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Summary. Sharp lower bounds are found for the concentration of a probability 
distribution as a function of the expectation of any given convex symmetric 
function ~b. In the case ~b(x)=(x-c)  2, where c is the expected value of the 
distribution, these bounds yield the classical concentration-variance inequality 
of L6vy. An analogous sharp inequality is obtained in a similar linear search 
setting, where a sharp lower bound for the concentration is found as a function 
of the maximum probability swept out from a fixed starting point by a path 
of given length. 

1. Introduction 

For  a (Borel) probability distribution P on the real line, and d > 0, the d-concen- 
tration of P is 

Qd(P).'=sup {P([x, x + d]): x~lR}. 

This concept was introduced by P. L6vy [6], who proved that the concentration 
is decreased by convolution 

Qd(P1 * P2)=<min {Qd(P1), Qd(P2)}. (1) 

Let ~b be a convex function which attains its minimum, and define the ~b-moment 
of P 

n (q~).-=inf (S q~ (x + y) d n (y): x ~ JR}. 

If ~b is strictly convex, then a small d-concentration implies a large ~b-moment, 
and a small q~-moment implies a large d-concentration. For  example, if 4)(x)= x 2, 
then P(q~) is the variance of P, and clearly a small d-concentration implies a 
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large variance, and a small variance implies a large d-concentration. In general, 
there exist largest functions c(.) and m(.) (depending on d and ~b) such that 

Qd (P) --< c ~ P (qS) >= m (c), 
and n(dp)<=m~Qa(P)> c(m), 

and it is clear that c(-) is the inverse of m(-). 
1 

It is easy to see what happens for c = -  (n=2, 3, 4, ...). Let a, be the ~b- 
n 

moment of the distribution 

1 p . . = l  ~x,+ ! ~,+d + ... + -  ~x,+~,- l~d 
/~ n 1'/ 

(x* is arbitrary; concentration and q%moment are translation invariant). 

Although P. does not have d-concentration 1,  it is the weak limit of probabili- 
n 

1 
ty measures with d-concentration < - ,  and it is plausible that P. represents 

n 

the extremal case among all P with Qa(P)<= 1, that is, m(1)>=a.. Similarly, 

1 
Ce(n~,  n]~:~ me[a., a.+ l), 

and the question arises of how c(-) behaves in the interior of the intervals 

from n T 1  to 1 --, or, equivalently, how m(.) behaves in the interior of the intervals 
n 

from an to a,+ 1. In the present paper this question is answered for all convex 
functions q5 which are symmetric about the origin, in which case an(d, ~b) is 
easy to calculate: 

and 
(2n+ 1) a2,+1 = ~b(0) + 2 [q~(d) + ~b(2d)+ ... + qg(nd)]; 

2n'a2,=2[$(�89 + ( a ( ~  d)]. 

The following theorem gives a complete answer for this case (the case where 
~b is symmetric about a point other than the origin is easy to do by translation, 
but the case where ~b is not symmetric does not seem to yield as simple and 
clean a solution). 

Throughout this note ~ denotes the set of Borel probability measures on 
the real line. 

Theorem 1. Let P~,  and e~: IRoN be convex, and symmetric (about 0). Then 

a.-P((~) 1 
Qu(P) >__ i - -  for a,~<P(Cp)<a,,+l, (2) 

n(n+l ) (a .+ l -a . )  n 

and these bounds are sharp. 
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For  P ~ ,  let a 2 denote the variance of P; the next corollary is L6vy's concen- 
tration-variance inequality. 

Corollary 2 (L6vy (1937) - see [5], p. 27). Suppose 0 < Qd(P) < 1. Then 

@>d~2 n(n+ 1 ) (3 -Qa(P) (2n+ 1)), 

where n = m a x  { j~ N:  j <(Qd(P))-1}, and this bound is sharp. 
The equivalent formulation of Corollary 2 in terms of a sharp lower bound 

for Q in terms of a 2 is as follows. 

Corollary 2'. Suppose 0 < @ < ~ .  Then 

3 ( 1  4 ag~ 
Qd(P)>2n+ l n(n+ 1) de] ' 

d 2 d 2 
where n is the positive integer satisfying ~ (n  2 - -  1) < o "2 ~ ~ -  (n  2 -t- 2 n), and this 
inequality is sharp. 

Proof of Corollary 2. If P has infinite first absolute moment, or variance, the 
conclusion is trivial, so assume S x dP (x )=0 ,  and apply Theorem 1 with ~b = x  z. 
Converting (2) to the corresponding lower bound for a~ in terms of Qd(P) com- 
pletes the proof. []  

It should be observed that there is no requirement for the convex function 
in Theorem 1 to be centered about the expectation of P, which was the case 
in the last corollary. The next corollary is the corresponding first-absolute- 
moment lower bound for the concentration of P;  the equivalent lower bound 
for the first-absolute-moment in terms of the concentration is left to the interested 
reader. 

Corollary 3. Suppose # = SIx[ P (dx) < ~ .  Then 

1 # 
Qd(P) > - - -  

= n dn 2' 

where n is the positive integer satisfying 
is sharp. 

d ( n - 1 ) n  d ( n + l ) n  
<_ # < and this bound 

2 n - 1  2 n + 1  ' 

Proof Apply Theorem 1 with qb(x) = Ixl, calculate the a,'s, and simplify. []  

2. Proof of Theorem 1 

Fix d>0 ,  and let q5 be convex and symmetric about zero. It follows easily 
from the convexity and symmetry of q5 that the {a,} are non-decreasing with 
a l = 0 .  If qS-0 then a , = 0  for all n and the conclusion is trivial, so assume 
without loss of generality that q5 is not identically zero, in which case a, ~ oe 
as n--* oe and there is an interval [a, ,  a,+ 1) containing every non-negative real 
number. 
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It is easy to see that a sharp lower bound for Qd(P) in terms of P(~b) is 
equivalent to a sharp lower bound for P(qS) in terms of Q,~(P), and it is in 
this latter framework that the proof will be given. 

For each 22(0, 1], define the symmetric purely atomic probability measure 
P;.,aE~ as follows. Let n be the largest nonnegative integer such that n2<1 ,  
define probability weights {/~k}~gg by 

( 1 - n 2  k even / 

](n + 1) 2-- 1 k odd, 

and define P~,d= ~ /~k 6 (k -n )  where 6(x) is the measure with unit mass 
k = O  

at x. (These are the same extremal distributions that L6vy found for the variance 
(e.g. [-5], p. 27).) 

It is easy to check that Pa, e(~ b) is strictly decreasing in 2, is linear on ((n + 1)- 1, 
n-1) for each n, that P,_ ~ d(~b)=a, for all positive integers n, and hence that 
the inequality (2) is equivalent to the inequality 

P(q~) > P~, e(q~), where 2=Qd(P). (3) 

The proof of (3) will parallel L6vy's proof for the variance bound (e.g. [,5], 
p. 27), except that the symmetry of q5 and convexity of Qd will be exploited 
to avoid his maximization subproblem. 

Fix P with P(qS)<~ (otherwise the conclusion is trivial), and fix e>0.  To 
establish (3), it suffices to show that P(qS)> P~, d (qS)--e. 

Let J r  be the set of all real Borel probability distributions P with Qd(P) 
< Qa(P)=: 2. Then there exists P1 e J C{ such that P1 is continuous with density 
which is strictly positive and continuous everywhere, and which satisfies P(~b) 
> P~ (q~)-e. (One way to see this is convolve P with a distribution with every- 
where continuous density and sufficiently small tails, such as ce-"~2(1 + O(x))-1, 
and apply (1).) Replacing the density function f i  (x) of P~ by (fl (x)+f l  (-x))/2,  
if necessary, it may be further assumed (by convexity of Qd(')) that P1 is symmet- 
ric. 

Next, define -oe=ro<rl<=. . .<r2,+l=+~ by /~l(r0, r l )= /? ,= /?_ , ,  
#l (rl, r2) =/~, - i =/? - ,  + i, ..., kti (r2, - l, r2,) = ft, =/~ - ,, which is possible since/'1 
is continuous. 

Since Pl(qS)< o9 and ~b is not identically zero, it follows easily from the 
convexity of q~ that ~]x[ dPl(x) is finite. Let zo, zl, ..., za, be the Pl-barycenters 
of the intervals (r o, rl], [,rl, r2] . . . . .  Jr2,, rzn+ 1) respectively, and define the sym- 

2 n  

metric purely atomic measure P2eJH by P2 = ~ /3k 6(Zk); and observe that by 
k = O  

Jensen's inequality (conditional version), PI(O)>P2(4). The next key step is to 
show that P z e ~ ,  which follows as in L6vy's argument (e.g. [-5], p. 28) by several 
changes of variables using the invertibility of the c.d.f. P1- 

It remains only to show that P~(~b)_->Pz, e(q5 ). To see this, note first that Pz~Jd 
implies Zk + 1 -- Zk- 1 > d for k = 1, 2 . . . . .  2 n - 1, since the masses at adjacent points 
z k and zk_ ~ sum to 2 for all k = l ,  . . . ,2n .  In particular, z ,+t-z ,_~>d,  and 
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d d 
since P2 is symmetric about  z ,=0 ,  this implies Zn+ 1 >~, and z,_ 1 < - -~ .  Define 

2, d 
P3e~  by P3 = ~ fik6(2k), where 2k=Zk if k+n+l, n - - l ,  and 2,+2= ~, 2 ,_2=  

d k=o 
2" Since 4, is symmetric and convex, moving these same masses closer to 

the origin decreases the integral, so Pz(qS)> P3(~b). (Note that at this step, P3 r 
in general, since there are now three atoms, namely those at 2._ 2, 2,, and 
2n+~ whose sum is more than 2.) Next, observe that Zn--Zn_z=Zn+z--zn>d, 

2 n  

and define/~ ff ~ by/94 = ~ ,  fik • (Zk), where 5 k = 2 k if k ~: n + 2, n -  2, and 5, + 2 = d, 
k = 0  

z~,_ 2 = - d. As before P3(qS) > P4(qS). Continuing in this manner, define Ps, P6 . . . .  
with Pz(~b)>P3((a)>P4(4))> .... and observe that after n steps, P,+2 =P~,d, which 
completes the proof  of (2). 

2 n  

Although P~,dCJg, taking distributions ~ ~k 6(yk) with Yk arbitrarily close 

to the extremal case (k-n)d k=O d 2 '  and with Yk+2--Yk>~, shows the bound is 
sharp. []  

Theorem 1 allows any moment information concerning a probability distri- 
bution to be translated into a lower bound for the concentration; application 
of Corollary 3 yields the following fact. 

Example. Every probability distribution with first-absolute-moment rc (or less) 
6 - r e  

places mass at least ~ -  on some closed interval of length 1, and this bound 
6-~z 

is sharp. Conversely, any distribution with 1-concentration 36 (or less) has 
a first-absolute-moment at least ~z. 

3. An analogous inequality for fixed starting point and total variation 

Another  way of viewing Qd(P), more in the spirit of a linear search problem 
(e.g., Beck [1]), is this. Suppose an object is placed on the real line according 
to the distribution P, and a searcher is allowed to choose any starting point 
on the line he wishes and then move not more than d units from his starting 
point; Qd(P) then represents the best the searcher can do, i.e., the maximum 
P-probability a search of length d can "sweep out". Thus the above inequalities 
translate directly into inequalities relating optimal-search probabilities and, say, 
variance or other moments of the distribution. 

Suppose now that the searcher may still move at most d units, but that 
his starting point is fixed at some real number s. What is a lower bound for 
the optimal-search probability under these circumstances? The purpose of this 
section is to derive an analog of Theorem 1 which answers this question. 

Definition. For  d > 0  and s~lR, Qd, s: ~ [0, 1] is the function given by 

Qa, s(P)=sup {P([x, y]): x<s<y and min {(y-x)+s-x, (y-x)+ y-s} <d}. 
(4) 
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Intuitively, Qd,~(P) is the maximum P-probability a search can sweep out, given 
that it starts at s and may move no more than d units total (i.e., in total variation). 
Note that for all P a N  

sup {Qd, s(e): s e ~ }  = Qd(P). 

The next lemma, which asserts the upper semicontinuity of Qd, s, will be used 
in the proof of the main inequality in the fixed-starting-point setting. 

Lemma 4. For fixed d > 0  and saN,, Qd,~ is upper semicontinuous in P; that is, 
if P,,, ~ P weakly (see Billingsley [2]) then lira sup Qa, ~(P,) < Qe,,(P). 

n--+ ao 

Proof Let [x,, y,] be the endpoints of an optimal search of length d for P, 
starting at s, i.e., Ix,, y,] is the closed interval attaining the supremum in (4) 
(with P replaced by P,). (That this supremum is attained is routine; a more 
general result is in [4].) By taking subsequences if necessary it can be assumed 
that Qa, s(P.)~Qa,s=lim supQa, s(P.), x . ~  x, and y. ~ y, where x<_s<<_v and 

n --* oo  

rain { ( y -  x) + s -  x, ( y -  x) + y -  s} < d. (This follows easily from the tightness of 
the sequence {P.}; see [2].) 

Let 6k+0, where x--6k and y+6k are in the continuity set of P. For 
every k, 

lira sup Qd, s(P.) = lira P.([x. ,  y.]) < lira sup P.([x--  6k, Y + 6k]) 
n - + o o  n ~ o o  n --* oo  

= P ( [ x - 6 k ,  Y+6k])' 

Taking limits on k yields 

lim sup Qd, ~(P,,) < P([x, y]) =< Qd, ~(P), 
I't ~ cO 

which completes the proof. []  

The next result is the main inequality of this section, the analog of Theorem 1 
for Qd,~ (recall that P(r  is the expected value of r with respect to P). 

Theorem 5. Let r IR ~ IR be convex, and symmetric about s. Then 

Qd,~(P)>= 

2 4 ) ( s+d ) - r1 6 2  

~b(s + d ) -  P(r 

0 

(d) if q~(s)<P(qS)<r s + ~  

i fO(s+d)<e(r  

if P(r 

(5) 

and these bounds are sharp. 
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Corollary 6. Let m 1 = ~ l x -  sl dP. Then 

Qd, s (P) > 

_![mA 
1 2 \ d ]  

3 ml 

0 

d 
if O_--_ml_--< ~ 

d 
if ~ < m l  <d 

if ma >=d 

Corollary 7. Let m 2 = I ( x - -  S) 2 dP. Then 

d 2 
if 0 s  ~-  

d 2 
if ~ -  < m2 < d 2 

if  m 2 > d 2. 

Proof of Theorem 5. It is easy to check that (5) is equivalent to 

ipnf {P(~b): Qa, ~(P)<= 2} = / 

d 
22 .~b(s+3)+(1-22)~b(s+d) ,  

( 2 2 -  1) gb(s)+2(1-2)q5 s+  , 

o~2.<�89 

�89 

(6) 

By centering, rescaling and adding a constant, assume without loss of generality 
that s = 0, d = 1, and gb(0)--0. First, make a discrete approximation to (6) and 
restrict P to the set ~ c ~ of discrete distribution functions which place mass 

1 2 
only at points 0, _+~-, _ + ~ ,  .... Thus, for each positive integer k, we have 
the problem 

rain {P(qS): Qa, s(P) < 2}. (7) 
psg~ 

We will show that a probability mass function corresponding to an optimal 
P s ~  is, for 0__<2<�89 

p*= 

2. 
for i= +_2k, _ ( 2 k + l )  

� 8 9  for i=_+(6k+l)  
0 otherwise; 

(8) 

and for 1_<2.< 1 

22.--1 for i=0  

for i= +2k, ___(2k+l) 

otherwise. 

(9) 
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To show that this is the optimal solution, we formulate (7) as a linear program 

(LP). Let ~bi=q~(~- ). Since d = l ,  the support of P can clearly be narrowed 

to - 1+ , 1+ . The objective function of the LP is Min ~ ~b ip~ 
i =  - - d k  

+ 1 -  ~ Pl ~bdk+l, or, equivalently, 
i = - d k  

6 k  

Max ~ (q56k+l--0i) pi. 
i =  - 6 k  

There are (4k + 1) constraints corresponding t o  Q1, 0 (P)--~--2. Constraint --1 is 

Po+Pl + . . .  §  <= 2 

and corresponds to the only feasible search starting at 0 and ending at i. Con- 
straint - 2 is 

P-1 +Po+Pl + . . .  +Pdk-2 ~ ~ 

- 1  
and corresponds to turning at ~ - .  Similarly, constraint - i ,  i=  2 . . . . .  2k, corre- 

-- (i-- 1) 
sponds to turning at 6 ~ "  Let constraint + i, i=  1, ..., 2k be the constraint 

corresponding to reflecting the path in constraint - i .  Thus, constraint +i ,  
( i -  1) 

i = 2  . . . .  ,2k,  corresponds to turning at 6 ~ "  The last constraint Q1.0(P)<2 

is the symmetric case where the path turns at either +�89 or - �89  i.e., 

P-2k§  1)§ ... §  +Po +Pl + . "  §  § <= )~" 

Label this constraint b. The remaining constraints ensure that P is a proper 
probability distribution. Constraint c is p_ 6 k +-- .  + P0 + - . - +  P6 k < 1 and the non- 
negativity constraints are p~> 0, i=  0, + 1, ..., + 6k. Thus, the LP has been for- 
mulated in the variables Pi, i = 0, _+ 1, . . . ,  _+ 6 k, and any remaining probability 

/ -I \ 

is distributed arbitrarily between the points +_(1 + 6~k). mass 

To show that the solution to (7) is (8) when 0 _< )~ _< �89 and is (9) when �89 < 2 < 1, 
it suffices to find a feasible solution to the dual problem: 

2 k  

min ~ )~(yj+y_j)+2yo+yc 
j = l  
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subject to 

Yl + . . - + Y 2 k  +Y~-I+Yj -2+ '"+Y-2k+Yb+Y~>d?6k+I- - (O~, - -2k+I<=J<= 0 

Y-I+...+Y-zk+Y~+~+Yj+2+...+Y2k +Yb+Y~>(a6k+~--(o~,O<J<= 2k-1  
Yx + . . . + Y a k  -}-Yb+Yc>=(96k+l--ff)-2k 
Y - l +  ... -I- y -  Zk + yb + ye~= ~6k + l--OZk 

--6k<=j<-2k--1 

Y-1 + " +Y [-j+6k+________22 ] 
L J 

y j > 0 , j = 0 ,  _+1 . . . .  , _+6k 

+ yc>=(O6k+ l--C~j, 2k + l <=j<6k 

which has the same value for its objective function (cf., Chvatal [3]). A solution 
y which works when 2<�89 is y_+l=q~6k+l--q~6k_l, y + 2 = ~ ) 6 k _ l - - f f ) 6 k _ 3 ,  . . . ,  

y+_2k=~2~+a--C~2k+l, yb=C~zk+l--dp2k, yc=0;  and for 2=>�89 y+t=~bl -qSo ,  

- ~b2k, where yj corresponds to constraint j, j e{  _+ 1, ..., _+2k, b, c}. 
So far it has been shown that the inequality of Theorem 5, which we write 

here as Qe,~(P)>H(P((o)), holds for P in the set ~ .  Now this is extended to 
arbitrary P. If P(q~)= co then the inequality holds trivially since ~b is real valued; 
so assume that P (~b)<~  and let e>0 .  Since the function H is a uniformly 
continuous (piecewise linear) function, there is a 6 > 0 such that la--b I< 6 implies 
IH(b)- H(a)l < ~, and since P(~b) < oe there is an A > d = 1 for which 

A 

~b (x) dP(x) > P(qS)- 3. 
- A  

I f P  agrees with P on ( - A ,  A) and places mass P([A, oo)) at A and  P ( -  oo, - A ] )  
A 

at --A, then Qe, s(P~)=Qe,~(P) and P(4)>P(~)> ~ ~b(x)dP(x). Now let PkE~ 
- A  

be chosen so that Pk converges weakly to /3, in the sense of Billingsley [2], 
as k ~ oc. Then from Lemma 4 and the continuity and boundedness of ~b on 
I--A,  A], 

(2d,~ (P) = (2e., (P) =>- lim sup Qd, s (Pk) >---- lira H(Pk (~b)) = H (P(q~)) > H (P (~b)) - ~. 

Since e and P were arbitrary, this concludes the proof  of the theorem. []  

Next is an example of a concrete application of Corollary 7. 

Example. If an object is placed randomly on the real line according to any 
probability distribution with second moment + 3 (or less), then there is always 
a search of length (total variation) 2 beginning at the origin which will find 
the object with probability at least 9 ,  and this bound is sharp. 
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