy ,  h C L 2, 

with a kernel D{v t ( z ; v ) } (y )  = Po,t(y ,z;v)  E L2(R2); see Paragraph 9.1 for 

po,t(y, z; v). 
(ii) The map v E L 2 + m , > D{v t ( z ;v ) } (y )  E LZ(R 2) is Frdchet differentiable 
and the derivative D [D {vt(z, .; v)}(y)] C S ( L  2, L2(R2)) has an integral repre- 
sentation 

O[D{vt (z ,  .; v)}(y)]h = fR D2{vt(z" v)}(y,y2)h(y2)dy2, h E L 2, 

with a kernel 

O2 {vt(z ; v) }(Yl , Y2) 

fOt ~ ! ~ Itl ! I I I = -  , z ; v) dsdz . p,,,(z ,z;v)F (v,.(z ;v))po,,.(yl z ;v)p0,,(y2, 

Remark 9.4. (i) Frdchet derivative of  vt( . ;v)  in v is defined by that of 
vt (.; v) - m C L 2. 

(ii) Rather formal proof (in the sense of  functional or Gfiteaux derivatives) can 
be given quickly. In fact, differentiating the both sides of the PDE (7.2) for 
vt = v t (z ;v)  in v, we get the PDE (9.8) with rt = 0 and initial data by(Z) 
(delta function) for D {v, (z ; v)}(y). This implies D {vt (z ; v)}(y) = Po,t (Y, z ; v). 
Taking further differentiation of (9.8), we obtain the PDE (9.8) with r,(z) = 
-F ' " ( v t ( z ) )D{v t ( z ; v ) } ( y l )D{v t ( z ;  v)}(Y2) and initial data 0 for D2{vt(z ;v)}  
(Yl, Y2). This leads us to the formula given in the assertion (ii). 

Proof of  Lemma 9.7. To complete the proof of  (i), it is sufficient to show 

(9.30) Ilu}')(.;v,h)llL2 < Cj Ilhll~=, 

with C1 > 0 (independent of v), where u} j) = u}l)(.;v,h) := v,( .;v + h) - 
v,(-; v) - u,(-; v, h) and u, = ut(-; v, h) = fRP0,t(Y, "; v)h(y)dy denotes a solution 

of the PDE (9.8) with rt = 0 and uo -= h. We see that u} l) satisfies the PDE (9.8) 
with 

r~(.) = - P ' ( v , ( . ;  v + h)) + P'(v~(-; v)) + P't(v,(-; v))v~(-; v + h; v) 

where vt (.; v + h ; v) = vt (.; v + h) - vt (.; v). However, using Sobolev'  s imbedding 
theorem 

IlrtllL=<_~llf~'"llL~llv,(';v + h;v)ll~, 

<C2l Iv,('; v + h;v)l  IH' I Iv,(,; v + h;v)l [L 2 . 
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Therefore, since u0 (0 = 0, we have from (9.9) and then from (9.1), (9.2) 

/0' Ilu}l)(.;v,h)l122 <_e 3t IIr, ll~2ds<_C3llhll4~, 0 < t < T ,  

which proves (9.30). Secondly, to prove (ii), we set 

tit = ut('; v, hi, h2) 

:=fRD2{vt(z;v)}(yl,Y2)hl(yl)h2(y2)dyldy2, hi,h2 E L 2, 

where the kernel D2{vt(z;v)}(yl ,Y2) is the function defined in the assertion 
(ii). Note that tit satisfies the PDE (9.8) with an inhomogeneous term rt(.) = 
- F m ( v t  (-; v))ut (.; v, hl)ut (.; v, h2). To conclude (ii), it is sufficient to show 

3/2 (9.31) I In}2)(.; v, h~, h2)l IL~ --< Cal Ih2llL~ , 

with C4 > 0 independent  o f v  and hi " IIh~ IlL= = 1, where  u} 2) -- u}2)(-; v,  h i ,  h2) := 
ut (-;v + h2, hi) - ut (-;v, hi) - tit ('; v, hi, h2). However, we see that u} 2) satisfies 
the PDE (9.8) with rt = r} 1) + r} 2), where 

r}l)(') = -ut( ' ;  v, hi) {P"(v, ( . ;  v + h2)) - /g ' " (v t  ('; v)) - F ' " (v t  ('; v))ut('; v, h2)}, 

d2)( . )  : - { k " ( v , ( . ;  v + h2)) - P"(~ , ( . ;  ~))} {.,( . ;  ~ + h2, h~) - . ,( . ;  ~, h~)}.  

Therefore, noting Uo (2) = 0 and applying (9.9) again, (9.31) follows if we can 
prove 

(9.32) Z ' I ~<,) 2 ds < C511h21132, " S L 2 - -  

j/0 ' .<2) 2 d s  < C61[h2114=. (9.33) ] -s L2 -- 

To prove (9.32), we notice that the Gaussian bound (Lemma 9.3) shows 

(9.34) [lu,(.;v,h~)llL~ < CT t-l~4, 0 < t < T, 

recall that I IhxIIL= = I. Hence, we have the following two types of bounds on 

IIr}')llL~: 

IIr}l)[Ic2 
( i ) l .  " l ~ } 

<- c r t  -~/4 IIP"'IIL~Ilu, t ' ,v,  h2)llL'- + ~llP'"'llL~ll'v,(':v+h2:v)lI-L. 

< C7t ,/4 {llh=ll,~2 + IIv,(';v+h2;'~,>ll~4}. 

and 

Ilr}l)llg~<--Crt -1/4 {IIP'"IIL~ ll"',('; I' + h2;'~')llz? + IIP"llz.--- I1.,(:  ~', h~llz=" } 

<C7t-'/4]lh2l]t2. 
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In fact, the first bound follows by applying Taylor's formula for the term in paren- 
theses and then by using (9.30), while the second one is derived by estimating 
the first two terms and the last term separately and then by applying (9.1) and 
(9.9). Therefore, we obtain (9.32) by dividing the interval [0, t] of the integra- 
tion in the left hand side into the union of 11 = [0, 11h21122] and 12 = (]lhzl122,t]. 

We use the bound [Ir}l)llL2 _< c7t-I/4llh2llL~ on the interval 11, while we use 

I]4~)IIL~ < CTlth211~/2{tlh211~+llvr [L4 } on 12 and compute similarly 

to deriving the bound on II u}~)(; ~, h)] 1~2. Finally to prove (9.33), using (9.1), we 
see 

1142)11c-~ llP"llL~tlvt(';v +h2;v)llL=llfr ~ Csetllh211g~llf~llm, 

where fr = fir('; v, hl ,  h2) := Ut(';'O + h2, hi) - ut('; v, hi). However, using the 
energy bounds (9.9) and (9.10) for ut, one can prove Jo IIf,,,ll~, ds <_ C911h211~= 
and this completes the proof of (9.33). [] 

9.5 Representations of  Dr and D2r 

We begin with the computation of Dr  h. 

L e m m a  9.8. The map rh(V) is Frdchet differentiable in v E 97~ 2 and its derivative 
is given by 

' fo' f" 
(9.35) Drh(y, v) = efo A("ld'~Drl(y, V) + .V(S, y)e , A(r)ar ds, 

where A(t)  and ~ ( t , y )  are the functions defined by (9.14). 

Proof. Noting the formula D{vt(z  ; v)}(y) = Po,t(Y, z ; v) shown in Lemma 9.7-(i) 
and also noting 

O { Vk m~, (z ) }(y , v) = - vk+lm~, (z )Orh(y , v), (9.36) 

we obtain 

(9.37) 

(9.38) 

D{qok(t)}(y , v) = ~bk(t, y) -- cpk+l(t)D~Tt(y, v),. 

D {~k(t)}(y, v) = ~k(t, y) - ~+1 (t)Drh(Y, v). 

Since drh/dt  = qol(t)/~t(t)  from Lemma 9.4, using (9.37) and (9.38), 

d 
(9.39) ~-~Drh(Y, v)---{~lOq)l - qOlD~l }/~2 

=A(t)D~tfy, v) + •(t, y). 

Solving this equation in D~t(y, v), we get the conclusion. [] 
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Remark 9.5. In the proof, more preci.sely saying, we first obtain (9.36)-(9.39) 
with D{Vkm,7,(z)}(y ,  v), Drh(y, v), D{{0k(t)}(y, v) and D{93k(t)}(y, v) replaced 
by ~7km~7,(v+h)(Z ) -- Vkmrl,(v)(Z), rh(V + h) - rh(V), {0k(t,V + h) - ggk(t,V ) and 
93k (t, v + h) - 93k (t, v), respectively, and with small errors o (I I hllL=). Notice that, 
as a function of  y,  the right hand side of  (9.35) is in L~ with some ), > 0 and 
therefore in L 2. 

Before computing the second derivative of  rh(v), we prepare two lemmas. 

Lemma 9.9. 

where 

D {A(t)}(y,  v) = / ] ( t )D~h(y ,  v) + ~,(t, y), 

A(t) = @1 3 [2{01@ 2 -- 2931{02@2 + 9312{03 -- {01931933] , 

~,( t ,y)  = @1 3 [--2{0, 932@, + 93,{932~bl + {01@2 + {02~1} - 932~b2] , 

and  {ok = {ok(t), 93~ = 93k(t), Ck = C k ( t , y ) ,  Ck = ~ k ( t , y ) .  

Proof  Take the Fr6chet derivative of  A(t) given in (9.14) by noting (9.37) and 
(9.38). [] 

Lemma 9.10. 

D ~ ( t , y l  ,Y2, v) ~ D{~( t , y l ) } ( y2 ,  v) = Jl -- J2 +J3 - J4 - ,]5, 

where Ji = Ji( t ,yl  ,Y2, v) are given by 

Jl ={931 (t)}-3 {J1, l(t, Yl, Y2, v) + J1,2(t, Yl, v)D r h (Y2, v)}, 

Jl,1 = 2{01 (t)~l (t, Yl)r (t, Y2) - 931 (t)l/)l (t., Yl )lPl (t, Y2) 

-931 (t)1~l (t, Yl )ff)l (t, Y2), 

J1,2 = 931(t)932(t)!bl (t, Yl) + 931 (t){02(t)~l (t, Yl) 

+931 (t){01 (t)r Yl) - 2{01 (t)932(t)~l (t, Yl), 

J2 = {931 (t)}-2{0 1 (t)(D2{vt (')}(Yl, Y2), V2mr/, ), 

J3 = {931 (t)}-1 (D2{vt(.)}(yl,  Y2), {At - F'tt(vt)}Vmrh ), 

J4 = {931 (t)} - 1 ~b2(t, Yl )D r/t (Y2, v), 

J5 = {93, (t)} -1 (Po,t(Yl, )Po,t(Y2,-), P"t(vt)Vm,7,). 

Proof  Use the formulas (9.37), (9.38) and 

D {~b, (t, Yl )}(Y2, v) = (Di{vt( . )}(yl ,  Y2), {A - P"(vt)}Vm,, ) 
-- (P0,t (Yl, ")P0,t(Y2, "), F'"(vt)Vm,7, ) - ~b2(t, Yl)Drh(Y2, v), 

O {~1 (t, y, )}(Y2, v) = (O2{vt (.)}(y,, Y2), V2rnn, ) - ~2(t, y, )D r/t (,Y2, v), 

which are shown by noting Lemma 9.7-(ii). [] 

Now, the fol lowing formula for D2rh is immediate from Lemmas  9.9 and 9.10 
by differentiating (9.35). 
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Lemma 9.11. The map ~h(V) is twice Fr~chet differentiable in v C ~ 2  and its 
second derivative is given by 

(9.40) 
4 

D2rh(Yl, Y2, v) = Z li(t, Yl, Y2, v), 
i=1 

where 

f0 t t l l ( t ,y l ,y2 ,  v) = DA(s)(yz, v)ds �9 ef~ A(s)dSDrl(Yl,V), 

12(t, Yl , Y2, V) = e fo a(s)ds o2?7(yl , Y2, V), 

I3( t ,y l ,y2,v)  = ~ ( s , y l )  DA(r)(Y2, v )dr  �9 e �9 ds, 

fo' 14(t,yl,Y2,V) = D~(S , y l , y z ,  v)e , A(r)ar dS. 

We obtain the following representations of Dff and D2ff by taking the limit 
t ---* ~ in the formulas for D~h and D2~t given in Lemmas 9.8 and 9.11. In 
fact, using Proposition 9.1, Corollary 9.2 and Lemmas 9.9, 9.10, one can prove 
that D?Tt(y , v) and D2vt(yj ,Y2, v) converge uniformly in v c ~ 2  to DC(y, v) in 
the space L 2 and to D2~(yl,y2, v) in L2(R2), respectively, where D~ and D2~ 
are given by the formulas (9.41) and (9.42) below; to establish the convergence 
of the term 14(t,yl,y2, v), we use some estimates established in Paragraph 9.7 
below. 

Proposition 9.2. The map ~(v) is twice Frgchet differentiable in v c ~ 2  and its 
derivatives are given by 

(9.41) 

(9.42) 

fO oo c~ D~(y ,v )  = ef*~ A(")aSDTl(y,v)+ 3 , ( s ,y )e~  A(r)a" ds, 

4 
oZ~(Yl,22, V) = Z Ii(Yl'Y2' V), 

i=1 

where 

fO 0~ ~:~ l l(yl,y2, v) = DA(t)(y2, v)dt  �9 el ,  A(s)dSD~l(yl,V), 

I2(Yl, Y2, V) = e l ,  ~ a(s)dso2~(yl, Y2, V), 

13(yl,yz, v )=  ~( t ,y l )  DA(s)(y2, v ) d s . e f  A('~)aS dt, 

h(Yj,y2, v) = D ~ ( t , y l , y 2 , v ) e f  A('Od'dt. 
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9.6 Proof of  Theorem 7.2 

Here, we give the proof of Theorem 7.2. We notice that 

(9.43) A(t, mn)=O and ~ ( t , . , m n ) = O ,  r / E R ,  

and this especially implies the formula (7.6) from (9.41); the second equality in 
(7.6) follows from (9.11). Now, assume v E ~2,o, i.e., v c ~/'~2 and ~-(v) = 0. 
Then, using (9.41) and (7.6) 

(9.44) IID~-(',v)- Dff(',m)l[L2 --< IIO~(',v)llg= e f~ A(s)d' - 1 

+llDr/(', v ) -  Dr/(', re)IlL= + II 1t, ,3,(S, ') , ,L2e~~176 

Here, IIO~(',v)llL2 is bounded from (9.11) and 

(9.45) efo ~r Z(s)ds _ 1 ~ C1 v/dist(v,M) 

by using le x - 11 _< Ix le 1~1 and Corollary 9.2. Furthermore, the second term in the 
right hand side of (9.44) is bounded by C2v/dist(v, M) from (9.11) since (9.15) 
proves 

(9.46) Irl(v)l = Irl(v) - ~(v)l = If0 ~ drlt(V~)dt dtl - < C3v/dist(v 'M)'  v C ~/~2,o, 

and the third term is bounded by C4v/dist(v, M) from Corollary 9.2. Hence, the 
proof of Theorem 7.2 is completed. 

Remark 9.6. We have actually a better estimate: The right hand side of (7.5) can 
be replaced by C dist(v, M), since one can prove sup~c~3: I ID2C(.,., v)l IL=(rV) < 
OO. 

9.7 Proof of  Theorem 7.3 

Now, we move to the proof of Theorem 7.3. To show (7.7) and (7.8), it is 
sufficient to prove 

(9.47;i) II l i(y,y,v)  -- li(y,y,m)llLk(R,) < Cv/d is t (v ,M) ,  v E ~2,0, 

for some A > 0 and i = 1,2, 3, 4, where li(y , y, v) are functions defined in Propo- 
sition 9.2. In fact, note that I fRyPl(y)dyl  <_ I[IIIL" • SUpycR lylpe-;~~ = 
o, 1,2. 

9.7.1. Estimate on DA(t)  
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L e m m a  9.12. There exists C > 0 such that 

]ID{ A(t)}(' ,  v) - ~(t,  ")ILL= -< C v/dis t (v ,M)e -c', 

holds for every v E ~7'~2,0, where 

(9.48) 

Proof 

t > 0 ,  

~( t , y )  := D{A(t )} (y ,  m) = e -t~ '~(-,-N)V2m(y). 

From Proposition 9.1, we see for _~(t) defined in Lemma 9.9 

lli(t)l _< C v/dis t (v ,M)e -c', v E ~2,o, 

while ][D~t(.,v)]lL2 is bounded in t C [ 0 , ~ ) a n d  v; see the proof of Theorem 
7.2. Again from Proposition 9.1, we have 

II~(t,-)llL2 _< C v/dis t (v ,M)e - a ,  v E ~ , o ,  

where ~ ( t , y )  = ~ ( t , y ) +  ~ l ( t ) - l~2( t , y ) ,  i.e., ~ ( t , y )  without its last term. 
Therefore, since Corollary 9.1-(iii) and (9.15) can be used to see 

(9.49) t~pt(t) - (m, VZm)l<l(v,  - m, V2mn,)[ + I(V2m, m,7, - m)l 

<C v/d is t (v ,m)e  - ' ' ,  v E ~/~2,o, 

recalling Lemma 9.9, it is sufficient for completing the proof to show 

(9.50) l l~2( t , ) -  e-*"~(-, ~/~)V2mlIL~ _< C,v/dist(v,M)e -':t, v C ~/~,o. 

However, the left hand side of (9.50) can be rewritten in II u + w ILL=, where 

U=To,t;~, [{A - P"(vt)}V2m•, - {A - / ~ " ( m ) } V 2 m ] ,  

V={To,t;v - e -t" "g}(-,/~)V2m. 

Using Lemma 9.6-(ii) with A = 0, 

IIUtlL~_<C [ l lva(m, ,  - m}llL~ + l lF '(v,)V2{m,,  - m}llL2 

+ll{k"(~,) - F " (m)}V 2m ILL=] 

<_C x/dist(v, M)e  -ct. 

Here, the second inequality is shown similarly to (9.49). On the other hand, from 
Lemma 9.6-(iv) by noting that ,.,~V2m E {Vm} • we have 

Ilgllg= --< C v/dis t (v ,M) e-ct. 

These two estimates prove (9.50). [] 
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9.7.2. Estimates on Is - 1 3  
Here, we prove (9.47;1)-(9.47;3). We always assume v E ~fi2,0 and )~ > 0 is 
taken sufficiently small. 

Proof of(9.47;1). From (9.43) and (9.48), we have 

/o l l ( y , y , m ) =  ~( t , y )d t  . Drl(y,m), (9.51) 

and therefore 

where 

l l (y ,y ,  v) - I i ( y , y ,m)  = A + B + C, 

d•O 
0 0  o o  

A =--A(y,v)= { D A ( t ) ( y , v ) - ~ ( t , y ) } d t  .efo A(s)dSD~(y,v), 

/5 } B =_ B(y, v) = ~( t , y )d t  x efo A(s)ds --1 Dr](y, v), 

C -- C ( y , v ) =  ~( t , y )d t  x {DrKy ,v ) -Or l ( y ,m)} .  

Since e f ~  A(,)a, and IlOrl(-, v)llL~, are bounded, using Lemma 9.12, we have 

/o (9.52) IIAIfLk <_ C~ IIOA(t)(.,v)-~(t,.)llL2dt <_ C2v/dist(v,M). 

For the second term B, since ( ~ V 2 m ,  Vm) = 0, we get 

(9.53) II~(t, ")]IL2 <_ C3e-"*t,  

see Lemma 3.1 for # .  (spectral gap of ,/~). Therefore, noting (9.45), we obtain 

I[BIIL k <_ C4~/dist(v,M). 

Finally, similar bound on the third term I ICIIL~, is shown by proving 

(9.54) ]]Dz/(., v) - Dz/(., m)llL~. _< 6"5 dist(v,M), 

cf. Paragraph 9.6. [] 

Proof of(9.47;2). First note that 

(9.55) 12(y,y, m) = DZzl(y,y, m). 

Then, the estimate (9.47;2) easily follows by showing I IDZ77(y, y,  v)l IL~,(Rv) < Cx~ 
and 

IIDZ~7(y,y, v) - D2rl(y,y, m)IIL~,(Ry ) < C6 v/dist(v,M) 

from the concrete form of D2~7(y, y, v) given in Lemma 9.5. [] 

Proof of(9.47;3). Since ~ ( t , y ; m ) =  0 from (9.43), we see 
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(9.56) 130',y, m) = O. 

Then, since (9.52) and (9.53) show that Jo ~176 ]]DA(s)(.,v)IIL2 ds is bounded and 

also since eJ,, "~" I,W)I,# is bounded, (9.47;3) is shown from Corollary 9.2 (estimate 

on II~(t ,  ')[]L~,). [] 

9.7.3. Estimate on 14 
Finally we shall prove (9.47;4). To this end, it is sufficient to show the following 
two bounds: 

1 
(9.57) ]]D~(t ,y ,y ,v)-P~(t ,y ,y ,m)l lL k < Cv/dist(v,M)e-Ct{l + -~} ,  

(9.58) [ID~(t,y,y,m)llLk <_ Ce-C'{1 + - ~ }  

for some C, c, A > 0. We always assume v r 5Y~2,0 again. To show the estimate 
(9.57), from Lemma 9.10, it is enough to prove the following five estimates: 

(9.59; i) l lJi (t, y, y, v) I IL k _< C v/dist(v, M)e-Ct, 

f o r i =  1 , 2 , 3 a n d  

(9.59;4) IlJ4(t,y,y,v)--J4(t,y,y,m)llLk < Cv/dist(v,M)e -a, 

1 
(9.59;5) t lJs( t ,y ,y ,v)-  Js(t,y,y,m)llLl <_ Cx,/dist(v,M)e-a{l + ~ } .  

We prepare three lemmas under the assumption that v E ~/~2,o: 

L e m m a  9.13. For sufficiently small A > O, we have 

(i) ]tO~Tt(.,v)-- Drl(.,v)llL ~ < Cv/dist(v,M), t > O, 

(ii) IIDrh(.,V)l[L~ < C, t > O. 

Proof The assertion (i) follows from the expression of Drh(y , v), see (9.35), and 
the bounds on A(t) and 3,(t, y) given in Corollary 9.2. The assertion (ii) follows 
from (i). [] 

L e m m a  9.14. There exist C, ~, A > 0 such that 

(9.60) tlpo,(.,~;v)]122 < C e e;~' + t > 0, 0 < A < A. 
, L . x  - -  
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Proof For 0 < t < 1, using the Gaussian bound in Lemma 9.3, the left hand 
side of (9.60) is bounded as follows: 

fRe2"X~ C~ fa  dy , -- ~ e 2"x0(y)- ~,"z~ ~2 

e 2"xO(z), 0 - C2 e 2x~ dy < --~ < t <_ 1, 0 < A < 1. C2 

47rv7 JR 

For t _> 1, using the semigroup property of {ps,t(Y,Z)} and then the Gaussian 
bound again, we have 

Ci . _ �88 po,t(Y,Z) = TO,t-I;v{Pt-1,t(',Z)}(Y) <_ - ~ T o , t - l ; v { e  jty, .  

Therefore, the left hand side of (9.60) is bounded by 

_ ! - . _ z ) 2  C211To,,_,;v{e ,t }11,~, 
4~ 

2 2 
< C C 1 e2em_~lle_~<._z)21122 < C3e2e)Ve2XO(z) ' 
- 47r L x  - -  

t_> 1 , 0 < ~ < ~ .  

Here, we have used Lemma 9.6-(ii). [] 

L e m m a  9.15. There exist C, ~, ~ > 0 such that 

(9.61) II(D2{v,(')}(Y,Y), ~)IIL'(,,,) -< Ce~"ll~llL~,, 

holds for all ~p = ~p(y , v) and for every 0 < )~ < )~' < ~. 

Proof From the formula for DZ{vt(.)}(y,y) given in Lemma 9.7-(ii) and using 
Lemma 9.14, the left hand side of (9.61) is bounded by 

ds p,,,(z',z)lk"(v.,(z'))l I~(z)l dzdz' e'X~ dy 
�9 , tO J R  2 [' <<_ c, llk"tlL~ {eC'X~/z +-~}ltT.,.,,;~lWl ]lLk ds. 

However, noting )~ < )(  and using Lemma 9.6-(ii), 

IIT,,,;vl~l IlL" -< C~,.x, IIT,,,;vI~I IILi, _< C2e~=~'('-')ll~llLi,. 
Therefore, the conclusion follows. [] 

Now, we can prove (9.59;1)-(9.59;3). Recall that we are assuming v E ~ 

Proof of(9.59;1). Using Proposition 9.1, we see 

IIJ~,z(t,y,y,v)llLk<-2ll~'~(t, )ll~=(l~,(t)l II@t(t, )[IL~, + 1~5~(t)l II~(t, ")11~ } 
<_C1 v/dist(v, M)e -c~t 
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and 

I I J1,2(t, y, v)Drh(y, v) I ILk --<llg1,2(t, y, v) I IL211D r/,(Y, v)[ IL~, 

< C2 v/dist(v, M)e -c~t. 

Here, we have used Lemma 9.13-(ii). These two estimates complete the proof of 
(9.59;1). [] 

Proof of(9.59;2). If/~ > 0 is sufficiently small, one can find )( > /~ such that 
IIV2m , IIL , is bounded in t and therefore, from Lemma 9.15, 

[[(D2{vt(')}(Y,Y), VZmw,)llLk < C3e eA't. 

Now the estimate (9.59;2) is shown from Proposition 9.1-(i) and (ii). [] 

Proof of(9.59;3). Taking A ~ > A similarly as above, we have 

[[(D2{vt(.)}(y,y), { A  - k'(v,)}Vm,7,)llc k 

<_ C4ea~'tll{A - Pt'(vt)}Vmw, llczx, 

<_ Cse e~' t v/dist(v, M )e -ct . 

Here, for the second inequality, see the proof of Proposition 9.1-(iii), k = 1. 
Therefore, (9.59;3) is proved b.y taking sufficiently small A~. [] 

Now, let us give the proof of (9.59;4): First we notice that 

(9.62) J4( t, y, y,  m) = - ~ ( t ,  y )Dr/(y , m ), 

where ~( t ,y )  is the function defined in Lemma 9.12. In fact, (9.62) is shown by 
noting ~51(t, m) = (m, V2m),  ~b2(t,y, m) = e - t " ~ ( - , / ~ ) V 2 m ( y )  and Dr/t(y, m) = 
Drl(y , m). In order to prove (9.59;4), we decompose 

(9.63) J4( t , y ,y ,  v) - J4( t , y ,y ,  m) = A + B + C, 

where 

A = A ( t , y , v )  = { @ l ( t ) } - l ~ 2 ( t , y ) { D r / t ( y ,  1;) - Dr/(y,m)},  

B --= B (t, y, v) = {~1 (t)}-~ {~P2(t, y) - e - "  g(- , /~)V2m(y)}Dr/(y,  m), 

C -- C ( t , y , v ) =  ~j( t )  (m, V2m) e-'~z/~(-'/~)V2m(y)Dr/(Y'm)" 

We give estimates on A, B and C separately, recall that v E ~/~,o: 

(9.64) []A[ [L~, ~ C11[r ")[ IL2 [[Drh(', v) - Dr/(., m)[ [L~, 

_< C2 v/dist(v, M)e -ct, 

from Lemma 9.13-(i), (9.54) and [lr _< C3 e-ct for v C ~z~2,o, which 
follows from (9.50) and (9.53). Secondly, 
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(9.65) IIBIILk <_GII~P2(t, .) - e-'"~(--J/~)V2mllL~lID~(.,m)llL: 

_< C4 x/dist(v, M )e -~t , 

from (9.50). Finally, from (9.49), we have 

(9.66) I If  IIL~, <- C5 ~/dist(v, M)e -~t. 

Combining (9.64)-(9.66), we have proved (9.59;4). [] 

Finally, let us prove (9.59;5). We are assuming v E ~/~,0. Note that 

(9.67) J s ( t , y , y , m )  - (m, V2m) po, t (y ,z ;m)ZF'"(m(z))Vm(z)dz ,  

and decompose 

(9.68) J s ( t , y , y , v )  - J s ( t , y , y ,  m) = {~l(t)}-lA + {~51(t)}-lB + C, 

where 

,m 2 pttt m m A = A ( t , y , v ) =  {Po, t (y ,z ;v)2-po, t (y ,z"  ) } ( (z) )V (z)dz ,  

B =- B( t , y ,  v) = ~po , t (y , z ;v )2[~( t , z , v )dz ,  

[~ (t, z,  v) = F "' (vt (z))Vmn, (z) - P"'(m (z) )Vm (z) 

277 

C = C ( t , y , v ) =  l(t) -(m,~2m ) C(t,y),  

(t, y) = JR PO,t(Y, Z ; m)2[;'"(m(z ))~Tm(z ) dz. 

Estimate on B: Using Lemma 9.14, we have 

IIB(t,',v)llL~, <_ fR IIP~ dz 

{ '} __ c e : X ' / 2 + ~  IIB(t,.,v)llLi, 0 < a < J , .  

However, for sufficiently small .V > I ,  

II ~ (t,., v)ll Lk <- C, IIt} (t, -, v)ll n~,, --< C2 v/dist(v, M ) e - " t  

use Corollary 9.1-(iii) and (9.15) to show the second inequality. Therefore, we 
obtain for sufficiently small A > 0 

/ ' }  (9.69) IIB(t,.,v)llLk _< C3~/dist(~,,M)e -'''' I + ~ . 

Estimate on C: We prepare the next lemma. A much weaker estimate is sufficient 
here; however, this lemma will become necessary later again for the proof of 
(9.58). 
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L e m m a  9.16. 

IIC( t,)lf~i <- Ce-Ct 1 + , 

for sufficiently small A > O. 

Proof First we assume t > 1. Then, 

Po,t 0' ,  z; rn) = Po,t(z, Y; m) = e-(t-D~ r ' y)}(z) 

= (9(', Y), ~b)L2qS(z) + e-r e{~0(-, y)}(z), 

where q5 = V,n/ltVmllL2, 9(z,y) -- po, l(z ,y;m) and ~0(z,y) = 9 ( z , y ) -  
(9(', Y), q~) L2 qS(z ). Therefore, noting that fR ~ 2(z)[z'''(m (z))~Ym (Z) dz = 0 (m is 
odd from the assumption (l.2)-(b)), we have 

[C'(t,y)l = 2(9(- ,y),q~)L2(e-(t- ' ) ' /e(~(. ,y)},  OPm(m)Vm)L2 

+ ~ [e-<t-t)~{{7("Y)}(z)] 2p' ' '(m(z))Vm(z)dz 

-<Cl[lle-<'-ll'~{O(',Y)}llLLx,+lle-<'-l)~{9(', Y)} I ILL ~, 2 ] 

for every sufficiently small A ~ > 0. However, from Lemma 9.6-(iii), we see 

I[ e-u-I) ' '~{~0(',y)}IILL~, <- e-Cr 
<_ C=e-C'llg(.,y)l[L~_~, <_ C3e-%-:"~ 

For the last inequality, we have used the Gaussian bound; see Lemma 9.3. Now 
the desired bound is shown when t > 1. When 0 < t < 1, similarly as deriving 
the estimate on liB(t,-, v)lltk, we have for sufficiently small A > 0 

{ 1 ) IlF'"(m('))Vm(')llLk IlO( t,')llLk <- c e earle + 7 

_<C4 1+ . [] 

From Lemma 9.16 and (9.49), we have for sufficiently small A > 0 

{'} (9.7o) IIc(t,.,v)lki -< Cv/dist(v,M) e-c' 1 + - ~  . 

Estimate on A: We shall prove 

(9.71) blA(t,',v)ltL i <_ Cv/dist(v,M)e -c', t >_ O, 

for sufficiently small A > 0. To this end, we prepare 
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Lemma 9.17. 

Ps, t (Y,Z)  =/3s, t (Y,Z)+ dr - ' ~ ' ' ' Z)Cr(Z )Ps,r(Y,Z )d z  , 

where  p~ ,t (Y, z ) = Ps ,t (Y, z ; v)  and  Ps ,t (Y, z ) = p~ ,t (Y, z; m). 

Proo f  This is just  the kernel  representation of  the equation (9.21). [] 

F rom this lemma,  we have a decomposit ion:  

A ( t , y ,  v)  = A1 +A2, (9.72) 

where  

/or/. Al : - - A l ( t , y , v )  2 dr ~ i t t t : Cr(Z )PO,r(Y,Z ) A l ( r , t , y , z  ) d z  , 

A l ( r , t , Y , Z  ~) ~ P o , t ( Y ,  - ' - "  = Z)Pr,t(Z , z ) F  ( m ( z ) ) ~ m ( z ) d z  

A2 ~ A 2 ( t , y  v)  = dr1 dr2 ~ ~ , Cr I (Zl)PO,r, (Y, Zl) 
2 

- / ! I I ! 
x c~2 (Z2)P0,r2 (Y, z~)A~(rl, r2, t, Z l, Z2) dzl dz2, 

A2(rl r2, t , z ( , z~)  I - ' - ' ~ ' "  , -= Prl,t(Zl, Z)pr2,t(z2,z)F ( m ( z ) ) V m ( z ) d z  
JR 

Est imate  on A1 : Not ice  that 

a l ( r ,  t , y ,  z t) = e - t ' -~ {A l ( r ,  t , . ,  z ' )} (y)  

where  
/]l (r ,  t, z ,  z ' )  = P, , t (z ' ,  z ) F m ( m ( z ) ) V m ( z ) .  

Therefore ,  f rom L e m m a  9.6-(iii), 

IlAl(r, t, ",Z')I[L~(Ry) --< II(Al(r, t,., z'), 0)L~0IIL~, 
+e-C' I IA, (r, t,.,  z')l I L~ Caz), 

and noting that (/~l (r ,  t, -, z ' ) ,  qS)L2 = e - ( t - r ~ / z { F " ' ( m ) V m  . q~}(z'), we have 

(9.73) [ iml ( r , t , . . ) l lL~L~2  <_ 2 l lck l l2[ le-<t-r~ . .~{p , , , (m)Vm " }IIL~O 2 

+2e-2~'  I I/L (r,  t , . ,  ")l [~ | 

where  

A 2 f Al(y,z)2e2~O(y)+2~O(Z)dydz. 
[I I I I L ~ |  = J R  2 

Here,  since ( F ' " ( m ) V m  �9 qS, qS) = 0, again from L e m m a  9.6-(iii), we have 

(9.74) II e - ( '  -r). 6 { F " ' ( m ) V m  �9 ~} I IL~ 
<~ e - C ( t - r ) l l p t t t ( m ) V m  .qSIIL~ <_ C le -C( ' - ' ) ,  
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while, using Lemma 9.14 (one can replace Po,t by pr,t there), 

2 ~ (9.75) t[,41(r, t,-, ")IIL~,| = Fm(m(z))Vm(z)l Ip,,,(', 

C e e)qt-r)+ ~ IlF'"(m)Vm q~ 

C 2 e cA(t-r) -I ~ . 

From (9.73)-(9.75), we obtain 

To complete the estimate on AI (t, y, v), we also need the following: Using Lemma 
9.14 with A = 0 and (9.29), 

( 9 . 7 7 )  tICr(Zt)]70,r(y,gt)tlL2(R,.)| ~ C I/2 1 + IICrllL2 

< C4v/dist(v,M)e -''~ {1 + r - � 8 8  

Then, (9.76) and (9.77) can be combined to get 

(9.78) IIAl(t,.,v)llL k 

L' 
< 2 I]Sr(Z')Po,r(y,z')I]I2(R,.)|174 

<_ C s ~ M ) e  -c''. 

Estimate on A2: First, in a quite similar manner to deriving (9.76), we can prove 

(9.79) I lAz (r~, r2, t, . ,  ")IIL~, oz.~, 

On the other hand, using Lemma 9.14 and (9.29), 

(9.80) It~r,(Z()po,r,(y,z[)~r2(z~)po,r~(y,z~)llLi(R,.)| (gz;)| 

2 

<- H tier, (z )po,,, (y , z )l IL~(~,,)| ~ (R~) 
i=1 

i=1 z 

2 
L 

<- CTdiSt(v,M)He-C~;{1 + i }, 
i=1 
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for sufficiently small A > 0. Therefore, from (9.79) and (9.80), we have 

] IZ2(t,., v) I IL k 

fot fo t Zl )Crz (Z2)Po,r2 (Y , Z2)I IL~ (R,)| ~ (Rq )| ~ (Rz~ ) <_ Iler~(Z()PO,r~(Y, ' -  ' ' 

x I IAz(rl, r2, t,-, ")11L~,| drldr2 

(9.81) < Csv/dis t (v ,M)e -c't. 

Two estimates (9.78) and (9.81) complete the proof of  the desired estimate (9.71) 
on A(t, y,  v) and consequently, from (9.69)-(9.71), we obtain (9.59;5) and there- 
fore (9.57). [] 

Proof of(9.58). Noting that J i ( t , y , y ,  m) = 0 for i = 1,2, 3, from Lemma 9.10, 
(9.62) and (9.67), we see that 

1 fRPo,t(y,z ,  ) ( (z))V (z)dz (9.82) D 3 ( t , y , y , m )  - IlVmll~= "m 2F't' m m 

+~(t ,  y )Drl(y , m ). 

Using Lemma 9.16 for the first term and (9.53) and IIDrl(-,m)llL~, < oc with 
small )~ > 0 for the second, (9.58) is proved. [] 

9.7.4. Proof  of Theorem 7.3; completion 
Only task what is left before completing the proof of Theorem 7.3 is to show 
the equality (7.9). By the shift-invariance (cf. Lemma 7.1-(ii)), we may suppose 
r /= 0. Noting that 

f 14(y,y,m) = D ~ ( t , y , y , m ) d t ,  

from (9.51), (9.55), (9.56), (9.82) and (9.42), we obtain 

1 dt po,,(Y, z ; m ) 2~q,, ( m (z))V m (z)dz (9.83) D 2 ( ( y , y , m ) -  iiVml[~2 

/5 +2 ~( t , y )d t  . Dr](y,m) + D2rl(y,y,m). 

However,  since (V2m, Vm)  = 0 (recall that m is odd), we have 

/o oo 1 e-t" ~V2m(y) dt - V2m(y) 
�9 ( t , y ) d t -  IlVmll~ IlVmll~2" 

Therefore, from Lemma 9.5, the sum of the second and the third terms in the 
right hand side of (9.83) cancels and we obtain (7.9); note that F(v)  = F(v) for 
J~l _< 1. [] 
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9.8 Proof  o f  Theorem 7.4 

Let H a -- H a ( R ) ,  a > 0, be the Sobolev spaces equipped with the norms I1 I1.,  
defined by (3.1) for a = n E Z+ and by interpolation for general a .  The proof of 
Theorem 7.4 can be completed with the help of  Proposition 9.3 stated below. In 
this paragraph, we always mean by v '  ~ v that v t , v  C ~/~ and [ I v ' -  rilL2 ~ o. 

Proposi t ion 9.3. (i) For every v E ~7~2, we have D~( . , v )  C N,>0H 2-~ and 

lim I l o @ , v ' ) - o c ( . , v ) l l H ~ - , = O ,  ~ > 0 .  
,Or ----~ V 

(ii) Let vt = vt (-; vo) be the solution of  the PDE (7.2) and suppose vo E H ~ +m, 0 < 
(5 < 2, for  its initial data. Then, 

lim I l v t  - v0llH~ = 0. 
tJ.0 

Since ff = if(v) is constant along the classical flow vt, we have 

d 
(9.84) 0 = ~ ( v t )  = (D~(., vt), Avt  - F'(vt)) ,  t > O. 

However,  assuming that Proposition 9.3 is already proved, we see 

lim(D~(-, vt), Av,)  = (D~(., vo), Avo), 
t.to 

if Vo E ~7~: A (H ~ + m). Furthermore, since limdo I[F'(vt) - P'(Vo)IIL: = O, we 
have 

1)~o (n~( . ,  v,), F ' (vt))  = ( D @ ,  vo), F'(vo)).  

Hence, Theorem 7.4 is shown by letting t ~ 0 in (9.84). 
Let us give the proof of Proposition 9.3-(i). We prepare some lemmas. 

L e m m a  9.18.  
(i) l i m ~ , ~  sup0<t<r I Iv,('; v ')  -- v,( . ;v)  IlL2 = 0, r _> 0, 
(ii) l im~,_~ zh(v') = zh(v), t > O, 
(iii) lim~,,~v IlDr~(., v ' )  - Drl(',V)IIH: = O. 

Proof. The assertion (i) is a consequence of Lemma 9.1-(i), while the assertion 
(ii) is shown from 

'o I 'v) da Irh(V')-rh(V)l = (DTh(.,av' +(I - a ) v ) , v ' -  <_ C, l lv ' -  ,'11,.:. 

We have used sup~,~.~;2 [IDTlt(',v)1112- < oo which follows from (9.35). Finally, 

(iii) is a consequence of (9.11); notice l imv,~v 'l/('u ~) = r/('u) as a special case of 
(ii) with t = 0. [] 
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Corollary 9.3. 
(i) lim.,_~. ~k(t ,v ')  = ~pk(t,v), t ~ 0, 
(ii) lim.,__.. ~k(t ,v')  = ~ ( t , v ) ,  t > 0, 
(iii) lim,,__,,A(t,v') = A(t,v), t >_ O. 

Proof. The conclusion follows from Lemma 9.18 by recalling the definition 
(9.13) of ~k,~k and (9.14) of A(t). 

In particular, from Corollary 9.3-(iii), we obtain 

f oo A(r,v')dr [oo A(r,v)dr 
(9.85) l i m e  �9 = e~., , s > O. 

,01 . . ~ ,O  

We apply Lebesgue's dominated convergence theorem by noting the estimate on 
IA(t,v)I given in Corollary 9.2. Therefore, from Lemma 9.18-(iii), we have 

(9.86) lim l ef~Z("'v')d"DTl(-,v2)--ef,~z("'v)d"DTl(',v) =0.  
Vr  ----~ V I H 2 

Namely, the first term of Dr given in (9.41) converges in a desired man- 
ner. Hence, for completing the proof of Proposition 9.3-(i), noting (9.85), it is 
sufficient to show the following two assertions: 

(9.87) lim II~(t ,- ,v ')  - ~(t ,- ,v)ll ,2-~ =0,  t > 0, 
�9 OJ - ~ - U  

(9.88) [1~( t, ' ,~)ll-~-~ ~ Ce-~'{ 1 +t-~-r~}, t > 0, v C ~2-  

However, from (9.14) and the bounds in Proposition 9.1, the proof of (9.87) and 
(9.88) can be reduced to showing 

(9.89;1) lim II~b~(t,.,v')-~pl(t,-,v)l[14~ ~ =0 ,  t > 0, 
Vt----*V 

(9.89; 2) 

respectively 

(9.90; 1) 

lim I [~J( t ,  ", V') --  ~ ( t ,  ", v ) l l H 2 - .  ---- O, t > 0 ,  
/ , , t  ----+ v 

II~bl(t, .,v)llH:-~ < Oe-Ct{1 +t-~-~},  

(9.90;2) 1[61( t , ' , v ) l lH2-~<O~e~t{ l+t -~} ,  t > O ,  v C ~ ,  

for every A > 0. 

Lemma 9.19. There exists c > 0 such that 

c-~ltvll .~ <_ 11(1+,/~)~/%11L2 <_ cllvllH~, ~ n  ~, 0 < c ~ < 2 .  

Proof The result is trivial for a = 0 and can be shown for c~ = 2 by direct 
calculation noting that F"(m) is bounded. Therefore, by interpolation technique 
[9, p.l15], we get the conclusion. 0 
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We introduce weighted Sobolev spaces: 

H ~ = { v ; v e  AO EHC~}, o~_>0, ~ E R ,  

equipped with norms I lvl]n;, = I lve~~ IIn.. Notice that this norm is equivalent to 

Mug which is defined by Ivl]42 = ~ - - o  IlVkvll~, for a E E+ and by interpola- 

tion for general a > 0; see Remark 2.1 of [33, p.502] though the sign of A is 
converse there. 

L e m m a  9.20. Assume 0 < ce < 2. 
(i) For every # > O, there exists C = C~ > 0 such that 

IIT0,*~IIL=-~H" --< C{1 +t-~/2}eUt,  t > O, v E ~22~2. 

(ii) For every A, T > 0, there exists C = Ca,r > 0 such that 

IITo,,;vIIL~_~H; <_ Ct -c~/2, 0 < t <_ T, v E ~Yfi2. 

Proof. Let us first show two estimates 

(9.91) Ile-"~llL2~no _< C~{1 +t-~/2}, t > O, 
e -t" ~ 2 (9.92) L~--,n; <- C~,;vr t -~/2,  0 < t <_ T. 

In fact, noting Lemma 9.19, the left hand side of (9.91) is bounded by SUPa_>0(1 + 

a)e~/2e -ta and then, an elementary calculation shows that this quantity is bounded 
by the right hand side of  (9.91). To prove (9.92), noting that the coefficient 
F " ( m )  of the differential operator ~,,g is smooth, we see that the kernel function 
Po,t(y ,z;m) of e - ' ' ~  has Gaussian bound with C = CT, C = Cr > 0: 

k (v z) 2 
IVypo,t(y,z;m)] < Ct ';re ,', , 

O < t  < T , y , z  E R ,  k EE+, 

see, e.g., [17]. Based on this estimate and using the bound (2.3) of [33, p.498], 
one can verify 

(9.93) IIV%-~%11~, _< c~t-~llvll~. 

This proves (9.92) for c~ E Z+ and therefore for general c~ _> 0 by interpolation. 
Now, let us give the proof of (i). From (9.21) with s = 0, we obtain 

(9.94) ItZ0,,vllg=-~H~ --< C ~ { 1  + t - c~ /2}  

/0' +C2 e-~llTo,~;vllL~+H~dr, t > O. 

We have used (9.91), (9.24) with /k = 0 and [le-('-~)'~ellL=__,r= < 1. This bound 
implies the assertion (i). Indeed, first prove it for 0 < t <_ to by noting that t -c~/2 
is integrable near t = 0 because of c~ < 2; to is defined by C2e -a~ = #, and 
then, prove for t > to. For the assertion (ii), we derive a similar inequality for 
IIT0,~;~IIL~,-~H~ to (9.94) but only for 0 < t <_ T by using (9.92) and Lemma 
9.6-(i). [] 
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We need the following extension of Rellich's theorem. 

L e m m a  9.21. The imbedding of  the space H~  into H~,,' is compact if A > A' and 
0~ ~ 0~ t. 

Proof The result might be already known so that we give only the sketch of 
the proof. Let )~M E C0~176 > 0, be a cut-off function satisfying 0 _< )~m _< 
1, ?~M (Y) = 1 for [y I --< M i ;~M (Y) = 0 for [y I --> M + 1 and SUpM,y I Vk 2M (Y)I < Oo 
for each k E Z+. Then, we can prove 

(9.95) I[~MVI[H; <_ C[[V[IH;, 

with C > 0 independent of  M and 

(9.96) lim s u p { ] l ( 1 -  2M)vlIH2,; IIvlIHz -< 1} =0, 
M--*oo 

if A > A'. In fact, (9.95) is shown first for c~ = n E Z+ by direct calculation and 
then for all c~ > 0 by interpolation. On the other hand, for showing (9.96), we 
notice that the norm [IgItH" is equivalent to an another norm [gIH- defined by 

fR fR [~ngQy)-- Vng(z)] 2 (9.97) Igl~  = 11911~/~ + ~ -zll-i-~g dydz, 

where c~ = n + a , n  E Z+,0 < a < 1; see Theorem 7.48 of [1, p.214]. Then, based 
on this norm and by direct computation, we can prove (9.96). Now, assume that 
a bounded sequence {vn}n~=l in the space n f f  is given. Then, one can find its 
subsequence converging in the space H~, ,  by using (9.95), (9.96) and applying 
Rellich's theorem which is valid for bounded domains; see, e.g., [1]. [] 

Let us return to the proof of  (9.89) and (9.90). The two bounds (9.90;1) and 
(9.90;2) are shown in a similar manner to the proof of Proposition 9.1-(iii), the 
case of k = 1, and Proposition 9.1-(iv), respectively, based on Lemma 9.20-(i) 
with c~ = 2 - ~5. Furthermore, based on Lemma 9.20-(ii), we obtain 

(9.98) sup llr < ~ and sup II~l(t, ' ,v)lln; < 
v E ~  2 vE~'~ 2 

for every t > 0, 0 < c~ < 2 with sufficiently small A > 0; again we use the 
same argument as the proof of Proposition 9.1. Therefore, from Lemma 9.21, it 
is sufficient for completing the proof of  (9.89) to show the weak convergence of 
~bl ( t , . ,  v ' )  and ~l ( t , . ,  v ' )  to ~bl (t , . ,  v) and ~1 (t,-,  v), respectively, as v' --+ v. To 
this end, let us take a test function h E Cor Then, since 

(h, ~b, (t,-,  v)) = (Td*t;vh, ( A - P ' (v t )}Vm,7  ' ), 

(h, ~1 (t, . ,  v)) * 2 = (rd,t;vh, V m~, ), 

noting Lemma 9.18-(i) and (ii), the conclusion is completed if we can prove 

(9.99) u[ := Td*,,;~,h , ut := Td*,t;vh in L 2 as v '  --~ v. 
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However, since ut := u[ - ut is a solution of the PDE (9.8) with inhomogeneous 
term rt(-) = {b'~(vt(.; v)) - b'~(vt(-; v '))}u; and initial data t~0 = 0. Therefore, 
we obtain (9,99) from Lemmas 9.2, 9.18-(i) and sup0<.,.<t ]]u~llLor < ~ ;  use 
Gaussian bound (Lemma 9.3) by noting that h is bounded. This completes the 
proof of  (9.89). 

Finally, we prove Proposition 9.3-(ii). To this end, we rewrite the PDE (7.2) 
(recall jv = _ / ~ )  in an equivalent integral equation: 

from which we obtain 

(9.100) I]v,--VOl]H~ ----- 

f0 t vt = etZ~vo - e(t-'~')Ap'(V,.) ds 

~0 f l e ' ~vo  - ~ollH~ + I l e ( ' - ' ~ I I L ~ H ~ I I P ' ( ~ , ) I I L ~ d S .  

However, we can prove similarly to (and even much simpler than) (9.92): 

(9.101) [[etZXl]L2__+tt~ <<_ Cr t  -6/2,  0 < t < T, 

(9.102) lJe 'A]lH~n~ _< CT, 0 < t < T. 

Moreover, since [IP"IIL~ < cr and vo C L2+ m, 

(9.103) I[P'(v~.)]]L2 < ][Ft(v.,.) - Ft(v0)l]L2 + IlP'(vo)llL2 _< G { l l v ,  - v011L~ + 1}. 

Inserting (9.101) and (9.103) into (9.100), since 6 < 2, we see 

IIv, - vollH~ <_ I le '~vo  - vol l .~  + C3 + c4  (t - s ) -e /211v,  - vollH~ ds .  

Therefore, the conclusion of  Proposition 9.3-(ii) follows if one can prove the 
strong continuity of  e tz~ on the space H6: 

(9.104) lira I le 'Avo - vollH~ = O, vo E H 6. 
tlo 

However, we may assume Vo C Co~(R) to show (9.104), since Co~(R) is dense 
in H ~ and by noting (9.102). Then, (9.104) is easily shown. This completes the 
proof of  Proposition 9.3-(ii). 

Remark  9.7. Falconer [19] gave a general theory: If vt(-;v) is C 2 in v and its 
second derivative is Lipschitz continuous, then its limit me(v) as t -~ ~ is C z 
in v. However, this general theory does not work effectively for our purpose. 

The author expresses his sincere gratitude to Professor C. Mueller who indicated him an appropriate 
scaling in time at the early stage of the work and gave many useful remarks on the manuscript. He 
also thanks referees for their several suggestions concerning the presentation of the paper. 
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