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Summary. The result linking shift-coupling to time-average total variation
convergence and to the invariant ¢-field is extended to continuous time
and an analogous result established linking e-couplings to smooth total
variation convergence and to a smooth tail s-field. Shift- and e-coupling
inequalities are presented.
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1 Introduction

Shift-coupling means coupling two stochastic processes in such a way that
their paths eventually coincide up to a random time-shift. In discrete time
shift-coupling has been linked to time-average total variation convergence
and to the invariant o-field .#, see Berbee [3], Greven [4] and Aldous
and Thorisson [1]. This parallels the better known result linking zero-shift-
coupling (coupling in such a way that the paths eventually coincide, without
the random time-shift) to total variation convergence and to the tail ¢-field
7, cf. Lindvall [6].

In the present paper we extend this to continuous time and also treat
an issue that does not arise in discrete time: what happens when the random
time-shift can be made arbitrarily small, i.e. when s-couplings exist. This
is known to imply weak convergence, see Asmussen [2]. Here we link &-
couplings to smooth total variation convergence and to a smooth tail o-field
& lying in between £ and J.

For both shift- and e-coupling we introduce inequalities which play
a similar key role for time-average and smooth total variation convergence
as the standard coupling time inequality does for plain total variation con-
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vergence. Applications to stationary processes, Markov processes, regenera-
tive processes and processes with stationary cycles (Palm theory) are indicat-
ed.

2 Notation

Let (Q, #, P) be a common probability space supporting all the random
elements in this paper. Let Z=(Z )0, ) and Z'=(Z)sc10, ) be stochastic
processes on a Polish state space (E, &) with right-continuous paths. We
shall regard Z and Z' as random elements in (H, #) where H is the set
of all right-continuous functions z=(zysro,», from [0, co) to E and #
is generated by the projection mappings. For te[0, o0) define the shifts
0, by 0,2=(2,+9sc[0. ) The total variation norm of a signed measure v
is ||v]| =mass of |v|. For a measure u on # and a sub-g-field o of #
let u,, denote the restriction of i to 7. Let U be a random variable which
is uniformly distributed on [0, 1] and independent of Z, Z' and the shift-
coupling (Z, Z', T, T") introduced below.

3 Inequalities

A pair of processes Z and Z’ is a coupling of Z and Z’ if Z has the same
distribution as Z and Z’ has the same distribution as Z’. An event C is
a coupling event if Z=Z' on C. Then (obviously):

IP(Ze-)—P(Z'e-)| £2P(C°). (coupling event inequality)

A random time T is a coupling time if 0; Z=0;2Z' on {T<o}. Clearly
0,Z and 0,7 is a coupling of 8,Z and 0,Z’ with coupling event {T <t}
and thus it holds that: for te[0, c0)

PO, Ze)—P(0,Z'€-)|£2P(T>1t). (coupling time inequality)

A shift-coupling of Z and Z’' is a coupling Z and Z' and two random
times T and T’ such that {T<oo}={T"< o0} and 0;Z=0.2Z' on {T<oo}
(i.e. when T'< oo the paths coincide eventually, up to the time-shift T— T").
Clearly U'=(U+(T'— T)/t)moa1 is uniform on [0, 1] and independent of
(Z,2', T, T'). Thus 6, Z and 6.,Z" is a coupling of 6,,Z and 6y, Z". On
C={T<Ut<t—(T'—T)} we have U'=U +(T"—T)/t which yields the last
identity in: 0y Z=0p-707Z2=0p—_ 1072 =0y v 71 Z=0y.Z" on C.
Now P(C)=P(Ut=Tv T') and the coupling event inequality yields: if there
is a shift-coupling of Z and Z' with times T and T’ then for te[0, o0)

POy Ze)—P(0y,Z )| <2P(Tv T'>Ut). (shift-coupling inequality)
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An g-coupling, >0, of Z and Z’ is a shift-coupling Z and Z' with times
Tand T' such that |T—T'|<¢on {T<oo}. Clearly U'=(U +(T'— T)/h)moa1
is uniform on [0, 1] and independent of (Z, Z’, T, T"). Thus 6,,,Z and
0,.vsZ is a coupling of 0,,y,Z and 8,,1,Z. On C={T<t, (T-T)
SUh<h—(T'—T)} we have U'=U +(T'— T)/h which yields the last iden-
tity in: 9:+UkZ=9t—T+vh BTZZBt—T+Uh O0r.Z'= 6t+(T’—T}+UhZA’=91+U'hZA,
on C. Now P(T—T)SUh<h—(T'—T)=1—¢/h which yields P(C
SP(T>1t)+¢/h. Apply the coupling event inequality to obtain that: if there
is an e-coupling of Z and Z' with times T and T' then for h, te[0, o)

PO, +pnZ€*)—PO,spnZ' e )| S2P(T>1t)+2¢/h. (e-coupling inequality)

The couplings are called successful if P(T<oo)=1 (for all £>0 in the &-
coupling case) and then the above incqualities yield obvious limit results.
In particular, if Z' is stationary then

0.2-.,.72, 0yZ-,Z and 0, y,Z-.,2Z for h>0,

respectively, as t— 0.

4 Maximality and equivalences
Let

T= () 6, #

te[0, o)

be the tail o-field. Applying the tail maximality result in discrete time (Prop-
osition 11 in [1]) to the random sequences (6, Z),>, and (6,Z),5, yields
that: there exists a coupling of Z and Z' with coupling time T such that

IP(Ze+), —~P(Z'e), | =2P(T=c0). (7 -maximal coupling)
Since

iP(Ze-)g—P(Z'e")sI|S|P(H, Ze")—P(O,Z'e")| S2P(T>1)
this yields:
(1) PO, Ze")—P(B,Z'c")|—|P(Ze")y—P(Z'c),| as t— .

This and the coupling time inequality yields that: the following statements
are equivalent

(a) there exists a coupling of Z and Z' with a finite coupling time;

) PO, Zec)—P(6,Z'e*)| -0 as t—0;

(©) P(Ze");=P(Z'c")s.
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Let
I={AeH: 07" A=A, tec[0, )}

be the invariant o-field. In Sect. 6 we prove that: there exists a shift-coupling
of Z and Z' with times T and T’ such that

IP(Ze*)y;—P(Z'e*),|=2P(T=0o0). (F-maximal shift-coupling)
Since

IP(Ze-),—P(Z'e)| S|P(Oy Ze)—POy, Z'e")| S2P(T v T'>U1)
this yields:

POy Ze)—P(Oy, Z'e")| — |P(Ze*),—P(Z'e"),] as t— 0.

This and the shift-coupling inequality yields that: the following statements
are equivalent

(@) there exists q shift-coupling of Z and Z' with finite times;

&) POy, Ze)—P@By,Z'c*)| =0 as t—>00;

() P(Ze),=P(Z'e"),.
Define the smooth tail o-field by & =0{%°} where &° is the following
class of tail functions

F°={feT: f(0sz) > f(z) as 5|0, zeH}.

In Sect. 7 we show that: if for each ¢>0 there is an e-coupling of Z and
Z' with times T, and T, then

) IP(Ze*)y—P(Z'€*)y| =2 liminf P(T;= o0);

el0
that: for each ¢>0 there exists an e-coupling of Z and Z' with times T,
and T, such that

(P(Ze*)y—P(Z' ")y =2sup P(T,=c0); (F-maximal e-couplings)
>0

and that:
(3) POy Ze )y —POyZ'e")sl = |P(Ze")y—P(Z'e")gsl, hlO.

Applying the s-coupling inequality for (a”)=>(b"), (1) and (3) for (b")=(c"),
and &-maximality for (¢")=(a"), yields that: the following statements are
equivalent

(@") for each £>0, there is an e-coupling of Z and Z' with finite times;

by foreach h>0, PO,y Ze")—PO, .y Z'€*)| -0 as t >0,

(") P(Ze)y=P(Z'e")y.
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5 Comments

If Z and Z' are stationary then P(Ze+)=P(Z'e") if and only if P(Ze-),
=P(Z'e),, due to the equivalence of (') and (¢).

For Markov processes the c-parts of the above equivalences are easily
seen to be equivalent to P(Ze+),, P(Ze+),, P(Ze )4, =0 or 1, respectively,
for all initial distributions.

For wide-sense regenerative processes with spread-out inter-regeneration
times it is well-known that (a) holds and thus (b) and (c), while if the inter-
regeneration times are only non-lattice then (¢”) holds and we obtain (5”)
and (c¢”). If the inter-regeneration times have finite mean then we can choose
7' stationary and (b) becomes 6,Z —,,Z’ as t — oo (which is well-known),
and (b") becomes 6, ;, Z —,,Z' as t — o0, h>0, which Glynn and Iglehart
[5] recently established by renewal theoretic methods.

If Z is split by a point process into a stationary sequence of cycles
and the conditional mean of the cycle lengths given the invariant o-field
of the cycles is finite then there exists a stationary process Z’ such that
(c") holds, see [9]. Thus (a’) holds and (¥") in the form 6y, Z —,,Z',t —> c0.

6 Proof of the existence of an .#-maximal shift-coupling

Put 4 ={4de#:6;' A=A} and assume that P(Ze-), =P(Z'e-),, . This
implies P((6,2),50€°)=P((0,Z),50€*) on the invariant o-field of
(H®, #*). By the equivalence result in discrete time (Corollary 16 in [1])
this yields the existence of a shift-coupling (8, ZA)@O and (6, ZA’)ngo of
(0,2),50 and (6,Z),5, with finite (integer valued) times. Then Z and Z’
is a shift-coupling of Z and Z’ with the same finite times.

Now assume only P(Ze-),=P(Z'e-),. Let f be a bounded function
in 4, and define

)= flf((?sz) ds,zeH.
1]

Tt is readily checked that f™ is in .# which yields the second identity
in E[f(0y Z)]=E[f P (2)]=E[fZ)]=E[f(0yZ)]. Thus P(OyZe")y,
=P(0yZ' e*),, which due to the first part of this proof yields the existence
of a shift-coupling ¥ and ¥’ of 0,Z and 0,Z’ with finite times K andK’,
say. Since (E, &) is Polish and the paths right-continuous there is a regular
version of P((Z, U)e-|8yZ="+) and thus we can (see Construction 1.1 in
[7]) extend the underlying probability space to support a copy
(Z, V) of (Z, U) such that 8, Z=¥. Again extend the underlying probability
space now to support a copy (Z’, V') of (Z, U) such that 8y.2'=Y". Then
Z and Z' is a shift-coupling of Z and Z’' with finite times V+K and
V'+K'
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Finally, drop the assumption that P(Ze-),=P(Z'e-),. By the Lemma
in [8] there is a component y of P(Ze-) and ¢’ of P(Z'e-) such that

4) wps=p,= greatest common component of P(Ze-), and P(Z'e"),.

Due to u,=u, and the middle part of this proof there are processes ¥
and Y’ and finite random times S and S’ such that P(Ye)=pu/|ul, P(Y'e*)
=u'/|lu] and 5 ¥Y=8, Y. Let C be an event such that C is independent
of Y and Y and P(C)=ull. Put (Z, 2, T, T)=(¥, ¥, S, ") on C while
on C*put T=T'=o0 and let

P(Ze:, Z'e; C)=(P(Ze)—p)(P(Z'e ")~ )1 —ul)-

Then Z and Z' is a shift-coupling of Z and Z’ with times T and 7" and
(4) yields the first step in

IP(Ze),—P(Z'e)sll=P(Ze ), —usll +|P(Z' ")y — 5] =2P(T= c0).

7 Proof of (2), (3) and the existence of &-maximal e-couplings
Put

v=P(Ze"),—P(Z'e"),,

VW:P(QUhZG')Jf“P(@UhZ/E )7

and
h

fP@=h7" [ f(0;2)ds

0
for h>0, bounded f in 4 and zeH. Note that f® is in ¥° and that
if fis in &° then f® — f pointwise as 4|0.
From the e-coupling inequality and (1) we deduce
v <2 liminf P(T,= c0), h>0.
el0
It is readily checked that ||[v"| is continuous in h and increases as h goes

to 0 through A =2"" which yields

lim v =sup [[v®|.
RO B>0

Thus (2) and (3) follow if we can establish that

5) sl =sup [v®].
B>0
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For that purpose take an A% such that |v,||=2v(4) and fix an ¢>0.
There is an n=1, a Borel subset B of (— o, c0)* and functions f, ..., f,
in #° such that {|1,—14(f;, ..., f)|d|v|<e Thus there is a continuous
function g from (— oo, co)" to [0, 1] such that ||1,—f|d|v|<2¢ where f
=g(f1, ..., f,). Clearly this f is in &° which implies f® — f pointwise as
h|0. Hence there is an h>0 such that ||1,—f®|d|v|<3e. Since ¢>0 is
arbitrary and

W®1=2 sup [f®dv

feF, 0= f51
this yields

vl <sup [v®].
h>0

The converse holds since feZ implies f® e, and (5) is established.

It only remains to prove the &-maximality result. For each h>0 there
is a coupling ¥ and ¥’ of 0,,Z and 6,,Z" with a coupling time S, such
that P(S,= co)= [|[v?||/2. Extend the underlying probability space (see Con-
struction 1.1 in [7]) to support a copy (Z, V) of (Z, U) such that 0,,Z=7.
Again extend the underlying probability space now to support a copy
(Z, V') of (Z',U) such that 0,.,Z'=Y'. Then Z and Z' is an h-coupling
of Z and Z’ with times T,=Vh+S, and T, =V'h+S,. Now P(T,=0)
=P(S,=0)=|v"|/2 and a reference to (5) completes the proof.
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