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Summary. In the work of Donsker and Varadhan0 Fukushima and Takeda 
and that of Deuschel and Stroock it has been shown, that the lower bound 
for the large deviations of the empirical distribution of an ergodic symmetric 
Markov process is given in terms of its Dirichlet form. We give a short 
proof  generalizing this principle to general state spaces that include, in 
particular, infinite dimensional and non-metrizable examples. Our result 
holds w.r.t, quasi-every starting point of the Markov process. Moreover 
we show the corresponding weak upper bound w.r.t, quasi-every starting 
point. 
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1 Introduction 

Already in the work [Do-V2] of Donsker and Varadhan the Dirichlet 
form appears naturally as the function governing the large deviations of 

empirical distribution Lt(co, dx) defined by Lt(co, A).'= 1 i IA(Xs((O)) ds" the 
b 0 

Fukushima and Takeda were the first to derive the lower bound for quasi- 
every starting point xEE, in case of an m-symmetric ergodic Hunt  process 
associated with a regular Dirichlet form (#, D(#)) on LZ(E; m) on a locally 
compact separable metric space E in their well known paper IF-T]  1. Their 
result is a corollary to a highly non-trivial representation formula for the 
Dirichlet form associated to a Girsanov-transformation. The first result 

* This research was supported by the Graduiertenkolleg "Algebraische, analytische und 
geometrische Methoden und ihre Wechselwirknng in der modernen Mathematik", Bonn 
1 More precisely, the irreducibility of the Diriehlet space is assumed instead of the ergodi- 
city of the process. However, by IF2, p. 201,202], these assumptions are equivalent 
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of this paper extends the large deviation result in [-F-T], but we avoid 
the mentioned representation formula so that our proof is shorter and uses 
more L2-semigroup theory. Our objective was to generalize their result to 
infinite dimensional situations. Deuschel and Stroock already considered 
large deviations on a polish state space E of a Markov family (P~)x~ on 
the Skorohod space D([0, oo); E) that admits an m-symmetric process with 
P~-a.s. left continuous paths in their book [D-St]. They showed that for 
any probability measure v such that there is a t > 0  such that vP~ is not 
singular w.r.t, m, the lower bound of the large deviations of P~oL~ 1, t>0 ,  
is governed by the Dirichlet form, or, more precisely, the functional J~ 
defined in Theorem 1 below (cf. [D-St, 5.3.10]). Thus their result holds 
for P~oLt, t>0 ,  if for some t > 0  the measure p~(x,') is not singular (e.g. 
absolutely continuous) w.r.t, the measure m. This is typically not fulfilled 
for any x in the infinite dimensional examples from quantum field theory 
we consider in Sect. 6 (compare Remark 16(i) below). 

By the development in the theory of Dirichlet forms as presented in 
the book of Ma and R6ckner [M-R] it is now possible to complement 
their result. However, we need the quasi-regularity of the underlying Dirich- 
let form, which is related to more regularity of the associated Markov pro- 
cess, namely the strong Markov property. Moreover, it is the decisive 
assumption that allows to consider all semigroups and corresponding gener- 
ators on L z (E; m) instead of the subspace B ~ of the space of bounded measur- 
able functions as in [D-St, p. 122] and [Do-V2], [Do-V3], and still to 
get quasi-everywhere results. The main idea of proof is here as well as 
in the cited literature a drift transformation and goes back to Donsker 
and Varadhans paper "Asymptotic evaluation of certain Wiener integrals 
for large time", [Do-V1]. 

For the weak upper bound the following results are known. In [-D-St, 
5.3.2] it was shown that the large deviations of P,,oL~ 1, t>0 ,  are governed 
by J~ in any topology w.r.t, which Jg is lower semicontinuous. By [D-St, 
Ex. 4.2.63] J~ is indeed lower semicontinuous (and henceforth a rate func- 
tion) w.r.t, the z-topology on Jr (E) (,= the space of all probability measures 
on E), i.e., the topology generated by open sets of the form 

U(#; 5,f):={veJg 1 (E):[ ~fdtt-~fdv[ < 6}, 

psJt{ 1 (E), f b o u n d e d  and measurable, ~ > 0. Secondly, in case the transition 
kernel is Feller continuous, the functional Jg can be identified with various 
other rate functions (see [Do-V2, Thm. 5], I-D-St, 4.2.58]), that govern the 
large deviations of P~ o Lt 1, t > 0, sup Px ~ E; 1, t > 0, respectively (see [Do-V2], 

x ~ E  

I-D-St, 4.2.16, 4.2.17]) if the Markov process is uniformly ergodic (which 
implies the full upper bound, too) and satisfies some further regularity 
assumptions. Thus our weak upper bound (Theorem 2 below) is stronger, 
on the expense of a "quasi-everywhere statement". 
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Let us now describe our main results more precisely, that apply even 
for non metrizable state spaces. We consider an m-symmetric right process 
IIV[ Let (g, D(g)) be the corresponding symmetric quasi-regular Dirichlet 
form on L2(E; m), where m is a probability measure and the state space 
E is only assumed to be a topological Hausdorff  space on which the Borel- 
and the Baire-a-algebra coincide. Let (P~)x~E be the Markov family of NI 
and set P~ := ~ Pxm(dx). 

E 

Theorem 1 Assume that P,~ is ergodic and let U c_ J~I(E) be r-open. Then 
for g-quasi-every x ~ E 

1 
lim inf 2 log Px [Lt~ U] __> - inf de(#), 

t ~  co t t ~ U  

where J~(#)..=g(q), q)),/f #=q)2m, ~o~D(g), Je(#)..= oo else. 

Then it is standard to derive the lower bound of Varadhan's integral lemma, 
see Corollary 12 below. Once Je is identified as an appropriate functional 
(see Proposition 13 below), we show the corresponding weak upper bound 
by the standard Cramer method. For  the form applied here, we refer to 
Liming Wu [Wl] .  

Theorem 2 Let K c J/C, (E) be z-compact. Then 

(1) 1 inf sup lira sup - log P~ [L t ~ K] __< -- inf Jg (#). 
N:Cap(N)=O xeE\N t-* oo t #eK  

For  some concluding remarks on the upper bound we refer to the Appendix. 
The organization of the paper is as follows: in Sect. 2, we give the basic 
definitions. In Sect. 3 we give a construction of a Markov process IM ~ that 
exhibits as typical behaviour what is considered as a large deviation for 

In spite of the generality of the state space the transformed process 
can be constructed on a subset of the original path space (Theorem 21 
below). The method of proof  is standard apart from technicalities, so we 
only give it in the appendix. The proof of conservativeness uses ideas from 
the theory of L2-semigroups presented in A. Pazy's book [P]. In addition, 
it gives immediately the symmetry of the transformed semigroup, thus short- 
ening the argument, and moreover it gives the existence of an associated 
Dirichlet form. The condition in [D-St, 5.3.10] on the Dirichlet form ensures 
(and is in fact equivalent to) the ergodicity of the process NI (see Lemma 9 
below). In Sect. 4 we prove Theorem 1. The reader's attention is also directed 
to Lemma 11 which describes a method how to obtain g-q.e, statements 
from m-a.e, statements. This we apply to the ergodic theorem (see the proof 
of Theorem 1 and compare IF-T, after (4.3)]). In Sect. 5 we prove Theorem 2. 
In Sect. 6 we consider some examples from quantum field theory demanding 
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the generality of our results: the time zero free field, the space time free 
field and perturbations of both. For  these examples a (full) upper bound 
holds, see Theorem 19 below. 

2 Definitions and notation 

Let E be a Hausdorff topological space, C(E) the space of continuous real 
valued functions on E, N(E) the Borel-a-Algebra on E and assume that 
N(E)=a(C(E)). By d{l(E ) we denote the space of probability measures 
on E and by ~b(E) the bounded N(E)/~(~)-measurable  functions. Let 
me J//1 (E). By (. , .)  we denote the inner product  in LZ(E; m). 

Definition 3 A symmetric bilinear form g ( ' , . )  on LE(E; m) with D(g) dense 
in LZ(E; m) is called a Dirichlet form if it is closed (i.e., D(g) is complete 
with respect to g ~ : = g + ( ' , - ) )  and if every normal contraction operates 
on (g,D(d~ i.e., g(T(u),T(u))<=g(u,u) for every ueD(g) and every T: 
IR ---> IR satisfying T(0) = 0, [T(x)-- T(y)[ < [x - y[, x, y e N .  

From now on we fix a Dirichlet form (g, O(g)) on LZ(E; m). Let (L, D(L)) 
denote the unique selfadjoint negative definite operator such that D(L)c 
D(E) and g(u, v)=(-Lu, v), ueD(L), reD(g). The generator (L, D(L)) is in 
one-to-one correspondence with a strongly continuous semigroup of sym- 
metric contractions T~ = e tL, t > 0, and a strongly continuous symmetric con- 
traction resolvent G ~ = ( ~ - L )  -1, ~>0,  on LZ(E;m) (see, e.g., I-M-R, Dia- 
gram 3, remarks after 1.2.22]). 

We assume from now on that T~ 1 = 1 for all t > 0. So we have in particular 
leD(L).  Let us recall the definition of the (1-) Capacity associated with 
(g, D (g)): 

For  U _  E, U open, set 

Cap(U)=inf{gt(u, u):u>_ 1 m-a . e ,  on U}, 

and for A _~ E arbitrary 

Cap(A),=inf {Cap(U): A ~_ U, U open}. 

A set N c E is called N-exceptional, iff Cap (N)= 0. An increasing sequence 
(F,) ,~ of closed sets is called an N-nest, iff lim Cap(E\F,)=O. We say 

n ~ 3  

that a property holds N-quasi-everywhere (g-q.e.) iff there is an N-exceptional 
set N, such that it holds everywhere on E\N. A function f :  A ~ ]R, A _ E, 
is called N-quasi-continuous, iff there exists an N-nest (F,) ,~,  such that f 
is in 

C({F,}):={U:B ~ :  ~F,~_B~E,f[F., neN, is continuous}. 
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Remark. Since we assume T t I = 1, this capacity is the capacity Caph, g defined 
in [M-R, III.2.4] for h = g =  G1 1 = 1. By virtue of [M-R, III.2.11] the defini- 
tions of 8-nests and g-exceptional sets given here are equivalent to those 
in [M-R]. 

Definition 4 The Dirichlet form (g, D(g)) is called quasi-regular,/ff 
(i) There is an g-nest (E,),~ N consisting of compact sets. 

(ii) There is an g~/2-dense subset of D(g), whose elements have g-quasi- 
continuous m-versions. 
(iii) There exist u,~D(g), heN,  having g-quasi-continuous m-versions 
~t,, n~N, and an g-exceptionel set N~_E, such that {~,]n~N} separates the 
points of E \N .  

We adjoin a point A (the cemetery) as an isolated point to E, if E is not 
locally compact, else we take Ea ..=E w {A} to be the one point compactifica- 
tion of E. From now on we fix a quasi-regular Dirichlet form (g, D(g)). 
Let lM=(f2,(~),==o,(Xt),=o,(Px),~E~,( ) be a right process with state space 
E and life time (, which is properly associated to (g,O(g)), i.e., ptf(x) 
:=Ex[f(X,)] is an g-quasi-continuous m-version of T J  for all f~Mb(E), 
t>0 .  Here, Ex[ . ]  denotes expectation w.r.t. Px. By [M-R, IV.3.53 there 
always exists such a right process, which is, in particular, m-tight, m-special 
standard. 

Remark. We emphasize, that in most cases we do not have to worry wether 
a quasi-regular Dirichlet form is given a priori. We can always start right 
away with a right process M which is symmetric w.r.t, the measure m, 
if the state space E is a Borel-subset of a polish space. In that case the 
symmetric Dirichlet form (g,D(g)) on L2(E;m) corresponding to it is 
automatically quasi-regular and the process IM is properly associated to 
it (cf. [-M-R, IV.6.7]). 

We assume w.l.o.g, that we are in the following canonical situation. 
Let (2' be the set of all maps co: IR~ ~ E a  and define ((co):=inf{t>0: co(t) 
=A}, cocO'. Then let f2 be the set of all co~f2' with co(t)=A for all t > ( ,  
that are right continuous on [0, oo) and have left limits in E on (0, (). Further 
let X~(co).-=co(t), ~ o  ,=a(X~ ; s < t) and let o~ denote the universal completion 
of ~t ~ i.e., the intersection of the P~-completions of ~ o ,  as v runs over 
all probability measures on (Ea, ~(Ea)). Finally let ~ be the universal com- 
pletion of a(X~ ; s>0 )  and let {0, :f2--. ~, t>0},  denote the time-shift semi- 
group defined by X~(co o 0,) = X~ +t(co). 

Let X})(co) denote the closure of {X,(co):O<s<t} in E. A Borel set 
SsN(E) is called NI-invariant, iff there exists ~ E \ s ~  such that 

O~\s ~ {Xto n (E\S) 4 = 0 for some 0 < t < ~} 

and P~ [ ~ \ s ]  = 0  for all x~S. We will call Q\~-2E\ s the defining set for S. 
For convenience we state the following 
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L e m m a  5 Let f: E ~ be an g-quasi-continuous function that is constant 
m-a.e. Then there is an g-exceptional Borel set N, such that E \ N  is NI- 
invariant and such that f is constant on E \ N .  

Proof Let (F,),~N be an g-nest such that f~C({F,}) and let (E,),~N be the 
g-nest consisting of compact sets of Definition 4. Set K,,:=supp [IE.~v,m]. 
Then, by [M-R, III.3.8], (K , ) ,~  is a regular g-nest and by [MR 92, III.3.9] 
f is constant on ~ K, .  By [M-R, IV.6.5] there is an g-exceptional set 

neN 

N, E \  N ~ U K, ,  such that E \  N is lM-invariant. [] 
nffN 

We call a Markov process corresponding to a Markov family (Q~)~  conser- 
vative, iff Q~[(< oe] = 0  for g-q.e, xeE. 

Since we assumed T~I = 1, Lemma 5 gives p t l (x)= 1 and thus P~[( 
< o9] = 0 on an NI-invariant set S__ E with defining set Qs, such that E \ S  
is g-exceptional. Now, w.l.o.g, we may identify IM with the trivial extension 
to E of its restriction to S (cf. the appendix for details). Then we even 
have Px[(< oo] = 0  for all xeE. 

3 A transformation 

The resolvent (R~)~> o of (Pt)t>__o is defined by R~g(x):=~e-~tpJ(x)dt, a > 0 ,  
g~Nb(E). Let a , c>0 ,  gsNb(E), g>c ,  and set q):=R~g. Then IIq~ll~o 
< 1/~ ]lgll~, so ~oe~b(E) c~D(L). By [M-R, IV.2.8] R~q0 and R~I are g-quasi- 
continuous. Since Pt 1--1 m-a.e., by Lemma 5 there is an g-exceptional set 
No, such that E\No is lM-invariant, and p~ 1 = 1, t > 0, hence R~ 1 = 1/c~ on 
E\No. Hence q~>R,c>c/c~ on E\No. Finally Ltp=ctq~-g is bounded by 
2 I[g [I ~. In the following we will study the semigroup (plO))t>o defined by 

p}O)f(x),=] o 

[ f (x)  :xeNo. 

L e m m a  6 Let f 6~b(E). Then p~)f is g-quasi-continuous for all t > O. 

L(p 
Proof It suffices to consider positive fe~b(E).  Let V.'= , s>O and 
set ~o 

- ~ s 

Then g_ s(x) < p~e)f(x)< g +s(x). By the Markov property 

g+s(x)=exp[+_sllV[l~] psE (X,_s)~0(X,_s)exp S V(X,)dr (x). 
0 
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Thus, since ]M is properly associated to (g, D (g)) and ~o is g-quasi-continu- 
ous, g_+s is g-quasi-continuous too. So, by [M-R, III.3.3], there exists an 
g-nest (F,),~N such that g_+~/,]v~ is continuous for all h e n  and such that 
(w.l.o.g.) ~ F, ~ E\No, No as at the beginning of the section. Since (p~~ ~ 
=infg+~/,]v~, it is upper semi-continuous. Correspondingly we have 

n6N 

(p}~~ so it is lower semi-continuous, hence continu- 
n~N 

OUS. [ ]  

Lemma 7 The semigroup (P~O))t>o induces a strongly continuous semigroup 
(Tfl)t> o on L2(E; ~o2m) satisfying 

H Tt~~ _< i ~ -  ex p t co 

We shall see below, that (T~~ o is in fact a contraction semigroup. 

and set C.-= L~o Then Proof Let f geNb(E),f=gm-a.e., 
oo" 

~pl~')(f-g)cp2 dm< 11~211~ exp [tC]~Ptlf-gldm=O, 

so pl ~~ respects ~02m-classes. Let [-] denote the qoZm-class of a function 
and define Tt ~e) I f ]  ..= [p}~O)f]. Since for positive fe~3b(E ) 

1 tc (~) 1 tc 
- - e -  pt(fq~)<-_pt f < - - e  pt(fq~), 

the strong continuity of(T0t > o implies that of (Tfl)t > o. The asserted inequali- 
ty is obvious. [] 

Proposition 8 (i) The generator L ~ of (Tfl)t> o on L2(E; q~2m) is given by 

D(L ~) = {u~L2(E; q)2 m): ucpeD(L)} 

1 
I2 u=- -  {L(u(p)-uC~o}, u6D(L~~ q~ 

In particular, ( L ~, D ( LO) ) is self-adjoint, hence (Tte)t> o symmetric. 
(ii) There is an g-exceptional set N1 such that E\N1 is IM-invariant and 
p~t I ~(x) = 1 for all x ~ E \  N 1 and all t > 0 simultaneously. 
(iii) The semigroup (Tff)t> o is a contraction semigroup. 

Proof (i) Set V'.= L~~ and define 

pV f(x) ,=Ex[f(Xt)exp[ i V(Xs)ds]], fE~b(E ). 

Then (pV)t> o is the Feynman-Kac semigroup associated with V, which is 
2 selfadjoint on L (E; m). Since Vis bounded, it is well known that its generator 
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L v on LZ(E;m) is given by LV=L+ V. Since l~'v('~u~-'(O)u~.t ~.~ ,-~-t for all 

u ffL2(E; (1)2 m) and D (L v) = D (L) the first part of assertion (i) follows. Note, 
that (L ~, D(L ~~ is the sum of an operator that is unitary equivalent to the 
self-adjoint operator (L,D(L)) and a bounded multiplication operator. 
Hence it is self-adjoint. 
(ii) By Lemma 7 and [P, 1.5.3] the resolvent set p(L ~) of L e contains the 

ray ] ~ oo' ~176 Let G~=(c~-Le) -1, ~sp(L~~ denote the resolvent o f L  ~'. 

Obviously L ~~ 1 = 0. So e G~ 1 = G~ (c~- L ~) 1 = 1 and ~ L ~ G~ 1 = 0. Henceforth, 
by the representation of Tt ~ that holds due to (i) and [P, 1.5.5], T, O l 
= lim e'~L~~ = 1. So p}~')l= l m-a.e. Now let (tn),~ be an enumeration 

g + o O  

of the positive rational numbers. By [M-R, III.3.3] there is an g-nest (F,) ,~ 
w.r.t, which p~~ is g-quasi-continuous for all n sN .  So Lemma 5 gives 
an g-exceptional set Nz, such that E\N~ is lM-invariant and p~~ = 1 on 
E \ N , .  By the right-continuity of IM and Lebesgue's theorem of dominated 
convergence then follows p~O) 1 = 1 on E\N~ for all t > 0. 
(iii) By (ii)  and symmetry of (T~')t>o we see that ~(Tt~~ 
= ~ (p~) g)2 ~o2 dm <- ~ (p}e) g2) q)Z dm= ~ gZ (pl~) l )(p2 dm= ~ gZ (p2 dm, ge~b(E), 
which gives the assertion. [] 

Remark. By Proposition 8 it is clear that there is a Dirichlet form (U,  D(g~')) 
correspondiong to (T~)~> o. 

Lemma 9 The following conditions are equivalent: 
(i) Pm is ergodic, i.e., any random variable Z satisfying Pm[Z=ZoOt] = 1 

for all t > 0 is P=-a.s. constant. 
(ii) I f  geNb(E) satisfies ptg=g,  then g is constant m-a.e. 

(iii) I f  ueD(g) satisfies g(u, u)=0, then u is constant m-a.e. 

Proof. (i)<=>(ii) follows by the well known fact (see, e.g., [-F2]), that a bounded 
measurable random variable Z is shift-invariant, i.e., P~[Z=Zo 0,] = 1 for 
all t > 0  if and only if Z=g(Xo)P~-a.s. for a function geNb(E) satisfying 
ptg=g. 
(ii)=>(iii). Let ueD(g), g(u, u)=0. Then [g(u, v)[ <g(u, u)l/z g(v, v) 1/2 =0  for 
all v ~ D (g), hence u e D (L) and L u = 0. Consequently e G~ u = G~(c~- L) u = u 
and T~u= lim et=(=~-~)u=u. 

~ o 0  

(iii) ~ (ii). Let p,g = g. Then g e D (L) and g (g, g) = )im ~ -1 t ( g -  Tt g, g) = 0. Hence 

g is constant m-a.e, by (iii). [] 

Now there is an lM-invariant set S ~ c E  such that E \ S  ~" is g-exceptional 
and such that one can show by the standard multiplicative functional tech- 
nique that there is a unique family of (conservative) Markov kernels (P~)~so 
rendering (X,),>=o Markov with semigroup (plO))~_>o.. For details we refer 
to the appendix. 

The idea of the proof of the following Proposition is as in [D-St, 5.3.9]. 

Proposition 10 The measure Poem ,=S P~ qo 2 (X) m(dx) is ergodic, if Pm is ergodic. 
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Proof Let feNb(E), f=p}~~ Then f e D ( L  ~) and, since p}e)1 = 1, 

( f  (x) --  f (y))2 p~)(x ,  d y) @2 (x) m (d x) = O. 

~ _  inf(p 
Set C.'= 7.-[[~ol[ , . Now ? e- tCp~) <= p~ < ? - 1 etCp~) and Pt :| : -  1 im- 

ply E,,[(T(Xo)--f(Xt)) 2] = ~ (f(x)--f(y))Zpt(x, dy)m(dx)=0. Hence by sym- 
metry and conservativeness 

0 = lim _1 Em [ ( f (Xo)- - f (X, ) )  2 ] 
t-~o t 

= lim _1 E,, [ 2 f  2 (Xo)-- 2f(Xo)f(Xt)  ] 
t~0  t 

=l im 1 2 ( f - p , f f )  
t~O t 

= 2 g ( f f ) .  

The assumption and Lemma 9 lead to the conclusion. [] 

4 Proof of the lower bound 

Let (Pff)x~s~ with semigroup (P~O))t>o be the Markov family constructed 
in the previous chapter. 

Lemlna 11 Let F be ( V  ~)/N(lR)-measurable, bounded and such that 
t>O 

Pff[F=FoOt]=I for g-q.e, x~E and all t>0 .  Then [x~-+E~[F]], where 
E~[ . ]  denotes expectation w.r.t. P~, is g-quasi-continuous. I f  in particular, 
F = I  a and Pff[A] =c,  c~[0, 1], for m-a.e, xeE, then P2[A] =c for g-q.e. 
x~E. 

Proof Set f(x):=E~ [F]. By shift-invariance of F it follows with the Markov 
property that p~~ for g-q.e, x~E. Now, by Lemma 6, p~O)f 
and hence f is g-quasi-continuous. []  

Proof of Theorem 1 Let U___~/1 (E) be z-open. W.l.o.g. we may assume 
infJa(kt)< oo, i.e., there is ~o~D(g) such that ~oZm~U. Now, let ((p,),~ be 
#eU 

a sequence in D(g) with ~0 = lira ~o, w.r.t, g~/2, then 
n --* c~o 

I~f(~o2--q~2)dml <= I[ f I[ co( [1~0, 112 + II ~112)( II ~n--q~ 112) 

for all feNb(E), hence cp2m tends to (pZm in the z-topology. So for no 
large enough, ~02mEU for all n>no. Denote by Db(g), Db(L) the bounded 
functions in D(g), D(L) respectively. Then ~0, .-=~0 A n is in Db(g) and con- 
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verges in D(g) to q~. Any q~Db(g) can be approximated w.r.t, gl/z by 
nR,~oeDn(L) and any ~oeDb(L) by (q)+l/n). Hence any ~oeD(g) can be 
approximated w.r.t, gl/2 by ~o,eD(g) which are of type qo =R~g, ge~b(E), 
g>=c>0. Thus, as will be clear by (2) below, we only have to consider 
the case ~o=R~g, g~Nb(E), g > c > 0 ,  such that ~q)2dm=l and we choose 

U6.'= (~ U(~o2m;5,f~) such that U6~_U for some 5>0,  f~eMb(E), i=1, ...,n. 

Set A(t, 5),={LteU6}, S(t, 5),= LteU q)2m;5, and S'(t, 5):=S(t, 5)c~ 

A(t, 5). Let (Pfl) be the associated conservative Markov family constructed 
in Sect. 3. By Proposition 10 and the ergodic theorem we have 
lira ~f(x)L~(., dx)=~fqo2dm P~m-a.s. for all f~Nb(E), hence, in particular, 
t ~ c O  t 

lim 1 I Lq~ (X~) ds= ~ ~oLgdm Pfl~,,-a.s. Consequently P~~ infS'(t, 6)] 
t cO T 0 ~ E t ~ c O  

= 1 for pZm-a.e, x~E. By Lemma 11 this holds for g-q.e, xeE. Then 

lim P~ [L~e UJ =lim inf -1 log E~[ ~X~-) exp (Xs)ds ;A(t, 3) 
t-~cO t t-~cO t k ~~ ko 

~o(Xo) .  , 

> S q ) L g d m - - b + l i m i n f l l o g { ~ ' P ~ ' [ S ' ( t , 5 ) ] }  
E t--+ 

= ~ q)Lq)dm-6 
E 

for g-q.e, x~E. So, since U6~ U and 6 was arbitrary, 

(2) l imin f l  logP~ELteU]>-~(~o, 9) for ~-q.e.x~E. 
t -+cO t 

[] 

Corollary 12 Let F: E ~ I I  be measurable and such that v~--~( F, v ),=S F dv, 
v e ~ l  (E), is lower semicontinuous w.r.t, the z-topology. Then 

lira inf I log E~ [exp [t <F, L~) ] 

_>sup { <F, v> --J~(v):ve~l (E), <F, v) A ,le(v) < oc} 

for or x~E. 
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Proof Let 6 > 0 and ~0 E D (g) such that # ,=  (p2 m E J//1 (E). By lower semicon- 
tinuity there is a z-open neighborhood G of/z such that inf (F ,  v ) > ( F ,  # )  

v e G  

6. Hence 

! 1 
lim inf--- log Ex [exp [t (F, Lt) ] ] ___ lim inf -~ log Ex [IG(Lt) exp It (F,  Lt) ] ] 

t ~ o o  t - -  t --* c~ t 

1 
> inf {F, v) + lim inf--- log P~ [Lt e G] 
~ - v ~ G  t ~ c ~  t 

>= r u ) -  J~(~)-6 

for g-q.e, xeE. [] 

5 The uppcr bound w.r.t, the ~-topology 

A prominent role for the large deviations of P~o L71 t > 0, is played by 
the logarithmic spectral radius 

p(pV)..= lim 1 log I] v 
- -  P t  I lL2(E;rn)~L2(E;rn)  

t--+ oo t 

of the Feynman-Kac transform (pV),> o (introduced in the proof of Proposit- 
ion 8(i)) by a function VeYJb(E). The key to Theorem 2 is that it dominates 
the Cramer-functional Aq, that we introduce here: Let 

, ]J Aq(V).'= inf sup lim sup -- log Ex[exp V(X~)ds VeNh(E ). 
N : C a p ( N ) = O  x ~ E \ N  t--*oo t 1_ 

Note, that this functional takes values in the compact interval [infV, sup V]. 
E E 

The corresponding Legendre-transformation A* w.r.t, the r-topology is 
defined by 

A*(#)-':sup { S Vdlz-Aq(V): Vs~b(E)}, 
E 

# e~/~l (E). 

Let finally 

A~(V).'=sup { S Vdtt--Jr VeNb(E), 
E 

where J~ is defined as in Theorem 1. 
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Proposition 13 Let V ~ b ( E  ). Then Aq(V) < Ar and Jr < A*. 

Proof. Let Ve.~b(E). First we will show, that p(pV)>=Aq(V). Therefore 
observe that 

(3) p (pV) > inf {2 > 0: lim e- ~ 11 pV 1 II L~(E, m) = 0} 
t ~ c o  

> i n f { 2 > 0 :  ;e-'~tpVldt~L2(E;m)}, 
0 

where the first inequality is obvious and the second is seen as follows: 
Let 2 > i n f { 2 > 0 :  l i m e  -zt [I P v l  ][g2(e;~)=0} and 6>0.  Then 

t --+ oO 

o L2(E;,,O o ~ pVl HL~(~;,,)dtds 

< ~e os ; e-~t(e-ZtjlpV 1 ]ln:(E;m))dtds 
0 s 

G o ( 3 .  

Let AL2(V) denote the right hand side of (3) and let 2>AL2(V). Then RVl 

�9 .= ; e-~p v 1 d t is well-defined and in L2(E; m). We trivially have that 
0 

(4) R v 1 =Rz(VR ~ 1 + 1). 

Hence, in particular, R v 1 ~D (L) c D (#). Therefore, J im Pl/nR V 1 = e v 1 w.r.t. 

#I/2. By IM-R, III.3.5] there is a subsequence (pl/nkRVl)k~N converging 
to an g-quasi-continuous m-version of the limit RVl. But, by (4), pl/,RVl 

= S e-~Pt+ 1/~( VRv i + 1)dt=e ~/" ; e-~tpt(VRV 1 + 1)dt converges 
0 i/n 

pointwise to R v 1, hence R v 1 is g-quasi-continuous. So, in particular, R v 1 
< m g-q.e, and henceforth 

AL2(V)>inf {)~>O: f e- ~'pV l(')dt < ocg-q.e. } 

= i n f { 2 > 0 :  lim e-~tpVl(')=Og-q.e.} 
t ~ o O  

= A ~ ( V  ). 
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To see, that the first infimum dominates the second, first observe that for 
t~[k, k+ 1), keN, 

(5) e-IIvN =pV 1 <pV 1 < e Ilvll ~pV 1. 

Let 2> in f{2>0 :  ; e-ZtpVl(.)dt< 
0 

al set N such that for all x e E \ N  

oe o~-q.e.}. Then there is an g-exception- 

• e-IIVN=e-~(k+l)pV l(x)< ; e-~'pV l(x)dt < co 
k = l  0 

by the first part of (5). Hence necessarily lim e--zg-Vl(x)=0t~k and by the 
k ~ o o  

second part of (5) lira e-ZtpVl(x)=O for all x e E \ N .  The dual inequality 
t + c O  

and the last equality are obvious. 
Since the logarithmic spectral radius p(pV) is equal to - 2 v ,  where 2v 

is the lowest eigenvalue of the generator L v of (pV),>=0 and Ae(V) is also 
equal to - 2 v  (c.f., e.g., [D-St, p. 131]), Aq(V)<Ae(V ). Moreover we know 
by [D-St, Ex. 4.2.63] Jg(#)=A~(/0.-=sup { 5 Vd#-Ae(V):VeNb(E)}.  Thus 
Jg<=A*. [] E 

As announced, the following is now standard. Nevertheless we give it in 
full detail. 

Proof of Theorem 2 Let #eK, 0 < 3 <  1 and choose VENb(E ) such that 

T, >(A*(#)- -6  :A*(#) < oe, 
I E : else. 

x ~  - 1  Let U =  U(#; &, V) and let Pt .=P~oLt denote the distribution of L t under 
P~. Then 

1 1 
lira sup- logp~(U)<l im sup - log  ~ exp [t(~ Vdv-~  Vd#+b)]y/(dv) 

t ~ m  t - -  t ~  t ~ ( E )  

By z-compactness, K c ~{1 (E) is contained in some finite union 0 Uu, of 
i = 1  

z-open sets U,~= U(#1; c~, Vii), #~eK, where V~eNv(E ) corresponds to 6 and 
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#, as above. Then the previous 
n 

X x < ~ pt (Uu,)<n max p~ (U,) leads to 
l <i<=n 

i = 1  

inequality combined 

1 
inf sup lim sup - log Px [Lt ~ K] 

N:Cap(N)=O xEE\N t~oo t 

< inf sup max ~6-~V~d#i+lim sup 
N:Cap(N)=O xEE\N l <:i<:n L t ~  

' l l o g  Ex[exp [ i  Vz(Xs)ds]]} 

= m a x  4 6 - I v ~ d # , +  inf sup lim sup 
l<-i<n[._ _ N:Cap(N)=O x e E \ N  t--* oe 

- l l o g  E x [ e x p [ i  Vi(Xs)ds]]} 

=< max {6+max(-A*(#i)+~,-3-1)}. 
l < i < n  

with 

S. Miick 

p~(K) 

Now let 6 tend to zero and next replace the maximum over the #i by 
the supremum over all #~K. Then the assertion follows by Proposi- 
tion 13. []  

Remark 14 The standard argument to derive the (full) upper bound, i.e., 
the statement corresponding to Theorem 2 with closed sets A___ d/d 1 (E) in 
place of compacts K, is to show the (w.r.t. x~E uniform) exponential tight- 
ness of the family of measures p~'..=PxoL~ 1, t>0 ,  which in general is hard. 
On polish spaces the following is known. Uniform exponential tightness 
holds, if the process is uniformly ergodic (see I-D-St]). However, one has 
exponential tightness of the measures PmoL71, t > 0, under weaker condi- 
tions. For  example, it is sufficient that the semi-group (Pt)t>__ o is m-hypercon- 
tractive (cf. [D-St, Chap. VI]). The rate function is then again given by 
Je, which in this case equals the Donsker-Varadhan entropy J,, (c.f., e.g., 
[D-St, Ex. 5.4.36]). For some weaker conditions we refer to [W2, Thm. 3.4, 
Thm. 3.7(ii)]. Confer also Theorem 19 below. 

6 Examples 

Let S(N d) denote the space of Schwartz test functions on IR d and S'(IR d) 
its dual. The examples in our first and second subsection were originally 
only studied on S'(Nfl). But recently R6ckner has given a treatment on 
a separable Banach subspace of S'(IRd), wherefore considerable effort was 
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necessary. But all the examples could also (with less effort) be given on 
the non-metrizable space S'(IR d) itself (see [A-R1, Ex. t.l.3(ii), (iii)]) and 
our results would apply even then. 

6.1 Time zero free field Dirichlet form 

So let E=B,, e > ( d - 1 ) / 2 ,  be the separable Banach subspace of S'(IRa), 
with S(IRa)cB', defined in JR1], JR2, (1.3)] and take H=L2(IRa; dx), where 
dx denotes Lebesgue measure. It has been shown in [R1], [R2, (1.3)] that 
there exists a Gaussian measure # on N(B~) such that 

exp [is, (x, 1)s] #(dx) = exp [ -  1/211 ( -  A + 1)- 1/4 t11L2(X~;a,)] 

for all leS(iRa), where A is the Laplacian on IR a. The measure /z is just 
the time zero free field of quantum field theory. Define the linear space 

Y C ~  :={f( /1 , - - . ,  lm):m~N,f ~C~ (Nm), 11,..., l~eE'}, 

where C~(IR m) denotes the set of all infinitely differentiable functions on 
IRm with all partial derivatives bounded. Now let for ksE and u e ~ C ~  

~ (x),= u(x + s k)l,= 0, x~E. 

OU 
Observing that h ~ h ( X ) ,  h~H, is a continuous linear functional on H, 

h Ou x let Vu(x)eH be defined by ( V u ( x ) , ) u = ~ ( ) ,  h~H. 

Then (do, f f C { )  defined by 

do(u, v).'= 5 (Vu, Vv)~(~;~.)d~, 
Ba 

u, v ~ C ~ ,  

is closable ([A-R2, Ex. 5.6(ii)]) and its closure (g, D(g)) is a quasi-regular 
symmetric Dirichlet form on L2(B, ; #) (cf. [M-R, IV. Sect. 4b)]). Let (L, D(L)) 
be the corresponding generator. It is known that 0 is the infimum of the 
spectrum of (L, D(L)) and that it is a simple isolated eigenvalue with normal- 
ized eigenvector the constant function 1. (Cf. [A-HK, Sect. 5.3] and also 
IRe-S2]). Hence, if u eD (g) with g(u, u)= 0, then u~D (L), L u = 0 and hence- 
forth u--const.  This implies by Lemma 9 that the right process IM properly 
associated to (d ~ D(do)) (which is in fact a diffusion and which exists according 
to [M-R, IV.3.5]) is ergodic. Clearly, it is symmetric, hence Theorems 1 
and 2 apply. 

Remark 15 By, e.g., [-A-R4, Sect. 7] we can apply IRe-S1, Thm. X.61(b)] 
to conclude that the semigroup corresponding to the free field Dirichlet 



542 S. Mfick 

form is hypercontractive. Hence the full upper bound holds by Remark 14 
for P,,oL71, t>0,  and is given by Je. But cf. also Theorem 19 below. 

Remark 16 (i) Let A,=(--A +1) 1/2. Then the transition semigroup corre- 
sponding to the free field Dirichlet form defined above is given by 

&f(x)=~f(e-tax+/1--el-2~Ay)#(dy), x~E, t>0 ,  

f >  0 ~(E)-measurable (cf. I-B-R, Ex. 5.6(ii)]). Hence, by the Hajek-Feldman 
theorem, the measures p~(x,'), t>0,  are singular w.r.t. # for all xeE, which 
means that Theorem 1 sharpens indeed [D-St, 5.3.2]. The same is true for 
Sect. 6.2 below. 
(ii) For another Banach space E in place of B~ see [-B-R, Thm. 3.1]. 
(iii) The results in this section including the full upper bound, as specified 
in Remark 15, hold more generally for all Dirichlet forms associated with 
a semigroup e -tr~A), where F(A) is the second quantization of a strictly 
positive definite self-adjoint operator A on a Hilbert space H (cf. FA-R4, 
Sect. 7.I]). Another concrete example is handled in Sect. 6.3 below. 

6.2 Perturbed time zero free field Dirichlet form 

Let E,H,# be as in Sect. 6.1. Let (peD(g), (p40 m-a.e. Then, by [A-R3, 
Thin. 4.7(i)], (d% D(U)) defined by 

(6) C~~ v):= ~ (Vu, Vl))L2(Ra;ax)q)2d#, U, vG~C~ ~ 
Br162 

is closable on L2(E; cp2m) and its closure (~o, D(U)) is a quasi-regular Dir- 
ichlet form (cf. [M-R, IV. Sect. 4b)]). Note, that if g~~ u)=0 implies that 
u=const  #-a.e., the right process properly associated to it is ergodic and 
Theorems 1 and 2 apply. 

Now let us consider particular examples of ~o, namely ground states 
of Schr6dinger operators - L  + V. 

Let P(<") be the closed linear span of {s,(. ,kl)s. . .s,( . ,k, ,>s:m 
__< n, ki~S(lR)} in L2(E; #) and let: :, denote the orthogonal projection onto 
the nth homogeneous chaos H,..=P(=<")OP(~"-1). 

Then let V be a renormalized polynomial (with cutoff h), i.e., 

2 N  

V(x) = 2 a n:xn:(h), 
n = 0  

x~E. 

Here NeN,  a, elR, O<_n<2N, with a2N>0 , h~gl +e(]R; dx) for some e>0, 
and :x" :(h) is defined as the unique element in H, such that 

j':x":(h): f i  Xk~:.d#----n! ~ ~] ( ~ (--A +l)-~/2(x-yj)kj(yj)dyj)h(x)dx 
j = l  R j = l  R 
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for all kl, . . . ,  k, eSOR). (Cf., e.g., IS, Sect. V.1] for details). Then VeLP(E; #) 
for all p<oo  and e-~V6L~(E;#) for all t > 0  (cf. IS, Sect. V.2]). Therefore 
H v , = - L  + V is well-defined in the sense of forms and has a simple isolated 
lowest eigenvalue 2. Now let q~ be the so called ground state, i.e., the eigen- 
vector corresponding to this eigenvalue. Then it is known that q~ > 0 #-a.e. 
(cf. [A-HK, Sect. 5.3]) and clearly cp 6D(s (see e.g. JR-Z, Lemma 5.2]), hence 
all applies if g~ u)=0 implies that u=cons t  #-a.e., which is, of course, 
the case if the generator of (U,  D(U)) is unitary equivalent to Hv-2.  So 
far, this has only been shown in the case where V(x)=:x4:(h) with h6S(IR) 
(cf. [A-HK, Remark after Lemma 5.7]). 

6.3 Space time free field Dirichlet form and its perturbation 

Another example shall now be obtained by the space time free field Dirichlet 
form constructed on S'(NJ) (cf. [A-R1, Ex. 1.13(ii)], [A-R3]). Here we only 
look at the case of "finite volume": Let # be the space time free field 
on a finite volume A, A c IR 2 an open rectangle, i.e., # is the unique mean 
zero gaussian measure on E. '=H_ ~, 6 > 0, with covariance 

S(~,(l,z)~)Z#(dz)=lltll2~, I~E'=H~. 

For notation and more details we refer to JR-Z, Sect. 7]. Let 

g*(u, v):=S(Vu, Vv)r2(a;ax)d#, u, v e t C h .  

Then (g*, ~-C~) is closable (by [-R-Z, Sect. 7]) and its closure (g*, D(g*)) 
is a symmetric quasi-regular Dirichlet form by [M-R, IV. Sect. 4b)]. As 
in the time zero case we have that 0 is the infimum of the spectrum of 
the generator of (g*, D(g*)), and that it is an isolated simple eigenvalue 
with (normalized) eigenvector the constant function 1. Thus the associated 
diffusion process is ergodic and Theorems 1 and 2 apply. Moreover we 
have the analogue of Remark 15 (cf. Remark 16(iii)), hence Theorem 19 
below applies. 

As in the time zero case one can now introduce perturbations with 
concrete functions ~o as follows: Let (p :=exp ( - 1 / 2  V) ( > 0  p-a.e.), where 
V is a Wick polynomial in two dimensions (for details see I-A-R-Z, Sect. 7]). 
As above, it follows that ~o~D(g*) and that (g.,~o, ~ C ~ )  defined by 

g*'~'~ v),= I ([7u, VV)LZ(A;dx)CPZd#, U, v ~ C ~ ,  

is closable and its closure (g..~o, D(g.,~o)) is a symmetric quasi-regular Dir- 
ichlet form. Let (P*)x~e, (P*'~~ denote the Markov family of the diffusion 
properly associated to (g*, D(g*)), (g*'~, D(g*'~)) respectively. As is shown 
in [R-Z, Sect. 7], the function ~o satisfies the assumptions for [A-R-Z, 
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Thm. 1.3], by which Pu*,=~P*#(dx) is absolutely continuous w.r.t. P~*;~ 
..=~p,,~o ~o2 m(dx) and vice versa on each ~ o ,  t > 0. Thus also P~*m ~ is ergodic 
and Theorems 1 and 2 apply. 

A Concluding remarks on upper bounds 

Since the submission of this paper it has turned out that a stronger result 
than Theorem 2 holds under even weaker conditions. For the proof neither 
the symmetry of the process, nor the strong Markov property or the quasi- 
regularity and properly associatedness are required. Instead, consider a 
Markov process ~ to which there is associated a (not necessarily symmet- 
ric) Semi-Dirichletform (g, D(g)), i.e., Ptf  is an m-version of T~f for all 
f~,.~b(E) (cf. [M-O-R]). Assume that 1M is (strictly) conservative, i.e. P~[-( 
< oo] = 0  for all xeE.  

Theorem 17 Let K c dg 1 (E) be z-compact. Then 

1 
lim sup - l o g  sup P~ [Lt~K] < - inf J~(#). 

t -~  oo t x ~ E  ~ e K  

First, we introduce some notation. Let �9 denote the set of all functions 
(p of type q)=Ro, g, c~>0, for some gSNb(E), g > c > 0 .  For VeNb(E ) let 

t ]] A (V).'=lim sup 1 log sup Ex exp V(Xs) d s . 
t - *  oo t x E E  

The following Lemma is a substitute of Proposition 13. The latter was based 
on the symmetry of the Dirichlet form in an essential way. 

Lemma 18 Let ~oeq). Then A*(q~2m)>g(cp, (p). 

L~o 
Proof Let q~E4~, ~0 corresponding to g ~ b ( E ) ,  c>0.  Set V~o- . Then 
q~ satisfies the integral equation (? 

~=PtCP + i Pt-s(Vo~k) ds, 
0 

which has as unique solution the Feynman-Kac transform pV~ applied to 
~o (cf. [D-St, 4.2.23]). Thus pV~q~=q~. By (strict) conservativeness q)=R~g 
> R,  c = c/c~ and henceforth 

t O~ V 

Thus A(V,)<O and thereby A*(qoZm)>= {~ V, qoZ d m - A ( V , ) }  > g(qo, cp). [] 
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Theorem 17 now follows analogously to the way Theorem 2 follows from 
Proposition 13, since ~ is dense in {~0eD(g):~0>0}. However, Proposi- 
tion 13 is still useful to show the (full) upper bound, now even for g-quasi- 
every starting point. Consider again the situation of Sect. 5. (In particular, 
(g, D (g)) is now again symmetric.) 

Theorem 19 Assume, in addition, E is polish and (Pt)t>= o is m-hypercontractive, 
i.e., IlPr ]IL2(,~)~L~(,~) = 1 for some T>0 .  Then there is an g-exceptional set 
N such that for every A ~_ dg~ (E), A closed w.r.t, the weak topology, 

1 
lim sup - log P~ [L~ e A] __< -- inf J~ (v) 

for all x E E \ N .  

Proof Hypercontractivity implies H(vlm)<eJr~(v). Henceforth the sets {J~ 
__<L} are weakly compact. In particular, Jg is lower semicontinuous w.r.t. 
the weak topology. Thus J~(v)=sup{~Vdv-A~(V):V~Cb(E)}. Proposi- 
tion 13 implies the weak upper bound for JE w.r.t, the weak topology. Again 
by hypercontractivity and by Proposition 13 Aq(V)____ 1/c~ log ~ exp [~ V] din, 
VeNb(E). As in the proof of [D-St, Lemma 3.2.7] it follows that there is 
an g-exceptional set N such that P~oL~ a, t>0 ,  is exponentially tight w.r.t. 
the weak topology for every x e E \ N .  [] 

Remark 20 Confer Remark 15, Remark 16 (iii) and Sect. 6.3 for examples. 
More detailed proofs are given in the authors thesis ([Mii]). 

B Appendix 

There are two procedures of modifying a right processes that we use several 
times. Given an ]M-invariant subspace S c E  with defining set ~2 s we can 
always restrict NI to S, f2 s. The restriction to S, f2 s is again a right process 
(below we will call it simply the restriction to S). Secondly, given a right 
process lMs=(f2s, (~c~ f2s)t>_o(Xt)t>=o, (Px)x~s~, 0 on a state space S and giv- 
en a space S '~S  one can always define a trivial extension IM s, (of lMs) 
to S' by defining each x e S ' \ S  as a trap, i.e., we adjoin S' \S  to ~s such 
that P~[Xt=xVt>O]=l,  x~S' \S .  (Cf. [M-R, Thm. 4.1.3] and [M-R, 
IV.(3.48)] for details). Of particular importance is the case of an 1M-invariant 
subspace S c E ,  where E \ S  is g-exceptional: Since our main objective is 
an g-quasi-everywhere statement for the lower bound of large deviations 
of ]M~ we may identify, w.l.o.g., NI with the trivial extension to E of its 
restriction to S. 

For a space S and a point A, S~ will denote Su{A}.  For a topological 
subspace S c E  let ~"(S) denote the universal completion of ~(S), i.e., the 
intersection of the v-completions of N(S), as v runs over all probability 
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measures on (S, N(S)) and set J u , = a ( f ( X , ) ;  s>O, fe.~"(E)). By an extension 
of the Ionescu-Tulcea theorem in [Sh] we get the following 

Theorem 21 There is an ]M-invariant set S ~ ~ E with defining set f2 ~, such 
that E \ S  ~ is g-exceptional and such that there is a family of unique Markov 
kernels (P~~ from (S ~ ~"(Se)) to ((2 ~ ~ "  c~ Y2 ~ rendering (X,)t>=o Markov 
with semigroup (p~~ and Pff [Xo=x ] = 1, xES ~ In addition: 1) For all 
bounded ~t~ F the expectation under P2, denoted by E~[--], is 
given by 

t 

In particular, p o is absolutely continuous w.r.t. Px, x e S  ~, on the trace of 
~c-~(2 ~ on {t<(} and vice versa. 
2) Let o~t~ denote the universal completion of @ ~ w.r.t, the measures ~ P~~ v(d x), 
where v runs over all probability measures on (S], N(S])). The process 1M ~ 
=(f2~176 (Xt)t>o, (P~O)x~Sg, ~) thus defined is a conservative right pro- 

c e s s .  

Proof. We want to apply [Sh, Thm. (62.19)]. Therefore, we need some prepa- 
rations. By [M-R, VI.1.2, VI.1.6] there exists an lM-invariant subset S_c E, 
which is a Borel subset of a locally compact separable metric space E *, 
such that E \ S  is g-exceptional and such that ]M e is a Hunt process, where 
IM # denotes the trivial extension to E ~, Q# of the restriction of IM to 
S. Then its restriction ]Ms = (f2s, (ffl c~ t2s) ~>= o (Xt)t>= o, (P~)x~s~, () to S, f2s 
(which clearly equals the restriction of ]M to S, ~2s) is again a Hunt  process 
(cf. [-F1, Thm. 4.1.2]). As a Borel-subspace of E ~, S is a Radon space. We 
now transform this Hunt process ]Ms. 

Let No, N~ be the g-exceptional sets defined at the beginning of Sect. 3 
and in Proposition 8(ii). By [M-R, IV.6.5] there exists an g-exceptional 
set N* ~_(N o w N 1 w (E\S))  such that S ~ , = E \ N *  eJJ(E) is ]M-invariant. Let 
f2 ~ denote the corresponding defining set. Define 

~(x,(~))  

q,(Xo(O)) 
m , ( ~ )  = 

0 

exp 
~L 

: coe(~2s\C2~~ 

Since (,J{co:m~+s(co)r and since by conservativeness 
s , t  

t~--~mt(') is Px-a.s. right continuous on [0, oo) and has left limits on (0, oo) 
(cf., e.g., [M-R, IV.5.13 and Claim 1 in the proof of IV.5.14]), it is a (strong) 
perfect multiplicative functional [-Sh, (54.2)(54.4) and following remarks]. 
Obviously (mt)t>=o is adapted to the filtration ~~  Y2 ~ and by Proposition 8 
(ii) it is a Px-martingale for all x~S.  Note, that by the lM-invariance of 
S ~ and since P~ [X t = x V t > 0] = 1 for x e S \ S  ~, Is~ (Xt) is P~-a.s. right continu- 
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ous on [0, oo) and has left limits in S on (0, oo) for all xeS,  hence S 'p 
is nearly optional. Thus Hypothesis (62.9) in [Sh] is satisfied with S, S ~~ 
in place of E and E,,. As the space ~2 e is clearly projective ([Sh. (62.4) 
and the subsequent remarks]), [Sh, Thm. (62.19)] now gives the assertion. 
Note, that mr>0 P~-a.s. for x e S  ~, so P~<P2 on the trace of ~ttc~(2 ~ on 
{t<#}. Since for every x s S  ~ we have P~[#>t ]=P2[X ,  eS~~ 
=pl~~ 1, the transformed process IM ~ is conservative as a process 
on S ~. [ ]  
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