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Summary. Our point of departure is the result, due to Burton and Waymire,  
that every infinitely divisible random measure has the property variously known 
as association, positive correlations, or the F K G  property. This leads into a 
study of stationary, associated random measures on IRa. We establish simple 
necessary and sufficient conditions for ergodicity and mixing when second 
moments  are present. We also study the second moment  condition that is usually 
referred to as finite susceptibility. As one consequence of these results, we can 
easily rederive some central limit theorems of Burton and Waymire.  Using asso- 
ciation techniques, we obtain a law of the iterated logarithm for infinitely divisi- 
ble r andom measures under simple moment  hypotheses. Finally, we apply these 
results to a class of stationary random measures related to measure-valued Mar-  
kov branching processes. 

1. Introduction 

We begin by recalling the general notion of association given, for instance, 
in (Lindqvist 1988). Suppose that ~r and Y/ are complete, separable, metric 
spaces, each furnished With a closed order that we will write in both cases 
as < .  We say that  a map f:  X ~ g  is non-decreasing if xl<x2 implies f ( x 0  
<f(x2) .  We say that an X-valued random variable X is associated if for each 
pair of bounded, Borel measurable, non-decreasing functions f :  X ~ N and g: 
X ---, ]R, we have 

(,) Cov(f (X) ,  g(X)) > O. 

This property is also known as the F K G  (following (Fortuin et al. 1971)) or 
the positive correlations property. 

In this paper  we are interested in studying this property for r andom measures. 
Let S be a locally compact,  separable, metric space. Denote by M(S) the space 
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2 S.N. Evans 

of Radon measures on S topologised by vague convergence, and let J~(S) denote 
the corresonding Borel o--field. We can give M(S) a partial order which is easily 
shown to be closed by declaring that # < v  if #(B)<v(B) for all Borel sets B, 
or, equivalently, # ( f ) < v ( f )  for every non-negative, continuous function with 
compact support. A random measure is an M(S)-valued random variable defined 
over some underlying probability space ((2, o~, p). We refer the reader to (Kallen- 
berg 1983) for an extensive treatment of the theory of random measures. 

The following result, which appears in (Burton and Waymire 1986) along 
with a sketch of a proof, shows that a large class of random measures are 
indeed associated. See also Theorem 5.2 of (Burton and Waymire 1985). (We 
say that a random measure, X, is infinitely divisible if for each n e N  we can 
construct independent, identically distributed random measures Xa . . . . .  X,  such 
that X has the same distribution as X1 + ... + X,.) 

Theorem 1.1. Each infinitely divisible random measure on S is associated. 

There are, of course, associated random measures which are not infinitely 
divisible. For  instance, if # is a fixed Radon measure and Y is any non-negative, 
real random variable, then, by Theorems 3.2 and 3.4 of (Lindqvist 1988), the 
random measure Y# is associated. Clearly, Y# will be infinitely divisible if and 
only if Y is. For  a more interesting class of examples, note that if X1 and 
X2 are independent associated random measures on IR d such that X1 *X2 defines 
a random measure (for example, if X~ and X 2 both have finite total mass almost 
surely), then, by Theorems 3.2 and 3.3 of (Lindqvist 1988), X 1 . X  2 is associated. 
Typically, X~ * Xz  will not be infinitely divisible, even if X~ and X 2 are. 

We give a complete proof of Theorem 1.1 in Sect. 2 and indicate how the 
result can be derived using the general techniques in (Harris 1977) or (Herbst 
and Pitt 1988). With the class of examples provided by the infinitely divisible 
random measures in mind, we then proceed to investigate the properties of 
associated random measures using techniques developed for associated 
sequences of random variables. 

In Sect. 3, we give simple necessary and sufficient conditions when second 
moments exist for stationary, associated random measures to be ergodic and 
mixing. These conditions are expressed in terms of the second moment structure 
of the random measure. There is some overlap between the class of random 
measures covered by these results and the family of general, stationary, infinitely 
divisible random point measures for which necessary and sufficient conditions 
for ergodicity and mixing are given in (Matthes et al. 1978). On the overlap, 
our results seem to be less complex and easier to apply. 

In Sect. 4 we study the so-called finite susceptibility condition for use in 
later sections. We also use our results to give quick rederivations of the central 
limit theorems in (Burton and Waymire 1985, 1986). 

We give a corresponding law of the iterated logarithm for the special case 
of stationary, infinitely divisible random measures under an extra fourth moment 
hypothesis in Sect. 5. This type of result does not appear to have been discussed 
in the literature. 

Finally, in Sect. 6, we apply the results of earlier sections to study measure- 
valued Markov branching processes. 

In a forthcoming paper (Evans 1990), we use some of our results here to 
study random sets such as the Boolean coverage process. 
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2. A proof of Theorem 1.1 

We intend to prove Theorem 1.1 using an approximation procedure. For  this 
reason, it will be convenient to know the following three results, which are 
also used in the sequel. 

Lemma 2.1. Suppose that (Y(, d) is a complete, separable, metric space furnished 
with a closed order. Suppose that the metric d is such that for every closed set 
C c ~ which has non-decreasing indicator function, we have d(x, C)> d(y, C) when- 
ever x < y. Then, for any such set, we can find a sequence {h,} 2=1 of non-decreasing, 
continuous functions such that 0 < h, < 1 and h, (x) ~ lc(x ) for each x as n ~ oo. 

Proof We follow (Esary et al. 1967) and set h , ( x )=(1 -nd (x ,  C)) +. It is clear 
that {h,} has the required properties. [] 

Lemma 2.2. Suppose that Y( satisfies the conditions of Lemma 2.1. Then the follow- 
ing hold. 

(i) A random variable X is associated if (and only if) (.) holds for all f and 
g that are bounded, continuous, and non-decreasing. 

(ii) I f  {X,} is a sequence of associated random variables such that X , ~ X  
in distribution, then X is also associated. 

Proof (i) Suppose that (*) holds for all f and g that are bounded, continuous, 
and non-decreasing. From Theorem 3.1 of (Lindqvist 1988), it suffices to show 
that (.) holds when f and g are non-decreasing indicator functions of closed 
sets, but this is clear from Lemma 2.1 and monotone convergence. 

(ii) This is clear from (i) (cf. the proof of Theorem 3.5 in (Lindqvist 1988)). [] 

Lemma 2.3. Suppose that (Y', d) is a complete, separable, metric space furnished 
with a closed order. Suppose further that • is a semigroup and the semigroup 
structure is compatible with the metric and order structures in the sense that 

and 

d ( x + z , y + z ) = d ( x , y ) ,  

x < y . ~ 3 z e g f ,  y = x + z .  

Then the conditions of Lemma 2.1 hold. 

Proof Let x, y and C be as in the statement of Lemma 2.1. By assumption 
y = x + z  for some zE& r. Consider any weC,  then w < w + z ,  and so w + z e C  
also. Since d(y, w)=d(x, w+z), it is clear that d(y, C)>d(x, C), as required. [] 

h oo Remarks. Suppose that { n } n = l  is a countable, vague convergence determining 
class of continuous functions with compact support. We can choose as our 
complete metric for M(S) the metric given by 

d(p, v)= ~, (I /-* (h,,) - v (h,,)l /x 1) 2-". 
n = l  
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It is easy to see that with this metric M(S) satisfies the conditions of Lemma 2.3. 
Similarly, if we give M(S) ~ the complete metric 

d'((#,), (v.))= ~ (d(#,, v,)/x 1) 2-"  
. = 1  

(which induces the product topology) and the order 

(u.) <(v.)~-~. < v., Vn, 

then M(S) N satisfies the conditions of Lemma 2.3. Also, if we give the Skorohod 
space D(M(S), [-0, T]) the complete metric, dr ,  based on d in the manner 
described in the proof of Lemma 6.2 in Lindqvist (1988) and the order 

(~,)<(vO.~#,< v. Vt, 

then the conditions of Lemma 2.3 are satisfied. A similar comment is true for 
O (m (S), [0, oo D with the complete metric 

dtt ((~t), (vt)) m ~ (dff ((flt)l[o,.] ' (vt)l[0,.]) A 1) 2-". 
. = 1  

Thus the conclusion of Lemma 2.2 holds for all of the above spaces. 

Proof of Theorem 1.1. Choose $1 c $2 c ... c S such that S, is compact for all 

n and ~) S,=S. Define random measures X ,  by X,(A)=X(Ac~S,).  As X,---,X 
n = l  

almost surely, it suffices by the Remarks above to show that each X,  is associat- 
ed; but we can regard X,  as an infinitely divisible random measure on S,, 
so this amounts to showing that the theorem holds when S is compact. 

F rom Lemma 6.5 of Kallenberg (1983), we can assume without loss of gener- 
ality that over our underlying probability space there is a Poisson point measure, 
~, on M(S)\{0} and a fixed measure c~M(S) such that X = ~ + S # ~ ( d # ) .  Recall 
that when S is compact, M(S)\{0} is locally compact. Choose 

K l c K 2 ~ . . .  ~M(S) \{0}  such that K ,  is compact for all n and ~) K ,  
n = l  

=M(S)\{0}.  Then e +  S # t / (d#) -~X almost surely, and so it further suffices 
Kn 

to show that the random measure ~/~q(d#) is associated whenever K c  
M(S)\{O} is compact. K 

Note that for such a set K we must have inf{#(S): #~ K} = e > O, and since 

c~(S)+erl(K)<X(S)< co a.s. 

we have ~/(K)< ~ a.s. Suppose that we have metrised M(S) using a convergence 
h oo determining class { k}k=l as in the Remarks above. For  each hEN, let 
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A,, 1 . . . . .  A,,,,(,)ed//(S)\{0} be a partition of K into sets of diameter at most 
2-".  Pick #, , ieA, , i ,  i= 1, ..., re(n). Then, once n> k, 

Thus 

I~ #,,,(fk)~ (A, , , ) -  ~#(fk) 0(8#)1 
i 

-<-Z ~ [#.,,(A)--#(fk)lt/(d#) 
i And 

< Z sup {l#,, ,(fk)- #(A)I : #~A,,,} rl(A,,i) 
i 

~= Z zk-nrl(An,i)  
i 

=2k-"t / (K) 

--* 0 a.s., as n--+ o9. 

re(n) 
Z #.,iq(A..i)  ~ ~ #t/(d#) 

i = 1  K 

a . s .  

as n--*oo, and it further suffices to show that if #1, . . . ,#m~M(S)\{0},  and 
A1 . . . .  , AmeJ/ (S) \{0} are disjoint, then the random measure ~ #i rl(Ai) is asso- 

ciated, i 
Now each real-valued random variable q (Ai) is associated (cf. Theorem 3.4 

of Lindqvist (1988)) and, since ~/(A1) . . . . .  rl(Am) are independent, the random 
vector (tl(A1), ..., rl(Am) ) is also associated (cf. Theorem 3.3 of Lindqvist (1988)). 
Finally, since the function F: I R m ~ M ( S )  defined by F(Xl . . . .  , x m ) = Y ' x i #  i is 

i 

non-decreasing, the random measure F(rl(AO, ...,rl(Am) ) is associated, as 
required (cf. Theorem 3.2 of Lindqvist (1988)). [] 

Remarks. Our proof seems to be in the spirit of the sketch outlined in Burton 
and Waymire (1986). We could have proved Theorem 1.1 in a number of different 
ways. For  instance, by an appropriate succession of approximations, we could 
reduce the problem to one of showing that each [0, oe [<valued infinitely divisible 
random variable with no drift component and discrete L6vy measure supported 
on a finite set is associated. 

For  this latter problem, it certainly suffices to show that the corresponding 
convolution semigroup {Pt} preserves association; that is, if # is an associated 
probability measure on IR d, then so is #Pt for each t__> 0. Note that it is clear 
from the infinite divisibility that {Pt} preserves increasing functions; that is, 
if f :  IR d ~ I R  is a bounded, non-decreasing, Borel function, then so is Ptf for 
each t > O. 

One approach to showing that {Pt} preserves association would now be 
to use methods similar to those employed in the proof  of Proposition 4.1 of 
Herbst and Pitt (1988). To do this, one essentially has to show that if A denotes 
the infinitesimal generator of {Pt}, then for a sufficiently large class of bounded 
increasing functions in the domain of A, 

Fa (f, g) (x) = A ( f  g) (x) - - f  (x) A g (x) -- g (x) A f (x) > O, 
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for all pairs ( f  g) drawn from the class. Here, however, if v denote the L6vy 
measure of {Pt}, then for any pair (f, g) of bounded, continuous functions on 
IRa we have 

F~ ( f  g) = ~ I f  (x + y) - f  (x)] [g (x + y) - g (x)] v (d y) > 0, 

and this is certainly enough to use the techniques in Herbst and Pitt (1988). 
Alternatively, one observes that {Pt} can be restricted to be the semigroup 

m 

of a Markov chain with state space consisting of points of the form ~, n k ek, 
k = l  

where nka{O, 1 .... } and {el, ..., em}=suppv. The chain only takes jumps in 
the non-decreasing direction, and so the desired result for {Pt} follows from 
Harris (1977). 

3. Independence, ergodicity, and mixing 

For the sake of reference, we record the following trivial observation. 

Lemma 3.1. I f  (U1, U2, V1, V2) is an associated random vector with all elements 
possessing finite second moments, then 

Coy(U1, v0__< Cov(gl + g2, v1 + v2). 

Theorem 3.2. Let X be an associated random measure. Suppose that A and B 
are two Borel sets such that EX(A)2<oo and EX(B)2 < oo. Then the random 
measures X(" mA) and X(" ~ B )  are independent if and only if Cov(X(A),  
X(B))=O. 

Proof If X(" c~A) and X(-c~B) are independent, then, of course, Cov(X(A), 
X(B))=O. 

In the other direction, it will suffice to show that if f l ,  . . . , f , ,  and gl . . . . .  gn 
are arbitrary, non-negative, continuous functions with compact support, then 
random vectors ( X ( f  1A))i"= 1 and (X(g i 1B))y= 1 are independent. The map H: 
M (S) ~ ~"+~ defined by 

H(tt) = ((#(f~ 1A))m: 1, (#(gi 1B))~= 1) 

is non-decreasing, and so the random vector H(X)  is associated (cf. Theorem 3.2 
of Lindqvist (1988)). By Corollary 3 of Newman (1984), it therefore suffices to 
show that Cov(X(f~ 1A), X(g  i 1B))= 0 for all (i,j). However, by the same reasoning 
as above, the random vector 

(X(f~ 1A), X([ll f~ II oo -A]  1A), X(gj  1B), X([ll gill 0o -gi31~)) 

is associated and the result follows from Lemma 3.1. [] 

Definition. Given T e N  d, we define the T-shift to be the map ZT : M (N a) ---' MOR e) 
given by ( zT#) (A)=#(T+A) .  A random measure X on N. a is stationary if z r X  
has the same law as X for all T~]R d. If X is stationary, then the T-shift is 
ergodic for X if for all B E ~ g ( ~  d) such that z T B = B ,  we have (PoX-1) (B)=O 
or 1; and X is ergodic if for all T=#0, the T-shift is ergodic for X. Similarly, 
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if X is stationary, then the T-shift i smix ing for X if for all A, Be~/(Ne) ,  we 
have lim ( P o X - 1 ) ( A n z T k B ) = ( P o X - t ) ( A ) ( P o X - 1 ) ( B ) ;  and X is mixing if for 

k---~ oo 

all T+ 0 the T-shift is mixing for X. 

Notation. For  n s N ,  let I and S(n) be the subsets of IR d given by 

I =  [--�89 �89 
and 

S(n) = [ - � 89  n - k [  x [ - � 89  �89 1. 

Theorem 3.3. Let X be a stationary, associated random measure on R e such that 
E X  (I) z < oo. The (1, 0 . . . . .  O)-shift is ergodic for X if and only if for all T > 0 ,  

lim n-  1 Cov(X(TI) ,  X(TS(n)))=O. 
n ~ o o  

Proof. We follow the approach outlined in Newman (1980) and Newman (1984) 
for proving ergodicity of stationary sequences and arrays. 

Let z denote the (1, 0, ..., 0)-shift. Suppose z is ergodic. Given T > 0, choose 
N e N  such that N > T. Then, by the mean ergodic theorem applied to the station- 
ary sequence {zkNx(NI)}~=o (see, for example, Theorem 2.1.1 of Petersen (1983)), 
we have that 

n - - 1  

lim n - I X ( N S ( n ) ) =  lim n -~ ~ zkNx(NI)  
n "~ ~176 n - - + ~  k = O  

= E X  (NI) 
in L z (P). Thus 

lim n-  1 Cov(X(NI) ,  X(NS(n)) )=0,  
n --4 o9 

and the necessity of the condition follows from Lemma 3.1. 
Conversely, suppose that the condition holds. By a standard test for ergodi- 

city (see, for example, Proposition 2.4.5 of Petersen (1983)) and a dense subspace 
argument (cf. Proposition 2.4.2 of Petersen (1983)), it suffices to show that if 
f l  . . . .  fp (respectively, gl ,  ..., gq) are non-negative continuous functions with 
compact support and F: IRP~ ]R (respectively, G: Nq ~ ~ )  has bounded partial 
derivatives F ~, ..., F v (respectively, G ~ . . . .  , Gq), then 

n - - 1  

lim n -1 ~ C o v ( V [ X ( f O  . . . .  , X(fp)], G[zkX(gO, ..., "ckX(gq)])=O. (3.3.1) 
n---* ~ k = O  

Choose T > 0 sufficiently large so that s u p p f j c  TI, i = 1, ..., p, and supp g j c  TI, 
j =  1 . . . .  , q. Then, by Lemma 3.1(i) of Birkel (1988) and our Lemma 3.1, there 
exists a constant K not depending on k such that 

I C o v ( F E / ( A )  . . . .  , x ( f . ) ] ,  Gr~kX(gl) . . . .  , v k X ( g q ) ] ) l  

P q 

< Y, Z IIF'II~ I1~11~ Cov(X(f3,~kx(gj)) 
i=lj=1 

<=K Cov(X(TI), zkX(TI)), 
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and (3.3.1) follows easily from this. []  

Remark. By a change of coordinates, Theorem 3.3 can be used to derive a neces- 
sary and sufficient condition for a shift in any direction to be ergodic for X. 
All of these conditions will hold if and only if X is ergodic. [] 

We state without proof  the following analogue of Theorem 3.3 for mixing 
(see, for example, Proposit ion 2.5.2 of Petersen (1983) for the relevant L 2 formula- 
tion of mixing). 

Theorem 3.4. Let X be a stationary, associated random measure on IR d such that 
EX(I )  2 < oo. The (1, 0 . . . . .  O)-shift is mixing for X if and only if for all r > O, 

lim Cov(X(TI) ,  X ( T [ S ( n ) \ S ( n -  1)]))=0. 
n --+ oo 

Remark. As in the Remark  following Theorem 3.3, by changes of coordinates, 
we can use Theorem 3.4 to derive a set of necessary and sufficient conditions 
for X to be mixing. 

4. Finite susceptibility 

Definition. Suppose that X is a stationary, associated random measure on IR d 
such that EX(I)  2 < oo. Following Newman  (1980), we will say that X has finite 
susceptibility, F, if 

sup Cov (X(I), X ( T I ) ) = F  < co. 
T > 0  

Lemma 4.1. Let X be a stationary, associated random measure on IR d such that 
EX(I )  2 < Go and X has finite susceptibility, F. Let f be a non-negative, bounded, 
Borel function with compact support. Then 

Cov (X(f) ,  X(NI))  T r~ f (x )  d x  

as N - *  oo. 

Proof. For  N e N ,  it is clear, using Lemma 3.1, that there is a (unique) Radon  
measure #N such that 

~N (A) = C o v  (X (A), X (NI)), 

when A is a set with compact  closure. Suppose that g is a non-negative, continu- 
ous function with compact  support.  Then, by Lemma 3.1, it follows that 
{~N(g)}~= 1 is a bounded, non-decreasing sequence, and hence #N (g) converges 
to a finite limit as N ~ oo. Thus there exists a Radon  measure # such that 
/~N ~ # as N ~ ~ .  F rom the stationarity of X it is clear that # is translation 
invariant, and so # is a multiple of Lebesgue measure. Since the boundary  
of I has zero Lebesgue measure, we must have ktN(I)~#(1), and hence /z(dx) 
= F d x .  

The result now follows by a fairly standard monotone  class argument. []  
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Lemma 4.2. Let X be a stationary, associated random measure on ]R e such that 
EX(I)2 < 0% and X has finite susceptibility, F. For f~12 r ~ (Lebesgue), put 
Z ( f ) = X ( f ) - E X ( f ) .  Then 

E Z ( f )  2 < F  [[f]] 1 []f[[ ~. 

Proof. Note first of all that, by stationarity, the measure E X ( . )  is a multiple 
of Lebesgue measure, and so Z ( f )  is well defined. By the same observation, 
Z ( f ) = Z ( ( f A  [[f[l~)v(-[[f][o~)), and so we may suppose that f is, in fact, 
bounded. 

For  each N e N ,  we have from Lemma 4.1 and Lemma 3.1 that 

E Z ( f  +lm) 2 =Var  X ( f  +lm) 

< C o v ( X ( f  + lm)  , X([[ f [] ~ 1N~)) 

--<Fllf + 1[1 [If[[ ~, 
and so, by Fatou's lemma, 

EZ(f+)2<=F[[f + [[1 ][f[[ o0. 

A similar inequality holds for f - ,  and so 

E Z ( f )  2 = E Z ( f  +) 2 + E Z ( f - )  2 -- 2 E ( Z ( f  +) Z ( f  -)) 

_-<Fllf+]ll I[ f l[~+Fll f - I11 Ilfll ~ 

=Cl l f l l l  Ilfllo~. []  

Lemma 4.3. Let X be a stationary, associated random measure on ]R~ such that 
EX( I )2< oo and X has finite susceptibility, F. Supose that f 6 L  1 r ~, and 
{gN}ff= a c L 1 r L ~176 are non-negative functions such that gN T 1 pointwise as N -+ oo. 
Then 

Cov(X(f) ,  X(gN) ) T r~f(x) d x  
as N--+ oo. 

Proof. From Lemmas 3.1, 4.1, and 4.2, we have 

sup Cov(X(f) ,  X(gu)) 
N 

= sup sup sup Cov(X(flLI) ,  X(gu 1MI)) 
N L M 

= sup sup sup Cov(X(flLI) ,  X(gN 1MI)) 
L M N 

= sup sup Cov(X(flL~), X(MI) )  
L M 

= s u p V  ~ f ( x )  dx  
L L I  

= r ~ f ( x ) d x .  [] 

The following result was proved in Burton and Waymire (1985) for the 
case of indicator functions of non-overlapping rectangles; and a similar result 
was stated in Burton and Waymire (1986) for an unspecified class of functions. 
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The observation that such results can be proved using the central limit theorem 
for arrays of r andom variables in Newman (1980) is due to Burton and Waymire.  

Theorem 4.4. Let X be a stationary, associated random measure on IR~ such that 
EX(I)2<oo,  and X has finite susceptibility, F. For T > 0  and f~L~c~L ~176 put 
X r ( f ) = X ( f ( . / r ) ) ,  and Z r ( f ) = X r ( f ) - - E X r ( f ) .  Then T-d/2Zr(f) converges 
in distribution to a N (O, F [[f[[ 2) random variable as T---, oo. 

Proof. Choose m, n e N  and kl . . . .  , k , , e Z  d with ki=t=ki, i+j. Set I(n; ki)= 
n-~(kz+I),  i = l , . . . , m .  We begin by showing that the r andom vector 
T -  d/2 (Zr  (I(n; ki)))im=l converges in distribution to a vector of independent, ident- 
ically distributed, Gaussian random variables with common  mean zero and 
common variance Fn -d. If we restrict T to  the integers, then this follows directly 
from Theorem 2 in Newman (1980) and Lemma 4.1. For  arbitrary T, if we let 
[T]  denote the integer part  of T, then it is clear from Lemma  4.2 that for 
i=1 ,  ..., m, 

E(r -a /2Zr ( I (n ;  k i ) ) -  I T ]  -a/2Zm(I(n;  ki))) 2 --+0, as r--+ o% 

and our claim holds. 
F rom this we see that the conclusion of the theorem holds when f is of 

the form 

~, al lI(n;kO, a l ,  . . . ,  a m ~ .  
i = 1  

Let cg denote the class of functions obtained in this way as m, n and kl ,  .. . ,  k,, 
vary. 

The theorem is obviously true if F = 0 or f =  0 a.e., so let us suppose that 
this is not the case. Then we can find a sequence {fp}~~ such that f p ~ 0  
for all p, fv--->fin L 1 and I l f v l l ~ _ - < i l f l ]  ~ for all p. Note  that f p ~ f i n  L 2 also. 
The theorem now follows from Lemma 4.2 and Chebyshev's inequality. []  

Theorem 4.4 has the following distributional corollary, which follows almost 
immediately from the Minlos-Sazonov theorem. We let S(IR ~) denote the usual 
Schwartz space of rapidly decreasing functions on R e and let S'(NJ) denote 
the corresponding dual space of tempered distributions. 

Corollary 4.5. Under the conditions of Theorem 4.4, the map f~-+Zr(f  ), f~S(N~a), 
defines an S'(~a)-valued random variable. As T ~  oo, T-d/2 Z r converges in distri- 
bution to a Gaussian S' ORd)-valued random variable Wwith mean 0 and the variance 
given by E W ( f )  2= F ~f2(x) dx,  f~S(Nd).  

5. A law of the iterated logarithm 

From Theorem 4.4, we see that under suitable conditions T -a/2 Zr( I )  converges 
in distribution to a N(0, F) random variable as T--* o% and it is natural  to 
inquire if there is a law of the iterated logari thm "corresponding"  to this central 
limit theorem. We could obtain such a result for associated random measures 
in general by using the law of the iterated logari thm for sums of associated 
random variables given in Dabrowski  (1985). Unfortunately, such an approach 
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would  require tha t  we place condi t ions  on the covar iance  s t ructure  of  X which 
are not  satisfied for the appl ica t ions  we have  in mind  in Sect. 6. We  therefore 
restrict a t ten t ion  to the infinitely divisible case where  we have the following 
est imate,  which is p r o b a b l y  well k n o w n  in the l i terature,  but  for which we 
have  been unable  to find a reference. 

L e m m a 5 . 1 .  Let Y be an infinitely divisible random variable such that E Y = 0 ,  
E Y  2= 1 and E y 4  < ~ .  I f  we s e t / s  then/s and there exists a univer- 
sal constant c such that 

sup I P ( Y < y ) -  4)(y)[ <(c/s  1/2)/x 1, 
y e R  

where q, is the standard normal c.d.f. 

Proof  Fix h e N .  Let  II1,- . - ,  Y, be independent ,  identically dis t r ibuted r a n d o m  
variables  such tha t  I11 + ... + Y, has the same dis t r ibut ion as Y. Observe  tha t  

E y 2 = n E Y i  2, 

and 

so tha t  

E y4 = nE)14 + 3 n (n - 1) (E i12)2, 

(E Y4)/(E y2)2 = n/s + 3. (5.1.1) 

Dividing bo th  sides of  (5.1.1) by n and  letting n ~ 0% we see tha t / s  __ 0. 
Apply ing  the Berry-Esseen t heo rem (see T h e o r e m  XVI.5.1 of  Feller (1971)), 

we have  f rom (5.1.1) tha t  

3EIYII  3 
sup IP(Y<y) - -  ~(Y)I < (Ey2)3/2 n1/2 

Y 

< 3(EY4) 3/4 
= (Ey2)3/2 hi/2 

= 3 (n/s + 3)3/4 n - 1/2 

< 3 (n 1/4/s + 33/4 n -  1/2). 

F r o m  this we see tha t  Y will actual ly  be s tandard  no rma l  when /s  so we 
need only consider /s  > 0. I f  we put  n = [/s then the b o u n d  above  becomes  

3 ([/s 1] 1/4/s + 33/4 [/s 1] - 1 / 2 )  ~_ 3 (21/4 + 3 3/4)/s 

when/s  < 1, and  so we can take c = 3 (21/4+ 33/4). [ ]  

Theorem 5.2. Let X be a stationary, infinitely divisible random measure on N~ e 
such that EX(I)4 < 0% and X has finite susceptibility, F. Suppose further that 
l im T o / s  for  some 6 > 0 ,  where /s  Then 

T - ~  c~ 

there exists a constant 7 e l f  1/2, (2/") 1/2] such that 

Z r ( I )  
l im sup 

r ~  ( T a l o g l o g  T)l/2 = 7  a.s. 
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P r o o f  It follows from Theorem 3.3 (and, of course, Theorem 1.1) that the lim sup 
is almost surely constant. 

Set V~=Z,(I), t>0 .  Observe that t~--*V~ is lower semicontinuous. Observe 
also that if we consider any partition 0 = to < tl < ... < t , ,= T, then the random 
variables Vt~ - V, . . . .  i = 1 . . . . .  m are associated. Taking limits over such partitions 
with the mesh converging to 0, we can therefore conclude from the one-sided 
version of the maximal inequality on p. 674 of Newman and Wright (1981) 
that 

P(  sup V~>2(Var Vr) a/z) 
O<_t<=T 

< 2 P ( V  r > (2 - ~/-2) (Var VT) 1/2) 

for any )~elR. Applying Lemma 5.1, we see that if Tis sufficiently large, then 

P(  sup V t > ( O T  d log log T) */2) 
O<_t<_T 

<211-q ) ( (OF  - I  log log T ) ~ / 2 - ] ~ ) +  T -a/2] 

for any 0>0 .  Since 1 - - ~ b ( x ) ~ ( 2 r r ) - l / 2 x - 1  exp ( -x2 /2 )  as x--+ 0% we conclude 
from the Borel-Cantelli lemma that if 0 > 2 F and e > 1, then 

P( s u p  g t ~ ( 0 0 {  nd 1oglogctn) 1/2 i.o.)=0, 
0_< t_<c~r~ 

and hence 

lim sup Vr < 01/2 o~d/2. 
T~ o~ ( T  d loglog T) 1/2 = 

Letting ~ ,[ 1 and 0 ~ 2 F, we get the desired upper bound. 
For  the lower bound, fix 3<  1 and define events El ,  E2, ..., E',, E~ .... by 

E,  = {Ven>(~v ,  log n) 1/2} 

and 
E', = { V~, > (3 v,) 1/2 [-(log n) 1/2 -- (log n) 1/2]}, 

where we put v,=Var(Ve.). If ~ < 4 '<  1, then from Lemma 5.1 and the approxi- 
mation to the normal tail mentioned above, we have 

P ( E , ) > n  ~'/~ (5.2.1) 

for n sufficiently large. Similarly 

P (E , ) /P  (E',) ~ e r (5.2.2) 

a s  n ----~ oo .  

Let f :  IR ~ IR be a nondecreasing differentiable function with 

f (x )  = 0, x <  --1, 

f (x)~]0 ,  1[-, xE]  1, 0[-, 

f ( x ) =  1, x > 0 ,  
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and f ' ( x )<  2, x e N .  Set f , ( x ) = f  ((4-1 log n)l/2x), xelR. 
From Lemma 3 of Newman (1980), we have for m < n that 

P (Era c~ E,) <= E fro (v~ 1/2 Veto - (4 log m) 1 / 2 ) f  n (V n 1/2 Ve,~ __ (~ log n) 1/2) 

< [Efm(V2, 1/2Vem --(~ log m)1/2)] [Ef,(v21/2 Ve.--(~ log n)1/2)]. 

Note that Elm(v2, 1/2 Vem- (~ log m) 1/2) ~ P(E')  and similarly for E',. Using (5.2.2), 
we see that for m, n sufficiently large, we can find a constant c* such that 

P (Em c~ E,) < c* [P (Era) P(E,) + (log m) 1/2 (log n) 1/2 e ("-")d/2]. 

Combining this with (5.2.1) implies 

P(E.) = ~ ,  

and 
N N 

Z E P(EmnEn) 
lim sup '~ = 1 n = 1 < C O .  

n 1 

Applying Proposition 3, Sect. 26 of Spitzer (1976) gives 

P(E,  i.o.) >0,  

and hence 
v~ 

lira sup > 4, 
r~  oo (Var(Vr) log log T) ~/2 = 

almost surely. Since Var V r ~ F T  e as T ~  0% the desired lower bound follows 
once we let ~ 1" 1. []  

6. Applications to measure-valued Markov branching processes 

Given a Borel set E=S,  let MF(E ) denote the subspace of M(S) consisting 
of measures with finite total mass which is concentrated on E. Let dgr(E) denote 
the Borel o--field of Mr(E) induced by the relative topology inherited from M(S). 
Note that Jgr(E) is just the trace of ~ ( S )  on Ms(E). 

We say that a Markov semigroup {Qt}t>=o on (Mr(E), dgr(E)) is a measure- 
valued Markov branching semigroup if for each pair p, vsMF(E), we have 

bu +v Qt = (~, Qt) *(fiv Qt), t >= O, 

where we write 8. for the unit point mass at qeMr(E). It is easy to see that 
for each t>0 ,  the kernel Qt is stochastically monotone, in that if f :  M r ( E ) ~ I R  
is a bounded, non-decreasing Borel function, then so is Qtf  Moreover, for each 
p~Mr(E)  the probability measure 6 u Qt is obviously the law of an infinitely 
divisible and hence, by Theorem 1.1, associated random measure. 
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Suppose that Y is a Markov process with state space (My(E), U/iv(E)) and 
semigroup {Qt}t>=o- We say that Yis a finite measure-valued Markov branching 
process. If the paths of Ylie in D([0, co[, M(S)) almost surely, then one can 
argue, using the monotonici ty and asserciation properties of {Q,},__>o, that Y 
is an associated O([0, oo[, M(S))-vatued random variable whenever Yo is an 
associated, finite, random measure concentrated on E (cf. Sects. 5, 6 of Lindqvist 
1988). The arguments in Lindqvist (I988) require that the path space be "normal-  
ly ordered", but a reading of the proofs shows that this property is only used 
to ensure that the path space satisfies the conclusions of Lemma 2.2, and, as 
we noted in the Remarks following Lemma 2.3, this is the case for D([0, oo[, 
M(S)). 

Following earlier, more specialised constructions, a broad class of finite mea- 
sure-valued Markov branching processes, the so-called (4, go)-superprocesses, 
were constructed in Fitzsimmons (1988). We refer the reader to Fitzsimmons 
(I988) for a full account, but  recall the following details. 

Suppose that ~=(f2, o~, ~ ,  Ot, ~z, px) is a Borel right Markov process 
with state space (E, g), where g is the Borel a-field of E, and semigroup {Pt}t_>o. 
Assume that Pt 1 = 1. Let go: E x [-0, oo [ -~ IR be given by 

go(x, )~) = -- b(x)2-  c(x) 22 + ~n(x, du)(1 - e -  ~ " -  2u), 

where c > 0  and b are bounded and g-measurable, and n: E x ~( [0 ,  Go D ~ [0, 
oo[ is a kernel such that ~n(., du)u v u 2) is bounded. 

For  each bounded non-negative, g-measurable function f :  E ~ tR, the integral 
equation 

v~(x)=Ptf(x)+ i P~(x, go(.,vt_s))ds, t>O, x~E, 
0 

has a unique solution which we denote by (t, x)~--~Vtf(x); and there exists a 
unique Markov kernel {Qt}t__>0 on (Mv(E), J/dr(E)) with Laplace functionals 

Q, (#, d v) exp ( - v (f)) = exp ( - # V0C). 

There is a Markov process Y=(W,, ~, (qt, Or, Yt, IP") with state space (Me(E), 
J/dF(E)) and semigroup {Qt}t>__o. One can embed E as a Borel set in a locally 
compact, separable space which may be different from S (but such that JgF (E) 
remains unchanged) in such a way that Yis a Hunt  process in the new topology 
for MF(E ). The conclusion of the discussion above then applies to Y A special 
case of this result was proved using different methods in Evans (1989). 

Most of the theory we have developed in earlier sections is for stationary 
associated random measures. We now proceed to construct a class of such 
random measures using the semigroup {Qt}. 

Suppose that ~ is a L6vy process on IR d and go(x, 2) does not depend on 
x. That  is, 

go(x, 2)= - b 2 - c 2  2 + ~ n(du)(1 - e - a " - ~ l u ) .  
0 
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Let N be the law of a stationary, associated random measure on N d such 
that S v ( I ) N ( d v ) < ~ ,  and hence, for some constant p > 0 ,  we have 
~v(f) N ( d v ) = p S i ( x )  dx  for a l l f e L  1. 

Fix t > 0 .  Using the Kolmogorov  extension theorem, we may suppose that  
we can construct on our probabil i ty space a family, {Uk}k~z~, of finite r andom 
measures such that for k 1 . . . . .  km~2~ a and A 1, .. . ,  A , , ~ J g ( ~ ) ,  we have 

P(Uk, ~A1 . . . .  , Uk~o~A,,) 

= ~N(dv) Q,(nk, v, AO.. .  Qt(TrkmV, Am) , 

where (ZCkV)(')=V (" ~(ki+I)),  i= 1, ..., m. Observe that, since {Q,} is a measure- 
valued Markov  branching kernel, the law of Uk, + ... + Uk,, is just (NO(~kl + ... 
+ ZCkm )-  1)Q,. For  n= 1, 2, . . . ,  let R(n)=  {ke7Z/: [kJl < n, j =  1 . . . .  , d}. We claim 
first of all that the sequence of r andom measures 

X , =  Z Uk, n = l ,  2 . . . . .  
k~R(n) 

converges almost surely to a r andom measure X. Let {f~}F=l be a countable, 
vague convergence determining class of non-negative continuous functions with 

X ~ is non-decreasing, and compact  support.  For  each l, the sequence { ,(fr)},= 1 
so it possesses a (possibly infinite) limit. By the monotone  convergence theorem 
and the first moment  calculation given in Proposit ion 2.7 of Fitzsimmons (t988), 
we have 

E( l im  X,(f~))= lim E(X,(f~)) 
n ~ o o  n ~ o o  

= lim p S e-btPtf(x) dx  
n ~ ~  [_n_ �89189  

=pe  -bt ~ f l ( x ) d x < ~ ,  

and so the limit is finite almost surely for each l and X ,  does indeed converge 
almost surely as n ~ ~ to a random measure we will denote as X. 

The Laplace functional of  X is given by 

E exp ( - X (f)) = ~ N (d v) exp (--  v V, f) .  

It  is easy to see from the integral equation defining V~fthat if we set fy ( . ) = f  (. + y) 
for yelP. d, then V~f ( . ) =  V~f(- +y),  and so X is stationary. 

As the map  ( ~, zc,): m ( ~ .  a) --. MF(~. a) is non-decreasing, we see from Theo- 
keR(n) 

rein 3.2 for Lindqvist 0988) that No(  ~ 7rk) -1 is the law of an associated 
keR(n) 

finite r andom measure. We have already observed that Q~ is stochastically mono-  
tone and that 6, Qt is the law of an associated random measure for each 
# E M r ( ~ a ) ;  and so, by Theorem 4.1 of Lindqvist (1988), X ,  is also an associated 
random measure. If  we now apply Lemmas  2.2 and 2.3 and the Remarks  follow- 
ing Lemma  2.3, we find that X is an associated random measure. 
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Lemma 6.1. Suppose that N and X are as above. I f  ~v(I)2N(dv)< o% and N 
is the law of a random measure with finite susceptibility, F N, then EX(I)a < oo 
and X has finite susceptibility, 

fFN+pat,  ^ b = 0 ,  
Fx=l.e-2btFu+pcb-l(e-bt--e-Zbt) ,  b~O, 

where d= 2c + ~u 2 n(d u). 

Proof We have already seen that EX(I )=pe-b t<oo ,  so Cov(X(I) ,  X(TI)) is 
well defined for T > 0 ,  and it suffices to show that sup Cov(X(I) ,  X(TI))< oo. 

r 
F rom the second moment  calculation in Proposit ion 2.7 of Fitzsimmons (1988), 
we have 

Cov(X(I) ,  X ( T I)) 

=S(ve -b tP  t li)(ve-btP~ l r l  ) N(dv) 

-- [-y(e- btvPt 1i) N(d v)] [y(e-btvpt 1T, ) N(dv)]  

q- PC~ i e-bSps[(e-b(t-s)pt-s lI)(e-b(t-s) pt-s l r i ) ]  ds dx. 
0 

2bt/~ ['p~ l r (x)d  x By Lemma 4.3, the sum of the first two terms converges to e -  N j 
=e-2btFN as T--, oo. The last term converges to 

p~ e-bSe 2b(, ~)ds= -1(e-bt--e-2bt), b~eO, 
0 

as T ~  ~ .  [] 

We are now in a position to apply the results of Sects. 3 and 4. If N has 
finite susceptibility, then it is clear from Lemma  6.1 and Theorem 3.4 that X 
is mixing, and hence ergodic. Moreover,  the central limit results Theorem 4.4 
and Corollary 4.5 hold. 

It is not difficult to see that if X is a stationary associated random measure 
with finite susceptibility, then the Cox process directed by X has the same 
property. In particular, when n - 0 ,  ~ - B r o w n i a n  motion, and N is the unit 
point mass concentrated at a multiple of Lebesgue measure, we can use Theo- 
rem 9.2 in Dawson and Ivanoff (1978) along with Theorem 4.4 and Corollary 4.5 
to recover the central limit theorem for a system of binary branching Brownian 
motions given as Theorem 6.2 in Dawson and Ivanoff (1978). We could apply 
the results of Sect. 4 directly to systems of branching Markov  processes with 
more complex branching mechanisms provided we are able to make the neces- 
sary moment  estimates. 

Returning to the general case, we would also like to be able to apply the 
law of the iterated logarithm given in Theorem 5.2. In order to avoid messy 
conditions on n and N, we content ourselves with the following result. 

Lemma 6.2. Suppose that n - 0  and N is the unit point mass at Lebesgue measure. 
Then X satisfies the conditions of Theorem 5.2. 
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Proof. We have already seen that X is a stationary, infinitely divisible random 
measure with finite susceptibility. 

We can calculate the higher moments of Z r ( I  ) using the appraoch of Theo- 
rem 1.1' in Dynkin (1988). Setting P,b =e-b"P, ,  u>0 ,  we have 

and 

where 

and 

EZT(I) 2 = 2c~ dx i d s Pf(x, (Pf_s lr i)  2) 
0 

=2c~  dx  i ds e-bs(Pt~(x, l r i ) )  2 
0 

EZ r (1) 4 = (2 c) 2 (3 Jr + 4 K r) + 3 (EZr (1)2) 2, 

J r=S  dx  i dst  i ds2 i ds3 e-b~P~-~(x,(Pf-s~ lr')2) 
0 s l  sx  

b �9 & _~1 (x, (~b_ ~31 r,) ~) 

K r = S  dx  i dsl i ds2 i ds3 e-bSIPtb-s,(X, lrI) 
0 S 1 S2 

�9 Psi- s~ (x, (~_  $2 lr,)(~b3 s2 ((g~-~31~,)~))), 

and we have already used the fact that ~P~f(x)dx=~f(x)dx, u>O, to simplify 
our expressions. 

Now 

and 

Jr<=e3lbltY dx i dsl i ds2 i d s 3 e - b s l ( p t b - s l ( X ,  1TI))2 
0 sl sl 

= < t2e 3 IbltEZr(I)2, 

Kr<e31bltSdx i dSl i ds2 i ds3e-bsl(Ptb-sl(x, lrI))2 
0 sl s2 

<= t2 e3tbl~ EZr(I) 2. 

So, in the notation of Theorem 5.2, 

~(r) = 0 ((EZr(I) 2)- *) = 0 (T-a) 

since X has finite susceptibility. [] 

as T ~  o% 

One can show that if X satisfies the conditions of Theorem 5.2, then so 
does the Cox process directed by X. We can therefore argue as we did above 
for the central limit theorem to obtain a law of the iterated logarithm for binary 
branching Brownian motions "corresponding" to the central limit theorem, The- 
orem 6.2 in Dawson and Ivanoff (1978). We could also apply the results of 
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Sect. 5 directly to more  complex systems, provided we are able to make  the 
necessary m o m e n t  estimates. 

W h e n  b = 0 ,  n - 0 ,  ~ is a symmetr ic  stable process with index e < d ,  and 
N is the unit  point  mass at Lebesgue measure, then D a w s o n  (1977) shows that, 
as t ~ o% the law of  X converges to that  of  a stat ionary,  infinitely divisible 
r a n d o m  measure Xoo for which Cov(X~(A) ,  X ~ ( B ) ) =  ~ ~ Ix -y[~-adxdy .  It 

A B 

is clear f rom Theorem 3.4 that  Xo~ is mixing and hence ergodic. As X ~  obviously  
does no t  have finite susceptibility, our  central  limit theorem and law of  the 
iterated logar i thm do no t  apply. Indeed, D a w s o n  (1977) shows that  the appro-  
priate norming  sequence in a central limit theorem for X~o is T -(d+~)/2, ra ther  
than T -d/z, and the resulting Gauss ian  limit is not  a white noise, but  ra ther  
has long-range correlations. 

Finally, we remark  that  the procedure  which we used to construct  X f rom 
the superprocess {Y~}~e0 can also be used to construct  s tat ionary,  associated 

r a n d ~  measures based ~  the " m a n  h ~  pr~ t i Y~dslt~0 (see (Iscoe 

1986) for a discussion of  this process). One can then use our  results to analyse 
this class of r a n d o m  measures in the same way that  we have studied X. 
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