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Summary. For  bandwidth selection of a kernel density estimator, a generalization 
of the widely studied least squares cross-validation method is considered. The 
essential idea is to do a particular type of "presmoothing" of the data. This is seen 
to be essentially the same as using the smoothed bootstrap estimate of the mean 
integrated squared error. Analysis reveals that a rather large amount of presmooth- 
ing yields excellent asymptotic performance. The rate of convergence to the 
optimum is known to be best possible under a wide range of smoothness condi- 
tions. The method is more appealing than other selectors with this property, 
because its motivation is not heavily dependent on precise asymptotic analysis, and 
because its form is simple and intuitive. Theory is also given for choice of the 
amount  of presmoothing, and this is used to derive a data-based method for this 
choice. 

1 Introduction 

The problem of bandwidth or smoothing parameter selection is most important for 
effective data analysis using any type of smoothing method. Good discussion of this 
point may be found in the monographs Silverman (1986), Eubank (1988), M/filer 
(1988) and H/irdle (1989). In the present paper, this problem is considered in the 
case of kernel density estimation, but the essential ideas are also applicable to 
a wide variety of other estimators and settings as well. Our ideas are developed and 
presented in this context, because its simplicity allows straightforward understand- 
ing of the main issues. 

The centerpoint of research on bandwidth selection for the kernel density 
estimator has been least squares cross-validation, CV. The main idea behind this is 
a natural approximation to the integrated squared error, as proposed by Rudemo 

* Research of the second author was done while on leave from the University of North Carolina. 
That of both the second and third was partially supported by National Science Foundation 
Grants DMS-8701201 and DMS-8902973 



2 P. Hall et al. 

(1982) and Bowman (1984). The greatest appeal of the method is the compelling 
intuition used in its motivation. The first theoretical results, such as those of Hall 
(1983), Burman (1985) and the especially deep work of Stone (1984), were quite 
promising in showing that the performance of the resulting estimator is asymp- 
totically as good as the best possible. However, the performance of this method in 
applications and simulations has been fairly disappointing. The problem is that the 
least squares cross-validated bandwidth is subject to too much sample variability, 
being too large for some data sets and too small for others, i.e. it is too noisy. This 
phenomenon has been quantified in Hall and Marron (1987) and Scott and Terrell 
(1987), where it is shown that the relative rate of convergence to the optimum is of 
the excruciatingly slow order of n -1/1~ 

Because of the unacceptably large dependence of CV on sampling fluctuations, 
there has recently been a search for more stable methods. The first work in this 
important direction was the proposal of biased cross validation, which can be 
viewed as an attempt to cut down on the variability of CV, at the price of 
introducing some small bias, as proposed by Scott and Terrell (1987). Other work 
centers on various modifications of the "plug-in" idea, which has an early history, 
with versions dating back to Woodroofe (1970), Scott et al. (1977) and Scott and 
Factor (1981). This involves plugging estimates into an asymptotic representation 
of the optimal bandwidth, but the actual implementation has proved to be rather 
tricky. The essential idea behind the currently most-studied version involves 
solving a fixed point equation, and was developed in Hall (1981) and Sheather 
(1986). Very promising theoretical, simulation, and practical performance of this 
type of bandwidth selector was demonstrated by Park and Marron (1989) in the 
context of nonnegative kernels, and by Hall et al. (1989) for higher order kernels. 
Hall and Marron (1989) have shown that this type of bandwidth selector achieves 
the best possible relative rate of bandwidth convergence, under a very wide variety 
of smoothness conditions. 

Despite these promising properties of various versions of the plug-in idea, they 
have two serious drawbacks. The first is that their motivation relies heavily on 
asymptotic arguments, and lacks the compelling simple intuition of CV. This point 
makes these methods difficult to sell to those data analysts who lack a mathemat- 
ical background, and who thus tend to be uncomfortable (perhaps rightly so) with 
methods which place too much dependence on asymptotic ideas. The second 
drawback is that the methods are quite complicated, involving unappealing seventh, 
ninth and even thirteenth roots of various crucial quantities, so that the algorithms 
themselves are rather unintuitive, and again unconvincing in their own right. 

The main point of this paper is the proposal of a data-based bandwidth selector 
which has the same desirable properties as those described for the plug-in method, 
but also has a simple, intuitive nonasymptotic motivation. We consider this 
method very appealing because it can be motivated in three separate and natural 
ways, described in detail in Sect. 2, 

The first of these is a modification of CV that involves a presmoothing of the 
pairwise differences of the observations, before they are plugged into the usual 
cross-validation criterion. This motivates the name Smoothed Cross Validation. 
SCV includes ordinary CV as the special case of no presmoothing. Insight into why 
this type of presmoothing is so beneficial, in particular cutting down on the sample 
variability inherent to CV, is provided in Sect. 2.1 This comes through considera- 
tion of the family of SCV criteria from a viewpoint common in the statistical 
analysis of point patterns. 
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Section 2.2 gives a second motivation of SCV, through substituting a pilot 
kernel estimator into the integrated squared bias. This approach provides an 
estimate of the integrated squared bias which may be viewed as more direct than 
the usual asymptotic bias approximations, for example the type used in Biased 
Cross Validation and by the usual plug-in methods. 

Another compelling feature of SCV, discussed in Sect. 2.3, is that it is essentially 
the same as the smoothed bootstrap estimate of the mean integrated squared error, 
which has been proposed by Faraway and Jhun (1990) and Taylor (1989). This 
connection yields benefits in two directions. First it provides yet another sense in 
which SCV is a very natural bandwidth selector, especially to those accustomed to 
thinking in bootstrap terms. Second it enables our analysis to automatically 
provide much deeper analysis than has been previously done concerning the choice 
of how much presmoothing should be initially done for the smoothed bootstrap. 

Asymptotic analyses of SCV, including rates of convergence and theoretically 
optimal choice of the amount of presmoothing, are given in our main theorems, 
which are stated in Sect. 3. Data-based choice of the amount of presmoothing, 
together with a comparison with plug-in methods, is discussed in Sect. 4. Proofs of 
the main theorems are given in Sect. 5. 

2. Definitions and ideas 

A mathematical formulation of the density estimation problem involves using 
a sample X 1 , . . . ,  X, from a probability density f to estimate f The kernel 
estimator is defined by 

fh(x) = n -1 ~ Kh(x-Xi), 
i=1 

where Kh(')= K('/h)/h, K is called the kernel func~on, and h is called the 
bandwidth. Choice of h is crucial to the performance of fh: when h is too small the 
resulting curve is too wiggly, and when it is too large important features will be 
smoothed away. See for example Silverman (1986) or Devroye and Gy6rfi (1985) 
for motivation, early references, and discussion of various aspects. 

In this paper, the Smoothed Cross-Validation, SCV, method of using the data 
to choose the bandwidth is proposed and studied. There are three separate 
motivations for this method, which will be presented in turn. 

2.1 Cross- Validation motivation of SCV 

The method of least squares cross-validation, is to take the minimizer,/~(0) say, of 
the function 

CV(h) = fJ~(x) 2 dx - 2n-1 ~ J~.j(Xj), 
j= l  

which is an estimate of a vertical shift of the integrated squared error, considered as 
a function of h. Here and below S with no explicit limits is understood to denote 
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integration over the real line, and fh, j denotes the leave-one-out estimator defined 
by 

L j ( x )  = (n  - 1 ) - 1  - x , ) .  
i t j  

Scott and Terrell (1987) pointed out that CV(h) admits the representation (modulo 
the very accurate approximation n -~ n - 1) 

(2.1) CV(h) = ( n h ) - t R ( K )  + n- l (n  - 1) - 1 2 2 ( ~ ( . . 1 ( ~  - 2I(.)(x,- x j ) ,  
ieFj 

where * denotes convolution, and where the functional R(K)~_ ~K 2 (the same 
notation will be used for other functions as well as K). This representation is quite 
suggestive because the first term is a very good approximation to the integrated 
variance part of Mean Integrated Squared Error, 

MISE = e~(J~ - - f )  2 , 

see for example (3.20) of Silverman (1986), while the second part can be viewed as 
an estimate of integrated squared bias, 

B(h) = ~ (Kh * f - - f ) z  . 

To see more clearly how the second term in (2.1) estimates bias, note that when 
there are no duplications among the data (which happens with probability one for 
truly continuous data), it can be written as 

n- l (n  - 1) -1 ~ 2  (Kh * K a -  2Kn + K o ) ( X , -  X~) , 
i * j  

where here and below Ko denotes the Dirac delta function. This reveals that bias is 
essentially being estimated by a second differencing operation (this is made more 
precise later). It follows from the results of Hall and Marron (1987b), which provide 
pertinent limiting distributions for/~(0) based on such quantities, that estimates of 
integrated squared bias tend to suffer from high variance when bandwidths of the 
order n-1/5 are considered. Since this is the only random part of CV(h) it follows 
that this variability is the cause of the unacceptably large noise in/~(0). 

The smoothed cross-validation criterion addresses this problem by modifying 
this term, by a type of presmoothing of the differences X~ - X i which still provides 
a bias estimate, and yet has better stability properties. In particular, define h(g) to 
be the minimizer of 

(2.2) SCVo(h ) = (nh)-I R(K) + Bo(h) , 

where 

(2.3) /30(h) = n - l ( n -  1) -1 ~ {(Kh*Kh-- 2Kh + Ko)*Lo*Lo} ( X ~ -  X~), 

for the possibly different kernel function L and bandwidth g. 

2.2 Pilot estimation motivation of SCV 

Recall from the last section that the integrated squared bias, B(h), has a simple 
representation in terms of the L a distance between f and Kh*f. In the closely 



Smoothed cross-validation 5 

related context of nonparametric regression, Mfiller (1985) and Staniswallis (1989) 
have proposed the natural idea of replacing f in B(h)  with a pilot kernel estimator 
fg, which here has the possibly different bandwidth g and kernel L. Note that using 
some algebra, 

(2.4) ~ (Kh * s  --)~)2 = f (Kh * fo -- fg)2 _ h - i  (Kh * Kh -- 2Kh + Ko) * L o* Lo(O) 

= Bo(h) .  

This means that the bias part of the function SCVg(h) can be thought of as this very 
natural estimate B(h). Since bias is the hardest part of the MISE to estimate, it 
follows that SCVo(h ) is providing a natural estimate of the curve MISE(h). This is 
why the form L o �9 Lg was used in (2.3), while we could just as well have used simply 
L 0 at that point. See Chiu (1990) for bandwidth selection ideas related to this, but 
based on Fourier Transforms. 

2.3 Smoothed bootstrap motivation of  SCV 

For a third motivation of SCV, let X~' . . . . .  X* denote the so called "smoothed 
bootstrap" random sample, i.e. a random sample chosen to have conditional (given 
X1 . . . . .  X,)  distribution with densityf0(x). Let E* denote conditional expected 
value with respect to this distribution, and define 

J~*(x) = n-1 ~ Kh(x - X*) .  
i=l 

Simple calculations show that 

E* fh*(x) = Kh * fg(x) , 
and so 

MISE*(h) = E* S(j~* _ f } z  = ( n h ) - 1 R ( K ) +  n - i S  (Kh *i0) 2 + ~ (Kh *ig --io) 2 

= SCV(h) + o ( ( n h ) - l ) .  

In this sense, SCV is just the smoothed bootstrap estimate of MISE. Note that 
unlike most nontrivial applications of the bootstrap, no simulation needs to be 
done to obtain the desired functional of the bootstrap distribution. This appears to 
be because MISE* depends on f0 in such a simple way. 

2.4 Further discussion 

At this point it is natural to consider choice of g. Our first guess was that the 
representation (2.4) seems to indicate that g should be fairly small, or perhaps that 
g = h would be reasonable. However the theorems of the next section indicate that 
in fact g should be surprisingly large, and the choice g = h gives a relative rate of 
convergence no better than for g = 0 (the case of ordinary CV), although the 
constant coefficient is better. 
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To understand why this should be the case, it is useful to consider the 
relationship between cross-validation and the function 

/ ~ ( t )  = / ~ - l ( n  - -  1) - 1  Z E K t ( X i -  Xj )  . 

This is essentially (exactly so if K is the uniform kernel) the cumulative distribution 
function of the population of pairwise differences, that has been used very success- 
fully for analysis of spatial point patterns, see the monographs Ripley (1981) and 
Diggle (1983) on this topic. The connection between K and CV was pointed out by 
Diggle and Marron (1988), who use K for a different motivation of CV. To simplify 
the notation here, it is convenient to work with a version of K where the bandwidth 
argument is transformed, in particular define /~ (s )=  t ( ( s  1/2) . The connection 
between this function and SCV is easiest to see when K = L = ~, the standard 
Gaussian density. In this case, 

(2.5) /~o(h) = /~(2h  2 + 2g 2) - 2/~(h 2 + 2g 2) + /~ (2 g 2 ) .  

The "second differencing" effect described above is now clearly seen. Observe that 
in the case of ordinary CV, i.e. g = 0, the second difference, in (2.5), occurs on 
a neighborhood of radius 2h 2 about the origin. The noise of Cross-Validation may 
be attributed to the fact that for such arguments, not enough differences are used in 

construction of the cumulative K at these arguments, with the result that it is 
relatively noisy. 

Now observe that the case g = h should yield some improvement, but only in 
terms of constant coefficient, not in terms of exponent in the rate of convergence, 
because the number of differences being used is of the same order. This is precisely 
what happens when this case is analyzed; see Remark 3.6. However, if g is taken to 
be an order of magnitude larger than h, then there is potential for improvement in 
the exponent of convergence. This is what provides the large improvement in SCV 
over CV. Using this intuition in another direction, note that when g is an order of 
magnitude smaller than h (but still tends to 0 slower than n -  1), the third term in 
(2.5) will be even noisier than the others, so the resulting bandwidth will exhibit 
variability even larger than that of h(0). This can be verified by the techniques used 
in Sect. 5, but the interest in this case does not seem to justify the effort required. 
Although CV is SCVg in the special case g -- 0, the theory derived in this paper 
does not apply to CV, because there is a "discontinuity" in our asymptotic 
arguments at g = 0. 

It may be expected that some price should be paid for the reductions in 
variability obtained in this way. This manifests itself in terms of a type of bias, 
which will be asymptotically quantified in Sect. 3. It is the trade-off between this 
bias and the reduced variability discussed above which leads to optimal choice of 
g as developed in Sect. 4. 

Usual quantification of the effectiveness of a data driven bandwidth is based on 
some type of error criterion. We choose MISE for this purpose, for the reasons 
given in Hall and Marron (1989). That paper also provides bounds on the relative 
rate of convergence of any data driven bandwidth to ho, the minimizer of MISE(h), 
which set limits to how well the bandwidth may be selected under a variety of 
smoothness conditions. The bounds are seen to be sharp by showing that they are 
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attained by a plug-in type bandwidth selector. In the main theorem of the next 
section it is seen that h also achieves the optimal rate of relative convergence to h0, 
for each amount  of smoothness. However, unlike the plug-in bandwidth selectors, 
kt is simple and straightforward. 

Since the real goal of density estimation is estimation of f it is natural to 
wonder why results, including rates of convergence and limiting distributions, are 
formulated in terms of h instead of MISE. This is done because, through standard 
Taylor expansion methods, see Theorem 2.2 in Hall and Marron (1987a), it is seen 
that the variability in the comparison of MISE(h) to MISE(ho) is directly driven by 
the variability in the relative bandwidth error. It is simple to formulate corollaries 
to the limiting normal distributions, in terms of noncentral (since the asymptotic 
mean is not 0 in the present case) chi square distributions, but this idea is not new, 
and does not seem worth the space required for precise formulation. 

3 Main theorems 

The asymptotic distribution of (h - ho)/ho depends on four constants cl . . . . .  c4, 
which are defined at the end of this section. Let K and L be functions satisfying 
SK = SL = 1, and put 

~ c j = ( - 1 ) J ( j ! ) - l ~ x J K ( x ) d x ,  2 j = ( - 1 ) J ( j ! ) - l  ~ x J L ( x ) d x  . 

Assume that K is a kernel of order r, and that L is a kernel of order at least s, in the 
sense that 

(3.1) t g = 0 ,  f o r j = l , . . . , r - 1  , x r # 0 ,  2 j = O ,  f o r j = l , . . . , s - - 1 ,  

where r > 2 is an integer and s > 2 is an even integer. 
Additional regularity conditions include: 

(3.2) K, L have compact support and are HSlder continuous; L'  exists and is 
Hf lder  continuous; 

(3.3) L Cr) exists and is continuous; 

(3.4) f i s  compactly supported and has max (2r, r + (s/2)) bounded derivatives, and 
for some 0 < q < 1, 

sup I f ( r+(s /Z ) ) (X)  - - f ( r + ( s / e ) ) ( y ) l / [ X  - -  ylq< oo . 
- ~3 "< x ,  y < c13 

Put v = (s/2) + q. Then, rou.ghly speaking, f has "max (2r, r + v) derivatives" under 
condition (3.4). 

Theorem 3.1 Assume either that ho/# --+ c where 0 < c < ~ ,  and(3.1), (3.2) and (3.4) 
hold; or else that ho/g--* 0 and (3.1)-(3.4) hold. Then, if h denotes the minimizer o f  
SCVo(h), 

(3.5) (h - ho)/ho = c (  1 n2(r-1)/(2r+ l) h 2~- z 

{(czn-Zg-(4~+1) q- c3n-1) l /ZZn + c4g s + 0(g2~)} , 

where Z ,  is asymptotically normal N(O, 1). 
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Remark  3.1. At the expense of additional algebraic effort, and moment conditions, 
each of K, L and f may be taken to have support ( -  0% oe). 

Remark  3.2. If we assume instead of (3.4) that 

(3.4') f is compactly supported and has max(2r, r + (s/2)) continuous derivatives, 
then Theorem 3.1 remains true provided we replace the O(g 2v) t e rm in (3.5) 
by o(gZ~). 

Remark  3.3. (This shows that h may be made n 1/2 consistent for ho.) Assume for 
the sake of simplicity that 2s = 0, which means that L is a kernel of order at least 
s + 1. In this case c4 = 0, and so 

(3.6) (h - ho)/ho = e s { ( c 2 n - 2 g  -(4~+1) + c3n-1) l /2Zn  q- O(g2v)} , 

where the constant c5 > 0 is such that 

(3.7) (nl/~2r+ l)ho)2(~- l)--* clc5 �9 

Choose 9 in (3.6) so that the terms involving 9 are balanced: 

(n-29-(4r+1))1/2 = g2v, i.e. g = n -1 / (2 r+2v+(1 /2 ) )  

If v > r + (1/4) (observe that this assumption relates to both s and the smoothness 
of f )  then it follows from (3.6) that 

(h - ho)/ho = O v ( n  - 1 / 2  q- n -2v / (2r+av+(1/2) ) )  = O p ( n  - 1 / 2 )  �9 

In other words, h is n 1/2 consistent for ho, in relative terms. 

Remark  3.4. The following result may be concluded from the discussion in 
Remark 3.3: If K and L are kernels of orders r and 2r + 2 respectively, if 
g m_ n-1/(4r+ 1) and if f has r + (1/4) derivatives, then h is n 1/2 consistent for ho. In 
the important case r = 2, this requires L of order 6 , f to  have 2.25 "derivatives", and 
g ~'~ n - l / 9 .  

Remark  3.5. An interesting special case is that where K = L and 9 = ho. Then by 
(3.5), 

(h - ho)/ho = n - 1 / { 2 ( 2 r +  l)} c 6 Z n  r , 

where Z;' is asymptotically normal N(0, 1) and c6 > 0 is a constant. Note parti- 
cularly that the bandwidth difference h - h0 now has an asymptotic distribution 
with zero mean; the asymptotic mean is usually nonzero in other cases discussed 
above. Furthermore, the convergence rate of relative error is n-1/~z~zr+ 1~, exactly 
that which arises in ordinary (unsmoothed) cross-validation. To establish this 
result from Theorem 3.1 requires us to assume 2r derivatives o f f  but a direct proof 
demands only r + (1/4)+ e derivatives, for any e > 0. This is because the 2r 
derivative assumption is needed only for the t e rm  ( c 3 n - 1 )  1/2 in (3.6), and that 
quantity is negligible in the present case. 

Remark  3.6. Observe that the setting of Remark 3.5 is different from the closely 
related setting where g = h (because here the parameter 9 appears in the minimiz- 
ation process), as considered by Taylor (1989). However it is straightforward to 
extend our calculations to cover this case, and the result is the same except for the 
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value of the constants.  This quantifies the intui t ion expressed in Sect. 2 that  the rate 
of convergence for h = 9 should be the same as for h(0). One  feature of interest 
abou t  the constants  is that  the analog o fc  6 is much  smaller than  for h(0), and in fact 
is even substantial ly smaller  than  the corresponding quant i ty  for BCV as discussed 
in Scott  and Terrell  (1987). 

A case not  covered in Theo rem 3.1 is the behaviour  of h under  weaker  
condit ions than  existence of 2r derivatives. In  that  direction one m a y  prove  the 
following result, in which assumpt ion  (3.4) is replaced by: 

(3.4") f i s  compac t ly  suppor ted  and has r + r '  derivatives, where 0 < r'  < r - 1 is 
an integer and for some 0 < q < 1, 

sup Jf( '+")(x)  --f(~+~')(y)J/Jx -- yJq < oo . 
- -oo<x ,y<oo  

(If (3.4") holds then, defining v = r' + q < r, we see that  f has "r + v derivatives".) 
Let  [v ]  denote  the integer par t  of  v. 

Theorem 3.2 Take s > 2 [v ]  + 2. Assume either ho/e -~ c where 0 < c < o% and 
(3.1), (3.2) and (3.4") hold; or ho/e -~ 0 and (3.1)-(3.3) and (3.4") hold. Then 

(h - ho)/ho = O p { ( n - 2 g  - ( 4 + 1 )  q- n - ( 2 v + l ) / ( 2 r + l )  -1- g 4 v ) l / 2 }  . 

The o rem 3.2 shows that  the SCV bandwid th  h can achieve the opt imal  rate of 
convergence established in Hall  and M a r r o n  (1989) for v > 0. 
Next  we give explicit forms for the constants  c l , .  �9 �9 c4. Define L0 = L, L1 = L' ,  
K0 = K, K l ( X ) =  - - x K ( x ) ,  

M d c ,  u) = ~ { L,(u -- cx)  -- Li(u) } K i ( x ) d x  , 

Mij(  c, u) = ~ M d c ,  v) Mj(c ,  u + v)dv ,  

C(c, i,j, k, l) = ~ Mij(c,  U)Mkt(C, u)du,  

for i,j, k, 1 equal  to O's and l's. No te  that  M1 = ( 3 / & ) M o .  We now define the 
constants  c~. 
(i) c1: The  asympto t ic  formula  for MISE(h )  is 

A M I S E ( h )  = (nh) - 1 R ( K )  + h z r • z R ( f ( r ) ) .  

Let h 1 (equal to a cons tant  mult iple of n -1/(2r + 1)) be the minimizer  of AMISE,  and 
let Cl > 0 be the constant  determined by 

A M I S E " ( h I )  = cl n -  2 ( r -  1)/(2r + 1) 

(ii) C2: Here it is necessary to treat  the cases hi9 ~ 0 and hi9 --* c (0 < e < oo) 
a little differently. In  the former  circumstance,  assume L is r times differentiable and 
put  

c2 = 8r 2 tc4 R ( f )  R(  L (r) * L (")) . 

In  the lat ter  case, put  

c2 = e2(c) = 4 c - ( 4 " - 2 ) R ( f ) { C ( c ,  1, 1, O, O) + C(c, 1, O, O, 1)} . 
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(iii) c3: Assume f has 2r derivatives, and put 

c3 = 16r 2/Or 4 {~ ( f ( z ~ ) ) 2 f _  R ( f ( r ) ) z } .  

(iv) c4: Assume f has r + (s/2) derivatives, and put 

c4 = (-- 1) (s/2)+ 1 4riG2 2~R(f(~+(s/2))) . 

P. Hall et al. 

4 Data based presmoothing 

In this section optimal choice of g is considered. This choice is then used to 
motivate a practical data-based value for g. The essential idea is related to the 
plug-in idea discussed in Park and Marron (1989), where the unknown parts are 
replaced by their counterparts for some reference' distribution, whose scale is 
adjusted to be the same as the sample standard deviation. 

Assume that in (3.1), 2s =g 0. For  optimal choice of g, note that the variance and 
bias parts of Theorem 3.1 (in the case h/g ~ 0) can be combined into a "Mean 
Square Error", which is proportional to the criterion 

C* = c z n - 2 g  -(4~+1) + c3 n-1  + c 2 9 2 s  . 

But C* is minimized by 

gl = {(4r + 1)c2/(2sc2)} 1/~4~+2s+ 1) n -2/(4r+2s+ 1) 

The choice gl is unavailable because c 2 and c4 depend on the unknown density f. 
However the asymptotics of the last section reveal that this dependence is less 
crucial than the dependence of h on f Hence we replace f b y s o m e  reference 
distribution J~ for example a Gaussian distribution. One aspect of f t h a t  clearly has 
an important influence on the effectiveness of SCV is its scale. Hence we adjust by 
assuming that f h a s  varianceone, and we actually replace f in the above formulae 
by the rescaling f~, where f ~ ( - ) = f ( ' / a ) / a  and ~ denotes the sample standard 
deviation (any other measure of scale, for example something more robust, will 
work here as well). 

Hence, using the invariance property R ( f f f  )) = R (JT(k))/O-2k+ 1, we see that 

(4.1) 0 = ~c7n-2/(4r+2s+l) , 

where 
c7 = E{(4r + 1)R(L(r) ,  L('))R(f)}/{4s2~ZR(f('+(~/2)))2}] 1/(4,+2~+1) 

In the important special case that r = s = 2, that K = L = ~o (standard Gaussian), 
and that f i s  also standard Gaussian, straightforward calculations show that, 

(4.2) 9 = ~{21/(40.21/2)} 1/13 n-z/13 ~ ~0.9266 n -2/13 . 

It is interesting to compare how this Smoothed Cross-Validated bandwidth i (0)  
compares with the plug-in bandwidth considered in Park and Marron (1989). 
Theorem 3.1 can be used together with the fact that ~ = a + Op(n-1/2), where a is 
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the standard deviation of the f distribution, to give the following analog of Park 
and Marron's Theorem 3.3: 

(4.3) n4/13 (h(O) - ho)/ho ~ N(#scv, a2cv) , 

where 

#scv = [ { 9R( q)" *qo") R(  f~ ) } / { 2R (f23))2 } ] z/13 [ R (f(3))/  { 5R(f(2)) } ] , 

a2cv = [{29R(rp. , ( p , , )4R( f (3 ) ) l s } / {99R( f , )9} ]  1/13 [2R( f ) / {25R( f (2 ) )2 } ]  . 

When comparison is done with the corresponding quantities #e~ and a2, in Park 
and Marron, 

/~Pi//~scv = 
2 2 

(TpI/ tTSC v = 

It follows from this 
bandwidth selectors. 
bias. 

{R(@4))/R(~o,, , q),,)} 2/13 {R(f(2))/R(f(2))}4/13 , 

{R(~o" * q)")/R(@4))} 9/13 {R( f (2 ) ) /R  (f~2))} 18/13 

(].2SCV/ # P I )  9/2 . 

that no clear comparison can be made between the two 
When one of them has larger variance, the other has larger 

5 Proofs 

5.1 Preparatory lemmas 

In this section, we state and prove a sequence of seven lemmas which are needed for 
the proof of Theorem 3.1. Notation is drawn from Sect. 3. Our first lemma is 
a relatively straightforward result in functional analysis; a version of it is proved in 
detail in Lemma 5.4 of Hall and Marron (1989). 

Lemma 5.1 I f  the function H vanishes outside a compact set and satisfies 

IH(x + y ) - H ( x ) l < f l l Y l  q, for - o o  < x < o o ,  

where 0 < q < 1; and if e ~ 0 and sup=l Ce(e)l is bounded; then 

~ H ( z ) [ H { z  + ~ + C/(e)} - H { z  + C2(e)}] dz = O(l~12q). 

Define D = Kh* L g -  L o, a(x)  = E { D ( x -  X)}, b(x) = E { f ( x ) }  - f ( x ) .  Put 
ah = ( ~/Oh )a, and define bh, Dh similarly. 

Lemma 5.2 Assume conditions (3.1), (3.2) and (3.4). Then as h, # ~ 0, 

(5.1) b(x) = Krhrf(r)(x) + o(hr), a(x) - b(x) = o(hr) , 

bh(x) = r~crh~-l f (r)(x)  + o(W-1) ,  

uniformly in x. I f  in addition h/g is bounded then 

(5.2) ~ (ah -- bh) (a + b)= -(c4/2)h2*- l g = + O(h2r- l g2~) , 

(5.3) ~ (a -- b)(ah + bh)= - ( c 4 / 2 ) h  2r- l gs + O(h2r-l  g2~) . 
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P r o o f  o f  L e m m a  5.2. Results (5.1) follow by the usual Taylor  expansion arguments 
used to approximate  bias in density estimation. Of results (5.2) and (5.3), we shall 
only prove (5.2) here. 
Observe that  

a ( x )  = ~ K ( u ) L ( v )  { f ( x  - hu - gv) - f ( x  - gv ) }  d u d v  = b ( x )  + (~(x) ,  

where 

(5.4) = If  K(u)L(v)  [ f ( x  - hu - gv) - f ( x  - gv) - { f ( x  - hu) - f ( x ) } ]  du dr .  

To  prove (5.2) we must  show that  

6h(2b + 6 )=  --(c~/2) h 2 r - l  g s -t- O(h 2r-1 g2v) , 

for which it is sufficient to establish that  

( 5 . 5 )  ~6hb = ( - -1)S /2r lcZ)csh2r- lgs I ( f ( r+(s /2) ) )2  + O ( h 2 r - l g z v ) ,  

(5.6) ~ ~h6 = O(h 2"- 1 a2~). 

We shall prove only (5.5), since the argument  leading to (5.6) is similar. 
Assume temporari ly  that  f has r + s derivatives. Differentiating under the 

integral sign in (5.4), and then Taylor  expanding the integrand using an integral 
formula for the remainder,  we see that 

h (~h(X) = ~ K ( u ) L ( v ) ( - h u )  { f ' ( x  - hu - gv) - f ' ( x  - hu)}  du dv 

1 
= {(r - 2)!} -1 ~ K ( u ) L ( v ) ( _ h u ) ,  ~ (1 - t) ~-2 ( f ( r ) ( x  - hut - 9v) 

0 

_ f(r) (x  -- hut)}  d t d u d v  

= ( ( r -  2)! ( s -  1)!} -1 ~ K ( u ) L ( v ) ( - - h u y ( - - g v )  s 

1 1 

x S ~ (1 -- t l )  r -2  (1 -- t2 )~- l f (~+~)(x  -- huta - gvt2) dr1 d t 2 d u d v .  
O0 

A simpler argument  shows that  

b ( x )  = ~ K ( u )  { f ( x  - hu) - f ( x ) }  du 

1 
= { ( r - -  1)[} -1 ~ K ( u ) ( - h u ) ~ ( 1  - t ) * - l f t * ) ( x  - h u t ) d t d u .  

0 
Therefore 

(5.7) (r -- 1)! (r - 2)! (s - 1)[ h y 6hb = ~SS K ( u ) L ( v ) K ( w ) ( - - h u ) ~ ( - g v ) ~ ( - h w ) "  

1 1  1 

Y I f (1 -- t l )  r-2 (1 -- t2) s-1 (1 -- t3) r-1 U dta dr2 at3 du dv d w ,  
0 0 0  

where 
U = U(u,  v, w, t~, tz ,  t3) 

= ~f (r+s) (x  -- hut1 - gv t2) f ( r ) (x  -- h w t 3 ) d x  

= ( _  1)s/2 ~ftr+(s/z))(x - hutl  - g v t 2 ) f  (r+ts/2)) (x  - hwt3) d x ,  
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on integrat ing by parts  s/2 times. If U has this form then identity (5.7) for S 6hb 
requires only r + (s/2) derivatives o f f  not  r + s derivatives. 
F r o m  (5.7) and L e m m a  5.1 we conclude that  

S 6hb = (--  1) s/2 r ~  z 2sh 2r-1 gS j (f(~+o/2)))2 + O(h2, - 19s ' ) ,  

where s' = s + 2{v - (s/2)} -- 2v. This establishes (5.5). 
Define 

11 -= g E { D ( x  -- X ) D ( y  -- X ) } a h ( x ) a h ( y ) d x d y ,  

I2 = IS E{Dh(x  - X ) D h ( y  -- X ) } a ( x ) a ( y ) d x  dy , 

I3 = SS E { D ( x  - X ) D h ( y  -- X ) } a h ( x ) a ( y ) d x d y  , 

14 = SS E{  Dh(x - X ) D ( y  - X)} a(x )ah(y )  dx  dy . 

L e m m a  5.3 Let  I denote any one o f  I~ . . . . .  14, and assume conditions (3.1), (3.2) 
and (3.4). Then as h, g ~ O, 

I ~ h4r-2tc~r  2 ~ ( f ( z~) )2 f .  

Proo f  o f  L e m m a  5.3. Recall the definitions Lo = L, L~ = L' ,  Ko = K, K l ( x ) =  
- - x K ( x ) .  
Define 

Q,(x) = S [ L , { ( x  - h~)/g}  - L f (x /g)]  K,(~)  d~ . 
Then  

(5.8) D = g - l Q o ,  D h = g - 2 Q 1  . 

We begin by developing a formula  for 

R~ = g  2 SS E { Q i ( x _  X ) Q j ( y _  X ) } A ~ ( x ) A j ( y ) d x d y ,  

where A~, A~ are given functions. Fo r  that  task it is helpful to note that  

0 for l < _ k < _ r ~ - i  
(5.9) ( - - 1 ) k ( k ! ) - x  S x k K i ( x )  dx  = to(i) for k = r  i , 

where ro = r, r l  = r - 1, ~c(O) = ~c~, x(1) = r~c~. 
Observe  that  

(5.10) E { Q , ( x -  X ) Q ~ ( y -  X)} = SSS [ L , { ( x -  u -  h~) /g}  - L , { ( x  - u ) /g} ]  

[ L j { ( y  - u - htl)/g} - Lj{  (y - u ) /g}  ] f ( u ) K ~ (  ~)K~(tl) du d~ dtl , 

Therefore  
R~ = S[.S U(u, 4, t l ) f (u )  K~(~) Kj(t l )  du d~ d~/, 

where 
u ( u ,  = g - - - L , { ( x  - . ) / g } ]  

[ L j { ( y  - u -- htl)/g } - L j { ( y  - u ) /g} ]  A i ( x ) A i ( y ) d x  dy  

= g {L~(x - h g - ~ ) -  L~(x)} { L ~ ( y -  h g - ~ t l ) -  Lj(y)} 

A~(u + g x ) A j ( u  + g y ) d x d y  

= ~I L~(x )L j ( y ) {A~(u  + h i  + gx) - A~(u + gx)}  

{A~(u + ht I + g y ) -  A)(u  + gy)} d x d y  . 
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Hence 

(5.11) R1 = S j j f ( u ) L ~ ( x ) L j ( y ) [ j  {Ai(u + hi + 9 x ) -  A~(u + gx)} K i ( ( )d~]  

x [{. (Aj(u  +htt  + gY) - A~(u + ay)}Kj(~l)d~l] d u d x d y  

1 

= - 1  S (1 - t )  
0 

• A}'~)(u + ht~ + gx )K i (~ )d~d t ]  

1 

_ _ 1 j (hrl) A j  " (U -[- htt 1 + gy) • [{(rj 1)!} -1 j (1  t) r~- "~-(~) 
o 

x Kj( t / )dt /dt ]  du dx dy 

1 1 

= h ~'+'j { ( r~-  1)! ( r j -  1)!} -~ ~(1 - t l)  ~-1 S (1 - t2) ~j-1 
0 0 

• S Jf(u) 
f A.(~~ (u + htl~ + g x ) L i ( x ) d x ~ A } ' J ) ( u  + ht2~ + gy)Lj (y )  X j  t 

• dy du d~ dr/dtl  dt2 

1 1 

= (-1)'+Jh~+'sg~+J{(rl- 1)! (r~ - 1)!} -1 j (1 -- tl) r ' - I  ~ (1 - -  t2) r3-1 
0 0 

x j U~K~(~) ~ tflJK~(tl) ~ f (u)  ~ At" +')(u + htl ~ + g x ) L ( x )  

x S AJ ~j +i) (u + ht2 q + aY) L (y )  dy dx du dr /d(  dt2 dt~, 

the last identity following on integrating by parts. 
Note t h a t  r~ + i = rj + j = r, and assume that for k = i , j  we have 

(5.12) A(r)(x) = ckhP~ f(2~)(x) + o(h pk) 

uniformly in x, where Pk is a positive integer and Ck is a constant. Then results (5.9) 
and (5.11) imply t h a t  

(5.13) R 1 ~ (-- 1)i+ J+"'+'J h~*+'J+P'+ PJ gi+ J cicjK(i)K(j) 

~S~ f ( u ) f  ~2,) (u) 2 L(x )  L ( y ) d u  dx dy 

= h2,+p,+pj-i-j gi+j cicjc2ri+~ ~ (f(2,))2f .  

Recall a(x) = E { D ( x  - X)} and note that by Lemma 5.2, a(x) = ~c~h~f(r)(x)+ 
o(h'). Similarly it may be proved that a( ' ) (x )=~c ,h ' f (2~) (x )+o(M)  and 
a~')(x) = r~c~h'-~f(2r)(x) + o(U-1) ,  uniformly in x. Hence if we define 

A~(x) = (c~/8h) ~k a(x) 

where q~ = 0 or 1, then (5.12) holds with Ck = r q ~  and Pk = r -- qk" Therefore by 
(5.13), 

(5.14) R1 ~ h 4"-(i+ ~+q`+q~) gi+ j lcr4 ri+ j+q,+qs S (f(2~))2f. 
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In the cases I = 11,12, I s ,  14 we have (i,j, qi, qi) = (0, 0, 1, 1), (1, 1, 0, 0), (1, 0, 1, 0), 
(1, 0, 0, 1), respectively. On each occasion i + j + ql + qj = 2, and by (5.8), 
I = g-(i+~)R 1. Therefore the lemma follows from (5.i4). 

Define 
J1 = S~ E{Dh(X -- Z ) D h ( y -  X)} E { D ( x -  X ) D ( y - -  X ) )  d x d y  , 

J2 = ~ E{Dh(x  - X ) D ( y -  X ) } E { D ( x -  X ) D ( y -  X ) } d x d y .  

Recall the definition of C(c, i,j, k, l) given in Sect. 3. 

Lemma 5.4 (i) Assume conditions (3.1)-(3.4), and that h, g, h/g--* O. Let  J denote 
either J1 or Jz.  Then 

J = h*r-2g-(4,  +1) K~r2 R( f )  R ( L  (r) , L (r)) + o ( h 4 " - 2 g - ( 4 " + l ) ) .  

(ii) Assume conditions (3.1), (3.2) and (3.4), and that h, g -~  0 and h/g ~ c where 
0 < c < co. Then 

J1 = g - 3 R ( f )  C(c, 1, t, 0, 0) + o(9 -3) 

J2 = g - 3 R  ( f )  C(c, 1, 0, 0, l) + o(g -a) 

Proo f  o f  L e m m a  5.4. Adopt notation from the proof of Lemma 5.3. We begin by 
developing a formula for 

R2 = g - 3  S~ E{  Qi(x - X ) O j ( y  --  X)} E{  Qg(X - X ) Q z ( y  - X)} d x d y ,  

where i,j, k, l are O's and l's. By (5.10), 

(5.15) R2 = g - S  S~[ ~j'~ [Li{(x - u -- h~)/g} - L~{(x - u) /g}]  

x [Lj{(y - u - htl)/g} - L i { ( y  - u ) / g } ] f ( u ) K d ~ ) K j ( t l ) d u d ~ d t l - ]  

[same with (k, l) replacing (i , j)]  dx  dy 

= 0 -1 ~[.[~SS {Li(u - h g - l r  - Li(u)} [L~{u + (y -- x )g  -1 -- h g - l t l }  

-- L j ( u  + (y -- x )g  - 1 } ] f ( x  -- gu)Ki (~)Ki ( t l )  du d~ dt/] 

[same with (k, l) replacing (i,j)] dx dy 

= y y [ S f ( x -  gu) [ i { L r  h g - l ~ ) -  Li(u)} Kd~)d~  ] 

x [ ~ { L j ( u  + v - hg-111) - L j (u  + v)} Kj(t/)dt/] du] 

[same with (k, l) replacing (i , j)]  d x d v  . 

I fh /g  ~ 0 then by (5.15), with r ,  = ri + rj + rk + rl and K. = K(i)K(j)K(k)K(1),  we 
have 

(5.16) R 2 = ~ y [ ~ f ( x  gu){ fL~ 'O  
- j , ( u ) ( - h g - l { ) " ( r i ! ) - l K i ( ~ ) d { }  

x {[.{L,}rJ)(u + v ) ( -hg-ar l )~ f f r f l ) -aK~(r l )dr l }du]  

[same with (k, l) replacing (i, j ) ]  dx dv + o { (h/q)'*} 

= ( - h / g ) ' *  ~c. (S f  2) f {yL[" ) (u )  L}', ~ (u + v)du} 

L ~'~) L} "') V) du} dv {(h/g)'*} ( u )  + o  . 
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If  m = i,j, k or l then rm + m = r, and so L(~ rm) = L (r). Since i + j  + k + l = 2, 

r .  = 4r - (i + j  + k + 1) = 4r - 2, ~c, = ~r4r ~+j+k+l = lr 2 . 

Therefore  by (5.16), 

(5.17) R 2 = (hi9) *~-2 gr4rZR ( f ) R ( L ( ' ) * L  (~)) + o((h/g) 4 , -z  } . 

Note  finally that  by (5.8), J1 = g - 3 R 2  with (i,j, k, l) = (1, 1, 0, 0), and J2 -- ~/-3R2 
with (i,j, k, l) = (1, 0, 0, 1). Hence the l emma in the case h/9 -4 0 follows f rom (5.17). 

If hi9 ~ c where 0 < c < oo then the l emma  follows f rom (5.15) and the fact that  
J = g -3R2"  

Define G~(x) = D(x  - X~) - E { D ( x  - X~)}, V~(h) = S G~a, V~j(h) = S G~Gj. 

L e m m a  5,5 Assume conditions (3.1), (3.2) and (3.4). Then as h, g ~ O, 

E{ V~(h) 2 } ~ 4h 4r-2 ~ r  2 [ S ( f ( 2 , ) ) 2 / _  R( f ( r ) )2 ]  . 

Proo f  o f  L e m m a  5.5. Recall that  a(x)  = E { D ( x  - X)} and ah = (O/cgh)a, and 
define G(x)  = O(x  - X )  - a(x), Gh = (~/c?h)G. Then 

dist. 

vl(h)  = V(h) - S Ca 

dist. 
V~(h) = V ' (h)  =- S (Gha + Gah) , 

e { V ' i h )  2} = IS [ e { a , ( x ) 6 h ( y ) } a ( x ) a ( y )  

+ 2E{ Gh(X)G(y)}  a(x)ah(y)  + E { G ( x ) G ( y ) }  ah(x)ah(y)]  dx  dy 

= ~I [ E { D h ( x  -- X ) D . ( y  -- X ) } a ( x ) a ( y )  

+ 2e{Dh(X  - X ) D ( y  - X)} a(x)ah(y)  

+ E ( D ( x  -- X ) D ( y  -- X ) }ah(x )ah (y )  

-- 4a(x )a(y )ah(  x)ah(y)]  d x d y  . 

N o w  apply  L e m m a s  5.2 and 5.3 to evaluate each of these double integrals. No te  
that  there exists a compac t  set [u, v], not  depending on h, outside which bo th  a and 
ah vanish for all sufficiently small h. 

L e m m a  5.6 (i) Assume conditions (3.1)-(3.4), and that h, g, hi9 ~ O. Then 

E{ V;2(h) 2} ~ 4h4~-2g (4r+1) t c4 r2R( f )  R (L(~) ,L (O) .  

(ii) Assume conditions (3.1), (3.2) and (3.4), and h, 9 ~ 0 ,  where h / 9 ~ c  for  
O < c < cc. Then 

E{  V;2(h) 2 } ~ 2 g - 3 R ( f )  (C(c,  1, 1, O, O) + C(c, 1, 0, 1, 0 )} .  



Smoothed cross-validation 17 

P r o o f  o f L e m m a  5.6. Note  that  

V12(h) = f G~G2, g;2(h)  = ~(GIG2h + GlhG2) ,  

(1/2)E{ Vs 2 } = ~ [ E { G ~ ( x ) G ~ ( y ) }  E{G2h(X)G2h(Y)} 

+ E{G~(x )G~h(y ) }  E{G2h(X)G2(y )}]  d x d y  

= SS [ E { D ( x  - X ) D ( y  - X)} E{Dh(X - X ) D h ( y  -- X)} 

+ E { D h ( X -  X ) D ( y -  X ) } E { D ( x  - X ) D h ( y -  X)} 

- E { D ( x  - X ) D ( y  - X)} ah(x)ah(y) 

-- E{Dh(X - X ) D h ( y  -- X)} a ( x ) a ( y )  

-- 2E{Dh(x  -- X ) D ( y  - X ) } a h ( x ) a ( y )  

+ 2a (x )a (y )ah (x )ah (y ) ]  d x  d y .  

Now  apply Lemmas  5.2-5.4. 

Lemm a  5.7 Assume conditions (3.2) and (3.4), and that g ~ 0 and ho/g is bounded. 
Then for  some e > O and any O < a < b < oo , 

.-<,-<bsup n-1  (ho)} ~i { Vi'(tho) - V[ = O~(hg ~- ~ n -. /2~-~), 

sup n - 2 2 2  { Vili(tho) - V~.(ho)} = Op(hg ~ - 1 9 - ( e ' + ( t / Z ) ) n - l - ~ ) .  
a<=t<b i+j  

The p roof  of Lernma 5.7 is very dose  to that  of Lemma 3.2 in Hall  and Mar ron  
(1987a), and so will not  be given here. 

5.2 P r o o f  o f  Theorem 3.1. Put  A = SCV o - MISE. Then  

0 = SCV;(h)  = A'(h) + M I S E ' ( h ) ,  

MISE ' (h )  = MISE ' (ho)  + (h - h o ) M I S E ' ( h * )  = (h - ho) M I S E " ( h * ) ,  

where h* lies between ho and h. Therefore  

A'(h) + (h - ho) M I S E " ( h * )  = 0 ,  
whence 

(5.18) h - ho = - A ' ( h ) / M I S E " ( h * ) .  

Since h*/ho ~ 1 in probability,  it is simple to prove that  

M I S E " ( h * ) / M I S E " ( h o ) - - .  1 

in probability. Straightforward calculations give 

M I S E ' ( h o )  ~ c l n  -2(r -  1)/(2r+z) . 
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Combin ing  the est imates f rom (5.18) down we see that  

(5.19) h - ho = - - c l l n  2cr-1)/(2r+l) {1 + op(1)}A ' (h) .  

Recall f rom (2.2) and (2.3) that  

SCVg(h) = (nh)-~  R ( K )  + Bg(h) 

where, with D --- Kh * Lg - Lg , 

Bo(h) = {n(n -- 1)} -~ s  ~ D(x - X,)V(x - X j ) d x .  
i * j  

Recalling the nota t ion  b(x)  = El(x) -f(x) f rom l emma 5.2, we have 

M I S E  = I v a r ( f )  + R(b)  = (nh) -~ R ( K )  - n -  i R ( E  f )  + R(b)  . 

Therefore  
A = SCV - M I S E  = A1 + n - t R ( E f ) ,  

where 

(5.20) A1 = l~g - R(b)  . 

Straightforward calculations give 

(O/#h) R ( E  f )  = O(h~-~) , 

and so 

(5.21) 
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A'(~)  = A'~(~) + Op(n-3r/r 

Put  B = E(Bo), and note that  

Bo(h) - B(h)  = {n{n  - 1)} -1 ~ , Z  V~j(h) + 2n -~ ~, V~(h), 
i , j  i 

B(h)  - R ( b )  = f (a ~ - b ~) = I (a - b ) ( a  + b) . 

Hence, using as above the subscript  h to denote  part ial  differentiation with respect 
to h, we see f rom (5.20) that  

(5.22) Ai(h)  = { n ( n -  1)} 1 2 2  V~(h)  + 2n -1 2 V[(h) 
i:# j i 

+ ~ { ( a h -  bh)(a + b) + ( a -  b)(ah + bh)} �9 

L e m m a  5.2 implies that  

{(ah--  bh)(a + b) + ( a -  b)(ah + b h ) } = - c , ~ h 2 r - ~ g  ~ + O(h2~-~92~). 

Since h/ho ~ 1 in probabi l i ty  then by L e m m a  5.7, 

n - 2  { V~j(h) - Vij(ho)} + n . { V[(h) - 

= o ~ { h g  -~ ( n - ~ g - ~ + ~ i / ~ ' +  ~-~/~)}. 
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Combining  estimates f rom (5.22) down we conclude that  

! 

A~(~)  = {n (n  - 1)}-1 y ~  Vi~(ho) + 2 n - 1 2  V~(ho) 
i * j  i 

_ c4hgr-  + Othg- g 2v) + + 

This result, (5.19) and (5.21) give 

(5.23) h - ho = - c ( t n 2 ( ' - ~ ) / ( 2 " + ~ ) [ { n ( n  - 1)} -1 ~ V[j(ho) + 2 n - ~  ~,  V[(ho) 
i:l: j i 

_ c hg- g, + O ( h g - l g  

+ o p { h ~ r - l ( n - : g - ( 2 r + ( 1 / 2 ) ) +  n-1/2)}]  . 

The Cram6r-Wold  device and a martingale argument,  as in Hall (1984) and on 
p. 578 of Hall and Mar ron  (1987a), may  be used to prove that  

S = { n ( n  - 1)} - '  2 2  V~'~(ho) + 2n -~ E V[ tho)  
i#j  i 

is asymptot ical ly  normally distributed with zero mean and variance 

E(S a) = 2 (n (n  - 1)}-1  E{ g ; z ( h o )  z } + 4 n - l E {  g~'(ho) 2 } 

c 2 n -  2 h ~ -  2 g-(4r+ l) + c 3 n -  l h 4~- 2 , 

where we have used Lemmas 5.5 and 5.6. Hence by (5.23), 

- ho = c l l n 2 ( r - 1 ) / ( 2 r + l ) h  2r-1 { ( c 2 n - 2 g  -(4r+1) + c 3 n - 1 ) l / 2 Z n  

+ c , g  s + O(g2~)} , 

where Z ,  is asymptotically normal  N(0, 1). This completes the p roof  of  
Theorem 3.1. 

Acknowledgement. A key idea in the start of this research was suggested by D. Nychka. The 
K interpretation of smoothed cross-validation is a consequence of a remark made by P.J. Diggle. 
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