Probability Theory and Related Fields © Springer-Verlag 1990

A generalization of Lévy's concentration-variance inequality

R.D. Foley^{1, *}, T.P. Hill²**, and M.C. Spruill²

¹ School of Industrial and Systems Engineering and

² School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received October 26, 1989; in revised form February 19, 1990

Summary. Sharp lower bounds are found for the concentration of a probability distribution as a function of the expectation of any given convex symmetric function ϕ . In the case $\phi(x) = (x-c)^2$, where c is the expected value of the distribution, these bounds yield the classical concentration-variance inequality of Lévy. An analogous sharp inequality is obtained in a similar linear search setting, where a sharp lower bound for the concentration is found as a function of the maximum probability swept out from a fixed starting point by a path of given length.

1. Introduction

For a (Borel) probability distribution P on the real line, and d>0, the *d*-concentration of P is

$$Q_d(P) := \sup \{ P([x, x+d]) : x \in \mathbb{R} \}.$$

This concept was introduced by P. Lévy [6], who proved that the concentration is decreased by convolution

$$Q_d(P_1 * P_2) \le \min \{ Q_d(P_1), Q_d(P_2) \}.$$
(1)

Let ϕ be a convex function which attains its minimum, and define the ϕ -moment of P

$$P(\phi) := \inf \left(\int \phi(x+y) \, \mathrm{d} P(y) \colon x \in \mathbb{R} \right\}.$$

If ϕ is strictly convex, then a small *d*-concentration implies a large ϕ -moment, and a small ϕ -moment implies a large *d*-concentration. For example, if $\phi(x) = x^2$, then $P(\phi)$ is the variance of *P*, and clearly a small *d*-concentration implies a

^{*} Research partially supported by NSF Grant SES-88-21999

^{**} Research partially supported by NSF Grants DMS-87-01691 and DMS-89-01267 and a Fulbright Research Grant

large variance, and a small variance implies a large *d*-concentration. In general, there exist largest functions $c(\cdot)$ and $m(\cdot)$ (depending on *d* and ϕ) such that

and
$$\begin{aligned} Q_d(P) \leq c \Rightarrow P(\phi) \geq m(c), \\ P(\phi) \leq m \Rightarrow Q_d(P) \geq c(m), \end{aligned}$$

and it is clear that $c(\cdot)$ is the inverse of $m(\cdot)$.

It is easy to see what happens for $c = \frac{1}{n}$ (n = 2, 3, 4, ...). Let a_n be the ϕ -moment of the distribution

$$P_n := \frac{1}{n} \,\delta_{x^*} + \frac{1}{n} \,\delta_{x^*+d} + \dots + \frac{1}{n} \,\delta_{x^*+(n-1)d}$$

(x^* is arbitrary; concentration and ϕ -moment are translation invariant).

Although P_n does not have *d*-concentration $\frac{1}{n}$, it is the weak limit of probability measures with *d*-concentration $<\frac{1}{n}$, and it is plausible that P_n represents the extremal case among all P with $Q_d(P) \leq \frac{1}{n}$, that is, $m\left(\frac{1}{n}\right) \geq a_n$. Similarly,

$$c \in \left(\frac{1}{n+1}, \frac{1}{n}\right) \Leftrightarrow m \in [a_n, a_{n+1}),$$

and the question arises of how $c(\cdot)$ behaves in the interior of the intervals from $\frac{1}{n+1}$ to $\frac{1}{n}$, or, equivalently, how $m(\cdot)$ behaves in the interior of the intervals from a_n to a_{n+1} . In the present paper this question is answered for all convex functions ϕ which are symmetric about the origin, in which case $a_n(d, \phi)$ is easy to calculate:

and

$$(2n+1) a_{2n+1} = \phi(0) + 2 \left[\phi(d) + \phi(2d) + \dots + \phi(nd) \right];$$
$$2n \cdot a_{2n} = 2 \left[\phi(\frac{1}{2}d) + \phi(\frac{3}{2}d) + \dots + \phi\left(\frac{2n-1}{2}d\right) \right].$$

The following theorem gives a complete answer for this case (the case where ϕ is symmetric about a point other than the origin is easy to do by translation, but the case where ϕ is not symmetric does not seem to yield as simple and clean a solution).

Throughout this note \mathcal{P} denotes the set of Borel probability measures on the real line.

Theorem 1. Let $P \in \mathcal{P}$, and $\phi : \mathbb{R} \to \mathbb{R}$ be convex, and symmetric (about 0). Then

$$Q_d(P) \ge \frac{a_n - P(\phi)}{n(n+1)(a_{n+1} - a_n)} + \frac{1}{n} \quad \text{for } a_n \le P(\phi) < a_{n+1},$$
(2)

and these bounds are sharp.

For $P \in \mathcal{P}$, let σ_P^2 denote the variance of P; the next corollary is Lévy's concentration-variance inequality.

Corollary 2 (Lévy (1937) – see [5], p. 27). Suppose $0 < Q_d(P) \le 1$. Then

$$\sigma_P^2 \ge \frac{d^2}{12} n(n+1)(3-Q_d(P)(2n+1)),$$

where $n = \max \{ j \in \mathbb{N} : j < (Q_d(P))^{-1} \}$, and this bound is sharp.

The equivalent formulation of Corollary 2 in terms of a sharp lower bound for Q in terms of σ^2 is as follows.

Corollary 2'. Suppose $0 < \sigma_P^2 < \infty$. Then

$$Q_d(P) \ge \frac{3}{2n+1} \left(1 - \frac{4}{n(n+1)} \frac{\sigma_P^2}{d^2} \right),$$

where n is the positive integer satisfying $\frac{d^2}{12}(n^2-1) < \sigma_P^2 \leq \frac{d^2}{12}(n^2+2n)$, and this inequality is sharp.

Proof of Corollary 2. If P has infinite first absolute moment, or variance, the conclusion is trivial, so assume $\int x \, dP(x) = 0$, and apply Theorem 1 with $\phi = x^2$. Converting (2) to the corresponding lower bound for σ_P^2 in terms of $Q_d(P)$ completes the proof. \Box

It should be observed that there is no requirement for the convex function in Theorem 1 to be centered about the expectation of P, which was the case in the last corollary. The next corollary is the corresponding first-absolutemoment lower bound for the concentration of P; the equivalent lower bound for the first-absolute-moment in terms of the concentration is left to the interested reader.

Corollary 3. Suppose $\mu = \int |x| P(dx) < \infty$. Then

$$Q_d(P) \ge \frac{1}{n} - \frac{\mu}{dn^2},$$

where n is the positive integer satisfying $\frac{d(n-1)n}{2n-1} \leq \mu < \frac{d(n+1)n}{2n+1}$, and this bound is sharp.

Proof. Apply Theorem 1 with $\phi(x) = |x|$, calculate the a_n 's, and simplify. \Box

2. Proof of Theorem 1

Fix d>0, and let ϕ be convex and symmetric about zero. It follows easily from the convexity and symmetry of ϕ that the $\{a_n\}$ are non-decreasing with $a_1=0$. If $\phi\equiv 0$ then $a_n=0$ for all n and the conclusion is trivial, so assume without loss of generality that ϕ is not identically zero, in which case $a_n \to \infty$ as $n \to \infty$ and there is an interval $[a_n, a_{n+1})$ containing every non-negative real number.

It is easy to see that a sharp lower bound for $Q_d(P)$ in terms of $P(\phi)$ is equivalent to a sharp lower bound for $P(\phi)$ in terms of $Q_d(P)$, and it is in this latter framework that the proof will be given.

For each $\lambda \in \{0, 1\}$, define the symmetric purely atomic probability measure $P_{\lambda,d} \in \mathscr{P}$ as follows. Let *n* be the largest nonnegative integer such that $n\lambda < 1$, define probability weights $\{\beta_k\}_{k=0}^{k+2n}$ by

$$\beta_k = \begin{cases} 1 - n\lambda & k \text{ even} \\ (n+1)\lambda - 1 & k \text{ odd}, \end{cases}$$

and define $P_{\lambda,d} = \sum_{k=0}^{2n} \beta_k \delta\left((k-n)\frac{d}{2}\right)$ where $\delta(x)$ is the measure with unit mass

at x. (These are the same extremal distributions that Lévy found for the variance (e.g. [5], p. 27).)

It is easy to check that $P_{\lambda,d}(\phi)$ is strictly decreasing in λ , is linear on $((n+1)^{-1}, n^{-1})$ for each *n*, that $P_{n^{-1},d}(\phi) = a_n$ for all positive integers *n*, and hence that the inequality (2) is equivalent to the inequality

$$P(\phi) \ge P_{\lambda,d}(\phi), \quad \text{where } \lambda = Q_d(P).$$
 (3)

The proof of (3) will parallel Lévy's proof for the variance bound (e.g. [5], p. 27), except that the symmetry of ϕ and convexity of Q_d will be exploited to avoid his maximization subproblem.

Fix P with $P(\phi) < \infty$ (otherwise the conclusion is trivial), and fix $\varepsilon > 0$. To establish (3), it suffices to show that $P(\phi) \ge P_{\lambda,d}(\phi) - \varepsilon$.

Let $\mathcal{M} \subset \mathcal{P}$ be the set of all real Borel probability distributions \hat{P} with $Q_d(\hat{P}) \leq Q_d(P) =: \lambda$. Then there exists $P_1 \in \mathcal{M}$ such that P_1 is continuous with density which is strictly positive and continuous everywhere, and which satisfies $P(\phi) \geq P_1(\phi) - \varepsilon$. (One way to see this is convolve P with a distribution with everywhere continuous density and sufficiently small tails, such as $ce^{-nx^2}(1+\phi(x))^{-1}$, and apply (1).) Replacing the density function $f_1(x)$ of P_1 by $(f_1(x)+f_1(-x))/2$, if necessary, it may be further assumed (by convexity of $Q_d(\cdot)$) that P_1 is symmetric.

Next, define $-\infty = r_0 \le r_1 \le ... \le r_{2n+1} = +\infty$ by $\mu_1(r_0, r_1) = \beta_n = \beta_{-n}$, $\mu_1(r_1, r_2) = \beta_{n-1} = \beta_{-n+1}, ..., \mu_1(r_{2n-1}, r_{2n}) = \beta_n = \beta_{-n}$, which is possible since P_1 is continuous.

Since $P_1(\phi) < \infty$ and ϕ is not identically zero, it follows easily from the convexity of ϕ that $\int |x| dP_1(x)$ is finite. Let z_0, z_1, \ldots, z_{2n} be the P_1 -barycenters of the intervals $(r_0, r_1]$, $[r_1, r_2]$, \ldots , $[r_{2n}, r_{2n+1})$ respectively, and define the symmetric purely atomic measure $P_2 \in \mathcal{M}$ by $P_2 = \sum_{k=0}^{2n} \beta_k \delta(z_k)$; and observe that by Jensen's inequality (conditional version), $P_1(\phi) \ge P_2(\phi)$. The next key step is to

show that $P_2 \in \mathcal{M}$, which follows as in Lévy's argument (e.g. [5], p. 28) by several changes of variables using the invertibility of the c.d.f. P_1 .

It remains only to show that $P_2(\phi) \ge P_{\lambda,d}(\phi)$. To see this, note first that $P_2 \in \mathcal{M}$ implies $z_{k+1} - z_{k-1} > d$ for k = 1, 2, ..., 2n - 1, since the masses at adjacent points z_k and z_{k-1} sum to λ for all k = 1, ..., 2n. In particular, $z_{n+1} - z_{n-1} > d$, and

since P_2 is symmetric about $z_n = 0$, this implies $z_{n+1} > \frac{d}{2}$, and $z_{n-1} < -\frac{d}{2}$. Define $P_3 \in \mathscr{P}$ by $P_3 = \sum_{k=0}^{2n} \beta_k \,\delta(\hat{z}_k)$, where $\hat{z}_k = z_k$ if $k \neq n+1$, n-1, and $\hat{z}_{n+1} = \frac{d}{2}$, $\hat{z}_{n-1} = -\frac{d}{2}$. Since ϕ is symmetric and convex, moving these same masses closer to the origin decreases the integral, so $P_2(\phi) \ge P_3(\phi)$. (Note that at this step, $P_3 \notin \mathscr{M}$ in general, since there are now three atoms, namely those at \hat{z}_{n-1} , \hat{z}_n , and \hat{z}_{n+1} whose sum is more than λ .) Next, observe that $z_n - z_{n-2} = z_{n+2} - z_n > d$, and define $P_4 \in \mathscr{P}$ by $P_4 = \sum_{k=0}^{2n} \beta_k \,\delta(\tilde{z}_k)$, where $\tilde{z}_k = \hat{z}_k$ if $k \neq n+2$, n-2, and $\tilde{z}_{n+2} = d$, $\tilde{z}_{n-2} = -d$. As before $P_3(\phi) \ge P_4(\phi)$. Continuing in this manner, define P_5 , P_6 , ... with $P_2(\phi) \ge P_3(\phi) \ge P_4(\phi) \ge \ldots$, and observe that after *n* steps, $P_{n+2} = P_{\lambda,d}$, which completes the proof of (2).

Although $P_{\lambda,d} \notin \mathcal{M}$, taking distributions $\sum_{k=0}^{2n} \beta_k \delta(y_k)$ with y_k arbitrarily close to the extremal case $(k-n)\frac{d}{2}$, and with $y_{k+1}-y_k > \frac{d}{2}$, shows the bound is sharp. \Box

Theorem 1 allows *any* moment information concerning a probability distribution to be translated into a lower bound for the concentration; application of Corollary 3 yields the following fact.

Example. Every probability distribution with first-absolute-moment π (or less) places mass at least $\frac{6-\pi}{36}$ on some closed interval of length 1, and this bound is sharp. Conversely, any distribution with 1-concentration $\frac{6-\pi}{36}$ (or less) has a first-absolute-moment at least π .

3. An analogous inequality for fixed starting point and total variation

Another way of viewing $Q_d(P)$, more in the spirit of a linear search problem (e.g., Beck [1]), is this. Suppose an object is placed on the real line according to the distribution P, and a searcher is allowed to choose any starting point on the line he wishes and then move not more than d units from his starting point; $Q_d(P)$ then represents the best the searcher can do, i.e., the maximum P-probability a search of length d can "sweep out". Thus the above inequalities translate directly into inequalities relating optimal-search probabilities and, say, variance or other moments of the distribution.

Suppose now that the searcher may still move at most d units, but that his starting point is fixed at some real number s. What is a lower bound for the optimal-search probability under these circumstances? The purpose of this section is to derive an analog of Theorem 1 which answers this question.

Definition. For d > 0 and $s \in \mathbb{R}$, $Q_{d,s} : \mathscr{P} \to [0, 1]$ is the function given by

 $Q_{d,s}(P) = \sup \{ P([x, y]) : x \le s \le y \text{ and } \min \{ (y-x) + s - x, (y-x) + y - s \} \le d \}.$ (4)

Intuitively, $Q_{d,s}(P)$ is the maximum *P*-probability a search can sweep out, given that it starts at *s* and may move no more than *d* units total (i.e., in total variation). Note that for all $P \in \mathcal{P}$,

$$\sup \{Q_{d,s}(P): s \in \mathbb{R}\} = Q_d(P).$$

The next lemma, which asserts the upper semicontinuity of $Q_{d,s}$, will be used in the proof of the main inequality in the fixed-starting-point setting.

Lemma 4. For fixed d > 0 and $s \in \mathbb{R}$, $Q_{d,s}$ is upper semicontinuous in P; that is, if $P_n \to P$ weakly (see Billingsley [2]) then $\limsup Q_{d,s}(P_n) \leq Q_{d,s}(P)$.

Proof. Let $[x_n, y_n]$ be the endpoints of an optimal search of length d for P_n starting at s, i.e., $[x_n, y_n]$ is the closed interval attaining the supremum in (4) (with P replaced by P_n). (That this supremum is attained is routine; a more general result is in [4].) By taking subsequences if necessary it can be assumed that $Q_{d,s}(P_n) \rightarrow Q_{d,s} = \limsup_{n \rightarrow \infty} Q_{d,s}(P_n)$, $x_n \rightarrow x$, and $y_n \rightarrow y$, where $x \leq s \leq y$ and

min $\{(y-x)+s-x, (y-x)+y-s\} \leq d$. (This follows easily from the tightness of the sequence $\{P_n\}$; see [2].)

Let $\delta_k \downarrow 0$, where $x - \delta_k$ and $y + \delta_k$ are in the continuity set of *P*. For every *k*,

$$\limsup_{n \to \infty} Q_{d,s}(P_n) = \lim_{n \to \infty} P_n([x_n, y_n]) \leq \limsup_{n \to \infty} P_n([x - \delta_k, y + \delta_k])$$
$$= P([x - \delta_k, y + \delta_k]).$$

Taking limits on k yields

$$\limsup_{n \to \infty} Q_{d,s}(P_n) \leq P([x, y]) \leq Q_{d,s}(P),$$

which completes the proof. \Box

The next result is the main inequality of this section, the analog of Theorem 1 for $Q_{d,s}$ (recall that $P(\phi)$ is the expected value of ϕ with respect to P).

Theorem 5. Let $\phi : \mathbb{R} \to \mathbb{R}$ be convex, and symmetric about s. Then

$$Q_{d,s}(P) \ge \begin{cases} \frac{2\phi\left(s+\frac{d}{3}\right)-\phi(s)-P(\phi)}{2\left[\phi\left(s+\frac{d}{3}\right)-\phi(s)\right]} & \text{if } \phi(s) < P(\phi) \le \phi\left(s+\frac{d}{3}\right) \\ \frac{\phi(s+d)-P(\phi)}{2\left[\phi(s+d)-\phi\left(s+\frac{d}{3}\right)\right]} & \text{if } \phi\left(s+\frac{d}{3}\right) < P(\phi) \le \phi(s+d) \end{cases}$$
(5)

and these bounds are sharp.

Corollary 6. Let $m_1 = \int |x-s| dP$. Then

$$\mathbf{Q}_{\mathrm{d},s}(P) \ge \begin{cases} 1 - \frac{3}{2} \left(\frac{m_1}{d} \right) & \text{if } 0 \le m_1 \le \frac{d}{3} \\ \frac{3}{4} \left(1 - \frac{m_1}{d} \right) & \text{if } \frac{d}{3} \le m_1 \le d \\ 0 & \text{if } m_1 \ge d \end{cases}$$

Corollary 7. Let $m_2 = \int (x-s)^2 dP$. Then

$$Q_{d,s}(P) \ge \begin{cases} 1 - \frac{9}{2} \left(\frac{m_2}{d^2} \right) & \text{if } 0 \le m_2 \le \frac{d^2}{9} \\ \frac{9}{16} \left(1 - \frac{m_2}{d^2} \right) & \text{if } \frac{d^2}{9} \le m_2 \le d^2 \\ 0 & \text{if } m_2 \ge d^2. \end{cases}$$

Proof of Theorem 5. It is easy to check that (5) is equivalent to

$$\inf_{P} \left\{ P(\phi) \colon Q_{d,s}(P) \leq \lambda \right\} = \begin{cases} 2\lambda \phi \left(s + \frac{d}{3} \right) + (1 - 2\lambda) \phi(s + d), & 0 \leq \lambda < \frac{1}{2} \\ (2\lambda - 1) \phi(s) + 2(1 - \lambda) \phi \left(s + \frac{d}{3} \right), & \frac{1}{2} \leq \lambda \leq 1 \end{cases} \tag{6}$$

By centering, rescaling and adding a constant, assume without loss of generality that s=0, d=1, and $\phi(0)=0$. First, make a discrete approximation to (6) and restrict P to the set $\mathscr{P}_k \subset \mathscr{P}$ of discrete distribution functions which place mass only at points $0, \pm \frac{1}{6k}, \pm \frac{2}{6k}, \ldots$ Thus, for each positive integer k, we have the problem

$$\min_{\boldsymbol{p}\in\mathscr{P}_{k}} \{ \boldsymbol{P}(\boldsymbol{\phi}) \colon \boldsymbol{Q}_{d,s}(\boldsymbol{P}) \leq \lambda \}.$$
(7)

We will show that a probability mass function corresponding to an optimal $P \in \mathscr{P}_k$ is, for $0 \le \lambda < \frac{1}{2}$,

$$p_i^* = \begin{cases} \frac{\lambda}{2} & \text{for } i = \pm 2k, \ \pm (2k+1) \\ \frac{1}{2} - \lambda & \text{for } i = \pm (6k+1) \\ 0 & \text{otherwise;} \end{cases}$$
(8)

and for $\frac{1}{2} \leq \lambda \leq 1$

$$p_i^* = \begin{cases} 2\lambda - 1 & \text{for } i = 0\\ \frac{1-\lambda}{2} & \text{for } i = \pm 2k, \ \pm (2k+1)\\ 0 & \text{otherwise.} \end{cases}$$
(9)

To show that this is the optimal solution, we formulate (7) as a linear program (LP). Let $\phi_i = \phi\left(\frac{i}{6k}\right)$. Since d = 1, the support of P can clearly be narrowed to $\left[-\left(1+\frac{1}{6k}\right), \left(1+\frac{1}{6k}\right)\right]$. The objective function of the LP is $\min\sum_{i=-6k}^{6k} \phi_i p_i + \left(1-\sum_{i=-6k}^{6k} p_i\right)\phi_{6k+1}$, or, equivalently, $\max\sum_{i=-6k}^{6k} (\phi_{6k+1}-\phi_i) p_i$.

There are (4k+1) constraints corresponding to $Q_{1,0}(P) \leq \lambda$. Constraint -1 is

$$p_0 + p_1 + \ldots + p_{6k} \leq \lambda$$

and corresponds to the only feasible search starting at 0 and ending at 1. Constraint -2 is

$$p_{-1} + p_0 + p_1 + \ldots + p_{6k-2} \leq \lambda$$

and corresponds to turning at $\frac{-1}{6k}$. Similarly, constraint -i, i=2, ..., 2k, corresponds to turning at $\frac{-(i-1)}{6k}$. Let constraint +i, i=1, ..., 2k be the constraint corresponding to reflecting the path in constraint -i. Thus, constraint +i, i=2, ..., 2k, corresponds to turning at $\frac{(i-1)}{6k}$. The last constraint $Q_{1,0}(P) \leq \lambda$ is the symmetric case where the path turns at either $+\frac{1}{3}$ or $-\frac{1}{3}$, i.e.,

$$p_{-2k} + p_{-(2k-1)} + \dots + p_{-1} + p_0 + p_1 + \dots + p_{2k-1} + p_{2k} \leq \lambda.$$

Label this constraint b. The remaining constraints ensure that P is a proper probability distribution. Constraint c is $p_{-6k} + \ldots + p_0 + \ldots + p_{6k} \le 1$ and the non-negativity constraints are $p_i \ge 0$, $i=0, \pm 1, \ldots, \pm 6k$. Thus, the LP has been formulated in the variables p_i , $i=0, \pm 1, \ldots, \pm 6k$, and any remaining probability mass is distributed arbitrarily between the points $\pm \left(1 + \frac{1}{6k}\right)$.

To show that the solution to (7) is (8) when $0 \le \lambda \le \frac{1}{2}$ and is (9) when $\frac{1}{2} < \lambda \le 1$, it suffices to find a feasible solution to the dual problem:

$$\min\sum_{j=1}^{2k}\lambda(y_j+y_{-j})+\lambda y_b+y_c$$

subject to

$$\begin{array}{ll} y_{1} & + \ldots + y_{2k} & + y_{j-1} + y_{j-2} + \ldots + y_{-2k} + y_{b} + y_{c} \geqq \phi_{6k+1} - \phi_{j}, \ -2k+1 \leqq j \leqq 0 \\ y_{-1} + \ldots + y_{-2k} + y_{j+1} + y_{j+2} + \ldots + y_{2k} & + y_{b} + y_{c} \geqq \phi_{6k+1} - \phi_{j}, \ 0 < j \leqq 2k - 1 \\ y_{1} & + \ldots + y_{2k} & + y_{b} + y_{c} \geqq \phi_{6k+1} - \phi_{-2k} \\ y_{-1} + \ldots + y_{-2k} & + y_{b} + y_{c} \geqq \phi_{6k+1} - \phi_{2k} \\ y_{1} & + \ldots + y_{\left[\frac{j+6k+2}{2}\right]} & + y_{c} \geqq \phi_{6k+1} - \phi_{j}, \\ -6k \leqq j \leqq -2k - 1 \\ y_{-1} + \ldots + y_{-\left[\frac{-j+6k+2}{2}\right]} & + y_{c} \geqq \phi_{6k+1} - \phi_{j}, 2k + 1 \leqq j \leqq 6k \end{array}$$

which has the same value for its objective function (cf., Chvatal [3]). A solution y which works when $\lambda \leq \frac{1}{2}$ is $y_{\pm 1} = \phi_{6k+1} - \phi_{6k-1}$, $y_{\pm 2} = \phi_{6k-1} - \phi_{6k-3}$, ..., $y_{\pm 2k} = \phi_{2k+3} - \phi_{2k+1}$, $y_b = \phi_{2k+1} - \phi_{2k}$, $y_c = 0$; and for $\lambda \geq \frac{1}{2}$, $y_{\pm 1} = \phi_1 - \phi_0$, $y_{\pm 2} = \phi_2 - \phi_1$, ..., $y_{\pm 2k} = \phi_{2k} - \phi_{2k-1}$, $y_b = \phi_{2k+1} - \phi_{2k}$, $y_c = \phi_{6k+1} - \phi_{2k+1} - \phi_{2k+1}$, where y_j corresponds to constraint $j, j \in \{\pm 1, ..., \pm 2k, b, c\}$.

So far it has been shown that the inequality of Theorem 5, which we write here as $Q_{d,s}(P) \ge H(P(\phi))$, holds for P in the set \mathscr{P}_k . Now this is extended to arbitrary P. If $P(\phi) = \infty$ then the inequality holds trivially since ϕ is real valued; so assume that $P(\phi) < \infty$ and let $\varepsilon > 0$. Since the function H is a uniformly continuous (piecewise linear) function, there is a $\delta > 0$ such that $|a-b| < \delta$ implies $|H(b)-H(a)| < \varepsilon$, and since $P(\phi) < \infty$ there is an A > d = 1 for which

$$\sum_{A=A}^{A} \phi(x) dP(x) > P(\phi) - \delta.$$

If \hat{P} agrees with P on (-A, A) and places mass $P([A, \infty))$ at A and $P(-\infty, -A]$) at -A, then $Q_{d,s}(\hat{P}) = Q_{d,s}(P)$ and $P(\phi) \ge \hat{P}(\phi) \ge \int_{-A}^{A} \phi(x) dP(x)$. Now let $P_k \in \mathscr{P}_k$ be chosen so that P_k converges weakly to \hat{P} , in the sense of Billingsley [2], as $k \to \infty$. Then from Lemma 4 and the continuity and boundedness of ϕ on [-A, A],

$$Q_{d,s}(P) = Q_{d,s}(\hat{P}) \ge \limsup Q_{d,s}(P_k) \ge \lim H(P_k(\phi)) = H(\hat{P}(\phi)) > H(P(\phi)) - \varepsilon.$$

Since ε and *P* were arbitrary, this concludes the proof of the theorem. \Box

Next is an example of a concrete application of Corollary 7.

Example. If an object is placed randomly on the real line according to any probability distribution with second moment +3 (or less), then there is always a search of length (total variation) 2 beginning at the origin which will find the object with probability at least $\frac{9}{64}$, and this bound is sharp.

Acknowledgements. The authors are grateful of Professor John Vande Vate for conversations related to the LP-duality proof of Theorem 5, and to the referee and editor for several suggestions.

References

- 1. Beck, A.: On the linear search problem. Isr. J. Math. 2, 221-228 (1964)
- 2. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
- 3. Chvatal, V.: Linear programming. New York: Freeman 1983
- 4. Foley, R., Hill, T., Spruill, M.: Linear search with bounded variation. Preprint 1989
- 5. Hengartner, W., Theodorescu, R.: Concentration functions. New York: Academic Press 1973
- 6. Lévy, P.: Théorie de l'addition des variables aléatoires. Paris: Gauthier-Villars 1937, 1954