(C) Springer-Verlag 1990

A generalization of Lévy's concentration-variance inequality

R.D. Foley ${ }^{1, \star}$, T.P. Hill ${ }^{2} \star \star$, and M.C. Spruill ${ }^{2}$

${ }^{1}$ School of Industrial and Systems Engineering and
${ }^{2}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received October 26, 1989; in revised form February 19, 1990

Summary. Sharp lower bounds are found for the concentration of a probability distribution as a function of the expectation of any given convex symmetric function ϕ. In the case $\phi(x)=(x-c)^{2}$, where c is the expected value of the distribution, these bounds yield the classical concentration-variance inequality of Lévy. An analogous sharp inequality is obtained in a similar linear search setting, where a sharp lower bound for the concentration is found as a function of the maximum probability swept out from a fixed starting point by a path of given length.

1. Introduction

For a (Borel) probability distribution P on the real line, and $d>0$, the d-concentration of P is

$$
Q_{d}(P):=\sup \{P([x, x+d]): x \in \mathbb{R}\} .
$$

This concept was introduced by P. Lévy [6], who proved that the concentration is decreased by convolution

$$
\begin{equation*}
Q_{d}\left(P_{1} * P_{2}\right) \leqq \min \left\{Q_{d}\left(P_{1}\right), Q_{d}\left(P_{2}\right)\right\} . \tag{1}
\end{equation*}
$$

Let ϕ be a convex function which attains its minimum, and define the ϕ-moment of P

$$
P(\phi):=\inf \left(\int \phi(x+y) \mathrm{d} P(y): x \in \mathbb{R}\right\} .
$$

If ϕ is strictly convex, then a small d-concentration implies a large ϕ-moment, and a small ϕ-moment implies a large d-concentration. For example, if $\phi(x)=x^{2}$, then $P(\phi)$ is the variance of P, and clearly a small d-concentration implies a

[^0]large variance, and a small variance implies a large d-concentration. In general, there exist largest functions $c(\cdot)$ and $m(\cdot)$ (depending on d and ϕ) such that
and
\[

$$
\begin{aligned}
& Q_{d}(P) \leqq c \Rightarrow P(\phi) \geqq m(c) \\
& P(\phi) \leqq m \Rightarrow Q_{d}(P) \geqq c(m)
\end{aligned}
$$
\]

and it is clear that $c(\cdot)$ is the inverse of $m(\cdot)$.
It is easy to see what happens for $c=\frac{1}{n}(n=2,3,4, \ldots)$. Let a_{n} be the ϕ moment of the distribution

$$
P_{n}:=\frac{1}{n} \delta_{x^{*}}+\frac{1}{n} \delta_{x^{*}+d}+\ldots+\frac{1}{n} \delta_{x^{*}+(n-1) d}
$$

(x^{*} is arbitrary; concentration and ϕ-moment are translation invariant).
Although P_{n} does not have d-concentration $\frac{1}{n}$, it is the weak limit of probability measures with d-concentration $<\frac{1}{n}$, and it is plausible that P_{n} represents the extremal case among all P with $Q_{d}(P) \leqq \frac{1}{n}$, that is, $m\left(\frac{1}{n}\right) \geqq a_{n}$. Similarly,

$$
c \in\left(\frac{1}{n+1}, \frac{1}{n}\right] \Leftrightarrow m \in\left[a_{n}, a_{n+1}\right),
$$

and the question arises of how $c(\cdot)$ behaves in the interior of the intervals from $\frac{1}{n+1}$ to $\frac{1}{n}$, or, equivalently, how $m(\cdot)$ behaves in the interior of the intervals from a_{n} to a_{n+1}. In the present paper this question is answered for all convex functions ϕ which are symmetric about the origin, in which case $a_{n}(d, \phi)$ is easy to calculate:
and

$$
(2 n+1) a_{2 n+1}=\phi(0)+2[\phi(d)+\phi(2 d)+\ldots+\phi(n d)] ;
$$

$$
2 n \cdot a_{2 n}=2\left[\phi\left(\frac{1}{2} d\right)+\phi\left(\frac{3}{2} d\right)+\ldots+\phi\left(\frac{2 n-1}{2} d\right)\right]
$$

The following theorem gives a complete answer for this case (the case where ϕ is symmetric about a point other than the origin is easy to do by translation, but the case where ϕ is not symmetric does not seem to yield as simple and clean a solution).

Throughout this note \mathscr{P} denotes the set of Borel probability measures on the real line.
Theorem 1. Let $P \in \mathscr{P}$, and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be convex, and symmetric (about 0). Then

$$
\begin{equation*}
Q_{d}(P) \geqq \frac{a_{n}-P(\phi)}{n(n+1)\left(a_{n+1}-a_{n}\right)}+\frac{1}{n} \quad \text { for } a_{n} \leqq P(\phi)<a_{n+1} \tag{2}
\end{equation*}
$$

and these bounds are sharp.

For $P \in \mathscr{P}$, let σ_{P}^{2} denote the variance of P; the next corollary is Lévy's concen-tration-variance inequality.

Corollary 2 (Lévy (1937) - see [5], p. 27). Suppose $0<Q_{d}(P) \leqq 1$. Then

$$
\sigma_{P}^{2} \geqq \frac{d^{2}}{12} n(n+1)\left(3-Q_{d}(P)(2 n+1)\right)
$$

where $n=\max \left\{j \in \mathbb{N}: j<\left(Q_{d}(P)\right)^{-1}\right\}$, and this bound is sharp.
The equivalent formulation of Corollary 2 in terms of a sharp lower bound for Q in terms of σ^{2} is as follows.
Corollary 2^{\prime}. Suppose $0<\sigma_{P}^{2}<\infty$. Then

$$
Q_{d}(P) \geqq \frac{3}{2 n+1}\left(1-\frac{4}{n(n+1)} \frac{\sigma_{P}^{2}}{d^{2}}\right),
$$

where n is the positive integer satisfying $\frac{d^{2}}{12}\left(n^{2}-1\right)<\sigma_{P}^{2} \leqq \frac{d^{2}}{12}\left(n^{2}+2 n\right)$, and this inequality is sharp.
Proof of Corollary 2. If P has infinite first absolute moment, or variance, the conclusion is trivial, so assume $\int x \mathrm{~d} P(x)=0$, and apply Theorem 1 with $\phi=x^{2}$. Converting (2) to the corresponding lower bound for σ_{P}^{2} in terms of $Q_{d}(P)$ completes the proof.

It should be observed that there is no requirement for the convex function in Theorem 1 to be centered about the expectation of P, which was the case in the last corollary. The next corollary is the corresponding first-absolutemoment lower bound for the concentration of P; the equivalent lower bound for the first-absolute-moment in terms of the concentration is left to the interested reader.

Corollary 3. Suppose $\mu=\int|x| P(\mathrm{~d} x)<\infty$. Then

$$
Q_{d}(P) \geqq \frac{1}{n}-\frac{\mu}{d n^{2}},
$$

where n is the positive integer satisfying $\frac{d(n-1) n}{2 n-1} \leqq \mu<\frac{d(n+1) n}{2 n+1}$, and this bound
is sharp.
Proof. Apply Theorem 1 with $\phi(x)=|x|$, calculate the a_{n} 's, and simplify.

2. Proof of Theorem 1

Fix $d>0$, and let ϕ be convex and symmetric about zero. It follows easily from the convexity and symmetry of ϕ that the $\left\{a_{n}\right\}$ are non-decreasing with $a_{1}=0$. If $\phi \equiv 0$ then $a_{n}=0$ for all n and the conclusion is trivial, so assume without loss of generality that ϕ is not identically zero, in which case $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and there is an interval [a_{n}, a_{n+1}) containing every non-negative real number.

It is easy to see that a sharp lower bound for $Q_{d}(P)$ in terms of $P(\phi)$ is equivalent to a sharp lower bound for $P(\phi)$ in terms of $Q_{d}(P)$, and it is in this latter framework that the proof will be given.

For each $\lambda \in(0,1]$, define the symmetric purely atomic probability measure $P_{\lambda, d} \in \mathscr{P}$ as follows. Let n be the largest nonnegative integer such that $n \lambda<1$, define probability weights $\left\{\beta_{k}\right\}_{k=0}^{+2 n}$ by

$$
\beta_{k}= \begin{cases}1-n \lambda & k \text { even } \\ (n+1) \lambda-1 & k \text { odd }\end{cases}
$$

and define $P_{\lambda, d}=\sum_{k=0}^{2 n} \beta_{k} \delta\left((k-n) \frac{d}{2}\right)$ where $\delta(x)$ is the measure with unit mass at x. (These are the same extremal distributions that Lévy found for the variance (e.g. [5], p. 27).)

It is easy to check that $P_{\lambda, d}(\phi)$ is strictly decreasing in λ, is linear on $\left((n+1)^{-1}\right.$, n^{-1}) for each n, that $P_{n^{-1, d}}(\phi)=a_{n}$ for all positive integers n, and hence that the inequality (2) is equivalent to the inequality

$$
\begin{equation*}
P(\phi) \geqq P_{\lambda, d}(\phi), \quad \text { where } \lambda=Q_{d}(P) \tag{3}
\end{equation*}
$$

The proof of (3) will parallel Lévy's proof for the variance bound (e.g. [5], p. 27), except that the symmetry of ϕ and convexity of Q_{d} will be exploited to avoid his maximization subproblem.

Fix P with $P(\phi)<\infty$ (otherwise the conclusion is trivial), and fix $\varepsilon>0$. To establish (3), it suffices to show that $P(\phi) \geqq P_{\lambda, d}(\phi)-\varepsilon$.

Let $\mathscr{A} \subset \mathscr{P}$ be the set of all real Borel probability distributions \hat{P} with $Q_{d}(\hat{P})$ $\leqq Q_{d}(P)=: \lambda$. Then there exists $P_{1} \in \mathscr{M}$ such that P_{1} is continuous with density which is strictly positive and continuous everywhere, and which satisfies $P(\phi)$ $\geqq P_{1}(\phi)-\varepsilon$. (One way to see this is convolve P with a distribution with everywhere continuous density and sufficiently small tails, such as $c e^{-n x^{2}}(1+\phi(x))^{-1}$, and apply (1).) Replacing the density function $f_{1}(x)$ of P_{1} by $\left(f_{1}(x)+f_{1}(-x)\right) / 2$, if necessary, it may be further assumed (by convexity of $\left.Q_{d}(\cdot)\right)$ that P_{1} is symmetric.

Next, define $-\infty=r_{0} \leqq r_{1} \leqq \ldots \leqq r_{2 n+1}=+\infty$ by $\mu_{1}\left(r_{0}, r_{1}\right)=\beta_{n}=\beta_{-n}$, $\mu_{1}\left(r_{1}, r_{2}\right)=\beta_{n-1}=\beta_{-n+1}, \ldots, \mu_{1}\left(r_{2 n-1}, r_{2 n}\right)=\beta_{n}=\beta_{-n}$, which is possible since P_{1} is continuous.

Since $P_{1}(\phi)<\infty$ and ϕ is not identically zero, it follows easily from the convexity of ϕ that $\int|x| \mathrm{d} P_{1}(x)$ is finite. Let $z_{0}, z_{1}, \ldots, z_{2 n}$ be the P_{1}-barycenters of the intervals $\left(r_{0}, r_{1}\right],\left[r_{1}, r_{2}\right], \ldots,\left[r_{2 n}, r_{2 n+1}\right)$ respectively, and define the symmetric purely atomic measure $P_{2} \in \mathscr{M}$ by $P_{2}=\sum_{k=0}^{2 n} \beta_{k} \delta\left(z_{k}\right)$; and observe that by Jensen's inequality (conditional version), $P_{1}(\phi) \geqq P_{2}(\phi)$. The next key step is to show that $P_{2} \in \mathscr{M}$, which follows as in Lévy's argument (e.g. [5], p. 28) by several changes of variables using the invertibility of the c.d.f. P_{1}.

It remains only to show that $P_{2}(\phi) \geqq P_{\lambda, d}(\phi)$. To see this, note first that $P_{2} \in \mathscr{M}$ implies $z_{k+1}-z_{k-1}>d$ for $k=1,2, \ldots, 2 n-1$, since the masses at adjacent points z_{k} and z_{k-1} sum to λ for all $k=1, \ldots, 2 n$. In particular, $z_{n+1}-z_{n-1}>d$, and
since P_{2} is symmetric about $z_{n}=0$, this implies $z_{n+1}>\frac{d}{2}$, and $z_{n-1}<-\frac{d}{2}$. Define $P_{3} \in \mathscr{P}$ by $P_{3}=\sum_{k=0}^{2 n} \beta_{k} \delta\left(\hat{z}_{k}\right)$, where $\hat{z}_{k}=z_{k}$ if $k \neq n+1, n-1$, and $\hat{z}_{n+1}=\frac{d}{2}, \hat{z}_{n-1}=$ $-\frac{d}{2}$. Since ϕ is symmetric and convex, moving these same masses closer to the origin decreases the integral, so $P_{2}(\phi) \geqq P_{3}(\phi)$. (Note that at this step, $P_{3} \notin \mathscr{M}$ in general, since there are now three atoms, namely those at $\hat{z}_{n-1}, \hat{z}_{n}$, and \hat{z}_{n+1} whose sum is more than λ.) Next, observe that $z_{n}-z_{n-2}=z_{n+2}-z_{n}>d$, and define $P_{4} \in \mathscr{P}$ by $P_{4}=\sum_{k=0}^{2 n} \beta_{k} \delta\left(\tilde{z}_{k}\right)$, where $\tilde{z}_{k}=\hat{z}_{k}$ if $k \neq n+2, n-2$, and $\tilde{z}_{n+2}=d$, $\tilde{z}_{n-2}=-d$. As before $P_{3}(\phi) \geqq P_{4}(\phi)$. Continuing in this manner, define P_{5}, P_{6}, \ldots with $P_{2}(\phi) \geqq P_{3}(\phi) \geqq P_{4}(\phi) \geqq \ldots$, and observe that after n steps, $P_{n+2}=P_{\lambda, d}$, which completes the proof of (2).

Although $P_{\lambda, d} \notin \mathscr{M}$, taking distributions $\sum_{k=0}^{2 n} \beta_{k} \delta\left(y_{k}\right)$ with y_{k} arbitrarily close to the extremal case $(k-n) \frac{d}{2}$, and with $y_{k+1}-y_{k}>\frac{d}{2}$, shows the bound is sharp.

Theorem 1 allows any moment information concerning a probability distribution to be translated into a lower bound for the concentration; application of Corollary 3 yields the following fact.

Example. Every probability distribution with first-absolute-moment π (or less) places mass at least $\frac{6-\pi}{36}$ on some closed interval of length 1 , and this bound is sharp. Conversely, any distribution with 1 -concentration $\frac{6-\pi}{36}$ (or less) has
a first-absolute-moment at least π.

3. An analogous inequality for fixed starting point and total variation

Another way of viewing $Q_{d}(P)$, more in the spirit of a linear search problem (e.g., Beck [1]), is this. Suppose an object is placed on the real line according to the distribution P, and a searcher is allowed to choose any starting point on the line he wishes and then move not more than d units from his starting point; $Q_{d}(P)$ then represents the best the searcher can do, i.e., the maximum P-probability a search of length d can "sweep out". Thus the above inequalities translate directly into inequalities relating optimal-search probabilities and, say, variance or other moments of the distribution.

Suppose now that the searcher may still move at most d units, but that his starting point is fixed at some real number s. What is a lower bound for the optimal-search probability under these circumstances? The purpose of this section is to derive an analog of Theorem 1 which answers this question.

Definition. For $d>0$ and $s \in \mathbb{R}, Q_{d, s}: \mathscr{P} \rightarrow[0,1]$ is the function given by
$Q_{d, s}(P)=\sup \{P([x, y]): x \leqq s \leqq y$ and $\min \{(y-x)+s-x,(y-x)+y-s\} \leqq d\}$.

Intuitively, $Q_{d, s}(P)$ is the maximum P-probability a search can sweep out, given that it starts at s and may move no more than d units total (i.e., in total variation).
Note that for all $P \in \mathscr{P}$,

$$
\sup \left\{Q_{d, s}(P): s \in \mathbb{R}\right\}=Q_{d}(P)
$$

The next lemma, which asserts the upper semicontinuity of $Q_{d, s}$, will be used in the proof of the main inequality in the fixed-starting-point setting.
Lemma 4. For fixed $d>0$ and $s \in \mathbb{R}, Q_{d, s}$ is upper semicontinuous in P; that is, if $P_{n} \rightarrow P$ weakly (see Billingsley [2]) then $\lim \sup Q_{d, s}\left(P_{n}\right) \leqq Q_{d, s}(P)$.

Proof. Let $\left[x_{n}, y_{n}\right]$ be the endpoints of an optimal search of length d for P_{n} starting at s, i.e., $\left[x_{n}, y_{n}\right]$ is the closed interval attaining the supremum in (4) (with P replaced by P_{n}). (That this supremum is attained is routine; a more general result is in [4].) By taking subsequences if necessary it can be assumed that $Q_{d, s}\left(P_{n}\right) \rightarrow Q_{d, s}=\limsup _{n \rightarrow \infty} Q_{d, s}\left(P_{n}\right), x_{n} \rightarrow x$, and $y_{n} \rightarrow y$, where $x \leqq s \leqq y$ and $\min \{(y-x)+s-x,(y-x)+y-s\} \leqq d$. (This follows easily from the tightness of the sequence $\left\{P_{n}\right\}$; see [2].)

Let $\delta_{k} \downarrow 0$, where $x-\delta_{k}$ and $y+\delta_{k}$ are in the continuity set of P. For every k,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} Q_{d, s}\left(P_{n}\right) & =\lim _{n \rightarrow \infty} P_{n}\left(\left[x_{n}, y_{n}\right]\right) \leqq \lim _{n \rightarrow \infty} \sup P_{n}\left(\left[x-\delta_{k}, y+\delta_{k}\right]\right) \\
& =P\left(\left[x-\delta_{k}, y+\delta_{k}\right]\right)
\end{aligned}
$$

Taking limits on k yields

$$
\limsup _{n \rightarrow \infty} Q_{d, s}\left(P_{n}\right) \leqq P([x, y]) \leqq Q_{d, s}(P)
$$

which completes the proof.
The next result is the main inequality of this section, the analog of Theorem 1 for $Q_{d, s}$ (recall that $P(\phi)$ is the expected value of ϕ with respect to P).

Theorem 5. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be convex, and symmetric about s. Then

$$
Q_{d, s}(P) \geqq \begin{cases}\frac{2 \phi\left(s+\frac{d}{3}\right)-\phi(s)-P(\phi)}{2\left[\phi\left(s+\frac{d}{3}\right)-\phi(s)\right]} & \text { if } \phi(s)<P(\phi) \leqq \phi\left(s+\frac{d}{3}\right) \tag{5}\\ \frac{\phi(s+d)-P(\phi)}{2\left[\phi(s+d)-\phi\left(s+\frac{d}{3}\right)\right]} & \text { if } \phi\left(s+\frac{d}{3}\right)<P(\phi) \leqq \phi(s+d) \\ 0 & \text { if } P(\phi) \geqq \phi(s+d)\end{cases}
$$

and these bounds are sharp.

Corollary 6. Let $m_{1}=\int|x-s| \mathrm{d} P$. Then

$$
\mathrm{Q}_{\mathrm{d}, s}(P) \geqq \begin{cases}1-\frac{3}{2}\left(\frac{m_{1}}{d}\right) & \text { if } 0 \leqq m_{1} \leqq \frac{d}{3} \\ \frac{3}{4}\left(1-\frac{m_{1}}{d}\right) & \text { if } \frac{d}{3} \leqq m_{1} \leqq d \\ 0 & \text { if } m_{1} \leqq d\end{cases}
$$

Corollary 7. Let $m_{2}=\int(x-s)^{2} \mathrm{~d} P$. Then

$$
Q_{d, s}(P) \geqq \begin{cases}1-\frac{9}{2}\left(\frac{m_{2}}{d^{2}}\right) & \text { if } 0 \leqq m_{2} \leqq \frac{d^{2}}{9} \\ \frac{9}{16}\left(1-\frac{m_{2}}{d^{2}}\right) & \text { if } \frac{d^{2}}{9} \leqq m_{2} \leqq d^{2} \\ 0 & \text { if } m_{2} \geqq d^{2}\end{cases}
$$

Proof of Theorem 5. It is easy to check that (5) is equivalent to

$$
\inf _{P}\left\{P(\phi): Q_{d, s}(P) \leqq \lambda\right\}= \begin{cases}2 \lambda \phi\left(s+\frac{d}{3}\right)+(1-2 \lambda) \phi(s+d), & 0 \leqq \lambda<\frac{1}{2} \tag{6}\\ (2 \lambda-1) \phi(s)+2(1-\lambda) \phi\left(s+\frac{d}{3}\right), & \frac{1}{2} \leqq \lambda \leqq 1\end{cases}
$$

By centering, rescaling and adding a constant, assume without loss of generality that $s=0, d=1$, and $\phi(0)=0$. First, make a discrete approximation to (6) and restrict P to the set $\mathscr{P}_{k} \subset \mathscr{P}$ of discrete distribution functions which place mass only at points $0, \pm \frac{1}{6 k}, \pm \frac{2}{6 k}, \ldots$ Thus, for each positive integer k, we have the problem

$$
\begin{equation*}
\min _{p \in \mathscr{R}_{k}}\left\{P(\phi): Q_{d, s}(P) \leqq \lambda\right\} \tag{7}
\end{equation*}
$$

We will show that a probability mass function corresponding to an optimal $P \in \mathscr{P}_{k}$ is, for $0 \leqq \lambda<\frac{1}{2}$,

$$
p_{i}^{*}= \begin{cases}\frac{\lambda}{2} & \text { for } i= \pm 2 k, \pm(2 k+1) \tag{8}\\ \frac{1}{2}-\lambda & \text { for } i= \pm(6 k+1) \\ 0 & \text { otherwise }\end{cases}
$$

and for $\frac{1}{2} \leqq \lambda \leqq 1$

$$
p_{i}^{*}= \begin{cases}2 \lambda-1 & \text { for } i=0 \tag{9}\\ \frac{1-\lambda}{2} & \text { for } i= \pm 2 k, \pm(2 k+1) \\ 0 & \text { otherwise }\end{cases}
$$

To show that this is the optimal solution, we formulate (7) as a linear program (LP). Let $\phi_{i}=\phi\left(\frac{i}{6 k}\right)$. Since $d=1$, the support of P can clearly be narrowed to $\left[-\left(1+\frac{1}{6 k}\right),\left(1+\frac{1}{6 k}\right)\right]$. The objective function of the LP is Min $\sum_{i=-6 k}^{6 k} \phi_{i} p_{i}$ $+\left(1-\sum_{i=-6 k}^{6 k} p_{i}\right) \phi_{6 k+1}$, or, equivalently,

$$
\operatorname{Max} \sum_{i=-6 k}^{6 k}\left(\phi_{6 k+1}-\phi_{i}\right) p_{i}
$$

There are $(4 k+1)$ constraints corresponding to $Q_{1,0}(P) \leqq \lambda$. Constraint -1 is

$$
p_{0}+p_{1}+\ldots+p_{6 k} \leqq \lambda
$$

and corresponds to the only feasible search starting at 0 and ending at 1 . Constraint -2 is

$$
p_{-1}+p_{0}+p_{1}+\ldots+p_{6 k-2} \leqq \lambda
$$

and corresponds to turning at $\frac{-1}{6 k}$. Similarly, constraint $-i, i=2, \ldots, 2 k$, corresponds to turning at $\frac{-(i-1)}{6 k}$. Let constraint $+i, i=1, \ldots, 2 k$ be the constraint corresponding to reflecting the path in constraint $-i$. Thus, constraint $+i$, $i=2, \ldots, 2 k$, corresponds to turning at $\frac{(i-1)}{6 k}$. The last constraint $Q_{1,0}(P) \leqq \lambda$ is the symmetric case where the path turns at either $+\frac{1}{3}$ or $-\frac{1}{3}$, i.e.,

$$
p_{-2 k}+p_{-(2 k-1)}+\ldots+p_{-1}+p_{0}+p_{1}+\ldots+p_{2 k-1}+p_{2 k} \leqq \lambda .
$$

Label this constraint b. The remaining constraints ensure that P is a proper probability distribution. Constraint c is $p_{-6 k}+\ldots+p_{0}+\ldots+p_{6 k} \leqq 1$ and the nonnegativity constraints are $p_{i} \geqq 0, i=0, \pm 1, \ldots, \pm 6 k$. Thus, the LP has been formulated in the variables $p_{i}, i=0, \pm 1, \ldots, \pm 6 k$, and any remaining probability mass is distributed arbitrarily between the points $\pm\left(1+\frac{1}{6 k}\right)$.

To show that the solution to (7) is (8) when $0 \leqq \lambda \leqq \frac{1}{2}$ and is (9) when $\frac{1}{2}<\lambda \leqq 1$, it suffices to find a feasible solution to the dual problem:

$$
\min \sum_{j=1}^{2 k} \lambda\left(y_{j}+y_{-j}\right)+\lambda y_{b}+y_{c}
$$

subject to

$$
\begin{aligned}
& y_{1}+\ldots+y_{2 k}+y_{j-1}+y_{j-2}+\ldots+y_{-2 k}+y_{b}+y_{c} \geqq \phi_{6 k+1}-\phi_{j},-2 k+1 \leqq j \leqq 0 \\
& y_{-1}+\ldots+y_{-2 k}+y_{j+1}+y_{j+2}+\ldots+y_{2 k}+y_{b}+y_{c} \geqq \phi_{6 k+1}-\phi_{j}, 0<j \leqq 2 k-1 \\
& y_{1}+\ldots+y_{2 k}+y_{b}+y_{c} \geqq \phi_{6 k+1}-\phi_{-2 k} \\
& y_{-1}+\ldots+y_{-2 k} \quad+y_{b}+y_{c} \geqq \phi_{6 k+1}-\phi_{2 k} \\
& \left.y_{1}+\ldots+y_{[j+6 k+2}^{2}\right] \quad+y_{c} \geqq \phi_{6 k+1}-\phi_{j}, \\
& -6 k \leqq j \leqq-2 k-1 \\
& y_{-1}+\ldots+y_{-\left[\frac{-j+6 k+2}{2}\right]} \quad+y_{c} \geqq \phi_{6 k+1}-\phi_{j}, 2 k+1 \leqq j \leqq 6 k \\
& y_{j} \geqq 0, j=0, \pm 1, \ldots, \pm 6 k
\end{aligned}
$$

which has the same value for its objective function (cf., Chvatal [3]). A solution y which works when $\lambda \leqq \frac{1}{2}$ is $y_{ \pm 1}=\phi_{6 k+1}-\phi_{6 k-1}, y_{ \pm 2}=\phi_{6 k-1}-\phi_{6 k-3}, \ldots$, $y_{ \pm 2 k}=\phi_{2 k+3}-\phi_{2 k+1}, y_{b}=\phi_{2 k+1}-\phi_{2 k}, y_{c}=0$; and for $\lambda \geqq \frac{1}{2}, y_{ \pm 1}=\phi_{1}-\phi_{0}$, $y_{ \pm 2}=\phi_{2}-\phi_{1}, \ldots, \quad y_{ \pm 2 k}=\phi_{2 k}-\phi_{2 k-1}, \quad y_{b}=\phi_{2 k+1}-\phi_{2 k}, \quad y_{c}=\phi_{6 k+1}-\phi_{2 k+1}$ $-\phi_{2 k}$, where y_{j} corresponds to constraint $j, j \in\{ \pm 1, \ldots, \pm 2 k, b, c\}$.

So far it has been shown that the inequality of Theorem 5 , which we write here as $Q_{d, s}(P) \geqq H(P(\phi))$, holds for P in the set \mathscr{P}_{k}. Now this is extended to arbitrary P. If $P(\phi)=\infty$ then the inequality holds trivially since ϕ is real valued; so assume that $P(\phi)<\infty$ and let $\varepsilon>0$. Since the function H is a uniformly continuous (piecewise linear) function, there is a $\delta>0$ such that $|a-b|<\delta$ implies $|H(b)-H(a)|<\varepsilon$, and since $P(\phi)<\infty$ there is an $A>d=1$ for which

$$
\sum_{-A}^{A} \phi(x) \mathrm{d} P(x)>P(\phi)-\delta
$$

If \hat{P} agrees with P on $(-A, A)$ and places mass $P([A, \infty))$ at A and $P(-\infty,-A])$ at $-A$, then $Q_{d, s}(\hat{P})=Q_{d, s}(P)$ and $P(\phi) \geqq \hat{P}(\phi) \geqq \int_{-A}^{A} \phi(x) \mathrm{d} P(x)$. Now let $P_{k} \in \mathscr{P}_{k}$ be chosen so that P_{k} converges weakly to \hat{P}, in the sense of Billingsley [2], as $k \rightarrow \infty$. Then from Lemma 4 and the continuity and boundedness of ϕ on $[-A, A]$,

$$
Q_{d, s}(P)=Q_{d, s}(\hat{P}) \geqq \lim \sup Q_{d, s}\left(P_{k}\right) \geqq \lim H\left(P_{k}(\phi)\right)=H(\hat{P}(\phi))>H(P(\phi))-\varepsilon .
$$

Since ε and P were arbitrary, this concludes the proof of the theorem.
Next is an example of a concrete application of Corollary 7.
Example. If an object is placed randomly on the real line according to any probability distribution with second moment +3 (or less), then there is always a search of length (total variation) 2 beginning at the origin which will find the object with probability at least $\frac{9}{64}$, and this bound is sharp.

References

1. Beck, A.: On the linear search problem. Isr. J. Math. 2, 221-228 (1964)
2. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
3. Chvatal, V.: Linear programming. New York: Freeman 1983
4. Foley, R., Hill, T., Spruill, M. : Linear search with bounded variation. Preprint 1989
5. Hengartner, W., Theodorescu, R.: Concentration functions. New York: Academic Press 1973
6. Lévy, P.: Théorie de l'addition des variables aléatoires. Paris: Gauthier-Villars 1937, 1954

[^0]: * Research partially supported by NSF Grant SES-88-21999
 ** Research partially supported by NSF Grants DMS-87-01691 and DMS-89-01267 and a Fulbright Research Grant

