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1 Introduction 

Let ( Q , ~ , P ;  {~}t=>0) be a filtered probability space satisfying the usual hy- 
potheses, and let a standard d-dimensional Brownian motion {Wt}t>__0 be de- 
fined on it. Consider the following forward-backward stochastic differential 
equations: 

t t 

Xt = x + f b(s, Xs, Y,,Zs) ds + f cr(s, Xs, Y~,Z,) dWs, (1) 
0 0 

T T 

Yt=g(Xr)-fh(s,X~,Ys, ZDds-fZ~dWs, t c [0 , r ] ,  (2) 
t t 

where X, Y,Z take values in IR n, IR", IR nxd, respectively, and b, a,g,h are func- 
tions with appropriate dimensions; T > 0 is an arbitrarily fixed number. Our 
aim is to find a triple (X, Y,Z) which is {~}-adapted, and satisfies the above 
forward-backward stochastic differential equations, on [0, T], P-almost surely. 
Note that it is the extra process Z that makes it possible for (1), (2) to have 
an adapted triple. 

Non-linear backward stochastic differential equations were introduced by 
Pardoux and Peng [8]. It was then shown in ([10, 11, 9, 5], etc.) that this kind 
of backward stochastic differential equations gives a probabilistic representation 
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for a large class of systems of quasilinear parabolic and elliptic PDEs, which 
generalized the classical Feynman-Kac formula for linear parabolic and elliptic 
PDEs. As for the forward-backward equations, Antonelli [1] first studied these 
equations, and he gave the existence and uniqueness when the time duration T 
is sufficiently small. Using a PDE approach, Ma et al. [7] gave the existence 
and uniqueness to a class of forward-backward SDEs in which the forward 
SDE is non-degenerate (i.e., the coefficient a is non-degenerate). 

Forward-backward equations are encountered when one applies the sto- 
chastic maximum principle to optimal stochastic control problems (see [4] for 
a linear version of such equations in an optimal stochastic control problem). 
Such equations are also encountered in the probabilistic interpretation of a 
general type of systems of quasilinear PDEs (see [12]), as well as in finance 
(see [2, 3]). 

Here we shall establish an existence and uniqueness result for the forward- 
backward SDEs over an arbitrarily prescribed time duration, without the non- 
degeneracy condition of a, instead we assume a kind of "monotonicity" 
condition. Note that without the non-degeneracy condition of a, our conditions 
are essential for the existence of an adapted solution over an arbitrarily time 
interval [0, T]; in fact, Antonelli's counterexample in [1] shows that otherwise 
the adapted solution may not even exist when the time duration T is large. 
Also, we will give the "deterministic" version of our results which gives the 
existence and uniqueness to a two-point boundary value problem. We think that 
these results are of independent interest in the deterministic two-point boundary 
value problem. 

The paper is organized as follows: in Sect. 2, we give the formulation of 
the problem and our standing assumptions; in Sect. 3, we give our main results 
about the existence and uniqueness to Eqs. (1) and (2), and we prove it; in 
Sect. 4, we prove some technical lemmas needed in Sect. 3; and in the last 
section, we give the "deterministic" version of our results. 

2 Formulation of the problem 

Let (I2, ~,~,P) be a probability space carrying a standard d-dimensional Brow- 
nian motion W = {Wt : t  > 0}, and let {fit} be the a-field generated by W 
(that is, fit = a{Ws : 0 <<- s <_ t}). We make the standard P-augmentation to 
each fit such that fit contains all the P-null sets of f t .  Then {fit} is right 
continuous and {fit} satisfies the usual hypothesis. We consider the following 
forward-backward SDEs: 

t t 

Xt = x + f b(s, Xs, Ys, Zs)ds + f a(s, Xs, Ys, Zs)dWs, 
0 0 

(3) 

T T 

Yt = g(Xr) - f h(s, Xs, Ys, Zs) ds - f Zs dW~, 
t t 

t C [0, T].  (4) 

Here the processes X, Y,Z take values in 1R n, IR n, IR "• respectively; and b, h, a 
and g take values in IR ~, IR ~, IR nxd and IR n, respectively. 
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We will use the following notations: 
(,) denotes the usual inner product in lRn; we use the usual Euclidean 

norm in INn; and for z E IN, xa, we define ]z] = {tr(zzT)} 1/2, where '~ means 
transpose. 

For z I E ]R n• z 2 c IN nxd, 

((zl ,z2))  = tr(zl(z2)T),  

and for u 1 = (xl, y l , z  1) E INn x ]R n x IR nxd, U 2 = (x2, y2,z 2) E IN n x INn x 
]R n• 

[UI U2] = (xl X 2) ~_ ( y l  y2 )  2r - ( ( Z I , z 2 ) )  

for u = (x, y , z )  �9 IN~ x INn x INnxa, 

f ( t , u )  = (h( t ,u) ,b( t ,u) ,a( t ,u) ) .  

Definition 2.1 We denote by M2(0, T; IN~) the set of  all INn-valued ~ t - adap ted  
processes v(-)  such that 

T 
E f I~(s)l 2 ds < +cx~. 

0 

Definition 2.2 A triple of  processes (X, Y,Z)  " [0, T] x Q ~ INn x INn • INn• 
is called an adapted solution of  the Eqs. (3) and (4), if  (X, Y , Z ) � 9  Me(0, T; 
INn • IR n • INnxa), and it satisfies (3) and (4) P-almost  surely. 

The adaptedness of  the solution enables us to rewrite (3) and (4) in a 
differential form: 

dXt = b( t, Xt, Yt, Zt ) dt + ~( t, Xt, Yt, Zt ) d Wt , 

dYt = h(t, Xt, Yt, Z t )d t  + Zt dWt,  

X0 = x, Yr = g(Xr)  �9 

It is clear that the above equations is a stochastic two point boundary value 
problem. Especially, it contains deterministic two point boundary value problem 
as a special case when a = 0. 

Now we give the standing assumptions of  our paper: 

Assumption 2.1 For each u � 9  f ( . , u )  EM2(O,T;IN ~ 
• INn x ]R"Xd), and for each x �9 INn, 9(x) �9 L2(f2 ,~r ;  INn); there exists a con- 
stant cl > 0, such that 

If(t ,  u l ) -  f ( t ,  u2)l < cl[u 1 -u21, P-a.s., a .e . t  �9 IN+, 

~bll ~ INn X INn X INnxd bl 2 E INn X IR n x INnxd . 

and 
]g(Xl) -- g(X2) I ~ CllX 1 --X2] , P-a.s., V(xbx2) E INn • INn. 

Assumption 2.2 There exists a constant c2 > 0, such that 

[ f ( t ,u  1 ) - f ( t , u 2 ) , u  1 - u  2] < -CzlU 1 -u2[  2, P-a.s., a.e. t c i N + ,  

Vu I CiNn xiNn • u 2 EINn xiNn xiNn• 
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and 

( g ( x  1 ) - g ( x 2 ) , x  ~ - x 2) >= c21x 1 - x2l 2, 

Y. Hu, S. Peng 

P-as. ,  ~X 1 ~ IN n, x 2 E IR n . 

3 Existence and uniqueness for forward-backward equations 

In this section, we shall give the main result of  our paper. 

Theorem 3.1 Let Assumptions (2.1) and (2.2) hold, then there exists a unique 
adapted solution (X, Y, Z) for Eqs. (3) and (4). 

Proof of  Uniqueness. If  U 1 = (X 1, Y1,Z~), U 2 = (X a, Y2,Z2) are two adapted 
solutions of  (3), (4), we set 

( 2 , ~ , 2 )  = ( iv  1 - x 2 ,  y 1 - Y 2 , z i  - z 2 ) ,  

~( t )  = b(t ,  u /  ) - b(t ,  u 2 ) ,  

~ ( t )  = ~(t,  u ,  ~) - ~(t,  u T ) ,  

f ,( t)  = h(t, U / )  - h(t, U,~) .  

From Assumption 2.1, it follows that {Xt} and {Yt} are continuous, and 

E( sup Ixtl 2) + E( sup II)tl 2) < + o o .  
tE[0,r]  t c [0 , r ]  

Applying the It6 formula to (I~t,Xt) (the inner product of  1~t and )(t),  

d(Yt,J(t) = [f(t, Ut I ) - f ( t ,  U2),UJ - U 2] dt + (X t̂ T̂ zt + YT ~(t))dWt 

Let now v be a stopping time such that: 

(~) 0 -< v -< T, 

(fl) E ) I x T 2 ,  + Y~d(t)l 2 dt < +oo, 
0 

we have then, 

v 

E(Y~,2~) = E f [ f ( t ,  U t  I ) - f ( t ,  Ut2), V t  I - U?] dt. 
o 

Let now {vn} be an increasing sequence of  stopping times satisfying (ct) and 
(fl) which converges a.s. to T. It follows from the Lebesgue dominated con- 
vergence theorem that 

T 
E(g(X~) - g(xZ) ,x)  - X 2) = E f [f(t, U, 1 ) - f ( t ,  U2), U t  1 - -  V?] dt 

0 

By Assumptions (2.1) and (2.2), we get then 

c2lX~ - X ~ I  2 <__ E(g(Xr ) - g(X2T),X~ - X 2) 

T 

__< -~2E  f lU, ~ - U?12dt. 
0 
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S o  
U 1 = U 2 . [ ]  

Remark 3.1 We can see that in the proof  of  uniqueness, we have applied I t6 's  
formula to (}7,j~), rather than I)(I 2 or ]I)[ 2. That is the main difference between 
the method of  [1,7] and ours. One will see that the same is true for the proof  
of  existence. 

We shall use a kind of  apriori method to give a proof  to the existence part 
o f  Theorem 3.1. First we give two technical lemmas whose proof  will be given 
in the next section. 

L e m m a  3.1 Suppose that (bo(.) ,Cro(.) ,ho(.))  r M2(O,T;IR n X IR n• • 
IRn), go E L2(g2, ~ r ;  lRn), then the following linear forward-backward stoch- 
astic differential equations 

t t 

Xt = x + f ( - Y s  + bo(s))ds + f ( - z s  + ao(s))dWs, (5) 
0 0 

T T 

Yt = (Xr + go) - f ( -Xs  + ho(s))ds - f Zs dWs (6) 
t l 

have a unique adapted solution (X, Y,Z). 

Now we define, for any given s E ]R, 

b~(t,x, y ,z)  = sb(t,x, y ,z)  + (1 - s ) ( - y ) ,  

a~(t,x, y ,z)  = sa(t,x, y ,z)  § (1 - s ) ( - z ) ,  

h~(t,x, y ,z)  = cch(t,x, y ,z)  + (1 - a ) ( - x ) ,  

g~(x) = sg(x) + (1 - s ) (x ) ,  

and consider the following equations: 

t t 

Xt = x +  f[b~(s, UD+bo(s)]ds+ f[~=(s, Us)+ao(s)]dWs, (7) 
0 0 

T Y 

Yt = (g~(Xr) + go) - f[h~(s, Us) + ho(s)] ds - f Zs dWs, (8) 
t t 

where U = (X, Y,Z). 

L e m m a  3.2 We assume that, for a given so c [0, 1) and for any 

(bo('),ao('),ho(')) EM2(0 ,  T;]R n • IR ~xd • lR~), go EL2(y2,~T;IRn), 

Eqs. (7) and (8) have an adapted solution. Then there exists a go E (0, 1) 
which depends only on Cl, c2 and T, such that for all s ~ [So, so + bo], and for 
any (bo(.),ao(.),ho(.)) EM2(0 ,  T;]R n x IR n• x ]R~), go EL2(y2,~T;IRn), 
Eqs. (7) and (8) have an adapted solution. 

Now we can give 

Proof of  Existence. From Lemma 3.1, we see immediately that, when a = 0, 
for any (bo( . ) ,ao( . ) ,ho( . ) )EM2(O,T;IRnxlR"Xdx]R~),  g o E L 2 ( f 2 , f f r ;  
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1R") Eqs. (7) and (8) have an adapted solution. According to Lemma 3.2, for 
any (b0(.),rro(.),ho(.)) E M 2 ( 0 , / ' ;  IR n X ]R n x d  X lRn) ,  go E L2(Q, YT;IRn),  w e  
can solve Eqs. (7) and (8) successively for the case ~ E [0,6o],[6o,26o] . . . .  
It turns out that, when ~ =  1, for any (b0( . ) , a0( - ) ,ho( . ) )~M2(0 ,  T;Ian x 
1Rnxax IRn), go E L2(f2,~r;IRn), the adapted solution of Eqs. (7) and (8) 
exists, then we deduce immediately that the adapted solution of Eqs. (3) and 
(4) exists. [] 

In the applications of the stochastic maximum principle, the existence of 
the optimal stochastic control gives the existence of solutions to the forward- 
backward equations. So the uniqueness of the solutions to the forward- 
backward equations is more important there. If  we examine further the proof 
of  uniqueness in Theorem 3.l, we can see easily that Assumption (2.2) can be 
weakened to 

Assumption 3.1 There exists a constant c2 > 0, such that 

[ f ( t , u  1) - f ( t ,  u2),u I --  b/2] ~ --C2]X 1 --X212, P-a.s.,a.e. t C ]R + , 

and 

Or 

V/,/1 E IN n X ]R n X ~x nxd ,  

( g ( x  l ) --  g ( x 2 ) , X  l - -  X 2) ~" 0, 

U 2 E ]R n X lR  n X IR nxd  " 

P-a.s., Vx ~ E IR", X 2 C ]R n . 

Assumption 3.2 There exists a constant c2 > 0, such that 

[ f ( t , u  1) _ f ( t ,  u 2 ) , u  1 _ u 2] ~ _ c 2 1 y l  _ y212, P-a.s.,a.e.t E IR + , 

and 

Vu 1 EIR n xIR n x lR nxd, 

( g ( x  1 ) --  g(X2),X 1 --  X 2) ~_> 0, 

U 2 C ]R n • ]R n • IN n x d "  

P-a.s.,Vx 1 EIR n, x 2 EIR n. 

Theorem 3.2 Let  Assumptions (2.1) and (3.1 hold, then there exists at most  
one adapted solution ( X , Y , Z )  f o r  Eqs. (3) and (4). 

Proo f  W e  use the same notations as in Theorem 3.1. Applying the It6 formula 
to (Y t ,X t ) ,  then the same procedure as that in the proof of uniqueness in 
Theorem 3.1 yields, 

r 
~ ) 6 2 " d r  2) E f [ f ( t , U ] )  f ( t ,  Ut2),Ut 1 u~f]dt. E(g(X~ ) - gt r ), r = - - 

0 

By Assumption (3.1), we get then 

0 < E(g(Xlr) "X. 2" X 1 - X  2 )  = - g t  T ) ,  T 

T 
< - c 2 E  f IXt' - ~e]2 dt .  

0 
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So 
X 1 = X 2 . 

From the uniqueness of  the backward equation (4), we finally get 

U 1 = U 2 " [] 

Theorem 3.3 Let Assumptions (2.1) and (3.2) hold, then there exists at most 
one adapted solution (X, Y, Z) for Eqs. (3) and (4). 

Proof First, the same proof  as that of  Theorem 3.2 yields, 

I~=0. 

Applying the It6 formula to ILl 2 and integrating from 0 to T, it follows then, 

T 

fl2,l 2 d t= O, 
0 

that is 
2 = 0 .  

From the uniqueness of  the forward equation (3), we finally get 

U 1 = U 2 . [] 

4 Proof of  Lemmas 

In this section, we prove the technical lemmas needed in Sect. 3. 

Proof of Lemma 3.1. We consider the following backward stochastic differen- 
tial equation: 

T T 

f t = go - f (Y~ + ho(s) - bo ( s ) )ds  - f (Z2s - a0(s))dW,. 
t t 

By the result of  [8], the above equation has a unique adapted solution (I 7, 2) .  

Then we solve the following forward equation: 

t t 

x~ = x + f ( - X s  - ?s + bo(s)) as + f ( - 2 s  + ~o(s))dW, 
0 0 

and set 
Y = x + f ,  z = 2 ,  

we easily see that (X, Y, Z)  is a solution of  Eqs. (5) and (6). Thus the existence 
is proved. 

As for uniqueness, it suffices to use the method of the proof  of  uniqueness 
in Theorem 3.1 and we omit it. [] 

Proof of Lemma 3.2. Observe that 
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b~~ x, y, z)  = b~~ x, y, z) + 5(y  + b(t, x, y, z ) ) ,  

a~~ x, y, z)  = a~o(t, x, y, z)  + 6(z + a(t, x, y, z ) )  , 

h~~ x, y, z) = h~~ x, y, z )  + 6(x + h(t, x, y, z ) ) ,  

g~o+~(x) = a~O(x) + 6(-x  + g(x)). 

We set U ~ = (X ~ y0, Z o) = 0, and solve iteratively the following equations: 

t 

X/+~ = x + f [b~O(s, U~ +~ ) + (5(Y i + b(s, Us) ) + bo(s)] ds 
0 

t 
+ f[~o(~, u;+~) + 6(z~ + ~(~, U s )) + ao(s)] dWs,  (9) 

0 

y/+~ = [g~o(x~+~) + 6(-x~ + g(X~)) + go] 

T T 
- f ( h ~ ( s ,  Us +I ) + 6 ( X / +  h(s, U;)) + ho(s))ds - fZ~s +~ dWs,  (10) 

t t 

where U i = (X  ~, yi, z i ) .  

We set 
oi+t = (•i-t-1, Y~i+I, 2/+1 ) =  u i + l  _ u i  . 

^i+1 ^i+1 
Apply the It6 formula to (Yt ,X  t ), then the same procedure as that in the 
proof  of  uniqueness in Theorem 3.1 yields, 

ct 0 i ^i+1 ~(g~0(x~+~)-g ( x ~ ) , x r  ) 

= - - g ( x T '  ) ) , 2 7 ' )  

+ E f [ f ~ ~  - f~~ U/), U t ] dt 
0 

: )  u i - l ~  ~ + l ] d  t + 6 E f [ 5 ;  + f ( t ,  U ~ ) -  f ( t ,  t ,, 
\ 0 

From Assumptions (2.1) and (2.2), we get easily that 

�9 r ]2 
EI2~+112+Efl01 +~ dt __< 

0 

' = min(1, c2).  where c 2 

We know that for e > 0 

( ^i ^i+1 ) T �9 ) 
6(1 + c l )  E Ix r lPx r  I +Ef]UtIIU,+~J dt 

c~ o 

a 2 

ab <= ~ + eb 2 

and we take e = (3(1 + cl)/c~)-1 . �89 then we derive 

�9 T ^i+I/2 (6(1 +CI )~2  ( ~ ) 
EI2~'I a + e  f l U ,  dt < --  E]X'TI 2 r + E flO;12 dt . 

o = 4 / o 
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Remember  that Vi > 1, 

T i 1 ^i--1 �9 
^i = f[b~O(t, [fit) - b~~ U ; -  ) + 6(Y t  + b(t, U; - 1 )  - b(t, U~-2))]dt  X r  

o 
T 

+ f[o~~ U/)  - a~~ Ut/-1) + 6(21 - I  + a(t, Ut / 1) 
o 

- a(t, Ut/-2))] dWt. 

By a standard method of  estimation, we can derive easily that there exists a 
constant c3 > 0 which depends only on cl and T, such that 

[2'rl r �9 --12 dt > E 2 ~ c3 E 2 d t + E  I , Vi 1. 
0 

So there exists a constant c4 > 0 which depends only on c b c 2  and T, such 
that 

T .  1 ( T .  T : _ 1 2 d t  ) 
E flO't + [2dt < C462 E fl(/,12 dt + E f l fY  [ 

o \ 0 o 

So there exists a 60 E (0, 1), which depends only on Cl, c2 and T, such that 
w h e n 0  < 5 < 6o, 

r 1 1 r ^i 1 r fo -EfI51-'l 2 dt Vi > 1. Ef l fJ i  + 12dt < d t +  8 0 - o = ~ E  Ig,[  2 

From the next lemma, it turns out that U i is a Cauchy sequence in M2(0, T; 
IR" x IR n x IR"Xd). We denote its limit by U = (X, Y, Z). Passing to the limit 
in Eqs. (9) and (10), we see that, when 0 < 6 __< 6o, U = (X, Y, Z)  solves 
Eqs. (7) and (8) for c~ = c~0 + 6. The proof  is completed. [] 

a oc L e m m a  4.1 Suppose  that a real sequence  { i } i = 0  satisfies the fo l lowin9  
conditions: ai > 0, i = O, 1, 2 . . . . .  and  

1 1 
ai+l =< 4-a" + ga i -1 ,  Vi => 1 , 

then there ex is t s  a constant  c > O, such that 

ai ~ c , Vi ~ O. 

The proof  of  this lemma is elementary, so we omit it. [] 

5 D e t e r m i n i s t i c  v e r s i o n  

In this section, we will give the "deterministic" version of  our results which 
give the existence and uniqueness of  the solutions to the deterministic two-point 
boundary value problem under the "monotonicity" condition. 

Consider the following equations: 
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t 
Xt = x + fb (s ,X , ,  Y~)ds, (11) 

0 
T 

Yt = g ( X r ) - f h ( s ,  Xs, Y,)ds, t E  [0, r ] ,  (12) 
t 

where f = ( h , b )  : IN+ xiNn x i N n - ~ I R  n xiNn, 9 : INn__+iNn and u =  
(x, y). 

Definition 5.1 A couple of functions (X, Y) : [0, T] --+ INn x INn is called a 
solution of Eqs . ( l l )  and (12), if (X, Y)C C(0, T;IN~ • INn), and it satisfies 
Eqs. (11) and (12). 

We assume 

Assumption 5.1 There exists a constant c~ > 0, such that 

I f ( t ,u  1 ) -  f ( t ,u2)I  < cl[u 1-u21, a.e . tElR +, 

and 

Vu 1 E IR n x IN n, u 2 E IN n x IN n ; 

Ig(xl) - g(x2)l ~ ctlxl - -X2  I, V(Xl ,X2)  E IN n x ]R n . 

Assumption 5.2 There exists a constant c2 > 0, such that 

( f ( t ,  u l ) - f ( t ,  u2),u 1 - u  2) < -c21u 1 -u2 l  2, a.e.t E IN+, 

Vu 1 EINn x l R  n, u 2 E I R  n x l R n ;  

and 

( 9 ( x l ) - - q ( X 2 ) , x  t - - X  2)  ~ C2I x l  - -x212 ,  VX 1 c ] R  n, x 2 E I N  n " 

We have 

Theorem 5.1 Let Assumptions (5.1) and (5.2) hold, then there exists' a unique 
solution (X, Y ) f o r  Eqs. (11) and (12). 

As before, for the uniqueness of solutions to Eqs. (11) and (12), Assump- 
tion (5.2) can be weakened to 

Assumption 5.3 There exists a constant e2 > 0, such that 

( f ( t ,  U 1) - -  f ( t ,  U2),//1 --  U 2)  ~ --CzIX 1 --xe[ 2, a.e. t C IN+, 

Vu 1 c IR  n x l R  ~, u 2 EINn xiNn; 

and 
(g(x I ) -  g(x2),x t - x 2)>=0, Vx ~ ~ IR ~, x 2 C IN~. 

Or 

Assumption 5.4 There exists a constant c2 > 0, such that 
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( f ( t ,  u 1) --  f ( t ,  u Z ) , u  1 --  u 2) < - - c21Y  1 --  y212, 

V u  1 E IR ~ x ~ ,  u 2 E IR ~ x lR~; 

and 
(g(X 1) -- g(X 2) ,x  1 - -X 2) ~ 0, VX 1 E ]R n, 

a.e. t E IR +, 

x 2 E ]R n . 

283 
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