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Summary. Given any local martingale M in R e or  12, there exists a local mar- 
tingale N in R 2, such that [m] = [N], [ m ]  = IN], and ( M ) =  ( N ) .  It follows 
in particular that any inequality for martingales in R z which involves only 
the processes [MI, [M] and ( M )  remains true in arbitrary dimension. When 
M is continuous, the processes [M] 2 and IM[ satisfy certain SDE's which are 
independent of dimension and yield information about the growth rate of M. 
This leads in particular to tail estimates of the same order as in one dimension. 
The paper concludes with some new maximal inequalities in continuous time. 

1. Introduction 

The present work grew out from attempts to extend some martingale inequalities 
to higher dimensions. For  most of the standard inequalities (notably Doob's  
classical inequalities, the Burkholder - Davis - Gundy (BDG) inequalities, cer- 
tain exponential inequalities, etc.), this can be easily done by elementary methods. 
However, the inequalities obtained in this way will usually contain the dimension 
d as a parameter, and the estimates will often become very crude as d gets 
large. 

To illustrate this point, consider the well-known exponential inequality 

(1.1) P{M*>r}<=2e -~2/2, r>=O, 

valid for any continuous real-valued martingale M with Mo = 0 and with quadra- 
tic variation process I-M] bounded by 1 (cf. Rogers and Williams 1987, p. 77). 
Recall that M* denotes sup ]Mt[. Applying (1.1) componentwise to a d-dimension- 
al martingale M = ( M  1, ..., M e) with [M] = [M 1] + ... + [M a] < 1, one gets the 
bound 

(1.2) P{M*>r} <=2de -~2/2a, r>=O, 
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which has in fact been used by Stroock (1984) in the context of large deviations. 
Now the bound in (1.2) turns out (cf. Theorem 4.5 below) to be of completely 
wrong order, since (1.1) is in fact true in arbitrary (even infinite) dimension 
(possibly apart from a numerical factor outside the exponential). 

In the present paper we shall prove that any martingale inequality in R 2 
which involves only the three basic processes [MI, [M] and ( M ) ,  extends 
automatically to any finite or infinite dimension d, with the same values of 
all constants. Here I' I denotes the Euclidean or Hilbert norm, while [M] is 
the trace of the quadratic variation matrix or operator  (see Sect. 2 for definitions), 
and ( M )  is the dual predictable projection or compensator of [M] (considered 
only when M is locally square integrable). Note that all three processes are 
R +-valued. 

The quoted result is an immediate consequence of our main Theorem 3.1, 
where we show that whenever M is a local martingale in R d or 12, there exists 
some local martingale N in R z for which the three basic processes above are 
the same, i.e. such that a.s. 

(1.3) IMI = INI, l-M] = l-N], <M)  = <N). 

To get an idea about the construction, think of M as composed of a radial 
component IMI and a tangential component described by the projection X = M/ 
[M[ onto the unit sphere. Since we require Igl to be equal to IM[, it suffices 
to construct a martingale Y on the unit circle in R 2 with the same quadratic 
variation as X, and then define N = IMI Y. 

This may seem easy and straightforward, but the actual construction and 
proof involve some rather subtle technical difficulties. Thus X is well-defined 
only if M 40 ,  and it may in fact explode at the beginning or end of every 
excursion interval for M from the origin. To get the martingale property of 
N at 0, it is necessary to randomize a "phase"  individually for each excursion, 
and because of the explosions, the randomization has to be made at some 
interior point. Even the construction of V within the excursion intervals will 
clearly involve some randomizations. The construction will normally require 
an extension of the original probability space, and a new filtration will have 
to be introduced which is large enough to ensure adaptedness of N, yet small 
enough to preserve the martingale property of M and [M] - ( M ) .  There finally 
remains the non-trivial task of verifying, via the general version of It6's formula, 
that N really becomes a martingale with respect to the new filtration. A detailed 
discussion of all those points will be given in Sect. 3. 

The situation simplifies when M has continuous paths. This is not only 
because [M] = ( M )  in this case, but more importantly because [M] can then 
be used as a natural time scale for M. Thus one may reduce by a random 
time change to the case when [M]t- t ,  so that only one of our three basic 
processes remains, namely [M[. For  this case, we shall prove in Sect. 4 that 
IMI 2 and IMI are solutions to the equivalent stochastic differential equations 
(SDE's) 

(1.4) 

(1.5) 

dlM~l z = 2~IM,[ dB t+  dt, 

1 
dlMtl=et  d B , +  2~M~tl l { M t + 0 }  (1--e~z) a t + e L , ,  
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where B is a Brownian motion while e is a predictable process taking values 
in [0, 1], and L is a non-decreasing continuous process which increases only 
when M = 0. 

It is natural to think of cq and 1 ~ - ~ 2  as stochastic controls specifying the 
instantaneous rates of M in the radial and tangential directions, respectively. 
In the extreme case when e - 1 ,  one gets a one-dimensional Brownian motion 
along a ray from the origin. If instead ~ - 0 ,  then M becomes a "spiraling" 
Brownian motion such that [Mt] 2 -  t is constant and non-random. Intermediate 
constant values of a yield Bessel processes of different order. Curiously enough, 
not all random controls ~ are feasible in (1.4) and (1.5) (not even all Markovian 
ones), and the same control may yield different solutions [M[. In other words, 
weak existence or uniqueness may fail for the SDE's (1.4) and (1.5). 

In the one-dimensional case, every continuous local martingale M with 
[ M ] t - t  is known, by a classical result of L6vy, to be a Brownian motion, 
so in this case c~ is always 1. This illustrates the fact that the processes [M[ 
arising in the real-valued case are much more special than those in higher dimen- 
sions. Hence there is no hope of extending our main result in Sect. 3 to a 
reduction down to dimension one. From the point of view of proving martingale 
inequalities, this limitation is not a serious problem, since the extension from 
R 1 to 112 can usually be achieved by elementary methods (cf. Proposition 3.4). 

Our remark in the last paragraph may be compared with a theorem of 
Gilat (1977) (see also Protter and Sharpe 1979), to the effect that every nonnega- 
tive submartingale is of the form IN[ for some real-valued martingale N. If 
M is a martingale in R a, then ]M[ is certainly a submartingale, so by Gilat's 
theorem there exists some one-dimensional martingale N with [M[ =]N[ a.s. 
However, [M] + I-N] in general. In fact, the construction of Protter and Sharpe 
involves the insertion of extra jumps between [Mr and - ]M[ at some random 
times zl, z2 . . . .  , so the quadratic variation of N becomes 

[U]t=[-lMl]t+4~lM~j[ z l{~j=<t}, t__>0. 
J 

The SDE's in (1.4) and (1.5) can be used to derive some interesting inequali- 
ties. Thus it is shown in Theorem 4.4 that, if M is a continuous martingale 

t 

in 11a or 12 with M o = 0  and [MJt=-t, and if At= S a2 ds with a as above, then 
a.s. o 

(1.6) M*<=B*oAt+ t~--At, t>O, 

for some real-valued Brownian motion B. Note that the bound is sharp both 
for ~ = 1, when M is essentially a one-dimensional Brownian motion, and for 
a--=0, when [Mt[ 2 =t .  

Another interesting consequence of (1.4) and (1.5), proved in Theorem 4.5, 
is the fact that for M and B as above, 

( 1 . 7 )  P{M*>r}<=cP{S*>_r}, r>=O, 

where c is an absolute constant independent of dimension. This improves the 
previously noted bound in (1.1), since the right-hand side of (1.7) is asymptotically 
of the order r -1 e -r2/2 a s  r - - +  0 0 .  
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In Sect. 5 we return to our starting point, by applying the main results 
of Sect. 3 to deduce various martingale inequalities in arbitrary dimension. The 
extension from one to higher dimensions is usually trivial, given the previously 
mentioned results, so our main effort consists in obtaining good bounds in 
the real-valued case. In Theorem 5.1 we prove two Kolmogorov type exponential 
inequalities for continuous time martingales with bounded jumps, and in Theo- 
rem 5.3 we show that the simpler bound in (1.1) applies when the jumps are 
symmetric (corresponding to the property of conditional symmetry in discrete 
time). Finally we prove in Theorem 5.6 a general continuous time version of 
an inequality originally due to Dubins and Savage (1965). 

It should be noted that our present versions of the mentioned inequalities 
are much more general than previously known discrete time results, in the sense 
that the latter reduce to simple special cases, often attainable by more elementary 
methods. Our present approach is typically to construct a suitable supermar- 
tingale, where the supermartingale property may be checked by computations 
involving the general It6 formula for semimartingales with jumps. 

Our main results are potentially applicable even to other fields. Thus in 
the study of U-statistics one is led naturally to consider the asymptotics of 
certain Hilbert-space valued martingales. In this context, a.s. asymptotic bounds 
have been obtained in a number of papers (e.g., in Dehling et al. 1986). Now 
in view of our present results, it would have been enough in most cases to 
consider martingales in R 2 only. It is not clear, however, whether that would 
have simplified the proofs or led to sharper estimates. Incidentally we do obtain 
some a.s. bounds in this paper, but only for martingales with continuous paths 
(cf. Theorem 4.6). 

Though most readers may only be interested in finite-dimensional processes, 
we include the infinite-dimensional case in our statements for the sake of comple- 
teness. Actually all results remain valid in arbitrary Hilbert spaces, though for 
convenience they will be stated and proved only in 12. There exists an extensive 
but rather inaccessible literature on Hilbert-space valued martingales, summa- 
rized in the two monographs by M~tivier (1982) and M~tivier and Pellaumail 
(1980). However, no previous knowledge of martingale theory in Hilbert space 
will be assumed in this paper, since the few facts we need are collected and 
will be proved directly from definitions in Theorem 2.1 below. Actually most 
of those facts would have to be proved in R a anyway, so by inserting this 
theorem we hope to be gaining both in economy and in the reader's convenience. 

On the other hand, notions and results from stochastic calculus and the 
"general theory of processes" will be used extensively throughout the paper, 
often without explicit references. Any one of the texts on those topics listed 
in the bibliography will be sufficient background. For less familiar results, specific 
references will be given. 

A special convention used in this paper is to write 1 {. } for the indicator 
function of the set within brackets. For positive functions f and g, we shall 
often write f < g ,  instead of f =  O(g) to indicate that f <  c g for some finite con- 
stant c > 0. Unless otherwise stated, the value of c is independent of any specific 
choices of processes, functions or parameters. A numerical value is usually im- 
plicit in our proofs. (Thus, for example, (1.7) holds with c~6.30, though this 
value is probably far from sharp.) For vectors x and y in R a or l a, we shall 
write x . y  for the inner product and Ix[ and [y[ for the norms. All random 
objects in this paper are assumed to be defined on some fixed probability space 
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(f2, sr P) with associated expectation E, and whenever random processes are 
considered, we assume adaptedness to some discrete or continuous filtration 
Y =(~-~), which is always assumed to satisfy the "usual condit ions" of right- 
continuity and completeness. Conventions relating to martingales will be 
explained in the next section. 

2. Martingale preliminaries 

The present section serves several purposes. An obvious one is to introduce 
some notat ion and conventions concerning martingales in higher dimensions 
that will be used in the rest of the paper. A second purpose is to prove some 
auxiliary martingale results that we shall need in subsequent section. Our final 
aim is to give a quick self-contained introduction to Hilbert-space valued mar-  
tingales, and to show how some crucial finite-dimensional results carry over 
to a Hilbert-space setting. Readers who are only interested in the finite-dimen- 
sional case may skip the proof  of the main Theorem 2.1, and ignore alt future 
references to/2-valued martingales. 

Since every probabil i ty measure on a Hilbert space H is supported by some 
separable subspace, the corresponding statement is true for any H-valued mar-  
tingale, so without loss of generality we may  assume that H is separable. For  
convenience we may then take H = 12, so that every H-valued process M may 
be represented by its coordinate processes M 1 , M 2 . . . . .  An obvious first problem 
is then to characterize the martingale property of M in terms of the M i. To 
make this precise, let us first recall some definitions. 

We shall say that M is integrable, if E [Mt[ < oe for each t __> 0. By a martingale 
i n  l 2 is meant  an integrable process M, such that the inner product  v. M is 
a real-valued martingale for every ve 12. In particular, M 1, M 2, . . .  are then mart-  
ingales, and since we require the underlying probabil i ty space to satisfy the 
'usual  conditions' ,  we may  assume that M a, M 2 . . . .  are right-continuous with 
left-hand limits. It turns out that M will then have the same property. 

Local martingales may next be defined in the usual way. For  those the 
component  processes M i are again local martingales, so the covariat ion processes 
[M i, M j] are well-defined. For  convenience we shall often write [M i, M i] = [Mi], 
and we define the quadratic variation of M as the trace process [-M] = Z [Mi]. 
Here [M]  turns out to be a.s. finite, so by dominated convergence it inherits 
the right-continuity from the [M~], and we have A [ M 1 =  [A Mtl 2 for all t. When 
]M[ is locally in L 2, we many  further define the conditional variation process 
( M )  as the compensator  of [M].  Note  that, by monotone  convergence, ( M )  
= Z" ( M  ~) = 27 ( M  i, Mi).  

For  real-valued (semi)martingales M, it is well known that  the quadratic 
variation [M]~ may be obtained for fixed t > 0 as a limit, 

(2.1) ~[Mt~-Mt~_l[ 2 P, [M3~, 
i 

where 0 < t o < t 1 < . . .  < t, = t form an arbi trary parti t ion of the interval [0, t], 
and where convergence holds as the mesh size max [ t l - t i _  1] tends to zero. The 
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result remains true in 12 and will be needed to prove that the process I-M] - [[M[] 
is non-decreasing, a crucial fact for our construction in Sect. 3. 

Occasionally we shall need to refer to the jump point process of M, which 
we may consider alternatively as a counting random measure ~ on R+ x (12\{0}), 
or as the associated non-decreasing measure valued process ~. on 12\{0}, given 
by 

~t(B)= ~([0, t] x B)=  ~, I { A M ,  eB}, t>=O. 
s < t  

Similarly, the compensator  of r may be regarded interchangeably as a random 
measure ~ on R+ x (12\{0}) or as a measure valued process ~'. on/2\{0},  where 
the two are related by 

~t(B) = ~([0, t] x B), t > 0 .  

Note  that, for fixed B, the process ~.(B) is the compensator  of ~.(B) in the 
usual sense. 

We may now state the main result of this section, which contains all the 
facts we need for/2-valued martingales. Everything here is more or less implicit 
in the literature [e.g., in M6tivier (1982) and M6tivier and Pellaumail (1980)1, 
except for the characterization of/2-valued martingales which may be new. 

Theorem 2.1. Let M 1, M a . . . .  be real-valued right-continuous local martingales, 
and define M = ( M  t, M 2 . . . .  ) and [M]=SEMi] .  Then M is a local martingale 
in 12, iff IMo] < oo a.s. while [M]  1/2 is locally integrable. In that case even M 
is a.s. right-continuous with left-hand limits. Moreover, M satisfies (2.1), and 
[ M I 2 - [ M ]  is a local martingale, while [M[ is a local submartingale such that 
[M]  - [IM]] is non-decreasing. 

Proof. Let us first assume that  M is a local martingale in 12. Then clearly ]M0[ < oo 
a.s. To prove the remaining properties of M, [M] and [[M[], we may assume 
that M is a true martingale. First we note that, a.s. for fixed s < t and v e l 2, 

(2.2) [v'Msl=lEEv'M,l~2]l<=EEIv'M,II~-73~lvl E [IM, I I ~T]. 

Since l 2 is separable, the exceptional null-set in (2.2) may be taken to be indepen- 
dent of v, so we get IM~I<EEIM,II~7] a.s., which shows that IM[ is a submar-  
tingale. 

The same thing is true for the processes I / ~ " - # h i ,  where 

M " = ( M  1, ... ,  M n, 0, 0 . . . .  ), 

so by a classical inequality 

p { (~ r  '~ --  ~ r . ) *  __> r }  _<__ 1 E I~r~- ~21, r, t > 0 ,  

and since E I / ~ - - M ~ L ~ 0  by dominated convergence, we may  conclude that 
( ~ " - -  i~r")* --+ 0 a.s. as m, n ~ oo along some subsequence. It  follows easily that 
(2~" -M)*  ~ 0 a.s. along the same sequence, and since each process ~r n is right- 
continuous with left hand limits, the same thing must be true for M. 
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To see that [M] 1/2 is locally integrable, we define 

(2.3) U , = ~  AMsl{IAMs[>I},  t>O, 
s<=t 

and let 0 denote the compensator of U. Thus if ~ denotes the jump point 
process of U, we have 

~ =  i f v~(dt dr), t=>0. 
0 

By a suitable localization argument, we may assume that U has integrable 
variation. The same thing is then true for O, since 

t t t 

E[qI_--E ]" ~[vl ~(dt dv )=E ff ~[v[ ~ ( d t d v ) = E  ~ ]d U~] < oo, 
0 0 0 

so the difference D = U - 0  is a martingale of integrable variation, while the 
process N = M - D  is a martingale. By an argument in Protter (1990), pp. 102ff, 
it is further seen that the jumps of v .N are a.s. bounded by 2 for every vel z 
with [vl = 1, and since 12 is separable we get the same property for N. We may 
then assume by a further localization that N is bounded. It remains to write 

E IN], ~/2 < (E IN],) 1/2 -- (~  E IN'J3 a/2 = (~  (g JN/I 2 - E IN~I 2))1/2 

--- (E INI 2 - E INo12) ~/2 < oo, 

E [D]t ~/2 = E(~ ]A D~]2) '/2 < E ~, IA D~I < E i IdDl < o0, 
s<=t S<=t 0 

[M] = ~, [M i] = 2 ~ ( [Ni] + [D i] ) = 2 ( [N] + [D] ) 
<- 2 ([N] 1/2 + [D] 1/z)2. 

Conversely, assume that [Mo[<Oo a.s. while [M] 1/2 is locally integrable. 
To show that M is a local martingale, we may assume that Mo =0. It suffices 
to show that M is locally integrable, since the desired martingale property will 
then follow by dominated convergence from that of the processes M". Let us 
then define a process U as in (2.3) by the formula 

U t = ~ ( A M : , A M ~  . . . .  ) 1 {[A FM]~[__> 1}, t>0 ,  
s e t  

and put D =  U - O ,  where 0 denotes the compensator of U. As before, D is 
locally a martingale of bounded variation, so it remains to prove that even 
N = M - D  is locally integrable. As before it is seen that the processes ~n= (N 1, 
�9 .., N", 0, 0 . . . .  ) have only jumps bounded by 2, so the jumps of [K/"] are 
bounded by 4, and the same thing must be true for [N]. By suitable localization 
we may thus assume that IN] is bounded, and obtain 

E I~!  ~ (E IN, I ~) '/~ = (E [Nit) 1/2 < oo. 

To see that [M[ 2 -  [M] is a local martingale, we may assume by suitable 
localization that [M] I/z is integrable, while [M_] is bounded by some constant 



222 O. Kallenberg and R. Sztencel 

c > 0  on the support of [M]. Again it is enough to prove that [ M [ 2 - [ M ]  is 
integrable. To this aim, we first consider sums over finite index sets, and note 
that 

IS I M~- d M'] = Z 2 ~ M~- M j- d [M i, M j] 
i i j 

<- ~ ~ IM _ 12 d [-M ~] < c 2 ~ [M ~] < c 2 [M], 
i i 

where the first inequality follows from the fact that x .  Ax<=Ix[ 2 t rA  for any 
symmetric non-negative definite matrix A. We may now conclude by the BDG 
inequality (cf. Dellacherie and Meyer 1980) that, again for finite sums 

E I M  ~_ dM'  <~E [ 2  ~ M ~_ dM']l/2<cE M' <_cEEM] 1/2. 
t 

By dominated convergence, the sequence 

l/~r'i2--[/~']= L (IMiI2-[Mi]) =-2 L ~, Mi- dM' 
i = 1  i = 1  

is then Cauchy convergent in L 1, so the limit [M] 2 - [M] must be integrable. 
To prove (2.1), we may assume as before that I-M] 1/2 is integrable while 

IM_ [ is bounded on the support of [M]. Fixing a partition 0 = to < t~ < . . .  < t, = t 
of [0, tl we get 

~IM~, M 2 k -- , ,_ , I - [M] t=2~' ,Z I (M~_--Mt,_,)dM~. 
i i k t i -  1 

Using the BDG inequality as before, we obtain 

E ~[Mt~-M~_,I2-[M]~ <~E [Ms---Mt~ 11 d[ -M]~  , 
t i - - 1  

which tends to zero as max [ t i - t i -1[  ~ O,  by the left-continuity of M_ and domi- 
nated convergence. 

It remains to show that [ M ] - [ ] M [ ]  is non-decreasing. But this is clear 
from the fact that, for any partition 0 = t o < tl < ... < t, = t, 

~ l M t  -- Mt,_ ll2 > ~( iMt , [ - - [  M ti--1]) '2 
i i 

by the triangle inequality in 12. [ ]  

It is important to realize that every discrete time martingale No, N1, ... 
with associated filtration f~o, fr . . . .  can be embedded into continuous time as 
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a step type martingale Mr=NEt 3, t>0 ,  with respect to the filtration ~ = ~ t ] ,  
t > O. Here clearly 

[t] 

[M] t=  ~ Igk-gk_~l 2, t>0 ,  
k = l  

It] 

<M>,= ~ E[[N-Nk_~lzl~k_l] ,  t>0 .  
k = L  

By this device, every result for continuous time martingales (notably those in 
Sect. 3 and 5 below) can be specialized to yield a corresponding result in discrete 
time. Usually the latter can also be obtained directly by elementary methods. 
This is true in particular for our main Theorem 3.1. 

We conclude this section with three simple lemmas that will be needed for 
the proof of our main Theorem 3.1. 

Lemma 2.2. Let M and N be local martingales in R e or I z, and let a be a stopping 
time such that a.s. IM]=]N] and JAM]=JANJ on (~, ~) .  Then on (~r, oo) we have 
a.s. d [m]  = d [N] and d (M> = d <N> (the latter when m is locally in L2). 

Proof Since [M[ 2 - [M] and ]N[ 2 - [N] are local martingales, so is the difference, 
which equals [M] [-N] on [o-, ~) .  Now the latter process is continuous on 
(o-, o9), since 

A [M] = IA M[ z = [A NI z = A [N], 

and it has locally bounded variation, so it reduces to a constant on [o-, ~) ,  
and we get d [ M ]  = d [ N ]  a.s. on (o-, ~).  If M is locally in L 2, then so is N, 
so the compensators <M} of [-M] and <N} of [N] exist, and we get 
d < m }  = d < N }  a.s. on (a, ~).  [] 

Lemma 2.3. Consider a martingale M and a stopping time a, and define 

z = i n f { t >  a: [Mt[ A [Mr_ [ =0}. 

Then the process N~ = Mt 1 {t < z} is also a martingale. 

Proof Introduce the stopping times 

r , = i n f { t > ~ :  IMtl<l/n},  n~N, 

and write M~ for the martingales M(z ,  At), t>O, n~N. Then ~,Tz, so for t < z  
we obtain M~-~ M , =  N~. If instead t > z, we may conclude from the right-contin- 
uity of M that 

IM~I = IM~.I __<l -~ 0 =Nt. 
n 

Thus M~ ~ Nt for every t, and the assertion follows by uniform integrability. [] 

Lemma 2.4. Consider a process X and a stopping time ~, such that X~I {z< ~}  
is an integrable and R-measurable random variable, while the process Y~ =X~v ~ 
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--X~ is a martingale. Let ~ be a zero mean random variable independent of ~ ,  
and define 

Mt=~Xtl{z<=t},  t>=O. 

Then M is a martingale with respect to the filtration ~ generated by ~ and 
M. 

Proof First conclude from Fubini's theorem that M is integrable. To check 
the martingale property, fix any numbers s < t, and write 

M t = e X r  {zNs} + e X r  {s< z<=t} +e Yt. 

Here the first term is Ys-measurable, since M is adapted to Y.  As for the 
second term, we note that o% and ~s  agree on the set {s < z}, and write 

E E~X~; s<z__<t]ffJ = E [c~X~; z < t i f f s ]  l { s < z }  

= EEeX~; z ~ t I~-J 1 {s<z} 

= E [ E [ ~ l Y ~ o ]  X~; z=< tl~-[J 1 {s<z}, 

which equals 0 since EEa[ff~]=Ec~=0. Since Y is a martingale while M is 
adapted to i f ,  we finally obtain for the third term 

E[0~ '4, I Y , ]  = E[~zE E Y, I o~, ~3 I~ , ]  

Summarizing, we get 

EEM~I~J=~X~I{z<s}+~Y~=M~.  [] 

3. Reduction of dimension 

Most of this section will be devoted to a precise statement and detailed proof 
of our main result, Theorem 3.1, which asserts the existence for any given mar- 
tingale M in R e or 12 of some martingale N in R 2 with the same norm and 
quadratic variation processes. For  most purposes, this reduces the study of 
multidimensional martingales to that of martingales in R 2. A couple of elementa- 
ry results at the end of the section may be useful for a further reduction down 
to dimension one. 

The construction of N from M will in general require some randomization, 
so it may be necessary to extend the original filtered probability space (g2, ~,  P). 
Such an extension (~, Y ,  F 5) will be called standard if it preserves martingales, 
in the sense that any martingale on O will remain a martingale when regarded 
as defined on ~. Note that our standard extensions correspond to extensions 
in the terminology of Ikeda and Watanabe (1981), p. 89, whereas their standard 
extensions are more special. 

Theorem 3.1. Let M be a local martingale in R a or 12. Then there exists some 
local martingale N in R 2, defined on a suitable standard extension of the original 
filtered probability space, such that a.s. [M[ = IN[ and [M] -- IN]. I f  M is locally 
in L 2, then even ( M )  = ( N )  a.s. 
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Because of some technical difficulties indicated already in the introduction, 
it will be convenient to begin our  proof  with the special case when M is stopped 
at the first time (if ever) it reaches the origin. The result in this case will then 
be applied to the individual excursions of M from the origin, to yield the general 
result. 

With a slight abuse of terminology, we shall say that the random variables 
'91, `92 . . . .  form a Rademacher sequence, if the 'gk are i.i.d, with P {'gk = _+ 1} = 1/2. 
Such sequences will be used to attach random signs to the jumps of M. We 
may then choose any enumeration zl ,  z2 . . . .  of the jump times of M and asso- 
ciate a random sign ,9 k with the jump at z k. More precisely, we may take the 
z k to be any sequence of a.s. distinct finite stopping times, such that every 
jump of M will a.s. occur at some "c k. If the Ok are chosen to be independent 
of the filtration ~ ,  then clearly the signs attached to the jumps will be condition- 
ally Rademacher, given ~ ,  and then also given M. 

For  notational convenience, we may think of the signs as obtained from 
a continuous time process '9=('9t), so that our previous O k are the values of 
,9 at the times ~k. It then becomes necessary to specify the joint distribution 
(together with the required measurability) in terms of conditioning. It will further 
be convenient to use complex notation, and to define our new martingale N 
in C instead of R% Note that the quadratic variation [N] is then defined as 
[Re N] + [Im N]. We are now able to state our main lemma. 

Lemma 3.2. Consider a local martingale M in R 2 or l 2 and a stopping time a, 
put 

(----inf{t > o-; IM, I ̂  IM,-I----0), 

and assume that M r  on {a<  oo}, while Mr=O for t >~. Define 

t 

At = S dEM]C-d[lM[]C teEa, O, 
IMI 2 , 

m t _ �9 m t 

~176 [Mt-[ [Mt]' tr O. 

Further introduce a random variable 7 independent of o~ and uniformly distributed 
over the unit circle in C, a real-valued Brownian motion B independent of .~  
and 7, and a process ,9 whose values on the set {t~(a, 0 ;  ~t4 =0} are conditionally 
Rademacher, given if,, ?2 and B. Let 

V,=Bo&+ Z 'gs~s, t~[a,~). 
s~ (a ,  t] 

Then the process 

(3.1) E=71M,[  e iv~ 1 {t>er}, t>O, 

is a local martingale in C with respect to the filtration ~ generated by ~ and 
N, and on (a, oo) we have a.s. ]NI=IM], d [ N ] = d [ M ]  and d ( N > = d < M >  (the 
latter when M is locally in L2 ). 

Here the introduction of 7, B and ,9 may require an extension of the original 
probability space. The easiest construction is to take f~ = f2 x [0, 1] and P = P x 2, 
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where 2 denotes the Lebesgue measure on [0, 1]. Then ~ extends to a filtration 
~ ' = ( ~ x  I-0, 1]) on O, and the new filtration Y will be the one generated 
by J '  and N. 

Proof From the construction it is clear that the new filtration ~,~ (or the new 
filtered probability space (~, Y ,  fs)) is a standard extension of the original filtra- 
tion ~ (or space (f2, @, P)), so M and (in the local L 2 case) [Ml  - ( M )  will 
remain local martingales with respect to ~ .  We further have IMI = [Xl on [a, oo), 
and from the definitions it is then clear that, for re(a,  (), 

[A NI 2 = INI 2 + IN-I = - 2 INI IN-I cos c~ 

=IM~I2+IM~-12--21M~I IM~-I cos c~= I/M~I 2, 
while for t = ( < o% 

IANI=IN I =IMr162 

Thus IAN[=IAMI on (a, oo), so by Lemma 2.2 it remains only to show that 
N is a local martingale. By Lemma 2.4 it is then enough to show that N~' =__ ~Nt 
is a local martingale on (a, oo), i.e. that N'v~--N; is a local martingale on 
R+. 

By a suitable localization argument, we may then assume that M is a uni- 
formly integrable martingale. Fixing K>O, we may further assume that M 
remains constant after the stopping time 

t 

z=inf{t__>a; IM;I v y d i M ]  >K}.  

We may also assume that the local martingale ]MI 2 -  [M] mentioned in Theorem 
2.1 is in fact a true martingale. 

Next we introduce the stopping times 

z~=inf{t>__G: EMd<e}, , > 0 ,  

and note that the processes 

M~=M(tA%), N~=N'(tAZ,), t>0 ,  

converge pointwise to M and N', respectively, as e ~ 0. In fact, the convergence 
is obvious for t < ( since z~ T (, and for t > ( we get 

and similarly for N ~. Now if N * is known to be a martingale for each e > 0, 
then the martingale property of N' will follow by uniform integrability. Thus 
we may henceforth assume that [M_ l> e on the support of l-M] in (o-, o9). 

In that case we get for te(~, (), 

At__<~ -2 i (dlM]C--d[IMl]C)<__K/, 2, 
f f  
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and furthermore, by elementary geometry, 

cd < rc 2 ~ sin g c~, < re 2 7r z 7/2 K 
~__<, s__<, 2 = +4e2  s<, ~" IAM*]2<Tz2+ 4e2 " 

Thus we may now extend the definitions of A, e and V to R+, by taking dA, 
= d V ~ = e , = 0  on [0, a] and [-{, oo). Then V clearly becomes a martingale on 
R + with respect to the induced filtration, and moreover 

t ,S 

To complete the proof, it is enough to show that N' is a martingale on 
(a, oe) with respect to the filtration ~-' generated by ~,~ and V. Our first step 
is then to write, using It6's formula, 

(3.2) deiVt=ieiV~-d V t - l  eiV~-d[V]~ +(AeJVt-ieiVt- A Vt) 

=elV~-{idVt-�89 i~ . . . .  1 - i 0 t  cq)}. 

(Here and below, we are following the convenient practice of writing It6's formu- 
la in differential form and without summation sign in the discrete correction 
term. No ambiguity should result from this.) Next it is seen from Theorem 2.1 
that IM[ is a semimartingale, so by another application of It6's formula, 

dlM,I 2 = 2 IM,_I dlM,I + d E[MI],. 

Since IM-I ~ on the support of EM], we may solve for d[Mtl to get 

(3.3) 
1 

d l M , I -  (dlM,12-d [IMI],) 
21M~-I 

1 
- 2 IMp-I {(d IM, I 2 _ _  d [M]t ) + (d [ M ] , -  d [ IMI ],)}. 

Next recall that VC=BoA while D=IM[Z-[M] is a martingale. We need 
to show that the product V ~ D r is a local martingale. To ensure integrability, 
we may then replace B by a bounded process/3 obtained by suitable stopping, 
put ~'~ =/~oA, and prove instead that pc D ~ is a martingale. But this is clear, 
since for any s < t, 

E [~'~ D;I J~/] = E rE [/3 o A,I.,~, ', A, D] .  D~I Y , ' ]  = ~CDg. 

It follows that IV, Die= IV c, D c] =0,  so by (3.2) and (3.3) 

1 
(3.4) d [e iv, IMI]; = ie ~v' - -  d [V, D]~ = 0. 

21M,-I 

Integrating by parts in (3.1), we obtain in view of (3.4), 

d N ; =  [M,-I deiVt + e  ivy- dlMt[ +A IMtl A e ivt, 
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so by (3.2) and (3.3) 

(3.5) e -iv~ dN' t= lMt_ l { idVt -XdAt+(e  io . . . .  1 -i ,gt  at) } 

1 
+ ~ {(d [M,I 2 - d [M]t) + (d [ M ] t -  d [IMI],)} 

+ A IMtl (e i~ . . . .  1). 

But by the definitions of A and a, 

d [ M ] ~ -  d [[M[]~ = [M t_ [2 dAt, 
while 

[A Mt[ 2 - (A [ M t [ )  2 = [Mt -  Ut-[2 - -  ([Mr[- [Mt-[)2 

= 2[Mtl IMt-[ (1 - c o s  at), 
so (3.5) simplifies to 

1 
(3.6) e -ivy- dN~=ilMt_] d V t + ~  ( d l M f  - d  [M]t) 

+ i 8t { [Mt-[ (sin a t -  at) + A ]Mt[ sin at}. 

To see that this is a martingale, we note first that the summation process 
based on the last term on the right is of integrable variation. In fact, 

2 IMt- [  [sin at - ~tl < g Z aZt < g g '  < oe, 
t t 

while by Schwarz' inequality 

~[AMt[ [sinat[_-<{ ~ (A[Mt[) 2 ~ a2}I/2 +]AM~[ 
t t ~ ( a , z )  t < z  

< KI /K~+K+IM~I ,  

which is integrable, since IM~I is integrable while IM~I<E[IM~I I~fl a.s. by 
Doob's optional sampling theorem. 

Returning to Eq. (3.6), it is clear that the first two terms on the right define 
martingales on (o-, oe), and for the last term the required martingale property 
follows from the assumed conditional independence and symmetry of the vari- 
ables ~t, given ~,~ and B. Thus the left-hand side of (3.6) is a martingale, so 
the process N' itself must be a local martingale. By uniform integrability, it 
follows that N' is in fact a true martingale on (a, oe). [] 

The next lemma will be needed to split the path of a martingale into disjoint 
excursions from the origin. 

Lemma 3.3. Let the function f :  R+ ~ R+ be right-continuous with left-hand limits. 
Then the set {t>__O: ft>O} can be decomposed uniquely into at most countabIy 
many intervals I, of the form (a, b) or [a, b), such that f t -  > 0  for t~I~, while 
r a f t - = O  for tE~In. 

Proof. For each t > 0 with ft > 0, we define 

at=sup{st[O, t]:f~Afs_ =0}, bt=inf{s>t: f sAfs_  =0}. 
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Then bt>t and f sA f s_>O for all se(at, bt), while f~Af~_=0  for 
se{at, bt}\{0, oe}, the latter because of the right continuity of f~ and the left 
continuity of fs- .  Define It=(at, bt) if f(at)=O, and let It=[at,  bt) otherwise. 
Then any two intersecting intervals Is and It must be equal, so the I t form 
a disjoint partition of the set { t>0 :  f > 0 } .  Note also that there can be at 
most countably many distinct intervals It, since each one has positive length. []  

Proof of Theorem 3.1. Let J denote the collection of excursion intervals of the 
path of IMI, as defined in the Lemma 3.3. Given any dense sequence r l ,  r2 . . . .  
in R+,  we may construct recursively an enumeration I1, 12, ... of J ,  by letting 
I ,  = 0 if Mr. = 0 or r, s I  1 ~ . . .  u I ,_  1, and otherwise by taking I ,  to be the unique 
interval in J that contains r,. With this construction, the endpoints of the 
intervals will clearly become random variables (provided we take both to be 
oe if I , =  0). 

Independently of ~ ,  we now introduce a sequence of independent real-valued 
Brownian motions B ~, B 2 . . . .  indexed by R (so that for each n the two processes 
By and B"-t are independent Brownian motions on R+), and further an indepen- 
dent sequence of independent random variables 71, 72, ... in C, each uniformly 
distributed over the unit circle. For  every jump time t of M we next introduce 
a random variable 0t, such that the family {0t} is conditionally Rademacher, 
given ~,, {B"} and {7,}. Letting e,, t >  0, be such as in Lemma 3.2 and writing 

(3.7) At = i d[M]C-d[-lMI]C r, [MlZ , te l , ,  neN,  

we may now define the process 

(3.8) Vt=B"oAt+ ~ 0sc~s, t e l , ,  neN.  
se (rn, t] 

Note that in (3.7) and (3.8), the integral or sum over an interval (a, b] with 
a > b is defined by 

f = - -  I and E = - -  2 "  
(a, b] (b, a] (a, bl (b, al 

Now put 

(3.9) Nt= ~ 7,]MtFeiVtl{teI,}, t>O, 
t t = l  

and let o~=(fft)  be the filtration generated by ~- and N. We claim that N 
is a complex-valued o~-martingale, such that a.s. ]M[=[N[, [ M ] = [ N ]  and 
( M )  = ( N ) ,  the latter when M is locally in L z. 

On every excursion interval I , ,  we may choose a version of V which is 
right-continuous and such that the left-hand limits exist in the interior I ~ We 
may further assume that the left limit exists at every finite right endpoint t 
where Mr-  :~ 0. Since moreover M t = 0 implies Nt + = Nt = 0 while Mr-  = 0 implies 
N t - =  0, it is clear that N has a right-continuous version with left-hand limits. 
From (3.9) it is further seen that [N[ = [M[, and that JAN] = [AM[ in the interior 
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of every excursion interval I , .  If te(0, oo) is instead an endpoint, we get 
INI ,x IN I = [Mr AIM,- I = 0, so in that case 

IA NI = INt v IN,-I = IM,I v IM,-I = IA Mt[. 

At every other point we have trivially [AN[ = [A Mr[ =0.  Thus the relation [ANI 
= [AM[ must be generally true. 

Next we note that f f  is a standard extension of o~, so that the local mar- 
tingale property of M and ~ (in the local L 2 case) of [ M ] -  <M)  is preserved 
under the extension of the filtration. By Lemma 2.2 it remains only to show 
that N is a local / f -mart ingale.  To this aim, we fix an ~ >0,  put zo =0,  and 
define recursively the stopping times (71 ~_ T 1 ~ 0" 2 ~ . . .  by 

ak = inf{t > Zk- 1 : [M,I => ~}, 
zk=inf{t>ak: [MI/x [M,_[ =0}, keN.  

Next we introduce the complex-valued process 

(3.10) Nte=N~ L l{o-k<t<Zk}, t>O, 
k = l  

and let -~-= = (ff~) be the filtration generated by N = and ~-. Note that IN ~ -  NI _-< e, 
and further that i f  = v o~ ~, the filtration generated by all the ff~. 

First we prove that the processes N~ are local ~"-martingales. It is then 
enough to consider each term in (3.10) separately, and by suitable localization 
we may reduce to the case when M (and then also N) is uniformly integrable. 
To prove that the k-th term in (3.10) is a martingale, we may first assume 
that o-k< ov a.s. Then [O'k, Zk)cI ~ for some N-valued random variable v. By 
Lemmas 3.2 and 2.3 it is enough to show that the random variable 

71- N~J lN~. I  = 7, elV(~) 

is uniformly distributed over the unit circle in C, while the process 

B'k( t )=B*( t -A~)-B~(-A~) ,  t>=O, 

is an independent Brownian motion on R +, and that the pair (7~, B;) is indepen- 
dent of ~,~ But this follows by a simple conditioning argument from the corre- 
sponding properties for the pairs (7,, B"). If P{ak= ~ } > 0 ,  then V~ and B~ can 
only be defined as above on the set {0-k < OO}, and we may note instead that 
they are conditionally independent with the stated distributions, given Y and 
on the set {ak< oO}. They may then be extended to the set {ak= or} with the 
same properties, and Lemma 3.2 applies as before. 

To deduce the asserted martingale property of N, we fix an arbitrary ~ -  
stopping time z, such that the process M~At l{z>0}  is uniformly integrable. 
Then the processes N~,,tl{z>O} have the same property and are therefore 
~=-martingales, so by the chain rule for conditional expectations, we get for 
any s<t  and e<6, 

E[N~^,; z>Ol~ a] = E [ N ~ ;  z>Ol~~ 
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Here we may conclude by letting e ~ 0 and then fi --, 0 that  

e [N,A,; �9 >01~s]  = E [ N , ~ ;  z >01~s]  =N=A~ 1 {z >0}, 

which means that N~,, t 1 {~ > 0} is an ~ -mar t i nga l e .  []  

As already noted, Theorem 3.1 becomes false if we require the local mart-  
ingale N to be real-valued. Thus in order to extend a one-dimensional martingale 
inequality to higher dimensions, we need to consider separately the extension 
to dimension two. The following inequality may then be a useful tool. 

Proposition 3.4. Let X be a measurable random process in R 2. Then 

1"C 
sup P{(v.X)*>r(1--e2)},  r>_O, 0 < e < l .  P{X*->-r}--<~8 ivl= 1 

Proof. First assume that X~= 4 is independent of t. Let the random vector t/ 
be independent of 4 and uniformly distributed over the unit circle. Writing 
s =  r (1-e2) ,  we get by Fubini 's theorem 

1 2r~ 

sup P{lv.41>s}>P{Irt.~l>s}=~ E S 1{14 cos qSl>s} dq~ 
I v l = l  0 

2 
E arccos : 141_-> 

2 
> - -  arccos(1 - e2) . P { 141 > r}, 

and it remains to note that 

arccos (1 - e 2) > arccos ]/1 - e 2 = arcsin e > e. 

Next assume that X is an arbitrary measurable process. By the general 
section theorem (cf. Dellacherie and Meyer 1975), there exists some R+-valued 
random variable z, such that IX~[>r a.s. on the set where X* >r .  Using the 
result in the special case with 4 =X~, we obtain 

P {x* > r} < p {IX~t > r} 

--<Ten Ivl=lsup P { [ v . X , l > s } < ; ~  ,vl=lsup P{(v .X)*>s}.  

It  remains to apply this for fixed s to a sequence r, T r. []  

In view of our intended applications to martingales, we shall need the last 
result only when X is right-continuous with left-hand limits. In that case it 
is easy to modify the preceding proof, so as to avoid any reference to the debut 
or section theorem. 

In applying Proposit ion 3.4 one needs to find a good value for E. The follow- 
ing specific result for a wide class of exponential bounds will be used repeatedly 
in Sect. 5. Recall that an ultimately non-decreasing and strictly positive function 



232 O. Kallenberg and R. Sztencel 

f on R + is said to be of dominated variation or polynomial growth (at infinity), 
if the ratio f ( 2 r ) / f ( r )  remains bounded as r ~ oe. 

Corollary 3.5. Fix  a convex function of  dominated variation f :  R + ---, (0, oe), and 
let X be a measurable process in R z, such that 

sup P { (v . X)* >= r} < e -  S (r), r > O. 
Ivl- 1 

Then 
P { X * > r } < ~ ( f ( r ) v  1)l/ae -s(r), r > 0 .  

Proof  Replacing f by f v f ( 0 ) v  1 if necessary, we may assume that f is non- 
decreasing with f >  1. By Proposit ion 3.4 it is then enough to show that 

f ( r ) - f ( r - ~ ( r ) ) < l "  

Since f is convex, the left-hand side is bounded by rf ' (r) / f (r) ,  where f '  denotes 
the right or left derivative of f It  remains to notice that, by the convexity 
and dominated variation of f ,  

r f ' ( r )  < f ( 2 r ) - - f ( r )  < f (2 r )  < 1 []  

f (r) = f (r) = f (r) "-'~" 

4. Continuous paths 

In this section we examine the special case of martingales M in R d or I z with 
continuous paths. For  most  purposes we may then assume that [M]~= t  a.s., 
since we may easily reduce to that case by a random time change. 

In fact, assuming first that [M]  0o = oe a.s., we may introduce the stopping 
times 

% = i n f { s > 0 :  [ M ] s >  t}, t > 0 ,  

and define a new process N and filtration (g by 

Nt = Mzt ,  (g = ~ t ,  t ~ O. 

Since M and [M]  have a.s. the same intervals of constancy, even N is continuous 
(cf. Jacod (1979), p. 316), and from Doob ' s  optional sampling theorem it is further 
seen that the processes N - N o  and I N l 2 - l g o l 2 - t  are (g-martingales. Thus N 
is a continuous local (g-martingale with [ N i t  = - t a.s. Note  also that  Mt = No [ M ] t .  
It  is further clear that the graph of N on [0, [ M ] J  coincides with the graph 
of M on [0, t], so in particular M * = N * o [ M ] ,  a.s. 

The situation is slightly more complicated when P { [ M ] ~ o < o o } > 0 ,  since 
in that case % may be infinite. To preserve the linear rate I N ] , - t  in this case, 
we may proceed as in Ikeda and Watanabe  (1981), pp. 91f, to randomize a 
suitable continuation of N on the time interval ( [ M ] ~ ,  oe). Note  that the a.s. 
relations Mt - N o [M]t and M* --- N* o [M]t  remain true in this case. 

In view of these remarks and in order to simplify the statements of our 
results, we shall assume for the remainder of this section that  M is a continuous 
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local martingale in R d or I z with [M] i t - t  a.s. Our first aim is to derive the 
two equivalent SDE's in (1.4) and (1.5). 

Theorem 4.1. Let M be a continuous local martingale in R a or 12 with [M]t=-t. 
Then there exist some real-valued Brownian motion B, some measurable and 
adapted [0, 1J-valued process ~t, and some non-decreasing continuous process L 
with Lo = 0 which grows only when M = O, such that 

(4.1) dlMt[ 2 =2  IM~I ~t dBit+dt,  

(4.2) dlMit] = 

it 

(4.3) I ct~ as  = 
0 

1 
o~t d B t + ~ , ,  1 {Mr #0} (1 - e ~ ) d t + d L t ,  

Z VVl tl 

I-IMI3, t ~ 0 .  

( 4 . 4 )  Lt=sup(L~-[Ms l )vO , t>=O. 
s<it 

Here and below, 'existence' of random processes should always be under- 
stood in the weak sense. Thus our auxiliary processes may have to be defined 
on some extension of the original probability space. 

Proof By Theorem 2.1 the process 

( 4 . 5 )  Nt=]Mitl2--[m]t-=lMtl2--t, t>O, 

is a local martingale while IM, I is a semimartingale. By It6's formula, 

(4.6) d [ M t l  2 = 2 [Mit] d IMit[ + d [[Ml]t, 

SO 

Now 
d [N]t = d [IMI2]t- 4 IMd 2 d [IMI1. 

(4.7) d[lMl]t  <=d[M]t=dt, 

so by a theorem of Doob (cf. Karatzas and Shreve 1988, p. 170) we may write 

(4.8) dNt = 2 [Mt[ c~t dBt, 

for some Brownian motion B and some measurable adapted process a > 0 satisfy- 
ing (4.3). By (4.7) we may assume that a <  1. Now (4.1) follows by combination 
of (4.5) and (4.8). 

Next, we get from (4.1), (4.3) and (4.6), 

2[mt[ c~t d B t + d t = d [ m t l  2 = 2 [Mr] d[Mt[ +a t  z dt, 
so for Mt 4: O, 

1 
diMt[ =c~t d B t + ~ , ,  (1 _~2) dt. 

zlwltl 
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Thus, if 2L denotes the local time of ]M[ at zero, then (4.2) follows with 
replaced by e '=  ~ 1 {M =t= 0}, by Tanaka's formula (cf. Rogers and Williams 1987, 
p. 96). But then (4.3) remains true with c( in the place of ~, and we may also 
replace ~ by e' in (4.2). Finally, (4.4) follows from (4.2) by Skorohod's lemma 
(cf. Karatzas and Shreve 1988, p. 210). [] 

Corollary 4.2. Let M be a continuous local martingale in R e o r  I 2 with [M]t= t 
a.s. Then 

~ l {Mt=O} d t=O a.s. 
0 

Proof By Tanaka's formula, (4.2) remains true with c~ replaced by a 1 {M~0}, 
so by It6's formula, 

d IM,[ 2 = 2 [M,I d IM, I + d [-IMI], 

= 21M,I ~, dBt+ 1 {Mr*0} (1 _~2) d r +  1 {Mr4= 0} c~ 2 dt  

= 2lMtl ~tdBt+l{Mt=#O} dr, 

and the assertion follows by comparison with (4.1). [] 

The next result is a kind of converse to Theorem 4.1, which shows that 
the SDE's (4.1) and (4.2) are not only necessary, but also essentially sufficient 
for the solution process to be of the form ]M[ for some continuous local mart- 
ingale M in R d with d>2 .  Note that the corresponding statement for d = l  
is true only when e-= 1. The extra condition required in this direction is precisely 
the property in Corollary 4.2 of a "non-sticky boundary".  

Theorem 4.3. Let X be a continuous R+-valued process such that 

(4.9) ~ 1 {Xt = 0} d t = 0 a.s., 
0 

and assume that X satisfies either one of the SDE's 

(4.10) 

(4.11) 

dXat = 2Xta t  d B t + d t ,  

dSt +~1~ 1 {Xt>0 } (1 -~t  2) d t + d L  t, dX~=~, 
z-~ t 

for some real-valued Brownian motion B, some measurable and adapted [0, 1J- 
valued process ~, and some non-decreasing continuous process L which grows 
only when X = O. Then X satisfies both equations, and there exists some continuous 
local martingale M in R 2, such that a.s. 

i 2 ds, t>O. ]Mt[ =Xt ,  [M]t=t ,  [[M[]~= c% 
0 
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Proof First assume (4.10). Applying Tanaka's formula to the semimartingale 
X v e with e > 0, we get 

(4.12) d(X t v e ) = l { X t > e } a t d B t +  2 @  ~ l { X t > e } ( 1 - a  2) d t+d/Zt ,  

where/2  is a non-decreasing continuous process which grows only when Xt = ~. 
This shows in particular that X v e is a local submartingale, so by uniform 
convergence the same thing is true for X. Thus X is a semimartingale, so by 
Tanaka's formula and (4.12), 

dXt=  1 {Xt>0  } d X t + d L t  

B 1 =l{Xt>0}c~ td  t + ~ l { X t > O } ( l - c c { ) d t + d L t ,  

for some non-decreasing continuous process L which grows only when Xt=O. 
To get (4.11), it remains to note that ~l{Xt=O}o:zdBt=O, since by (4.9) 
I i {x,=o} dt=O. 

Assuming instead that (4.11) holds, we get by It6's formula and (4.9) 

dXZt = 2 X t d X t  +d[X] t= 2Xt~tdBt  + l {Xt>O} (1-a2t ) dt +at2 dt 

= 2 X  t ~tdBt+dt.  

Thus even (4.10) holds, so Eqs. (4.10) and (4.11) are equivalent under condition 
(4.9). 

Now assume that X satisfies (4.9)~(4.11). Proceeding as in the proof of Theo- 
rem 3.1, we may then construct, on each interval where X > 0, some continuous 
local martingale V in R/2 rc Z with 

1 
d [V]t =~-t2 (i - ~ )  d t, 

such that the process M t = X t  eivt is a continuous local martingale in C with 
[Mt[ = X  t and [Ml t=t  a.s. for all t>0 .  By (4.11) it follows that 

d[ [Ml ] ,=d[X] t=c~ dt. [ ]  

We shall now use the SDE's in Theorem 4.1 to derive some pathwise and 
distributional bounds for M. 

Theorem 4.4. Let M be a continuous martingale in R d or  12 with Mo=O and 
[ M ] t -  = t a.s., and define At = [[M[]t. Then there exists some real-valued Brownian 
motion B, such that a.s. 

and 
Mt* <= B* o At + t]/~- At, t ~ O. 

M~* __< sup (]B~[ + V~--s), t__>O. 
s< A, 
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Define Xt = [Mr[--]//~-At, and conclude from Theorem 4.1 and Tanaka's Proof 
formula that 

dXt + =1  {Xt>0} :~tdB; 

(1- 5 ( 1 
- l { X t > 0 }  2 \ t ~ - A t  [ l t ( ) d t + d L t  

= d  Yt -d  Vt+dL . 

where B' is a Brownian motion while Yis a continuous martingale with [Y]t _-< At, 
and where both V and L are continuous and non-decreasing, the latter process 
growing only when Xt=O. Assuming Yo= Vo=L0=0 ,  we get by Skorohod's 
lemma, 

L t=  --inf(Y~-- V~), t=O, 
s~=t 

SO 

Xt + = Y~- Vt-  inf(Y~- V~)< Yt-  inf Y~. 
s < t  s < t  

Now Yt=B"o [Y]t for another Brownian motion B", and for a third Brownian 
motion B we have 

B;' - inf B's' = ]B~[, t > O. 
s<=t 

Thus 
Xt + <= B"o [ Y ] t -  inf " * B~ = IB o [Y]~I --< B o At, 

s < [Y]t 

and we get for 0 < s -< t, 

IMsl<X~ + + s ~ - -  A~-  A~ ==_ B* o At + t ~ A t -  At, 

or alternatively 

[M,I<=X~+ +]~----A,<IBo[Y],I+I~--EY-I , .  [] 

Theorem 4.5. Let M be a continuous martingale in R d or l 2 with Mo=O and 
[ M ] t  =- t a.s., and let B be a real-valued Brownian motion. Then 

(4.13) P{M*>r}<~P{B*>=r}, r, t>O. 

This improves a result in Chow and Menaldi (1989), where exponential 
bounds for the tail probabilities on the left are obtained under special conditions 
on M. Recall that the right-hand side of (4.13) is bounded by 4P{Bt_->r}, by 
the reflection principle for Brownian motion. 

Proof. By scaling we can take t = 1. By Theorem 4.4, 

(4.14) M T < s u p ( I B t t + ] ~ - t  ) a.s. 
t-<l 

for some Brownian motion B, so writing 

z=inf{ te[O,  1]: Bt+ l~t--t>=r} 
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for fixed r > 0 and using the symmetry of B, we get 

P{M*>r} <2P{sup(Bt+ 1]//l~-t)>r}=2P{B~+~--z>=r}. 
t < l  

By the strong Markov property of B at z, we hence obtain 

P{B~>=r}>=2P{BI>r}>=2P{B~+~ll--z>r, Ba--B~> 1]//~%--%} 

= 2  E [P [B 1 --B~ ~ 1 ] / l ~ l ~ J ;  B~ + ] / 1 - r > r ]  

__>2p{B~_I} p{B~+ ll/i~-~___r } 
>=P{Bl>=l}P{M*er}. [] 

The next result gives some sharp a.s. bounds for the asymptotic rate of 
increase of JMt[ as t --+ oo or 0. 

Theorem 4.6. Let M be a continuous martingale in R d or 12 with M o=0 and 
[M], -- t a.s. Then, as t --+ 0 or o% 

tM~] 
(4.15) lira sup ] /2 t  log]logt] <1  a.s., 

while 

IM, r 
(4.16) lira inf ___ 1 __lira sup - ~  a.s. 

Moreover, these bounds are sharp, except for those in (4.16) when d = 1. 

Proof Write 
L(t)=]/2tllogflogtfl, t>0 .  

and conclude from the law of the iterated logarithm for one-dimensional Brow- 
nian motion B that, as t --+ 0 or oo, 

B,* 
l i m s u p ~ = l  a.s. 

Thus (4.15) holds by Theorem 4.4. Note also that the bound is attained when 
~ 1 .  

To prove (4.16), conclude from Theorem 4.1 that a.s. 

(4.17) IMtl2= Bo EIMIZ]t + t, t >= O, 

for some one-dimensional Brownian motion B. Here the first term is bounded 
when [JM[Z]~ < oo, and otherwise its zero set is a.s. unbounded. Hence in both 
cases (4.16) holds as t-+ oo. Similarly, either [[MI2]t--0 near zero, so that the 
first term in (4.17) vanishes, or else []MJZ]t>0 for all t>0 ,  in which case the 
zero set of the first term clusters at zero. Thus (4.I6) holds in both cases as 
t--,0. Note that even the bounds in (4.16) are sharp (except when d =  1), since 
we get [Mt[- ~ t  a.s. by taking c~-0. []  
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Let us now return to the basic SDE's governing a continuous martingale 
in higher dimensions. Thinking of the process e in Theorem 4.1 as a stochastic 
control, it is natural to ask which non-anticipating choices of e are possible, 
and when the associated norm processes IMI are unique. Restricting ourselves 
to Markovian controls, where c~ t is of the form a(IM~l, t) for some measurable 
function a: R2+ ~I-0, 1], it is equivalent in view of Theorem 4.3 to consider 
the SDE 

(4.18) dXt 2 = 2Xta (X  t, t) dBt+dt,  

and to ask for conditions ensuring the existence and uniqueness of weak solu- 
tions. Note that the drift may be removed by the substitution Xt 2 = Yt + t, which 
yields the simpler equation 

(4.19) d Yt = 2(Yt+ 01/2 a((Yt + t) 1/2, t) dB t. 

Following the discussion of the Engelbert-Schmidt theory in Karatzas and 
Shreve (1988), pp. 329ff, it is now easy to give examples where the existence 
or uniqueness fails. Let us first assume that 

a(x, t)=l{xZ>=t}, x, t>__O. 

Then (4.18) has no solution for any starting distribution/~ ~: 6o, since if X starts 
at some x >0,  it will eventually get absorbed in the orbit where x2=  t, which 
is impossible since o- = 1 there. 

Let us next assume that 

a(x, t)=l{xZ:#t}, x, t>O. 

Then (4.18) has the weak solution IB"], where B ~ is a one-dimensional Brownian 
motion with arbitrary starting distribution/~. But (4.18) is also satisfied by the 
process 

x ,={(8 , "Af+( t -z )+}  1/2, t_>_0, 
where 

z=inf{t>=O: IB~Ul = ~ } ,  

and it is clear that X and [B ~] have different distributions, since z < ~ a.s. 
Most interesting, however, is the autonomous case, when a(x, t)-- a(x) is inde- 

pendent of t. This corresponds to the case when 

d[Md 2 =2]Mt[ a(lMt]) d B t + d t .  

Although current theories for weak solutions do not seem to apply here, unless 
special conditions are imposed on o-, we conjecture that in this case equation 
(4.18) has always a unique weak solution. 

5. Some maximal inequalities 

The main purpose of this section is to show how the results of Sect. 3 can 
be used to obtain martingale inequalities in R a o r  l 2. Recall that, by Theorem 
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3.1, any martingale inequality in R 2 which only involves the processes [M[, 
[M], and ( M )  remains valid in higher dimensions with the same constants. 
Thus in order to extend a one-dimensional inequality to R d or 12, all we need 
to do is to prove an extension to R 2, which is usually trivial (at least if we 
do not care about best constants). In certain cases, it is even possible to give 
a proof directly in 12 (cf. Burkholder 1988). 

For  those reasons, we shall focus our attention on inequalities which are 
new even in one dimension, or where the extension to higher dimensions is 
nontrivial. Our main results are then exponential inequalities for martingales 
with bounded or symmetric jumps, and a continuous time version of the Dubins- 
Savage inequality. Let us begin with the former. 

Theorem 5.1. Let  M be a martingale in R d or 12 with M o = 0  and [ A M [ < c <  1 
a.s. Then [M] < 1 a.s. implies 

( r2 ) 
1 + r  exp r>O, 

(5.1) P{M*>r}<~/l+rc 2 ( 1 + r c )  ' - 

while ( M ) <  1 a.s. implies 

(5.2) l + r  r 
P{M*>_>_r}<~l -~rceXp( - -~cc log( l+rc) ) ,  r>O. 

For d = 1 the factors  outside the exponential may be replaced by 1. 

For  sequences of independent real-valued random variables with zero mean 
and finite variance, (5.2) is essentially due to Kolmogorov,  though with the 
exponent in (5.l) (cf. Lorve 1977, p. 266). The sharper form with the logarithm 
in the exponent is due to Prohorov (cf. Stout 1974, p. 262). Martingale versions 
in discrete time and one dimension of Prohorov's result have been proved by 
Johnson et al. (1985), and by Hitczenko (1990). The inequality in (5.1) seems 
to be new, and no continuous time or higher dimensional version of either 
inequality seems to be previously known. 

For  the proof  of Theorem 5.1, we shall need a lemma. 

Lemma 5.2. Let  M be a real-valued martingale with M o = 0  and ] A M [ < c <  0% 
and define 

x+ log (1 - -x )+  eX- - l - -x  
f ( x )  = x2 , g (x) - x2 , x >= O. 

Then the processes 

X t = e x p ( M t - - f ( c ) [ M ] t ) ,  Y t = e x p ( M t - - g ( c )  (M)t),  t>O, 

are supermartingales. 

Proo f  To prove that X is a supermartingale, we may assume that c < 1. Writing 
a = f ( c )  we get by I tr 's  formula, 

(5 .3)  Xt_  1 d X t  = d M r -  a d [M]t  + l d [MC]t 

+ {exp (A M t  -- a (A Mr) 2) -- 1 -- A Mt  + a (A Mr)Z}. 
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Here the first term on the right gives rise to a local martingale Xt-  d Mt, and 
we shall prove that the sum of all remaining terms is non-increasing, so that 
the same thing is true for the corresponding integral d X t - X t _  dM~. It then 
follows that X is a local supermartingale, and by Fatou's lemma it is also 
a true supermartingale. 

To prove the desired monotonicity of the bounded variation component 
in (5.3), we note first that its continuous part equals ( �89 IMP]t, which is 
non-increasing since a>�89 Turning to the contribution of the jump 4=AM~, 
we need to show that exp(~-a~Z)<  1 +~, or equivalently that f(-~)<=f(c) for 
]3t < c. But this is clear by a Taylor expansion of each side. 

Next we apply It6's formula to Y with g(c)= a, to obtain 

(5.4) Yt-_ t dY t=dMt-ad(M) t+�89  

+ {exp(AMt-aA ( M ) t ) -  1 - A M t + a A  (M)t}. 

Here Mt is a martingale while ( �89 [MC]t is non-increasing, so it remains 
to consider the contribution of M a = M - M  ~ to the bounded variation terms 
in (5.4). To this aim, consider any bounded predictable stopping time ~, and 
note that the jump at z of the process Y 21 d Y - d M  equals ~ - - - e r  
where ~=AM~ and t/=A <M)~. Since E [ ~ I ~ _ ] = 0  and E[~2fo~_]=~/ a.s., we 
get by a Taylor expansion of e r 

E E~l~_l___(l+ an) e-" '~-  1 __< O. 

Thus the accessible jumps of Y form a supermartingale, so subtracting this 
part, we may henceforth assume that M is quasi-leftcontinuous. But then <M) 
is continuous, so writing ~ = A Mt as before, the remaining terms of (5.4) become 

- a d  ( Ma)t +(e r  1 - 3 ) <  --ad < Ma)t + a~ 2 =a(d[Ma]t-d  < M't)t), 

where the right-hand side is a martingale. Thus the contribution to g is again 
a supermartingale. [] 

Proof of Theorem 5.1. Assuming M to be real-valued with [M] __< 1, and applying 
Lemma 5.2 to the martingale u M for fixed u > 0, we get by a classical supermar- 
tingale inequality, 

P{supM,>r}<exp(-ur+u2f(uc)) ,  r>O. 

Now the function F(x)=2xf(x)  is continuous and strictly increasing on [0, 1) 
with range R+,  so it has a unique inverse F -1 :  R+ -~ [-0, 1), and we may choose 
u = F-  1 (r c)/e. This yields 

(5.5) 
(rF1) (r2) 

P{supMt->-r}-<-exp - ~ c  (re) _<_exp 2 ( l + r c )  ' r=>0, 

where the last inequality stems from the fact that F(x)<__x/(1--x) and hence 
F-l(y)>y/(1 +y). Combining (5.5) with the same inequality for --M, we get 
twice the same bound for P {M*> r}, and the higher dimensional estimate now 
follows by Theorem 3.1 and Corollary 3.5. 



Vector-valued martingales 241 

Assuming instead that M is real-valued with ( M )  < 1, we get as in (5.5) 

r ( - ~ - c  l og ( l+  rc)), r >  0, P {sup Mt>r} <exp(__~c G_l(rc))<exp r 

where G denotes the continuous and strictly increasing function xg(x)<e  x -  1, 
which has a unique inverse G- 1 (y) > log (1 + y). Using Theorem 3.1 and Corollary 
3.5 as before, we get the higher dimensional version 

(5.6) 
( )1/2 ( r ) 

P{M*_>_r}~< l + r l o g ( l + r c )  exp - 2 c l o g ( l + r c ) ,  r>0 ,  
C 

which is equivalent to (5.2) for rc<l. For large rc, however, the bound in 
(5.6) exceeds the one in (5.2) by a factor (rc log(l+rc)) 1/2, so to get (5.2) it 
is necessary to replace the estimate G - 1 (y) > log (1 + y) by a more accurate bound. 
Writing x = G(y) and using the fact that x >log(1 +y), we get 

eX= l + x + ~ -  > l +(l + 2) log(l + y)>(l + y) log ~/Y, 

and for large y we also have y > x, so 

log (1 + y) + log log ~/y < G - 1 (y) < y. 

Thus we get in place of (5.6), for large rc, 

{ r r } 
P {M* > r} ~<exp -2cc log(1 +rc) -~c  c log log V ~ + I  log(1 +r) 

and it remains to notice that c-  1 ~ 1 while r/c > r > log (1 + r). [] 

Sharper inequalities may be obtained under stronger conditions. Thus it 
has been shown by Azuma (cf. Pisier 1986, Lemma 2.6) that if M is a real-valued 
martingale in discrete time with M 0 = 0  and [AMk[<Ck a.s. for all k, where 
the Ck are constants satisfying 2 2Ck < 1, then P {M* > r} < 2 exp(--r2/2) for all 
r > 0. Such inequalities are useful in the local theory of Banach spaces (cf. Milman 
and Schechtman 1986). Using our results from Sect. 3, we get immediately the 
higher-dimensional version 

P {M* __> r} ~< (r + l) exp(--r2/2), r=0.  

Another case where the bounds in Theorem 5.1 can be improved is when 
the jumps of M are symmetric. By this we mean that the compensating random 
measure ~ of the jump point process 

it(B)= ~ I{AMsEB}, B ~ ,  t>=O, 
s < t  

is symmetric under a change of sign, in the sense that ~ ' ( -B)=  ~(B) a.s. for 
all B e N  and t__>0. Here ~ denotes the Borel a-field in R e or 12 respectively. 
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In discrete time, symmetry of the jumps is clearly equivalent to conditional 
symmetry, in the sense that 

P [ - A M , ~ B I ~ , _ a ] = P [ A M , ~ B l f f , - ~ ]  a.s., BeN,  n~N. 

Theorem 5.3. Let M be a martingale in R e o r  l 2 with symmetric jumps and such 
that Mo = 0 and [M] -< 1. Then 

(5.7) P { M * > r } < ( r +  1) e x p ( -  r2/2), r>0 .  

We shall need two lemmas. 

Lemma 5.4. Let M be a martingale in R e o r  12 with symmetric jumps, and let 
N be the corresponding martingale in R z, as constructed in Theorem 3.1. Then 
even N has symmetric jumps. 

Proof By the definition of symmetry, it is enough to show that all jumps with 
size in some interval (a, b) with 0 < a < b < oo are symmetric, and we may then 
treat separately the cases of jump times z with M,_ = 0  or Me_ +0.  

In the former case, let N be such as in the proof of the Theorem 3.1, and 
note that the jump at z occurs in the approximating processes N ~ for any e < a. 
From the mentioned proof it is clear that arg N[ is uniformly distributed over 
[0, 2n) and is independent of J and [-N~I, given that z<o c .  It follows easily 
that the one-jump process 

(5.8) Jt = N, 1 {z__< t}, t>__0, 

is symmetric with respect to the filtration J '  generated by Y and N ~. Letting 
e ~ 0, we get the desired symmetry with respect to i f - -  V ~  ~. 

Turning to the case when M e _ ~ 0, let 0 = 0~ be the associated random sign, 
as defined in the proof  of Theorem 3.1, and introduce the process 

Xt=(AM~, O) 1 {z<t}, t>O, 

in H = R e § 1 or 12 x R. Then X is again symmetric with respect to the extended 
filtration ~ .  Moreover, 

AN=(M~_.AMON~_ ( IM~_.AM~I2_~ 1/z OiN~_ 
IMe-I 2 + IAM'I2 IM~-I 2 } INe-I '  

which is clearly of the form 

AN~=F(M~_, N~_, X 0 =  V~(X~), 

for a predictable process V on R+ x H. Thus the compensating random measure 
of the process J in (5.8) is the image under V of the compensator of X, and 
it remains to show that V preserves the symmetry. But this is clear from the 
fact that Vt(--x)= Vt(x) for all t > 0  and xeH.  [] 
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Lemma 5.5. Let M be a real-valued martingale with symmetric jumps and bounded 
quadratic variation [M]. Then the process 

Z t = exp (M, - ½ [M]t), t _> 0, 

is a supermartingale. 

Proof Writing Xt = Mr-½ [M],,  we get by It6's formula 

SO 

dZ,=Zt_ dX,+½Z,_ d [Xq ,+{~Z, -Z ,_  AXt}, 

(5.9) ZT_ ~ dZt=dMt-½d[M]t+½d[MC]t 

+ {exp (A Mt - ½ (A Mr)2) _ 1 - A Mt + ½ (A M~)2} 

=d M, + {exp(AM,-- ½(AMt)e)-- I-- AMt}. 

Now eX+e-X<2e ~2/2, so defining f ( x ) = e x p ( x - ½ x 2 ) - l - x ,  we get f(x) 
+ f ( -  x) < 0 for all x. Thus the functions 

g(x) = f  ([xl) sgn x, h(x) = g(x ) - f (x ) ,  xeR  

satisfy g ( - x ) =  -g(x)  and h(x)>O for all x, and by (5.9) we have 

(5.10) z?_ 1 d Z, = d M, + g (A M,)-- h (A M3. 

Noting that g(x)~<x 2 near the origin, it is clear that the jumps g(AMt) add 
up to a martingale, so the right-hand side of (5.10) is a supermartingale, and 
the same must be true for Z. [] 

Proof of Theorem 5.3. If M is real-valued, it is clear from Lemma 5.5 applied 
to the martingales _ r M that 

(5.11) P {M* >r} -<2 e x p ( -  r2/2 ), r>__0. 

If M is instead RZ-valued, then the one-dimensional projections of M have 
symmetric jumps, so (5.7) holds by (5.11) and Corollary 3.5. The further extension 
to R d or 12 is accomplished by means of Theorem 3.1 and Lemma 5.4. [] 

To state the next result, let da  denote the class of continuously differentiable 
functions f :  R+ ~ [0, ~ ]  with f ( 0 ) = f ' ( 0 ) = 0 ,  and such that f '  is concave. Let 
us further denote by d2 the class of continuous, non-increasing and integrable 
functions g: R+ ~ [ 0 ,  oo]. For any f e d 1  and any local martingale M in R a 
or 12, we define the f-variation of M as the process 

t 

(5.12) ~ f(IdMI)=½f"(O)[MC]t+ ~ f(IAM~[), t>O. 
0 s < t  

In the sequel, the product 0- oo should be interpreted as 0. 
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Theorem 5.6. Let M be a local martingale in R d or 12 with M o = 0 ,  let f ~ d l  
and g ~ d2  be arbitrary, and assume that the process A = ~f(IdMI) is locally inte- 
grable with compensator J .  Then 

(5.13) P{supf(IMt[)g(J,)>r}< 1 []g[[1, r>O. 
t 

Specializing to f ( x ) =  x 2 and g(x)~  x-2,  one may easily deduce the inequality 

1 
P {sup( lM~l-a (M}t )>b}  < a, b>O, 

t = ~ l + a b '  

due for real-valued martingales in discrete time to Dubins and Savage (1965). 
Our present version was proved in Kallenberg (1975) for real-valued discrete- 
time martingales and for stochastic integrals with respect to centered L6vy pro- 
cesses. The inequality leads to amazingly sharp asymptotic results, both at 0 
and oo. Interesting choices o f f  and g might be to take (for any e > 0) 

X 2 

f ( x ) =  l + x '  g ( x ) = ( l + x ) -  1-~' x=>0. 

The proof of Theorem 5.6 relies on a supermartingale employed in discrete 
time by Kallenberg (1975), and first considered in a special case by Dubins 
and Freedman (1965). 

Lemma 5.7. Let M be a real-valued local martingale with M o =0,  and define 
G = ~ g(u) d u. Then the process 

(5.14) X~=f([MtJ )g (J t ) -2G(J t ) ,  t>=O, 

is a supermartingale. 

Proof We may assume that g is bounded, since if the statement is true in 
that case, it extends to unbounded g by monotone convergence, separately for 
each term in (5.14). Note also that X is continuous at 0. In fact, Xo+ exists 
by martingale theory, and X o + __>0 by (5.14). On the other hand, the supermar- 
tingale property and Fatou's lemma yield E X o + < E X o = O. Thus X o + = 0 = X 0 . 

We may next reduce to the case when geC  1 while f e C  2. For  g this is 
easy, since any continuous function on R+ can be approximated uniformly 
by functions in C 1. In case o f f  we choose continuous and non-increasing func- 
tions ~bl, q~2 . . . .  : R+ ~ R + ,  such that ~b, Tf"  at all continuity points o f f " .  Inte- 
grating the q~, twice yields a sequence f l , f 2  . . . .  e ~ l  c~ C 2, such that f ,  T f  and 
f "  Tf".  Then A,~-~f,(ldM[) T A by monotone convergence, so J ,  T A, and we 
get X,=-f,(IM[) g ( . ) I , ) - 2 G ( J , ) ~ X .  Thus if X,  is a supermartingale for each 
n, then so is X by Fatou's lemma. 

Let us now extend f to an even function on R, and note that even the 
extension lies in C 2. From the proof  of Lemma 2.1 in Kallenberg (1975), we 
conclude that 

(5.15) f ( x + y ) < = f ( x ) + y f ' ( x ) + 2 f ( y ) ,  x, yeR .  
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By localization we may assume that A and f(M) are uniformly integrable, while 
M is a true martingale such that the process Mr-I{AM,:#0} is bounded by 
a constant. For  any bounded predictable stopping time z, we then get by (5.15), 

EEf(MOI~-] <=f(M,_)+ f'(M~_) EEAM, I~_3 + 2EEf(AM3I~_] 
=f(M~_)+2AA~, 

S O  

E [X~I ~ _ ]  <(f(M~_)+2AA~)g(A~)-2G(A~) 
=< {f(M,_)g(A~_)--2G(A~_)} +2{g(A~)AA~-AG(.3~)} 

The computation shows that the jump AX~l{z<t} of X at z is the sum of 
a non-increasing process and the jump at z of the local martingale 

(5.16) dM;=g(.4t)f'(Mt_) dMt + g(At) d(A,---,4t). 

By dominated convergence for stochastic integrals, the accessible jumps of X 
combine into the sum of a non-increasing process and a stochastic integral 
with respect to M' in (5.16) over some predictable set. 

On the remaining set the process ~ is continuous, and we get by It6's formula 
and (5.15) 

d Xt = f (Mr) d g (At) + g (At) d f  (M0 - 2 d G (At) 

= {f(Mt) g ' (At)-  2g(~t)} d., t ,+ g(A,) {f'(Mt_ ) dMt 
+�89 f(Mt)-U'(Mt_)AMt)} 

<g(A~) { - 2dAt + / ' ( M , _ )  dMt+�89 d[MC]t+2Af(Mt)} 
= g ( A t ) { f ' ( M t - ) d M t + 2 d ( A , - A t ) } = d M ' t ,  

the local martingale in (5.16). Thus X is the sum of a local martingale and 
a non-increasing process, hence locally a supermartingale. Since X is bounded 
from below, we may conclude by Fatou's lemma that X is a true supermar- 
tingale. [] 

Proof of Theorem 5.6. Let us first assume that M is real-valued, and let X 
be the supermartingale in Lemma 5.7. By a classical inequality for positive super- 
martingales, we get 

P {supf([Mt] ) g(At) = r} < P {X* + 2 IIg [11 ----~ r} 
t 

~lE(Xo+2lFgl[1)=_2 [Iglll. 
r ?" 

If M is instead R2-valued, say M = ( M  1, M2), we may conclude from the concavi- 

ty o f f '  that even F(x)=f(l//-x) is concave and therefore subadditive. Hence 

f ([M[) = F(IM[ 2) __< F ((M1) 2 + F((M2) 2) = f ( l M  ~ 1) + f ([M21). 
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Defining Ai=(f(IdMil) for i=1,2, it is further seen that dAi<dA,  so ~i~__<~ 
and therefore g(/l)=< g(~i), i=  1,2. Hence 

f([M[) g(A)<f(lM~[) g(~l)+f([M2[) g(~2), 

so by the one-dimensional result, 

P {supf(iMtl)g(~]t)> r} _-< ~ P  {supf(iMi])g(A~) > ; } < 8  ][gl] 1 �9 
t i = l  ~r 

The further extension to R a or l 2 is immediate by Theorem 3.1. [] 

Remark. In conclusion we indicate how certain exponential inequalities can be 
obtained in higher dimension by an elementary method which does not require 
the theory of Sect. 3 or 4. As we have seen, the key step in one dimension 
is typically to prove that a certain process is a positive supermartingale. Now 
assume that M is a martingale in R e with M 0 =0  and [M] =< 1, and such that 
the process 

Za(t)=exp(a.mt-c[a.m]t) ,  t>=O, 

is a supermartingale for every a sR  e, where c > 0  is some constant. Let 
=(~1,-.-,  ~d) be a random vector independent of M and uniformly distributed 
over the unit sphere, and note that 

Using Jensen's inequality, Fubini's theorem, formulas (5.17) and the inequality 
elXl<eX +e  -x, we get for any ucR  

E exp ( U ~ d  IMt[--Ud~C)_-< E exp E[u,~.Mt[--u2c[~.M-]t[M] 

<__ E exp (u I~" Mtl -- uZ c [4" M]t) 

__< E Z,r + EZ_,r < 2. 

Here the process on the left is a submartingale for u>0 ,  so by a standard 
inequality we get with u = (r/c) l/d/2 re, 

(5.18) P { M * > r } < 2 e x p  - u r  + a ] = 2 e x p  , r~__0. 

Proceeding instead as in the proof of Theorem 5.3, we get the bound 

P{M* => r}~< (r + 1) exp(--r2/4c), r>=O, 

which differs from (5.18) by a factor ~/2 in the exponent. For  many purposes, 
the cruder but more elementary bound in (5.18) may be sufficient. 
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