Probability Theory Related Fields

© Springer-Verlag 1994

Shift-coupling in continuous time

Hermann Thorisson
Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland (e-mail: thoris@rhi.hi.is)

Received: 14 January 1994 / In revised form: 4 April 1994

Abstract

Summary. The result linking shift-coupling to time-average total variation convergence and to the invariant σ-field is extended to continuous time and an analogous result established linking ε-couplings to smooth total variation convergence and to a smooth tail σ-field. Shift- and ε-coupling inequalities are presented.

Mathematics Subject Classification: 60G99

1 Introduction

Shift-coupling means coupling two stochastic processes in such a way that their paths eventually coincide up to a random time-shift. In discrete time shift-coupling has been linked to time-average total variation convergence and to the invariant σ-field \mathscr{I}, see Berbee [3], Greven [4] and Aldous and Thorisson [1]. This parallels the better known result linking zero-shiftcoupling (coupling in such a way that the paths eventually coincide, without the random time-shift) to total variation convergence and to the tail σ-field \mathscr{T}, cf. Lindvall [6].

In the present paper we extend this to continuous time and also treat an issue that does not arise in discrete time: what happens when the random time-shift can be made arbitrarily small, i.e. when ε-couplings exist. This is known to imply weak convergence, see Asmussen [2]. Here we link ε couplings to smooth total variation convergence and to a smooth tail σ-field \mathscr{S} lying in between \mathscr{I} and \mathscr{T}.

For both shift- and ε-coupling we introduce inequalities which play a similar key role for time-average and smooth total variation convergence as the standard coupling time inequality does for plain total variation con-
vergence. Applications to stationary processes, Markov processes, regenerative processes and processes with stationary cycles (Palm theory) are indicated.

2 Notation

Let $(\Omega, \mathscr{F}, \mathbf{P})$ be a common probability space supporting all the random elements in this paper. Let $Z=\left(Z_{s}\right)_{s \in[\mathrm{I}, \infty}$ and $Z^{\prime}=\left(Z_{s}^{\prime}\right)_{s \in[0, \infty)}$ be stochastic processes on a Polish state space (E, \mathscr{E}) with right-continuous paths. We shall regard Z and Z^{\prime} as random elements in (H, \mathscr{H}) where H is the set of all right-continuous functions $z=\left(z_{s}\right)_{s \in[0, \infty)}$ from $[0, \infty)$ to E and \mathscr{H} is generated by the projection mappings. For $t \in[0, \infty)$ define the shifts θ_{t} by $\theta_{t} z=\left(z_{t+s}\right)_{s \in[0, \infty)}$. The total variation norm of a signed measure v is $\|v\|=$ mass of $|v|$. For a measure μ on \mathscr{H} and a sub- σ-field \mathscr{A} of \mathscr{H} let $\mu_{\mathscr{A}}$ denote the restriction of μ to \mathscr{A}. Let U be a random variable which is uniformly distributed on $[0,1]$ and independent of Z, Z^{\prime} and the shiftcoupling ($\hat{Z}, \hat{Z}^{\prime}, T, T^{\prime}$) introduced below.

3 Inequalities

A pair of processes \hat{Z} and \hat{Z}^{\prime} is a coupling of Z and Z^{\prime} if \hat{Z} has the same distribution as Z and \hat{Z}^{\prime} has the same distribution as Z^{\prime}. An event C is a coupling event if $\hat{Z}=\hat{Z}^{\prime}$ on C. Then (obviously):

$$
\left\|\mathbf{P}(Z \in \cdot)-\mathbf{P}\left(Z^{\prime} \in \cdot\right)\right\| \leqq 2 \mathbf{P}\left(C^{c}\right) . \text { (coupling event inequality) }
$$

A random time T is a coupling time if $\theta_{T} \hat{Z}=\theta_{T} \hat{Z}^{\prime}$ on $\{T<\infty\}$. Clearly $\theta_{t} \hat{Z}$ and $\theta_{t} \hat{Z}^{\prime}$ is a coupling of $\theta_{t} Z$ and $\theta_{t} Z^{\prime}$ with coupling event $\{T \leqq t\}$ and thus it holds that: for $t \in[0, \infty)$

$$
\left\|\mathbf{P}\left(\theta_{t} Z \in^{\cdot}\right)-\mathbf{P}\left(\theta_{t} Z^{\prime} \in^{\cdot}\right)\right\| \leqq 2 \mathbf{P}(T>t) \text {. (coupling time inequality) }
$$

A shift-coupling of Z and Z^{\prime} is a coupling \hat{Z} and \hat{Z}^{\prime} and two random times T and T^{\prime} such that $\{T<\infty\}=\left\{T^{\prime}<\infty\right\}$ and $\theta_{T} \hat{Z}=\theta_{T^{\prime}} \mathcal{Z}^{\prime}$ on $\{T<\infty\}$ (i.e. when $T<\infty$ the paths coincide eventually, up to the time-shift $T-T^{\prime}$). Clearly $U^{\prime}=\left(U+\left(T^{\prime}-T\right) / t\right)_{\bmod 1}$ is uniform on $[0,1]$ and independent of $\left(\hat{Z}, \hat{Z}^{\prime}, T, T^{\prime}\right)$. Thus $\theta_{U t} \hat{Z}$ and $\theta_{U^{\prime} t} \hat{Z}^{\prime}$ is a coupling of $\theta_{U t} Z$ and $\theta_{U t} Z^{\prime}$. On $C=\left\{T \leqq U t<t-\left(T^{\prime}-T\right)\right\}$ we have $U^{\prime}=U+\left(T^{\prime}-T\right) / t$ which yields the last identity in: $\theta_{U t} \hat{Z}=\theta_{U t-T} \theta_{T} \hat{Z}=\theta_{U t-T} \theta_{T^{\prime}}, \hat{Z}^{\prime}=\theta_{U t+T^{\prime}-T} \hat{Z}=\theta_{U^{\prime} t} \hat{Z}^{\prime}$ on C. Now $\mathbf{P}(C)=\mathbf{P}\left(U t \geqq T \vee T^{\prime}\right)$ and the coupling event inequality yields: if there is a shift-coupling of Z and Z^{\prime} with times T and T^{\prime} then for $t \in[0, \infty)$

$$
\left\|\mathbf{P}\left(\theta_{U t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{U t} Z^{\prime} \in \cdot\right)\right\| \leqq 2 \mathbf{P}\left(T \vee T^{\prime}>U t\right) . \quad \text { (shift-coupling inequality) }
$$

An ε-coupling, $\varepsilon>0$, of Z and Z^{\prime} is a shift-coupling \hat{Z} and \hat{Z}^{\prime} with times T and T^{\prime} such that $\left|T-T^{\prime}\right| \leqq \varepsilon$ on $\{T<\infty\}$. Clearly $U^{\prime}=\left(U+\left(T^{\prime}-T\right) / h\right)_{\bmod 1}$ is uniform on $[0,1]$ and independent of $\left(\hat{Z}, \hat{Z}^{\prime}, T, T^{\prime}\right)$. Thus $\theta_{t+U h} \hat{Z}$ and $\theta_{t+U^{\prime} h} \hat{Z}^{\prime}$ is a coupling of $\theta_{t+U h} Z$ and $\theta_{t+U h} Z^{\prime}$. On $C=\left\{T \leqq t,\left(T-T^{\prime}\right)\right.$ $\left.\leqq U h<h-\left(T^{\prime}-T\right)\right\}$ we have $U^{\prime}=U+\left(T^{\prime}-T\right) / h$ which yields the last identity in: $\theta_{t+U h} \hat{Z}=\theta_{t-T+U h} \theta_{T} \hat{Z}=\theta_{t-T+U h} \theta_{T}, \hat{Z}^{\prime}=\theta_{t+\left(T^{\prime}-T\right)+U h} \hat{Z}^{\prime}=\theta_{t+U^{\prime} h} \hat{Z}^{\prime}$ on C. Now $\mathbf{P}\left(\left(T-T^{\prime}\right) \leqq U h<h-\left(T^{\prime}-T\right)\right) \geqq 1-\varepsilon / h$ which yields $\mathbf{P}\left(C^{c}\right)$ $\leqq \mathbf{P}(T>t)+\varepsilon / h$. Apply the coupling event inequality to obtain that: if there is an s-coupling of Z and Z^{\prime} with times T and T^{\prime} then for $h, t \in[0, \infty)$

$$
\left\|\mathbf{P}\left(\theta_{t+U_{h}} Z \in^{\cdot}\right)-\mathbf{P}\left(\theta_{t+U_{h}} Z^{\prime} \in^{\cdot}\right)\right\| \leqq 2 \mathbf{P}(T>t)+2 \varepsilon / h . \quad \text { (} \varepsilon \text {-coupling inequality) }
$$

The couplings are called successful if $\mathbf{P}(T<\infty)=1$ (for all $\varepsilon>0$ in the ε coupling case) and then the above inequalities yield obvious limit results. In particular, if Z^{\prime} is stationary then

$$
\theta_{t} Z \rightarrow_{t v} Z^{\prime}, \quad \theta_{U t} Z \rightarrow_{t v} Z^{\prime} \quad \text { and } \quad \theta_{t+U h} Z \rightarrow_{t v} Z^{\prime} \text { for } h>0
$$

respectively, as $t \rightarrow \infty$.

4 Maximality and equivalences

Let

$$
\mathscr{T}=\bigcap_{t \in[0, \infty)} \theta_{t}^{-1} \mathscr{H}
$$

be the tail σ-field. Applying the tail maximality result in discrete time (Proposition 11 in [1]) to the random sequences $\left(\theta_{n} Z\right)_{n \geqq 0}$ and $\left(\theta_{n} Z^{\prime}\right)_{n \geqq 0}$ yields that: there exists a coupling of Z and Z^{\prime} with coupling time T such that

$$
\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{T}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}\right\|=2 \mathbf{P}(T=\infty) . \quad(\mathscr{T} \text {-maximal coupling })
$$

Since

$$
\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{F}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}\right\| \leqq\left\|\mathbf{P}\left(\theta_{t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{t} Z^{\prime} \in \cdot\right)\right\| \leqq 2 \mathbf{P}(T>t)
$$

this yields:

$$
\begin{equation*}
\left\|\mathbf{P}\left(\theta_{t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{t} Z^{\prime} \in \cdot\right)\right\| \rightarrow\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{F}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}\right\| \quad \text { as } \quad t \rightarrow \infty . \tag{1}
\end{equation*}
$$

This and the coupling time inequality yields that: the following statements are equivalent
(a) there exists a coupling of Z and Z^{\prime} with a finite coupling time;
(b) $\left\|\mathbf{P}\left(\theta_{t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{t} Z^{\prime} \in \cdot\right)\right\| \rightarrow 0$ as $t \rightarrow \infty$;
(c) $\mathbf{P}(Z \in \cdot)_{\mathscr{T}}=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{T}}$.

Let

$$
\mathscr{I}=\left\{A \in \mathscr{H}: \theta_{t}^{-1} A=A, t \in[0, \infty)\right\}
$$

be the invariant σ-field. In Sect. 6 we prove that: there exists a shift-coupling of Z and Z^{\prime} with times T and T^{\prime} such that

$$
\left\|\mathbf{P}\left(Z \in^{\cdot}\right)_{\mathscr{J}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{A}}\right\|=2 \mathbf{P}(T=\infty) . \quad(\mathscr{I} \text {-maximal shift-coupling })
$$

Since

$$
\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{F}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}\right\| \leqq\left\|\mathbf{P}\left(\theta_{U t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{U t} Z^{\prime} \in \cdot\right)\right\| \leqq 2 \mathbf{P}\left(T \vee T^{\prime}>U t\right)
$$

this yields:

$$
\left\|\mathbf{P}\left(\theta_{U t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{U t} Z^{\prime} \in \cdot\right)\right\| \rightarrow\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{F}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{I}}\right\| \quad \text { as } \quad t \rightarrow \infty
$$

This and the shift-coupling inequality yields that: the following statements are equivalent
(a^{\prime}) there exists a shift-coupling of Z and Z^{\prime} with finite times;
(b) $\left\|\mathbf{P}\left(\theta_{U t} Z \in \cdot\right)-\mathbf{P}\left(\theta_{U t} Z^{\prime} \in \cdot\right)\right\| \rightarrow 0$ as $t \rightarrow \infty$;
(c') $\mathbf{P}(Z \in \cdot)_{\mathscr{I}}=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}$.
Define the smooth tail σ-field by $\mathscr{S}=\sigma\left\{\mathscr{S}^{\circ}\right\}$ where \mathscr{S}° is the following class of tail functions

$$
\mathscr{S}^{\circ}=\left\{f \in \mathscr{T}: f\left(\theta_{s} z\right) \rightarrow f(z) \text { as } s \downarrow 0, z \in H\right\} .
$$

In Sect. 7 we show that: if for each $\varepsilon>0$ there is an ε-coupling of Z and Z^{\prime} with times T_{ε} and T_{ε}^{\prime} then

$$
\begin{equation*}
\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{S}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{S}}\right\| \leqq 2 \liminf _{\varepsilon \downarrow 0} \mathbf{P}\left(T_{\varepsilon}=\infty\right) ; \tag{2}
\end{equation*}
$$

that: for each $\varepsilon>0$ there exists an ε-coupling of Z and Z^{\prime} with times T_{ε} and T_{ε}^{\prime} such that

$$
\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{S}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{P}}\right\|=2 \sup _{\varepsilon>0} \mathbf{P}\left(T_{\varepsilon}=\infty\right) ; \quad(\mathscr{P} \text {-maximal } \varepsilon \text {-couplings })
$$

and that:

$$
\begin{equation*}
\left\|\mathbf{P}\left(\theta_{U h} Z \in \cdot\right)_{\mathscr{F}}-\mathbf{P}\left(\theta_{U h} Z^{\prime} \in \cdot\right)_{\mathscr{F}}\right\| \rightarrow\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{S}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{S}}\right\|, \quad h \downarrow 0 \tag{3}
\end{equation*}
$$

Applying the ε-coupling inequality for $\left(a^{\prime \prime}\right) \Rightarrow\left(b^{\prime \prime}\right)$, (1) and (3) for $\left(b^{\prime \prime}\right) \Rightarrow\left(c^{\prime \prime}\right)$, and \mathscr{P}-maximality for $\left(c^{\prime \prime}\right) \Rightarrow\left(a^{\prime \prime}\right)$, yields that: the following statements are equivalent
$\left(a^{\prime \prime}\right)$ for each $\varepsilon>0$, there is an ε-coupling of Z and Z^{\prime} with finite times;
$\left(b^{\prime \prime}\right)$ for each $h>0,\left\|\mathbf{P}\left(\theta_{t+U h} Z \in \cdot\right)-\mathbf{P}\left(\theta_{t+U h} Z^{\prime} \in \cdot\right)\right\| \rightarrow 0$ as $t \rightarrow \infty$;
($\left.c^{\prime \prime}\right) \mathbf{P}(Z \in \cdot)_{\mathscr{L}}=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{S}}$.

5 Comments

If Z and Z^{\prime} are stationary then $\mathbf{P}(Z \in \cdot)=\mathbf{P}\left(Z^{\prime} \in \cdot\right)$ if and only if $\mathbf{P}(Z \in \cdot)_{\mathscr{F}}$ $=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}$, due to the equivalence of $\left(b^{\prime}\right)$ and $\left(c^{\prime}\right)$.

For Markov processes the c-parts of the above equivalences are easily seen to be equivalent to $\mathbf{P}\left(Z \in{ }^{\cdot}\right)_{\mathscr{F}}, \mathbf{P}(Z \in \cdot)_{\mathscr{F}}, \mathbf{P}(Z \in \cdot)_{\mathscr{S}}=0$ or 1 , respectively, for all initial distributions.

For wide-sense regenerative processes with spread-out inter-regeneration times it is well-known that (a) holds and thus (b) and (c), while if the interregeneration times are only non-lattice then $\left(a^{\prime \prime}\right)$ holds and we obtain ($b^{\prime \prime}$) and $\left(c^{\prime \prime}\right)$. If the inter-regeneration times have finite mean then we can choose Z^{\prime} stationary and (b) becomes $\theta_{t} Z \rightarrow_{t v} Z^{\prime}$ as $t \rightarrow \infty$ (which is well-known), and ($b^{\prime \prime}$) becomes $\theta_{t+U h} Z \rightarrow_{t v} Z^{\prime}$ as $t \rightarrow \infty, h>0$, which Glynn and Iglehart [5] recently established by renewal theoretic methods.

If Z is split by a point process into a stationary sequence of cycles and the conditional mean of the cycle lengths given the invariant σ-field of the cycles is finite then there exists a stationary process Z^{\prime} such that $\left(c^{\prime}\right)$ holds, see [9]. Thus (a^{\prime}) holds and (b^{\prime}) in the form $\theta_{U t} Z \rightarrow{ }_{t v} Z^{\prime}, t \rightarrow \infty$.

6 Proof of the existence of an \mathscr{I}-maximal shift-coupling

Put $\mathscr{I}_{1}=\left\{A \in \mathscr{H}: \theta_{1}^{-1} A=A\right\}$ and assume that $\mathbf{P}(Z \in \cdot)_{\mathscr{I}_{1}}=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{I}_{1}}$. This implies $\mathbf{P}\left(\left(\theta_{n} Z\right)_{n \geqq 0} \epsilon^{\cdot}\right)=\mathbf{P}\left(\left(\theta_{n} Z^{\prime}\right)_{n \geqq 0} \in^{\cdot}\right)$ on the invariant σ-field of $\left(H^{\infty}, \mathscr{H}^{\infty}\right)$. By the equivalence result in discrete time (Corollary 16 in [1]) this yields the existence of a shift-coupling $\left(\theta_{n} \hat{Z}\right)_{n \geqq 0}$ and $\left(\theta_{n} \hat{Z}^{\prime}\right)_{n \geqq 0}$ of $\left(\theta_{n} Z\right)_{n \geqq 0}$ and $\left(\theta_{n} Z^{\prime}\right)_{n \geq 0}$ with finite (integer valued) times. Then \hat{Z} and \hat{Z}^{\prime} is a shift-coupling of Z and Z^{\prime} with the same finite times.

Now assume only $\mathbf{P}(Z \in \cdot)_{\mathscr{I}}=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{\mathscr { F }}}$. Let f be a bounded function in \mathscr{I}_{1} and define

$$
f^{(1)}(z)=\int_{0}^{1} f\left(\theta_{s} z\right) d s, z \in H .
$$

It is readily checked that $f^{(1)}$ is in \mathscr{I} which yields the second identity in $\mathbf{E}\left[f\left(\theta_{U} Z\right)\right]=\mathbf{E}\left[f^{(1)}(Z)\right]=\mathbf{E}\left[f^{(1)}\left(Z^{\prime}\right)\right]=\mathbf{E}\left[f\left(\theta_{U} Z^{\prime}\right)\right]$. Thus $\mathbf{P}\left(\theta_{U} Z \in \cdot\right)_{\mathscr{H}_{1}}$ $=\mathbf{P}\left(\theta_{U} Z^{\prime} \in \cdot\right)_{\mathscr{g}_{1}}$ which due to the first part of this proof yields the existence of a shift-coupling \hat{Y} and \hat{Y}^{\prime} of $\theta_{U} Z$ and $\theta_{U} Z^{\prime}$ with finite times K and K^{\prime}, say. Since (E, \mathscr{E}) is Polish and the paths right-continuous there is a regular version of $\mathbf{P}\left((Z, U) \in \cdot \mid \theta_{U} Z=\cdot\right)$ and thus we can (see Construction 1.1 in [7]) extend the underlying probability space to support a copy (\hat{Z}, V) of (Z, U) such that $\theta_{V} \hat{Z}=\hat{Y}$. Again extend the underlying probability space now to support a copy $\left(\hat{Z}^{\prime}, V^{\prime}\right)$ of $\left(Z^{\prime}, U\right)$ such that $\theta_{\mathrm{V}}, \hat{Z}^{\prime}=\hat{Y}^{\prime}$. Then \hat{Z} and \hat{Z}^{\prime} is a shift-coupling of Z and Z^{\prime} with finite times $V+K$ and $V^{\prime}+K^{\prime}$.

Finally, drop the assumption that $\mathbf{P}\left(Z_{\in} \cdot\right)_{\mathscr{H}}=\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}$. By the Lemma in [8] there is a component μ of $\mathbf{P}\left(Z \in^{\cdot}\right)$ and μ^{\prime} of $\mathbf{P}\left(Z^{\prime} \in^{\cdot}\right)$ such that
(4) $\mu_{\mathscr{F}}=\mu_{\mathscr{F}}^{\prime}=$ greatest common component of $\mathbf{P}(Z \in \cdot)_{\mathscr{F}}$ and $\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}$.

Due to $\mu_{\mathscr{F}}=\mu_{\mathscr{F}}^{\prime}$ and the middle part of this proof there are processes \hat{Y} and \hat{Y}^{\prime} and finite random times S and S^{\prime} such that $\mathbf{P}(\hat{Y} \in \cdot)=\mu /\|\mu\|, \mathbf{P}\left(\hat{Y}^{\prime} \in \cdot\right)$ $=\mu^{\prime} /\|\mu\|$ and $\theta_{S} \hat{Y}=\theta_{S^{\prime}} \hat{Y}^{\prime}$. Let C be an event such that C is independent of \hat{Y} and \hat{Y}^{\prime} and $\mathbf{P}(C)=\|\mu\|$. Put $\left(\hat{Z}, \hat{Z}^{\prime}, T, T^{\prime}\right)=\left(\hat{Y}, \hat{Y}^{\prime}, S, S^{\prime}\right)$ on C while on C^{c} put $T=T^{\prime}=\infty$ and let

$$
\mathbf{P}\left(\hat{Z} \in \cdot, \hat{Z}^{\prime} \in \cdot ; C^{c}\right)=(\mathbf{P}(Z \in \cdot)-\mu)\left(\mathbf{P}\left(Z^{\prime} \in \cdot\right)-\mu^{\prime}\right) /(1-\|\mu\|)
$$

Then \hat{Z} and \hat{Z}^{\prime} is a shift-coupling of Z and Z^{\prime} with times T and T^{\prime} and (4) yields the first step in

$$
\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{F}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}\right\|=\left\|\mathbf{P}(Z \in \cdot)_{\mathscr{F}}-\mu_{\mathscr{I}}\right\|+\left\|\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}-\mu_{\mathscr{F}}\right\|=2 \mathbf{P}(T=\infty)
$$

7 Proof of (2), (3) and the existence of \mathscr{S}-maximal ε-couplings

Put

$$
\begin{aligned}
v & =\mathbf{P}\left(Z_{\in} \cdot\right)_{\mathscr{T}}-\mathbf{P}\left(Z^{\prime} \in \cdot\right)_{\mathscr{F}}, \\
v^{(h)} & =\mathbf{P}\left(\theta_{U h} Z \in \cdot\right)_{\mathscr{F}}-\mathbf{P}\left(\theta_{U h} Z^{\prime} \in \cdot\right)_{\mathscr{F}}
\end{aligned}
$$

and

$$
f^{(h)}(z)=h^{-1} \int_{0}^{h} f\left(\theta_{s} z\right) d s
$$

for $h>0$, bounded f in \mathscr{T} and $z \in H$. Note that $f^{(h)}$ is in \mathscr{S}° and that if f is in \mathscr{S}° then $f^{(h)} \rightarrow f$ pointwise as $h \downarrow 0$.

From the ε-coupling inequality and (1) we deduce

$$
\left\|v^{(h)}\right\| \leqq 2 \liminf _{\varepsilon \downarrow 0} \mathbf{P}\left(T_{\varepsilon}=\infty\right), h>0
$$

It is readily checked that $\left\|v^{(h)}\right\|$ is continuous in h and increases as h goes to 0 through $h=2^{-n}$ which yields

$$
\lim _{h \downarrow 0}\left\|v^{(h)}\right\|=\sup _{h>0}\left\|v^{(h)}\right\|
$$

Thus (2) and (3) follow if we can establish that

$$
\begin{equation*}
\left\|v_{\mathscr{P}}\right\|=\sup _{h>0}\left\|v^{(h)}\right\| . \tag{5}
\end{equation*}
$$

For that purpose take an $A \in \mathscr{S}$ such that $\left\|v_{\mathscr{D}}\right\|=2 v(A)$ and fix an $\varepsilon>0$. There is an $n \geqq 1$, a Borel subset B of $(-\infty, \infty)^{n}$ and functions f_{1}, \ldots, f_{n} in \mathscr{S}° such that $\int\left|1_{A}-1_{B}\left(f_{1}, \ldots, f_{n}\right)\right| d|v| \leqq \varepsilon$. Thus there is a continuous function g from $(-\infty, \infty)^{n}$ to $[0,1]$ such that $\int\left|1_{A}-f\right| d|v| \leqq 2 \varepsilon$ where f $=g\left(f_{1}, \ldots, f_{n}\right)$. Clearly this f is in \mathscr{S}° which implies $f^{(h)} \rightarrow f$ pointwise as $h \downarrow 0$. Hence there is an $h>0$ such that $\int\left|1_{A}-f^{(h)}\right| d|v| \leqq 3 \varepsilon$. Since $\varepsilon>0$ is arbitrary and

$$
\left\|\nu^{(h)}\right\|=2 \sup _{f \in \mathscr{T}, 0 \leqq f \leqq 1} \int f^{(h)} d v
$$

this yields

$$
\left\|v_{\mathscr{S}}\right\| \leqq \sup _{h>0}\left\|v^{(h)}\right\| .
$$

The converse holds since $f \in \mathscr{T}$ implies $f^{(h)} \in \mathscr{S}$, and (5) is established.
It only remains to prove the \mathscr{S}-maximality result. For each $h>0$ there is a coupling \hat{Y} and \hat{Y}^{\prime} of $\theta_{U h} Z$ and $\theta_{U h} Z^{\prime}$ with a coupling time S_{h} such that $\mathbf{P}\left(S_{h}=\infty\right)=\left\|\nu^{(h)}\right\| / 2$. Extend the underlying probability space (see Construction 1.1 in [7]) to support a copy (\hat{Z}, V) of (Z, U) such that $\theta_{V h} \hat{Z}=\hat{Y}$. Again extend the underlying probability space now to support a copy $\left(\hat{Z}^{\prime}, V^{\prime}\right)$ of $\left(Z^{\prime}, U\right)$ such that $\theta_{V^{\prime} h} \hat{Z}^{\prime}=\hat{Y}^{\prime}$. Then \hat{Z} and \hat{Z}^{\prime} is an h-coupling of Z and Z^{\prime} with times $T_{h}=V h+S_{h}$ and $T_{h}^{\prime}=V^{\prime} h+S_{h}$. Now $\mathbf{P}\left(T_{h}=\infty\right)$ $=\mathbf{P}\left(S_{h}=\infty\right)=\left\|v^{(h)}\right\| / 2$ and a reference to (5) completes the proof.

References

[1] Aldous, D., Thorisson, H.: Shift-coupling. Stochastic Processes Appl. 44, 1-14 (1993)
[2] Asmussen, S.: On coupling and weak convergence to stationarity. Ann. Appl. Probab. 2, 739-751 (1992)
[3] Berbee, H.C.P.: Random walks with stationary increments and renewal theory. Math. Centre Tract 112. Amsterdam: Center for Mathematics and Computer Science 1979
[4] Greven, A.: Coupling of Markov chains and randomized stopping times. Part I and II. Probab. Theory Relat. Fields 75, 195-212; 431-458 (1987)
[5] Glynn, P., Iglehart, D.: Smoothed limit theorems for Equilibrium Processes. Probability, Statistics and Mathematics 89-102. New York: Academic Press 1989
[6] Lindvall, T.: Lectures on the Coupling Method. New York: Wiley 1992
[7] Thorisson, H.: The coupling of regenerative processes. Adv. Appl. Probab. 15, 531-561 (1983)
[8] Thorisson, H.: On maximal and distributional coupling. Ann. Probab. 14, 873-876 (1986)
[9] Thorisson, H.: On time- and cycle-stationarity. Stoch. Proc. Appl. (to appear)

