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1 Introduction 

Shift-coupling means coupling two stochastic processes in such a way that 
their paths eventually coincide up to a random time-shift. In discrete time 
shift-coupling has been linked to time-average total variation convergence 
and to the invariant <r-field J ,  see Berbee [3], Greven [4] and Aldous 
and Thorisson [1]. This parallels the better known result linking zero-shift- 
coupling (coupling in such a way that the paths eventually coincide, without 
the random time-shift) to total variation convergence and to the tail e-field 
~,, cf. Lindvall [6]. 

In the present paper we extend this to continuous time and also treat 
an issue that does not arise in discrete time: what happens when the random 
time-shift can be made arbitrarily small, i.e. when e-couplings exist. This 
is known to imply weak convergence, see Asmussen [2]. Here we link z- 
couplings to smooth total variation convergence and to a smooth tail <r-field 
5 P lying in between J and ~.  

For  both shift- and z-coupling we introduce inequalities which play 
a similar key role for time-average and smooth total variation convergence 
as the standard coupling time inequality does for plain total variation con- 
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vergence. Applications to stationary processes, Markov processes, regenera- 
tive processes and processes with stationary cycles (Palm theory) are indicat- 
ed. 

2 Notation 

Let (~2, ~,, P) be a common probability space supporting all the random 
elements in this paper. Let Z=(Zs)s~o, ~) and Z'=(Z~)s~L0 ' 00) be stochastic 
processes on a Polish state space (E, g) with right-continuous paths. We 
shall regard Z and Z' as random elements in (H, • )  where H is the set 
of all right-continuous functions z=(z~)~co, o~) from [0, oo) to E and 
is generated by the projection mappings. For re[-0, oo) define the shifts 
0~ by O~z=(z~+~)~Eo, o~ ~. The total variation norm of a signed measure v 
is I[vll =mass  of [vl. For a measure # on 2/f and a sub-o--field d of J f  
let #~ denote the restriction of # to d .  Let U be a random variable which 
is uniformly distributed on [0, 1] and independent of Z, Z' and the shift- 
coupling (2, 2', T, T') introduced below. 

3 Inequalities 

A pair of processes 2 and 2 '  is a coupling of Z and Z' if 2 has the same 
distribution as Z and 2 '  has the same distribution as Z'. An event C is 
a coupling event if 2 = 2 '  on C. Then (obviously): 

I]P(Ze-)-P(Z'e.)ll__<2P(CC). (coupling event inequality) 

A random time T is a coupling time if 0 r Z = 0 r 2 '  on {T<oo}. Clearly 
Ot 2 and Ot Z' is a coupling of Ot Z and 0 t Z'  with coupling event {T < t} 
and thus it holds that: for t~[0, oo) 

][P(OtZe " ) -P (OtZ '~  ")ll < 2 P ( T >  t). (coupling time inequality) 

A shift-coupling of Z and Z' is a coupling 2 and Z' and two random 
times T a n d  T' such that { T < o o } = { T ' <  oo} and 0TZ=0T, 2 '  on {T<oo} 
(i.e. when T< oo the paths coincide eventually, up to the time-shift T--T'). 
Clearly U' = (U + ( T ' -  T)/t)mod 1 is uniform on [0, 1] and independent of 
(2, Z', T, T'). Thus Ovt2 and Ov,tZ' is a coupling of OvtZ and Ovt Z'. On 
C = { T < U t < t - (T' - T)} we have U' = U + (T' - T)/t which yields the last 
identity in: O v t 2 = O v t - r O r 2 = O v , - r O r ,  2 ' = O v t + r , - r 2 = O v , , 2 '  on C. 
Now P(C)= P(Ut  > T v  T') and the coupling event inequality yields:/f  there 
is a shift-coupling of Z and Z' with times T and T' then for t~E0, oo) 

IrP(OvtZ~ ")--P(OvtZ'e ")U < 2 P ( T v  T ' >  Ut). (shift-coupling inequality) 
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An e-coupling, e >0, of Z and Z' is a shift-coupling 2 and Z' with times 
r a n d  r '  such that I T -  r'[<e on { r <  oo}. Clearly U ' = ( U + ( T ' -  r)/h)modl 
is uniform on [0, 1] and independent of (2, 2', T, r'). Thus O~+vh2 and 
Ot+v, hZ' is a coupling of Ot+vhZ and Ot+vhZ'. On C = { T < t ,  ( T - T ' )  
<__ U h < h - ( T ' -  T)} we have U '=  U + ( T ' -  T)/h which yields the last iden- 
tity in: Ot+ult2=Or_ r +uhOrZ=Or_ T +uhOr, Zt=Ot+(T,_ T)+uhZ'=Ot+u,h ~, 
on C. Now P ( ( T - T ' ) < U h < h - ( T ' - - T ) ) > I - e / h  which yields P(C <) 
_-__ P(T > t)+ e/h. Apply the coupling event inequality to obtain that: if there 
is an e-coupling of Z and Z' with times T and T' then for h, t~[0, oo) 

l] P (Or + Vh Z ~" ) -- P (Or + Vh Z' ~" )11 < 2 P (T > t) + 2 e/h. (e-coupling inequality) 

The couplings are called successful if P (T<  ~ ) =  1 (for all e>0  in the e- 
coupling case) and then the above inequalities yield obvious limit results. 
In particular, if Z' is stationary then 

OtZ-~r~Z', OvtZ-%vZ' and Or+vhZ~tvZ' for h>O, 

respectively, as t ~ oo. 

4 Maximality and equivalences 

Let 

Y =  (~ 0 t l J g  
te[0, co) 

be the tail o--field. Applying the tail maximality result in discrete time (Prop- 
osition 11 in [1]) to the random sequences (O,Z),>o and (O,Z'),>=o yields 
that: there exists a coupling of Z and Z' with coupling time T such that 

IIP(Z~ " ) j - P ( Z ' e  ")9-/= 2P(T=  oo). (J-maximal coupling) 

Since 

IIP(Z~-)9--P(Z'  ~ ")911 =< liP(Or Z~ ")-P(Ot Z'e-)j] < 2 P ( T >  t) 

this yields: 

(1) IIP(OrZe')-P(OrZ'E')l] ~ I I P ( Z e ' ) j - P ( Z ' ~ ' ) g ] l  as t--> oo. 

This and the coupling time inequality yields that: the following statements 
are equivalent 

(a) there exists a coupling of Z and Z' with a finite coupling time; 
(b) [IP(OrZ~')-P(OtZ'~')]I ~ 0  as t-*oo; 
(c) P ( Z e - ) j = P ( Z ' e . ) ~ - .  
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Let 

J={A~Of~:  O t t A = A , t ~ [ O ,  0o)} 

be the invariant a-field. In Sect. 6 we prove that: there exists a shift-coupling 
of Z and Z' with times T and T' such that 

II P (Z s" )s - P (Z' 6" ) j  ][ = 2 P (T = ~) .  (J-maximal  shift-coupling) 

Since 

I [P(ZE-) j - -P(Z '~  %11 ~ IIP(Ou~Z~ ")--P(OvtZ'E ")11 < 2 P ( T v  T ' >  Ut) 

this yields: 

I[P(OvtZ~')--P(OwZ'E')[[-~ H P ( Z ~ ' ) j - P ( Z ' e ' ) j H  as t ~ c ~ .  

This and the shift-coupling inequality yields that: the following statements 
are equivalent 

(a') there exists a shift-coupling of Z and Z' with finite times; 
(b') I [P(OvtZ~' ) -P(OvtZ '  ~')[I ~ O  as t ~ ;  
(c') P ( Z ~ ' ) j = P ( Z ' s - ) j .  

Define the smooth tail a-field by 5 ~ = a { 5  p~ where 5 ~~ is the following 
class of tail functions 

5P~ f ( O , z ) ~ f ( z )  as s~O, z ~ H ) .  

In Sect. 7 we show that: i f  for each e > 0  there is an e-coupling of Z and 
Z' with times T~ and T~' then 

(2) [[P(Z~ " ) ~ - P ( Z ' ~  ")~l[ < 2  liminf P(T~ = c~); 
t,L0 

that: for each e > 0  there exists an e-coupling of Z and Z' with times T~ 
and T~' such that 

I[P(Zc " ) ~ - P ( Z ' ~  ")~]l = 2 sup P(T~ = oo); (5P-maximal e-couplings) 
~>0  

and that: 

(3) IlP(Ot:hZE')9---P(OvhZ'~')~ll ~ ]IP(Z6")~--P(Z'~-)~]l ,  h~O. 

Applying the e-coupling inequality for (a")~(b"),  (1) and (3) for (b")=~(c"), 
and 5~-maximality for (e")=~(a"), yields that: the following statements are 
equivalent 

(a") for each e > O, there is an e-coupling of Z and Z' with finite times; 
(b") for each h>0,  I[P(Ot+vhZe')--P(Ot+vhZ' S')]I ~ 0  as t ~ 0o; 
(c") P ( Z e  ")s~ = P(Z '~  ")s-. 
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5 Comments 

If Z and Z' are stationary then P (Z~  " )=P(Z 'E  ") if and only if P ( Z e - ) s  
= P ( Z ' e  ")j,  due to the equivalence of (b') and (c'). 

For Markov processes the c-parts of the above equivalences are easily 
seen to be equivalent to P ( Z e  ")s~, P (Z~  .)~, P ( Z e  ")s~ = 0  or 1, respectively, 
for all initial distributions. 

For  wide-sense regenerative processes with spread-out inter-regeneration 
times it is well-known that (a) holds and thus (b) and (c), while if the, inter- 
regeneration times are only non-lattice then (a") holds and we obtain (b") 
and (c"). If the inter-regeneration times have finite mean then we can choose 
Z' stationary and (b) becomes OtZ~tvZ'  as t ~ o e  (which is well-known), 
and (b") becomes O~+vhZ--+tvZ' as t ~ o% h>0 ,  which Glynn and Iglehart 
[51 recently established by renewal theoretic methods. 

If Z is split by a point process into a stationary sequence of cycles 
and the conditional mean of the cycle lengths given the invariant a-field 
of the cycles is finite then there exists a stationary process Z' such that 
(c') holds, see [91. Thus (a') holds and (b') in the form OvtZ ~t~Z', t--+ oo. 

6 Proof of the existence of an J-maximal shift-coupling 

Put Ja = { A e J f :  0~- 1A =A} and assume that P ( Z e  ")J1 = P ( Z ' ~  -)j,. This 
implies P((O,Z),>=o~')=P((O,Z'),>=o~') on the invariant a-field of 
(HOO, ~oo). By the equivalence result in discrete time (Corollary 16 in [11) 
this yields the existence of a shift-coupling (0,2),>__ 0 and (0,2'),_>_ 0 of 
(0, Z),__>o and (0, Z'),>o with finite (integer valued) times. Then 2 and 2 '  
is a shift-coupling of Z and Z' with the same finite times. 

Now assume only P ( Z e - ) j = P ( Z ' e . ) r  Let f be a bounded function 
in ~r and define 

1 

f(1)(z) = ~ f(Osz ) ds, zeH. 
0 

It is readily checked that f(1) is in J which yields the second identity 
in E [f(Ov Z)1 = E [fc1)(Z)] = E [f(1)(Z')] = E [f(Ov Z')]. Thus P(Ov Ze  ")s, 
=P(OvZ'~ ")j, which due to the first part of this proof yields the existence 
of a shift-coupling ~" and ~-' of OvZ and OvZ' with finite times K andK', 
say. Since (E, g) is Polish and the paths right-continuous there is a regular 
version of P((Z, U)e.IOvZ= .) and thus we can (see Construction 1.i in 
[7]) extend the underlying probability space to support  a copy 
(2, V) of (Z, U) such that Ov 2 = ~'. Again extend the underlying probability 
space now to support a copy (2', V') of (Z', U) such that Or, 2 ' =  Y'. Then 
2 and 2~' is a shift-coupling of Z and Z' with finite times V + K  and 
V'+K'. 
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Finally, drop the assumption that P(Z~ ")j = P (Z '~ - ) j .  By the Lemma 
in [8] there is a component # of P(ZE .) and #' of P(Z'~ .) such that 

(4) # j  = # )  = greatest common component o f P ( Z e  -)j and P(Z'~ . ) j .  

Due to # s = # }  and the middle part of this proof there are processes 
and ~" and finite random times S and S' such that P (~e  ")=#/ll#11, P (~"E  .) 
=#'/ll#l] and Os Y=Os,  Y'. Let C be an event such that C is independent 
of ~" and ~" and P(C)= [[#[1. Put (2, 2', T, T')=(~,  ~', S, S') on C while 
on C ~ put T-- T ' =  oo and let 

P ( 2 e  ", Z ' e  .; C~)= ( P ( Z e - ) - # ) ( P ( Z ' E  " ) - # ' ) / ( 1 -  I1~11). 

Then 2 and 2 '  is a shift-coupling of Z and Z'  with times T and T' and 
(4) yields the first step in 

IIP(ZE ")~ - P ( Z ' s  ")JII = []P(Z~ ")~-~11 + IIP(Z'~ " ) J -~11  = 2 P ( T =  oo). 

7 Proof of (2), (3) and the existence of 5P-maximal e-couplings 

Put 

and 

v = P ( z e  " ) 9 - - P ( z '  e "b-, 

v (h) = P (Ovh Z ~" )9- -- P (Ovh Z '  E')~- 

h 

f(h)(z) = h -1 ~ f(O~z) ds  
0 

for h>0 ,  bounded f in ,Y- and z s H .  Note that f(h) is in y o  and that 
i f f  is in 5 P~ then f(h) ~ f  pointwise as h+0. 

From the e-coupling inequality and (1) we deduce 

II v(h)I] < 2 liminf P (T~ = oo), h > 0. 
e~0 

It is readily checked that IIvCh)ll is continuous in h and increases as h goes 
to 0 through h = 2-" which yields 

lim I1Ch)I[ = sup II V(n)II. 
h~O h > 0  

Thus (2) and (3) follow if we can establish that 

(5) II vs~ II = sup  II r 
h > 0  
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For that purpose take an A e 5 :  such that IIv~ll =2v(A) and fix an e>0.  
There is an n > l ,  a Borel subset B of ( - o %  oe)" and functions f l  . . . .  , f ,  
in 5 :~ such that S]IA--1B(fl . . . . .  f , ) ldlvl<~. Thus there is a continuous 
function g from ( - 0 %  oo)" to [0, 1] such that [ . l lA-f[dlvl<2e where f 
=g(fl ,  ...,f,). Clearly this f is in 5 :~ which implies f (h)_ , f  pointwise as 
h+0. Hence there is an h > 0  such that SIla--f<h) I dlvl<3e.  Since e > 0  is 
arbitrary and 

II Ch)ll : 2 sup {.f(h) dv 
f ~ - ,  O = < f =  < 1 

this yields 

IIv~ll _-<sup IIv~h>ll. 
h > O  

The converse holds since f ~ : -  implies f(h)E,~9~ and (5) is established. 
It only remains to prove the Y-maximality result. For each h > 0 there 

is a coupling Y and ~" of OvhZ and Ovh Z' with a coupling time Sh such 
that P ( S h =  oc)--1[r Extend the underlying probability space (see Con- 
struction 1.1 in [-71) to support a copy (2, V) of (Z, U) such that OvhZ= Y. 
Again extend the underlying probability space now to support a copy 
(2', V') of (Z', U) such that Ov, h 2 ' =  Y'. Then 2 and 2 '  is an h-coupling 
of Z and Z' with times Th=Vh+S h and rh'=V'h-]-S h. Now P(Th=oe) 
=P(Sh = oe)= IIv(h)l//2 and a reference to (5) completes the proof. 
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