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Summary. Call a random partition of  the positive integers partially exchange- 
able if  for each finite sequence of  positive integers n l , . . . ,  nk, the probabil- 
ity that the partition breaks the first nl + . . .  § nk integers into k particular 
classes, of  sizes nl . . . .  , nk in order of  their first elements, has the same value 
p(na . . . . .  nk) for every possible choice of  classes subject to the sizes con- 
straint. A random partition is exchangeable iff it is partially exchangeable for 
a symmetric function p(nl , . . ,  nk). A representation is given for partially ex- 
changeable random partitions which provides a useful variation of  Kingman 's  
representation in the exchangeable case. Results are illustrated by the two- 
parameter generalization of  Ewens '  partition structure. 
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1 Introduction 

For a positive integer n, a partition of  n is an unordered collection of  positive 
integers with sum n. There are two common ways to code a partition of  n: 

(i) by  the decreasing sequence o f  terms, say 

n(1) > n(2) ~ . . .  I> n(k) with ~ n ( t )  = n ; 

(ii) by the numbers of  terms of  various sizes, say 

m j = # { i :  n ( o = j } ,  j =  1 . . . . .  n ,  

where Nmj = k, and P, jmj = n. A random partition of  n is a random variable 
nn with values in the set of  all partitions of  n. Motivated by applications in 
genetics, Kingrnan [20, 21] developed the concept o f  a partition structure, that 
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is a sequence P1, P2 . . . .  of distributions for ~1,n2,... which is consistent in 
the following sense: if n objects are partitioned into classes with sizes given 
by ~n, and an object is deleted uniformly at random, independently of ~n, the 
partition of the n - 1 remaining objects has class sizes distributed according to 
Pn-1- 

Let N,  :=  {1 . . . . .  n}, :=  {1,2 . . . .  }. A partition of Nn is an unordered 
collection of disjoint non-empty subsets of N~, say {Ai}, with UiAi = Nn. The 
Ai will be called classes of the partition. Given a partition {Ai} of Nn, for 
m < n the restriction of {Ai} to Nm is the partition of Nm whose classes are 
the non-empty members of {Ai A Nm}. A random partition of Nn is a random 
variable //~ with values in the finite set of all partitions of Nn. A random 
partition of N is a sequence H = (/7,) of random partitions of N~ defined 
on a common probability space, such that for m < n the restriction of Fin to 
Nm is /7m. Permutations of Nn act in a natural way on partitions of N,, and 
on distributions of  a random partition of N,. Following Kingman [22] and 
Aldous [1], //~ is called exchangeable if the distribution o f / 7 ,  is invariant 
under the action of all such permutations. And / / =  (Hn) is exchangeable if 
//n is exchangeable for every n. As shown by Kingman, (Pn) is a partition 
structure iff there exists an exchangeable random partition /7 = (//~) of N 
such that P~ is the distribution of the partition of n induced by the class sizes 
of/Tn. 

For a sequence of random variables (XbX2,...), let II(XbX2,...) be the ran- 
dom partition of N defined by equivalence classes for the random equivalence 
relation i ~ j ~=~Xi = Xj. According to Kingman's representation every ex- 
changeable random partition/7 of  N has the same distribution as II(XbX2 .... ) 
where X1,X2 .... are conditionally i.i.d, according to Po~ given some random 
probability distribution P~ .  See Aldous [1] for a quick proof. The distribution 
P~ of the class sizes of  H~ is determined by the joint distribution of the sizes 
of the ranked atoms of Poc, denoted 

P o )  ->- P(2) > . . .  => 0 ,  (1) 

where P(i) = 0 if P ~  has fewer than i atoms. Moreover such P(0 can be re- 
covered from / /  as 

P(i) = lim N(0n a.s., (2) 
//---+04) n 

where N(i)n is the size of the ith largest class in Fin. See [21, 22, 1] for further 
details. 

Two difficulties arise in working with this representation of partition struc- 
tures. First, the joint distribution of the limiting ranked proportions P(i) turns 
out to be rather complicated, even for the simplest partition structures, such as 
those corresponding to Ewens' sampling formula, when the joint distribution of 
the P(i) is the Poisson-Dirichlet distribution [30, 19, 17]. Second, the expression 
for the distribution Pn of the partition of n in terms of the joint distribution of 
the P(i), given by formulae (2.10) and (5.1) of Kingman [20], involves infinite 
sums of expectations of products of  the P(0, which are not easy to evaluate. In 
the case corresponding to Ewens' sampling formula, it is well known [6, 12, 
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14--16] that there is a much simpler description of the joint distribution of the 
sequence (P1,P2 . . . .  ) obtained by presenting the ranked sequence (P(1),P(2),...) 
in the random order in which the corresponding classes appear in the random 
partition H. 
To be precise, write 

H = { 1, 42 . . . .  } ,  (3) 

where ~i is the random subset of N defined as the ith class of 1-1 to appear. 
That is to say d l  is the class containing 1, d 2  is the class containing the first 
element of N - a l l ,  and so on. For convenience, let Ni  --- 0 if H has fewer 
than i classes. Then Pi is defined to be the long run relative frequency of ~ i :  

Pi lim ~(~i NN,)  "= a.s. i = 1,2 . . . .  (4) 

The P(i) in (2) are obtained by ranking the Pi, and the existence of either 
collection of limits (2) or (4) follows easily from the other. See e.g. [1, Lemma 
11.8], which implies also that if ~iP(i) = 1 a.s. then (P1,P2 . . . .  ) is a size- 
biased random permutation of the ranked sequence (Po),P(2) . . . .  ) as studied 
in [8, 27]. 

The main purpose of this paper is to answer the following questions which 
arise naturally from the above development: 

Question 1 What is the most 9eneral possible distribution of the sequence 
(Pi) of  limitin9 relative frequencies of classes in order of appearance for an 
exchanyeable random partition 11 of N ? 

Question 2 How is the distribution of the sequence (Pi) related to the corre- 
spondin9 partition structure Pn ? 

Question 3 What is the conditional distribution of 11 9iven (Pi) ? 

These questions about exchangeable random partitions are answered in 
Sect. 2 by a variation of Kingman's representation which holds for larger 
class of random partitions of N, called partially exchangeable. The termi- 
nology is consistent with the general concept of partial exchangeability due 
to de Finetti [4]. Both Kingman's representation, and the present represen- 
tation of partially exchangeable random partitions, fit the general framework 
of Diaconis-Freedman [5] for extreme point descriptions of models defined 
by a sequence of sufficient statistics. From another point of view, these re- 
sults identify the Martin boundaries of associated Markov chains. But while 
the general extreme point or boundary theory provides a common framework, 
it offers no recipe for identifying the extreme points. Like Aldous' proof of 
Kingman's representation, the proof of the representation of partially exchange- 
able random partitions, provided in Sect. 4, is based on a direct application of 
de Finetti's theorem rather than any general extreme point theory. Section 5 
considers partitions of N derived from residual allocation models. In particular, 
a two-parameter family of such models with beta distributed factors, presented 
at the end of Sect. 2, corresponds to a two-parameter generalization of Ewens' 
partition structure. 
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2 Results 

Definition 4 Let N* : [-J~=l N~, the set of finite sequences of positive inte- 
gers. Denote a generic element of  N* by n = (nl , . . . ,nk),  and write ~(n) for 

k 
~i=lni. Call a random partition Hn of Nn partially exchangeable ( P E )  /f 
for every partition {A1 . . . . .  Ak} of Nn, where the A1,...Ak are in order of 
appearance, i.e. 1 E A1, and for each 2 < i <- k the first element of  N n -  
(A1 U. . .  UAi-1) belongs to As, 

P(17n = {A 1 . . . . .  Ak } ) : p(#(A 1 ) . . . . .  #(Ak )) (5) 

for some function p(n) : p(nl . . . .  ,nk) defined for n ~ N* with ~(n) = n. 
Then call p(n) a partially exchangeable probability function (PEPF). 

Say a random partition H of N is PE if H : (Hn) wi th/ /n  a PE partition of 
Nn for every n. Then a corresponding PEPF p(n) is defined for all n C N*. 
The following elementary proposition follows from the above definition and 
the discussion on page 85 of Aldous [1]: 

Proposition 5 A random partition of Nn (or of N) is exchangeable iff  it is 
partially exchangeable with a PEPF p(n) which is a symmetric function of 
its arguments, i.e. 

p(nl . . . . .  nk) = p(no(1),..., no(k)) 

for every permutation a of Nk, k = 2, 3 . . . .  

When /7 is exchangeable, call the symmetric PEPF derived from H an 
exchangeable probability function (EPF). The main result of this paper is the 
representation for PE partitions of N stated in the following theorem, which is 
proved in Sect. 4. 

Theorem 6 Let H = { ~ 1 ,  ~%/2,...} be a random partition of N, with d i  the 
ith class of  17 to appear. Let/Tn be the restriction of 17 to Nn. The following 
conditions are equivalent: 

(i) /7 is partially exchangeable; 
(ii) there is a sequence of random variables (Pi, i = 1,2,. . .)  with Pi > 0 

and ~ i  P~ <= 1 such that the conditional distribution o f / 7  given the 
whole sequence (Pi) is as follows: for each n E N, conditionally given 
(Pi) and Hn = {Ab...,Ak}, where the Ai are in order of appearance, 
/7~+1 is an extension of Fin in which n + 1 

attaches to class As with probability Pi, 1 <- i <- k ,  
kp (6) 

forms a new class with probability 1 - ~ 1  J �9 

I f  11 is partially exchangeable then the Pi in (ii) are a.s. unique and equal 
to almost sure limiting relative frequencies of  the classes d i  as in (4). 

This theorem answers Question 3: all exchangeable random partitions H of 
N share a common conditional distribution given (Pi) defined in (ii); moreover 
a random partition of N is partially exchangeable iff it admits such relative 
frequencies (Pi) and shares this conditional distribution given the (P~). The 
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following corollary is an immediate consequence of Theorem 6: 

Corollary 7 The formula 

. . . .  1 - ~ Pj (7) 
i=1 i=1 j = l  j 

sets up a one to one correspondence between PEPF's  p: N* + [0, 1] and joint 
distributions for a sequence of  random variables (PbP2 . . . .  ) with Pi > 0 and 
~iPi ~ 1. 

To spell out this correspondence: given the PEPF p(n) of a PE partition H 
of N, the Pi are recovered as the limiting relative frequencies of the classes of 
H in order of appearance. And given a distribution for (Pi), a PE partition H 
of N with the corresponding PEPF p(n) is created by the sequential prescrip- 
tion (ii) of Theorem 6. See also Construction 16 in Sect. 5 for an alternative 
construction of H from such (Pi). The next corollary answers Question 1 by 
specializing the previous corollary to the exchangeable case. 

Corollary 8 Let (Pi) be a sequence of  random variables such that Pi > 0 
and ~ i P i  < 1 a.s.. The following statements are equivalent : 

(i) There exists an exchanyeable random partition H of  N whose sequence 
of  limitin 9 relative frequencies of  classes, in order o f  appearance, has 
the same distribution as (Pi). 

(ii) For each k = 2,3 . . . .  the function p : N k + [0, 1] defined by (7) is a 
symmetric function of  (nl . . . . .  ok). 

(iii) for each k = 2, 3 . . . . .  the measure Gk on R ~ defined by 

Gk(dpl . . . . .  dpk) = P(P1 E dpl , . . . ,Pk  E dpk) 1-I 1 -- pj (8) 
i=l  j = l  / 

is symmetric with respect to permutation of  the coordinates in R k. 
Then p(nl . . . . .  nk) defined by (7) is the E P F  of  H. 

Pitman [27] obtained this result assuming either P1 > 0 a.s., or ~ iP i  = 1 
(conditions that are equivalent in cases (i)-(iii) hold) and showed that then 
the following condition is also equivalent to (i)-(iii): 

(Pi) is invariant under size-biased random permutation. (9) 

See also [7] for yet another characterization of such random discrete 
distributions. 

Corollary 8 also answers Question 2. For i f / 7  is exchangeable it follows 
from (7) by a simple counting argument that the distribution Pn of the corre- 
sponding partition of n is as follows. Let Mn = (M1 . . . . .  Mn) where Mj is the 
number of classes of Hn of size j .  Then for any vector of non-negative integer 
counts m := (ml . . . . .  mn) 

P.(m) :=  P(Mn = m) = N(m)/5(m), (10) 



150 J. Pitman 

where 
n! 

N(m) : - (11) 
n 

11(j!)mjmj! 
j=l 

is the number of partitions of N~ into mj classes of size j, 1, < j < n, and 
/3(m) is the common value of the symmetric function p(n) for all n with 

E ( n ) = n  and#{ i :  n i = j ) = m / ,  1 <=j <= n.  (12) 

The formulation of results in this paper was guided by the example presented 
in the following proposition, which contains many known results as special 
cases and corollaries, and is proved in Sect. 5. 

Proposition 9 For each pair of  real parameters ~ and O, such that 

either 0 < ~ < 1 and 0 > -c~, (13) 

or ~ < 0 and 0 = - m ~  f o r  some m E N (14) 

an exchangeable random partition 11 = ( II~ ) of  N can be constructed as fol- 
lows: for each n c N  , conditionally given FI, = {A1 . . . . .  Ak} , for  any partic- 
ular partition of  N,  into k subsets Ai of  sizes ni, i = 1, . . . ,  k, the partition 
FI~+I is an extension o f  11~ such that n + 1 

attaches to class A i with probability ni -- O: n + O '  1 < _ i < _ k ,  

k~ + 0 (15)  
forms a new class with probability - -  

n + O  

The corresponding E P F  is 

p ( n l , . . . , n k ) -  
[0 + a]k-l;~ k 

f I [ 1  - ~ ] . , - ~ ,  
[ 0 +  1]~-1 i=l 

(16) 

where Jor real numbers x and a and non-negative integer m 

I 1  f o r  m -~ O, 
[X]m,~= x ( x + a ) . . . ( x + ( m - 1 ) a )  for m =  1,2 . . . .  

and [X]m = [X]m; 1- The probability that lln has mj classes of  size j, for 
(ml . . . . .  ran) with ~m) = k, and ~jmj = n, is 

n , [ O q - o : ] k _ l ; a f i  ( [ 1 -  ~]j_l)mY 1 (17) 
[0+  1]n 1 j=l J~ mjl  

The a.s. limiting relative frequencies Pi o f  the classes of  1I in order of  
appearance are such that 

pi  = (1 - w l ) . . . ( 1  - w ~ _ l ) w , ,  (18)  

where the Wi are independent random variables with beta (1 - ~ , 0  + iT) dis- 
tributions, with the convention in case (14) that Wm = 1 and Wi is undefined 

for i > m. 
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The above proposition is known for a __< 0. For a : 0, Antoniak [2] 
derived the sequential construction (15) from the Blackwell-McQueen [3] urn 
scheme description of sampling from a Dirichlet prior distribution, and used it 
to deduce (16) and (17). Formula (17) in this case is Ewens' [11] sampling 
formula. See also [22], Theorem 4, for a similar derivation. A variation of the 
sequential construction for a = 0, devised by Dubins and Pitman to explain 
the cycle structure of random permutations, is the "Chinese restaurant process" 
described on page 92 of [1]. See [16, 6, 12] for developments and applications 
of these ideas to population genetics, and further references. The model (18) for 
generating a random discrete distribution (Pi) from independent W/ is known 
as a residual allocation model The consequence of the above proposition for 

= 0 and (9), that the RAM with identically distributed beta(l, 0) factors is 
invariant under size-biased permutation, was known already to McCloskey [23], 
who showed this is the only RAM with i.i.d, factors invariant under size-biased 
permutation. See also [27] for a similar characterization of the two parameter 
scheme by the RAM for the (Pi). 

The case a = -to < 0 and 0 = m• corresponds to the partition generated 
by random sampling from a symmetric Dirichlet prior with weight ~ on each 
of m points. This model for species sampling was proposed by Fisher [13], 
who considered also the passage to the limit as m --+ oo and tc ---+ 0 for fixed 
0 = mtc, which leads to Ewens' partition structure. Watterson [30] found the 
sampling formula (17) for Fisher's model with finite m and deduced Ewens' 
formula by passage to the limit. The sequential construction in this case follows 
immediately from the well known urn scheme description of sampling from a 
Dirichlet prior, which dates back to Johnson [18]. The corresponding RAM 
was considered by Patil and Taillie [24], Engen [10] and Hoppe [16]. 

For 0 < a < 1, the RAM was considered by Engen [10], who showed 
that a single size-biased pick from (Pi) has the same distribution as P1. The 
full invariance of (Pi) under size-biased permutation in this case follows from 
the work of Perman-Pitman-Yor [25], who showed how this random discrete 
distribution can be obtained by size-biased sampling of the normalized jumps of 
a stable subordinator with index ~. The sequential construction of the random 
partition, and the formulae (16) and (17) in this case, seem to be new. See 
[26, 28, 29] for further study. Motivated by philosophical aspects of species 
sampling [31], Zabell [32] gives a characterization of the two-parameter scheme 
based on the form of the sequential construction. 

3 Partial ly exchangeable partitions 

O 0  

Recall that N* = Uk=l Nk, and ~(n) = ~-]~=1 ni for n = (nl , . . . ,nk)  C N*. Let 
N,~ := {n C N* : ~(n) = n}. It is immediate from Definition 4 that (5) sets up 
a one to one correspondence between distributions of a PE partition Hn of Nn, 
and non-negative functions p(n) : N~ ~ [0, 1] such that 

# (n )p (n )  = 1 , (19)  
none* 



152 J. Pitman 

where 
n! 

# ( n ) =  k n )! (20) 
nk(nk + n k - 1 ) ' " ( n k  + . . .  +n l ) [ I i= l (  i -  1 

is the number of partitions of Nn whose class sizes in order of appearance are 
given by n = (nl . . . .  , nk). Let N, be the random element of N* representing the 
class sizes of El, in order of appearance. Then N, is a sufficient statistic for 
distributions of PE partitions El~. That is to say, H,  is PE iff given Nn = n for 
every n c N~ the partition //~ is uniformly distributed over the #(n) distinct 
partitions of N, with class sizes in order of appearance given by n. (The 
corresponding description of exchangeable partitions of Nn, with N~ replaced 
by the decreasing rearrangement of N~ which encodes the induced partition of 
n, appears on page 85 of [1]). The distribution of Nn for a PE partition Hn is 
related to the PEPF p of El~ by 

P(Nn = n) = # (n)p(n) .  (21) 

Assuming /7, is PE, it can be seen that Eln is exchangeable if and only if N~ 
is a size-biased random ordering of the partition of n, as defined in [9, Sect. 
7]. For the exchangeable partition of N~ derived from Ewens' partition struc- 
ture, with p defined by (16) for c~ = 0, formula (21) reduces to formula (7.2) 
of [9]. 

Proposition 10 For 1 < m < n let Elm be the restriction to N" of  a PE 
partition of  N~ with PEPF p(n) defined for n E N*. Then 

(i) IIm is PE, with PEPF p(n) defined for n E N~ by repeated application 
for m = n - 1, n - 2 , . . . ,  1 of  the consistency relation: 

k+l 
p(n) = ~ p(n j+) (22) 

j= l  

n j+ E N~+ 1 is derived from n = (nl . . . . .  nk) E N*m by increment- 
by 1 i f  1 <= j < k, and by appendin9 a 1 to n at place k + 1 

where 
ing nj 
i f j - - k + l .  

(ii) ( N b . - - , N n )  is a Markov chain with transition probabilities 

P(Nm+I = n j+ [ Nm = n ) -  P(nJ+) j = 1 , . . . , k  + 1 

for p: U n 1N~ ---+ [0, 1] defined as in (i). 

(23) 

Proof (i) Argue inductively as follows for m = n - 1, n - 2 , . . . ,  1. Suppose 
that /7m+1 is PE, with PEPF p: N~,+I ~ [0, 1]. Consider the probability of the 
event that ff/m is a particular partition of N" with k classes, with sizes in order 
of appearance given by n. By decomposing this event according to the k + 1 
different possibilities for Elm+l, this probability equals the right hand expression 
in (22), which depends on the choice of partition of Nm only through n. That 
is to say, H"  is PE with PEPF p(n) defined by (22) for all n E N,*,. 

(ii) The above argument shows that (23) holds with the conditioning event 
(Nm = n) replaced by the event that 17,, is any particular partition of Nm with 
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Nm = n. Since N1,.. .  ,Nm are all functions of IIm, this proves (23) along with 
the Markov property of  (N1 . . . . .  Nn). [] 

In the exchangeable case, the EPF and the distribution of the corresponding 
partition of n are related by formula (10). The above consistency relation then 
becomes the expression in terms of EPF's of Kingman's notion of consistency 
of partitions of n. 

Corollary 11 A function p: Nn* ~ [0, cxD) is a PEPF i f fp:  U~Nm ~ [0, c~) 
defined by repeated application of  (22) is such that p(1) = 1. 

Proof  The "only if"  assertion follows from the preceding proposition. To 
check the " i f"  assertion, let S be the sum on the left side of (19). It must 
be shown that S = 1. Clearly S > 0, so q(u) := p(n)/S is a PEPF. Apply the 
"only if"  part of  the corollary to q instead of p to see that p(1 )/S = q(1 ) = 1. 
S o S = p ( 1 ) =  1. [] 

The following variation of the previous corollary is the key to the proof of 
Proposition 9 given in Sect. 5. 

Corollary 12 I f  (N1 . . . . .  Nn) is a Markov chain with transition probabilities 
n , of  the special form (23) for some p: U1Nm ~ [ 0 , ~ )  with p(1)  = 1, then 

II~ is PE with PEPF given by p. 

Proof  This follows from the previous corollary, because / / ,  can be recovered 
from the sequence (N1, . - - ,Nn) .  [] 

As a complement to part (ii) of Proposition 10, it is easily seen that //n is 
PE iff the reversed sequence (N~,- . . ,  N1 ) is a Markov chain with co-transition 
probabilities 

P(Nm-I  = n j -  ] Nm = n) - #(nJ-~) (24) #(.) 

for every 1 < j < k such that n J -  E Nm_l, where n = (n l , . . . ,nk)  and n J -  is 
defined by decrementing the j th component of n by 1. 

To conclude this section, here is a simple construction that is easily 
seen to yield the most general PE partition of Nn. This is a finite "sampling 
without replacement" version of Construction 16 in the next section for PE 
partitions of N. 

Construction 13 Let ~41 . . . . .  dK,, denote the random subsets of Nn defined 
by the classes of Hn in order of  appearance. Let N1, the size of  a l l ,  have 
distribution 

P(N1 = n l ) = P ( n l ) ,  1 < nl ==_ n ,  

where P(.) is some arbitrary probability distribution on { 1 . . . .  , n}. Given N1 = 
nl, let d l  consist of 1 and a uniformly distributed random subset of nl - 1 
elements of {2 . . . . .  n}. Inductively: given that d l  . . . . .  s~r have been defined, 

with Nj = nj, 1 ~ j < i, such that ~-2~)=1 nj < n, let Ni+ 1 have distribution 

P(N/+I = ni+i [ ~ r  = P(ni+l ]nl . . . .  ,n i ) ,  (25) 
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where P ( - I n b . . . , n i )  is some arbitrary distribution on { 1 , . . . , n - ~ z j _ l n j } .  
And given sr  zCi and N~+I = ni+l, let sr comprise the first element of  
N,  - [..Ji a d j  together with a uniformly distributed random subset of  ni+l - 1 

i 
elements of  the remaining n - ~ 1  nj - 1 elements of  N,.  The random partition 
/7, so constructed is partially exchangeable, with PEPF 

p(n)  = #( n ) -  l p (  nl )P(  n2 l nl ) . . . P(  nk l nl . . . . .  n k -  l ) . 

4 Proof  o f  T h e o r e m  6 

A random partition / / =  { a l l , d 2 , . . . }  of  N, with classes sr in order of  
appearance, is conveniently recoded by the sequence of  N-valued random vari- 
ables (Y1, Y2 . . . .  ), where Y~ = i if n C sCi. Call Y~ the class o f  n, and call 
(Y,) the classification process  o f / / .  Clearly, a sequence of  N-valued random 
variables (Yn) is the classification process of  some random partition H of  N 
i f f i 1 1 = 1  and 

Y,+I < max Y m + l  for a l l n E N .  
l <_m<_n 

Also, the restriction f in of  H to N~ is PE with PEPF p iff for every sequence 
of  positive integers (im, m E N~) with 

il = 1, im+l < max il + 1, 1 < m < n -- 1 , 
1 < l ' _ < m  

we have 
P(Ym = im for all m E N~) = p(n l  . . . . .  n k ) ,  (26) 

where 
n i = • { m  E N n " i m =  i} for 1 _< i < k = max im. 

l <_m<_n 

The key to the proof of  Theorem 6 is the following lemma: 

Lemma 14 Suppose  that I I ,  is PE. Then Jor each m with 1 < m < n -  2, 
conditionally given IIm such that Hm has j classes, the random variables 

Yrl(Y~ < j )  , r = in § 1 . . . . .  n, are exchangeable. (27) 

P r o o f  Since a probabilistic mixture of  exchangeable sequences is exchange- 
able, it suffices to prove the assertion conditionally given also N,  = n for 
arbitrary n E N*. But given N,  = n and Hm, the partition /7~ is uniformly 
distributed over all partitions of  N~ subject to the constraints imposed by N~ 
and IIm. Suppose the sequence of  class sizes of  Hm is given by N~ = m for 
some m = (ml . . . . .  mj)  E N*. The sequence (Yr l (Yr  <-_ j ) ,  r = m § 1,. . . , n )  
is then constrained to have n i -  mi terms equal to i for each 1-< i-< ], and 
the remaining n j+l + . . .  + nk terms equal to 0. The exchangeability claim 
therefore amounts to the following: every possible sequence of  values for 
(Yr l (Yr  < j ) ,  r = m + 1 , . . . , n ) ,  say (Vm+l . . . . .  V~), subject to these constraints, 
has the same conditional probability given such Hm and Nn. But given Hm with 
Nm = m and given N,  = n, the partition 17, is determined by ( 1 ) m + l , . . . , 1 J n )  

combined with the way that those r with vr = 0 are assigned by Hn to classes 
j §  1 , . . . ,k .  Since the number of  ways in which the latter assignment can be 
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made is the same, namely #(nj+l . . . . .  n~) as in (20), no matter which subset 
o f  nj+l + . "  + nk elements of  {m + 1 , . . . , n}  is the set o f  r such that vr = 0, 
the exchangeability claim follows. [] 

Suppose now that H is a PE partition of  N. Let 

1)j : :  inf{n:  Y, = j }  . 

By application of  the above lemma, for every m E N with P(vj = m) > O, 
conditionally given vj = m, the random variables 

Y~I(Y,. ~ j ) ,  r = m + 1,m + 2 . . . .  are exchangeable. (28) 

Since # ( d i  N N , )  = #{m E Nn : Ym = i} the existence of  almost sure limit- 
ing relative frequencies Pi for ~ i  as in (4) follows easily a consequence of  
de Finetti 's law of  large numbers for exchangeable sequences of  zeros and 
ones. Clearly, Pi > 0 and ~ i  Pi = 1. The claim now is that condition (ii) of  
Theorem 6 holds with these Pi- That is to say, for every m E N, conditionally 
given all the (Pi), and given lIm with j classes, 

i for 1 _< i _< j,  with probability Pi, 
Ym+l = j + 1 with probability 1 - P1 . . . . .  P j .  

This follows by passage to the limit as n ~ oo from the following combina- 
torial analog, which is an easy consequence of  Lemma 14: 

L e m m a  15 I f  H~ is P E  then for  every 1 < m < n - 1, conditionally 9iven 
N~ = (na , . . . , nk)  and 9iven [Im with j classes such that Nm = (ml . . . . .  rnj), 

Ym+l ~- 

i 

j + l  

fo r  l <_ i <_ j ,  with probability ~ - mi 

with probability n - nl . . . . .  n~ 
n - m  

Due to the Markov property of  the sequence (Nn, n = 1,2 . . . .  ) described in 
Proposition 10, for a partially exchangeable partition H of  N these conditional 
probabilities are also valid given the counts Nn+bN,,+2,. . .  as well as Nn. So 
the passage to the limit is justified by reversed martingale convergence. 

The converse implication in Theorem 6, (ii) ~ (i), is straightforward. It 
follows from (ii) by first multiplying conditional probabilities and then taking 
expectation that H ,  defined by (ii) meets the requirements of  Definition 4 with 
p (n)  given by (7). Finally, to check the last sentence of  the theorem, observe 
that f o r / 2  satisfying (ii), the limiting relative frequency of d~i exists and equals 
Pi by the law of  large numbers for independent Bernoulli trials. [] 

5 Residual allocation models 

For 0 < w < 1 let ~ = 1 - w. The residual allocation model ( R A M )  

Pi = W i . . .  Wi_l Wz- (29) 
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for a random discrete distribution (Pi), with independent IV,, has been proposed 
in a number of contexts. See [27] for a survey. Relaxing the assumption of inde- 
pendent factors allows any sequence of random variables (Pi) with Pi > 0 and 
y~.iPi < 1 to be represented in the form (29). Call this expression for (Pi) a 
generalized residual allocation model (GRAM). Thinking in terms of the resid- 
ual fractions Wi instead of the P~ suggests the following construction of a PE 
partition/7 of N with prescribed limiting frequencies Pi for the classes in order 
of appearance. This generalizes Hoppe's [16] construction of the exchangeable 
partition of N governed by Ewens' sampling formula. 

Construction 16 Given an arbitrary joint distribution for a sequence of random 
variables (Wh W2 . . . .  ) with values Wi E [0, 1], define a random partition H of 
N into random subsets a l l ,  N~'2 . . . .  as follows. Let 

(Xni, n = 1,2 . . . .  ,i = 1,2 . . . .  ) 

be indicator variables that are conditionally independent given (WI, W2 . . . .  ) with 

P ( X n i  = 1 [ W l ,  W 2 . . . .  ) = m i . 

Let d l  = {1} U {n E N: Xnl = 1}. Inductively: 

for i=> 1 l e t ~ i = N - ( d l C I . . . U d i ) ;  

given cgi is non-empty (or, what is the same, /7( 1(1 - Wi) > 0), let j =  

di+ l  = {min{Cgi}} U {n E :gi: Xn,i+l = 1}. 

It is easily seen directly that /7 is PE. By construction the d i  are in order 
of appearance, with limiting frequencies Pi as in (29), by repeated application 
of the law of large numbers. It can also be seen directly that the conditional 
distribution o f / 7  given (Pi) is as in (ii) of Theorem 6. So the most general 
possible distribution for a PE partition of N can be obtained by the above 
construction. As an easy consequence of this construction, there is the following 
corollary of Theorem 6. This corollary contains Theorem 4 of Hoppe [16] in 
the exchangeable case governed by Ewens' sampling formula. 

Corollary 17 Let  /7 = {d i}  be a P E  partition o f  N, Pi the almost sure 
limit as n--+ oo o f  Nin/n, where Ni,  = # ( d / A N , ) .  For each i > O, given 

(PbP2 . . . .  ) and ( for  i > 1) given also N1, . . . . .  Ni, with ~-JlNj, < n, the 

random variable Ni+l,, - 1 has binomial (n - y~.i 1Nj, - 1, Wi+l ) distribution, 
i p  

where Wi+l = Pi+l/(1 - ~f~l J)" 

Using the GRAM (29), expression (7) for the PEPF becomes 

n i -- 1 - - n i + l  +. . .+n  k 

r ~ s  Let m i ( r , s ) =  E[W i Wi]. Assuming independent factors W~-, (30) becomes 

k 

p(nl  . . . . .  nk) = I~ mi(ni - 1,ni+l + - . .  + n~) (31) 
i = I  
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Given a sequence o f  distributions for Wi on [0, 1], it is not obvious by inspec- 
tion o f  formula (31) whether p(nl .... ,nk) is symmetric in ( n l , . . . , n k ) ,  that is 
to say whether the random partit ion of  N is exchangeable. See [27] for a con- 
struction of  all such sequences o f  distributions. The main example is provided 
by  the sequence o f  beta distributions for Wi described in Proposition 9. 

Proof of  Proposition 9 It is easily checked that the sequential construction 
o f  Hn defines transition probabilit ies for N1,N2 . . . .  that are of  the form (23) 
for the p ( n )  defined by  (16), which satisfies p (1 )  = 1 and is obviously sym- 
metric. So the parti t ion o f  N is exchangeable with EPF p ( n )  b y  Corollary 12 
and Proposition 5. Formula (17) follows from (16) by  (10). The form of  the 
joint  distribution o f  the Pi can be checked either from (3 I )  by  computation o f  
moments derived from the beta distributions, or a variation of  the argument o f  
Hoppe [16] in the case ~ < 0. [] 

Acknowledgement. Thanks to David Aldous, Persi Diaconis, Warren Ewens and Simon 
Tavar6 for many stimulating conversations. 
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