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Summary. Sharp lower bounds are found for the concentration of a probability
distribution as a function of the expectation of any given convex symmetric
function ¢. In the case ¢(x)=(x—c)?, where c is the expected value of the
distribution, these bounds yield the classical concentration-variance inequality
of Lévy. An analogous sharp inequality is obtained in a similar linear search
setting, where a sharp lower bound for the concentration is found as a function
of the maximum probability swept out from a fixed starting point by a path
of given length.

1. Introduction

For a (Borel) probability distribution P on the real line, and d >0, the d-concen-
tration of P is

Q4(P)=sup {P([x, x+d]): xeR}.

This concept was introduced by P. Lévy [6], who proved that the concentration
is decreased by convolution

Q4(P, * P)<min {Q,(P), Qs(R)}. (1)

Let ¢ be a convex function which attains its minimum, and define the ¢-moment
of P

P(¢):=inf (f ¢(x+ y)dP(y): xeR}.

If ¢ is strictly convex, then a small d-concentration implies a large ¢-moment,
and a small ¢-moment implies a large d-concentration. For example, if ¢ (x) = x2,
then P(¢) is the variance of P, and clearly a small d-concentration implies a
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large variance, and a small variance implies a large d-concentration. In general,
there exist largest functions ¢(+) and m(-) (depending on d and ¢) such that

Qu(P)=c=>P(p)zm(c),
P(@)=m=>0Qy(P)zc(m),

and

and it is clear that ¢{+) is the inverse of m{+).
It is easy to see what happens for c=% (n=2,3,4,...). Let a, be the ¢-

moment of the distribution
1 1 1
Bp‘zz 5x*+; Opniat ... +; Ot tn—1)a

(x* is arbitrary; concentration and ¢-moment are translation invariant).

Although P, does not have d-concentration p it is the weak limit of probabili-
. . 1 . .
ty measures with d-concentration < and it is plausible that B, represents

the extremal case among all P with Q,(P) g%, that is, m (%)g a,. Similarly,

ceLlQme[a i)
n—}—l’n ms Yn+ 17>

and the question arises of how c(-) behaves in the interior of the intervals

1 . . o .
from - to pr or, equivalently, how m(*) behaves in the interior of the intervals

+1
from a, to a,,,. In the present paper this question is answered for all convex
functions ¢ which are symmetric about the origin, in which case a,(d, ¢) is
easy to calculate:

@2n+1)a3,11=00)+2[¢ D+ d2d)+... + ¢(nd)];
2n.a2n=2[¢(%d)+¢(%d)+...+¢(2";1 d)]

and

The following theorem gives a complete answer for this case (the case where
¢ is symmetric about a point other than the origin is easy to do by translation,
but the case where ¢ is not symmetric does not seem to yield as simple and
clean a solution).

Throughout this note & denotes the set of Borel probability measures on
the real line.

Theorem 1. Let P and ¢: R - R be convex, and symmetric (about 0). Then

a,—P(¢$) 1
Qd(P)zn(n+1)(an+l_a")+; for azi§P(¢)<an+1s (2)

and these bounds are sharp.
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For Pe# let 6% denote the variance of P; the next corollary is Lévy’s concen-

tration-variance inequality.

Corollary 2 (Lévy (1937) — see [5], p. 27). Suppose 0<Q,(P)< 1. Then

22% n(n+1)(3—0Q4(P)2n+1)),

where n=max { jeN: j<(Q,(P))~ '}, and this bound is sharp.
The equivalent formulation of Corollary 2 in terms of a sharp lower bound
for Q in terms of ¢* is as follows.

Corollary 2'. Suppose 0< g3 < c0. Then

3 4 o3
Q.,(P)= 2n+1 (1_ n(n+1) F)’

d? d?
where n is the positive integer satisfying —(n —1)<0P<—(n +2n), and this
inequality is sharp.

Proof of Corollary 2. If P has infinite first absolute moment, or variance, the
conclusion is trivial, so assume {xdP(x)=0, and apply Theorem 1 with ¢ =x2
Converting (2) to the corresponding lower bound for ¢3 in terms of Q,(P) com-

pletes the proof. []

It should be observed that there is no requirement for the convex function
in Theorem 1 to be centered about the expectation of P, which was the case
in the last corollary. The next corollary is the corresponding first-absolute-
moment lower bound for the concentration of P; the equivalent lower bound
for the first-absolute-moment in terms of the concentration is left to the interested
reader.

Corollary 3. Suppose p=[|x| P(dx)< co. Then

Qd(P)_ n 4.2
d(n—l)n< din+1)n

where n is the positive integer satisfying 1 =H il

is sharp.

, and this bound

Proof. Apply Theorem 1 with ¢(x)=|x]|, calculate the a,’s, and simplify. [

2. Proof of Theorem 1

Fix d>0, and let ¢ be convex and symmetric about zero. It follows easily
from the convexity and symmetry of ¢ that the {a,} are non-decreasing with
a,=0. If $=0 then a,=0 for all n and the conclusion is trivial, so assume
without loss of generality that ¢ is not identically zero, in which case a, — co
as n— oo and there is an interval [a,, a, ; ;) containing every non-negative real
number.
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It is easy to see that a sharp lower bound for Q,(P) in terms of P(¢) is
equivalent to a sharp lower bound for P(¢) in terms of Q,(P), and it is in
this latter framework that the proof will be given.

For each A€(0, 1], define the symmetric purely atomic probability measure
P, ;€% as follows. Let n be the largest nonnegative integer such that ni<1,
define probability weights {f;}:2% by

B = 1-ni k even
F W m+1)A—1  kodd,

and define P, ;=Y B, ¢ ((k —n) g) where J(x) is the measure with unit mass
k=0
at x. (These are the same extremal distributions that Lévy found for the variance
(e.g. [51,p-27))
It is easy to check that P, ,(¢) is strictly decreasing in /, is linear on ((n+1)"",
n~Y) for each n, that B, 4(¢)=a, for all positive integers #, and hence that
the inequality (2) is equivalent to the inequality

P(@)z P, q(¢), where 2=0,(P). 3)

The proof of (3) will parallel Lévy’s proof for the variance bound (e.g. [5],
p. 27), except that the symmetry of ¢ and convexity of Q, will be exploited
to avoid his maximization subproblem.

Fix P with P(¢)< o (otherwise the conclusion is trivial), and fix ¢>0. To
establish (3), it suffices to show that P(¢)= B, ,(¢)—e.

Let 4 — 2 be the set of all real Borel probability distributions P with Q,(P)
< 0,(P)=:4. Then there exists P,e.# such that P, is continuous with density
which is strictly positive and continuous everywhere, and which satisfies P(¢)
=P (¢)—e. (One way to sce this is convolve P with a distribution with every-
where continuous density and sufficiently small tails, such as ce ™" (1 + ¢(x)) "1,
and apply (1).) Replacing the density function f;(x) of P, by (f;(x)+f1(—x))/2,
if necessary, it may be further assumed (by convexity of Q,(*)) that P, is symmet-
ric.

Next, define —w=r,<r<...Ery, =40 by p(re,r)=pF=F_.,
/,11(7'1, r2):ﬂn—1 =ﬁ~n+ 15 cee> ,ul(FZn— 1s r2n)= ﬁn=ﬁ‘na which is POSSible since Pl
is continuous.

Since P {¢)< o and ¢ is not identically zero, it follows easily from the
convexity of ¢ that [|x|dP,(x) is finite. Let zy, zy, ..., z, be the P,-barycenters

of the intervals (ro, 1], [r1, F2ls --+» [Fans T2+ 1) TEspectively, and define the sym-
2n

metric purely atomic measure Pe.# by P,= ) B, d(z); and observe that by
k=0

Jensen’s inequality (conditional version), P,(¢)= P, (¢). The next key step is to
show that P,e.#, which follows as in Lévy’s argument (e.g. [5], p. 28) by several
changes of variables using the invertibility of the c.d.f P,.

It remains only to show that P,(¢)= P, ;(¢). To see this, note first that B,e.#
implies z; 4 1 —z,_, >d fork=1,2, ..., 2n—1, since the masses at adjacent points
z; and z,_; sum to A for all k=1, ...,2n In particular, z,,,—z,_;>d, and
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. . . C o d d
since P, is symmetric about z,=0, this implies z,, ; >§, and z,_; < ——. Define

2
2n d
Pe? by B=) B, 6(%), where =z, if k+n+1,n—1, and 2,,“:5, S =

k=0

d . . . .
5 Since ¢ is symmetric and convex, moving these same masses closer to

the origin decreases the integral, so P,(¢)= P(¢). (Note that at this step, B ¢.#
in general, since there are now threc atoms, namely those at 2,_, 2,, and

Z,+1 whose sum is more than 1) Next, observe that z,—z,_,=z,.,—2z,>d,
2n

and define P,e? by B,= Y. f, 8(Z,), where z, =%, if k+n+2,n—2,and %, ,=d,
k=0

Z,-2=—d. As before B{¢)= P,(¢). Continuing in this manner, define F;, E,, ...

with P,(¢)= P (¢)= P (4)= ..., and observe that after n steps, F,, , =P, ,, which

completes the proof of (2).
2n

Although P, ,¢.4, taking distributions ) f, 8(y,) with y, arbitrarily close
k=0
. d .
to the extremal case (k—n) %, and with y,,,— yk>§, shows the bound is
sharp. [

Theorem 1 allows any moment information concerning a probability distri-
bution to be translated into a lower bound for the concentration; application
of Corollary 3 yields the following fact.

Example. Every probability distribution with first-absolute-moment 7 (or less)
6—7
3
is sharp. Conversely, any distribution with 1-concentration

a first-absolute-moment at least z.

places mass at least

on some closed interval of length 1, and this bound
6—m

36

{or less) has

3. An analogous inequality for fixed starting point and total variation

Another way of viewing Q,(P), more in the spirit of a linear search problem
(e.g., Beck [1]), is this. Suppose an object is placed on the real line according
to the distribution P, and a searcher is allowed to choose any starting point
on the line he wishes and then move not more than d units from his starting
point; Q,(P) then represents the best the searcher can do, ie., the maximum
P-probability a search of length d can “sweep out”. Thus the above inequalities
translate directly into inequalities relating optimal-search probabilities and, say,
variance or other moments of the distribution.

Suppose now that the searcher may still move at most d units, but that
his starting point is fixed at some real number s. What is a lower bound for
the optimal-search probability under these circumstances? The purpose of this
section is to derive an analog of Theorem 1 which answers this question.

Definition. For d>0 and selR, Q, ;: #—[0, 1] is the function given by

Qa,s(P)=sup {P([x, y]): x<s=<y and min{(y—x)+s—x, (y—x)+y—s}=d}.
(4)
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Intuitively, Q, ((P) is the maximum P-probability a search can sweep out, given
that it starts at s and may move no more than d units total (i.e., in total variation).
Note that for all Pe#

sup {Q,,s(P): seR}=Q,(P).

The next lemma, which asserts the upper semicontinuity of Q, ;, will be used
in the proof of the main inequality in the fixed-starting-point setting.

Lemma 4. For fixed d>0 and seR, Q, ; is upper semicontinuous in P; that is,
if B,— P weakly (see Billingsley [2]) then lim sup Q, ((B)<Q, ((P).

n— oo

Proof. Let [x,, v,.] be the endpoints of an optimal search of length d for P,
starting at s, i.e., [x,, y.] is the closed interval attaining the supremum in (4)
(with P replaced by B). (That this supremum is attained is routine; a more
general result is in [4].) By taking subsequences if necessary it can be assumed
that Qd,s(IJn)_)Qd,szlim sup Qd,s(Rl): Xy =X, and Y=Y, Where nggy and

n—>©

min {(y —x)+s—x, (y—x)+y—s} <d. (This follows easily from the tightness of
the sequence {F,}; see [2].)

Let 6,10, where x—é, and y+9J, are in the continuity set of P. For
every k,

lim sup Qg ;(R)= lim E([x,, y,])<lim sup E,([x— 0, y+:])

=P([x—3d, y+0.]).

Taking limits on k yields

lim sup Qd,s(B:)éP([x’ y])é Qd,s(P):

B= 0

which completes the proof. [

The next result is the main inequality of this section, the analog of Theorem 1
for Q; , (recall that P(¢) is the expected value of ¢ with respect to P).

Theorem 5. Let ¢: R — R be convex, and symmetric about s. Then

26 (5+5) ¢ )~ P(@)
ET
blstd)~P($)

2[¢(s+d)—¢(s+§)]
0 if P()Z(s+d)

i ¢(s)<P(¢)g¢(s+§>

Qd,s(P)g

if ¢<s+§)<P(¢))§qﬁ(s+d) S

and these bounds are sharp.
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Corollary 6. Let m, = [|x—s|dP. Then

1—§(ﬂ) if 0<m, <%

2\ d 3
3 my . d
=1 —|1—— —<m, <
Qa.s(P)2 4( d) if 3=m1:d
0 if my=d

Corollary 7. Let m,={(x—s)*dP. Then

2

1 9(@) it 0<m, <4

2\a&? 9
2
Qas(P)2 —%(1—%) if %§m2§d2
0 if my=d>

Proof of Theorem 5. It is easy to check that (5) is equivalent to

2l¢(s+§)+(1—2/1)¢(s+d), 0<i<}

inf {P(¢): Qu((P)=A}= (6)

.
IIA
.
A
s

RA-1D o) +2(1-1) qb(s—!—%),

By centering, rescaling and adding a constant, assume without loss of generality
that s=0, d=1, and ¢(0)=0. First, make a discrete approximation to (6) and
restrict P to the set #,c 2 of discrete distribution functions which place mass

only at points 0, -_i-%, ié, .... Thus, for each positive integer k, we have
the problem
min {P(¢): Qu (P)<7}. (7
ped

We will show that a probability mass function corresponding to an optimal
Ped,is, for 0= 1<,

A
Z for i=+2k, +(2k+1)

PE=V1 2 for i= +(6k+1)
0 otherwise;

and for $ <11

2A—1  for i=0
1_.

pr={—5- for i=+2k £(2k+1) ©)

0 otherwise.
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To show that this is the optimal solution, we formulate (7) as a linear program

(LP). Let ¢i=¢(6—lk). Since d=1, the support of P can clearly be narrowed

1 1 : . g
o|—{1+:),{1+—=]|- The objective function of the LP is Min Y ¢;p;
6k 6k N

6k
+<1 - Z Pi) her+1, OF, equivalently,

i=—6k

6k
Max Z (Por+1— ) b;-

i=—6k
There are (4k + 1) constraints corresponding to Q; ,(P)< /. Constraint —1 is
Potpi+...tPsi S/
and corresponds to the only feasible search starting at 0 and ending at 1. Con-

straint —2 is
P-1+Po+pit .+ Per-254

. -1 .. . . ..
and corresponds to turning at ——. Similarly, constraint —1i, i=2, ..., 2k, corre-

6k
. —(i—1 . .. .
sponds to turning at W(6T) Let constraint +i, i=1, ..., 2k be the constraint
corresponding to reflecting the path in constraint —i. Thus, constraint -+i,
-1

i=2,...,2k, corresponds to turning at . The last constraint Q, ((P)=4

6k
is the symmetric case where the path turns at either +3 or —3, ie.,

PoartP-i—1yFt--F+P-1 tPo+P1+ -+ P21 TPuS A

Label this constraint b. The remaining constraints ensure that P is a proper
probability distribution. Constraint cis p_g,+ ... +po+-... +Psr =1 and the non-
negativity constraints are p;=0, i=0, £1, ..., £6k. Thus, the LP has been for-
mulated in the variables p;, i=0, £1, ..., + 6k, and any remaining probability
Lo . 1

mass is distributed arbitrarily between the points i(l +a).

To show that the solution to (7) is (8) when 0=<1=J and is (9) when 1 <A<,
it suffices to find a feasible solution to the dual problem:

2k
min ) A(y;+y_ )+ AVs+ Ve
=1

j=
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subject to

Vi tetVor FYVioiHYimat Yot et Y 2 ders 1 — P —2k+157=0
Yort ot Yookt Vi1 + Y2t t Vo V2 dokr1— @5, 0<j=2k—1

yvi +... v +Vpt Ve ZPokr1— P2
Voit...+ty_ ok + Yt Ve Z Porr1— P
Y1 +...+y[j+6k+2] +ycg¢6k+1_¢j’
2 —6ksj< —2k—1
y_1+...+y7[_j+6k+2] +ycg¢6k+1_¢j32k+1§j§6k
3

which has the same value for its objective function (cf., Chvatal [3]). A solution
y which works when 253 i yo1=¢ers1—Por—1, Y12=Psr—1— Pox—3s -+
Vie=@2r+3—Paks15 Wp=C2k+1— P2 ¥.=0; and for 123, y: =d;—¢o,
Ve2=¢2— 1 s Vine=0u—bz-1s Vo=Pou+1—Poks Ve=Por+1— Pricr1
— ¢y, Where y; corresponds to constraint j, je{ +1, ..., +2k, b, c}.

So far it has been shown that the inequality of Theorem 5, which we write
here as Q, (P)= H(P(¢)), holds for P in the set #,. Now this is extended to
arbitrary P. If P(¢)= oo then the inequality holds trivially since ¢ is real valued;
so assume that P(¢)<oo and let ¢>0. Since the function H is a uniformly
continuous (piecewise linear) function, there is a 6 >0 such that |a—b| < & implies
|H(b)— H(a)| <&, and since P(¢)< oo there is an A>d =1 for which

> ¢(x)dP(x)>P(¢$)—$.

If P agrees with P on (— A4, A4) and places mass P([4, co)) at 4 and P (— o0, — A])
A
at —4, then Q, (P)=Q,,(P) and P($)zP(¢)= | #(x)dP(x). Now let BeZ,

—A
be chosen so that B, converges weakly to P, in the sense of Billingsley [2],
as k— co. Then from Lemma 4 and the continuity and boundedness of ¢ on
[_A> A]a

0u,s(P)=Q4,o(P) 2 lim sup Q, (R) 2 lim H(B,(¢))=H(P(¢))> H (P(¢))—e-

Since ¢ and P were arbitrary, this concludes the proof of the theorem. [
Next is an example of a concrete application of Corollary 7.

Example. If an object is placed randomly on the real line according to any
probability distribution with second moment +3 (or less), then there is always
a search of length (total variation) 2 beginning at the origin which will find
the object with probability at least &, and this bound is sharp.
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